1
|
Chen Y, Zhu Y, Ren X, Ding L, Xu Y, Zhou M, Dong R, Jin P, Chen X, Fan X, Li M, Gong Y, Wang Y. Endothelial Cell Senescence in Marfan Syndrome: Pathogenesis and Therapeutic Potential of TGF-β Pathway Inhibition. J Am Heart Assoc 2025:e037826. [PMID: 40240926 DOI: 10.1161/jaha.124.037826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/18/2024] [Indexed: 04/18/2025]
Abstract
BACKGROUND Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the Fibrillin-1 gene, which encodes the extracellular matrix protein fibrillin-1. Patients with MFS are predisposed to aortic aneurysms and dissections, significantly contributing to mortality. Emerging evidence suggests that endothelial cell (EC) senescence plays a critical role in the pathogenesis of aortic aneurysms in MFS. This study aims to elucidate the role of EC senescence in the development of aortic aneurysms in MFS using a vascular model derived from human induced pluripotent stem cells. METHODS AND RESULTS We generated human induced pluripotent stem cells lines from 2 patients with MFS carrying specific Fibrillin-1 mutations and differentiated these into ECs. These MFS-hiPSC-derived ECs were characterized using immunofluorescence, reverse transcription-quantitative polymerase chain reaction, and Western blotting. Functional assays including cell proliferation, scratch wound, tube formation, NO content detection, and senescence-associated β-galactosidase staining were conducted. RNA sequencing was performed to elucidate underlying signaling pathways, and pharmacological inhibition of the transforming growth factor-beta pathway was assessed for its therapeutic potential. MFS-hiPSC-derived ECs recapitulated the pathological features observed in Marfan aortas, particularly pronounced cellular senescence, decreased cell proliferation, and abnormal transforming growth factor-beta and NF-κB signaling. These senescent ECs exhibited diminished proliferative and migratory capacities, reduced NO signaling, increased production of inflammatory cytokines, and attenuated responses to inflammatory stimuli. Importantly, senescence and dysfunction in MFS-hiPSCderived ECs were ameliorated by transforming growth factor-beta signaling pathway inhibitor, SB-431542, suggesting a potential therapeutic strategy. CONCLUSIONS This study highlights the pivotal role of endothelial cell senescence in the pathogenesis of aortic aneurysms in MFS. Our human induced pluripotent stem cells-based disease model provides new insights into the disease mechanisms and underscores the potential of targeting the transforming growth factor-beta pathway to mitigate endothelial dysfunction and senescence, offering a promising therapeutic avenue for MFS.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Yuankang Zhu
- Department of Gerontology Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaoli Ren
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Lu Ding
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Yubin Xu
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Miqi Zhou
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Runze Dong
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Peifeng Jin
- Department of Cardiac Surgery The First Affiliated Hospital of Wenzhou Medical University Zhejiang China
| | - Xiufang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Xiaofang Fan
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Yongsheng Gong
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| | - Yongyu Wang
- Department of Cell Biology, Institute of Hypoxia Medicine, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences Wenzhou Medical University Zhejiang China
| |
Collapse
|
2
|
Zhou X, Xu Q, Hu X, Klenotic PA, Valdivia A, Leshnower BG, Dong N, Narla G, Lin Z. PP2A Attenuates Thoracic Aneurysm and Dissection in Mouse Models of Marfan Syndrome. Hypertension 2025; 82:665-679. [PMID: 39878024 PMCID: PMC11922656 DOI: 10.1161/hypertensionaha.124.23494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS). METHODS Two distinct mouse models of MFS underwent daily oral administration of small-molecule activators of the PP2A compound DT-061 to assess its therapeutic potential. Echocardiography was performed to monitor the growth of the aortic root and ascending aorta. Histological evaluation was performed to assess alterations in the vascular wall. RNA-sequencing, Western blot, and immunostaining were performed to decipher the underlying mechanisms by which DT-061 suppresses AA progression. RESULTS PP2A activity decreased, while mTOR activity increased in both human and mouse aortas with MFS. Concordantly, oral administration of DT-061 increased PP2A activation, reducing aortic expansion in Marfan mice. DT-061 treatment also mitigated medial hypertrophy, elastin breakdown, and extracellular matrix deterioration in the ascending aorta, along with decreased metalloproteinase activities. Mechanistic studies suggest that DT-061 suppresses mTOR signaling and smooth muscle cell dedifferentiation, contributing to its effects on thoracic aortic aneurysm and dissection progression. CONCLUSIONS These studies demonstrate a pathological role of PP2A activity loss in the cause of MFS and implicate that activation of PP2A may serve as a novel therapeutic strategy to limit MFS progression, including aortic aneurysm formation.
Collapse
Affiliation(s)
- Xianming Zhou
- Cardiology Division, Department of Medicine (X.Z., Q.X., A.V., Z.L.), Emory University School of Medicine, Atlanta, GA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., X.H., N.D.)
| | - Qian Xu
- Cardiology Division, Department of Medicine (X.Z., Q.X., A.V., Z.L.), Emory University School of Medicine, Atlanta, GA
- Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China (Q.X.)
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., X.H., N.D.)
| | - Philip A Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH (P.A.K.)
| | - Alejandra Valdivia
- Cardiology Division, Department of Medicine (X.Z., Q.X., A.V., Z.L.), Emory University School of Medicine, Atlanta, GA
| | - Bradley G Leshnower
- Division of Cardiothoracic Surgery, Department of Surgery (B.G.L.), Emory University School of Medicine, Atlanta, GA
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., X.H., N.D.)
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor (G.N.)
| | - Zhiyong Lin
- Cardiology Division, Department of Medicine (X.Z., Q.X., A.V., Z.L.), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
3
|
Qian X, Xu L, Geng B, Li F, Dong N. Navigating the Landscape of Translational Medicine of Calcific Aortic Valve Disease: Bridging Bench to Bedside. JACC. ASIA 2025; 5:503-515. [PMID: 40180541 DOI: 10.1016/j.jacasi.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 04/05/2025]
Abstract
Calcific aortic valve disease (CAVD) is a prevalent condition characterized by pathological thickening and calcification of the aortic valve, leading to increased pressure overload and cardiac remodeling, particularly in individuals aged 65 and older. This review synthesizes recent advances in understanding the pathogenesis of CAVD, focusing on key mechanisms including hemodynamic alterations, endothelial dysfunction, lipid deposition, inflammation, and fibrotic calcification. We evaluate emerging therapeutic targets based on pivotal basic research and clinical trials, highlighting the potential for mechanism-oriented interventions. Furthermore, we explore the implications of lipid-lowering therapies, anti-inflammatory strategies, and antifibrocalcific agents, as well as novel bioprosthetic designs aimed at enhancing patient outcomes. Additionally, we discuss the inherent genetic and molecular backgrounds influencing individual susceptibility to CAVD, emphasizing the promise of personalized therapy. By bridging the gap between basic science and clinical application, this review aims to guide future research efforts toward more effective prevention and treatment strategies for CAVD.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingchuan Geng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Fetisova S, Melnik O, Vasichkina E, Vershinina T, Kofeynikova O, Kozyreva A, Fomicheva Y, Sokolnikova P, Zhuk S, Pervunina T, Kostareva A. The clinical and genetic spectrum of pediatric hypertrophic cardiomyopathy manifesting before one year of age. Pediatr Res 2025:10.1038/s41390-025-03989-z. [PMID: 40102575 DOI: 10.1038/s41390-025-03989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) presents a wide range of clinical scenarios depending on the age of manifestation, with a less favorable prognosis in children. The genetic spectrum and clinical causes of HCM diagnosed before one year of age is rarely reported. METHODS We analyzed the genetic causes and genotype-phenotype correlations in 68 children diagnosed with HCM during the first year of life. Genetic analysis was performed using targeted gene sequencing (39 HCM-related genes), followed by whole-exome sequencing for genotype-negative cases. The genetic data were correlated with clinical characteristics, disease progression, and prognosis. RESULTS The overall genotype-positive rate was 81%, with an equal proportion of sarcomeric (29%) and RAS-related genetic cases (29%). Gestational diabetes in mothers was more frequently observed in children with variants in Z-disc-related genes. Overall, one year-survival rate from all causes was 91.2%, with the best survival outcomes associated with sarcomeric and Z-disk-related gene variants. CONCLUSION HCM manifesting in children before one year of age showed an approximately equal proportion of sarcomeric and RAS cascade-related cases. A more favorable prognosis was associated with sarcomeric mutations; whereas metabolic gene-related HCM cases were characterized by the highest one-and five-year mortality due to heart failure. IMPACT We analyzed the genetic causes and genotype-phenotype correlations in 68 children diagnosed with HCM during the first year of life. Patients with sarcomeric mutations demonstrated a more favorable prognosis, whereas metabolic gene-related HCM cases were the highest one- and five-year mortality rates due to HF. We identified several factors associated with unfavorable outcomes, including LV thickness, HF class, elevated troponin, increased NT-proBNP levels, and RV hypertrophy. We proposed several new and previously unreported genes, such as ROBO4 and KMT2D, as potentially causative for infantile HCM. The true role of these genes in this disease requires confirmation.
Collapse
Affiliation(s)
- Svetlana Fetisova
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia.
- Department of Pediatric Cardiology, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia.
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia.
| | - Olesya Melnik
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Elena Vasichkina
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Department of Pediatric Cardiology, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Tatyana Vershinina
- Department of Pediatric Cardiology, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Kofeynikova
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Department of Pediatric Cardiology, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexandra Kozyreva
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yulia Fomicheva
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Polina Sokolnikova
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Sergey Zhuk
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
| | - Tatyana Pervunina
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
- Institute of Molecular biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet (KI), Solna, Sweden
| |
Collapse
|
5
|
Pozo-Vilumbrales B, Martín-Chaves L, López-Unzu MA, Soto-Navarrete MT, Pavón-Morón FJ, Rodríguez-Capitán J, Fernández B. Unraveling the molecular complexity of bicuspid aortopathy: Lessons from comparative proteomics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167679. [PMID: 39832690 DOI: 10.1016/j.bbadis.2025.167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Molecular markers and pathways involved in the etiology and pathophysiology of bicuspid aortopathy are poorly understood. The aim here is to delve into the molecular and cellular mechanisms of the disease and identify potential predictive molecular markers using a well-established isogenic hamster model (T-strain) of bicuspid aortic valve (BAV) and thoracic aortic dilatation (TAD). We carried out comparative quantitative proteomics combined with western blot and morpho-molecular analyses in the ascending aorta of tricuspid aortic valve (TAV) and BAV animals from the T-strain, and TAV animals from a control strain. This strategy allows discriminating between genetic and hemodynamic factors in genetically homogeneous populations. The major molecular alteration in the aorta of genetically homogeneous BAV individuals is PI3K/AKT overactivation caused by changes in the EGF, ANGII and TGF-β pathways. PI3K/AKT affects downstream eNOS, MAP2K1/2, NF-κB, mTOR and WNT pathways. Most of these alterations are seen in independent patient studies with different clinical presentations, but not in TAV hamsters from T-strain that mainly exhibit WNT pathway downregulation. Therefore, we identify a combination of defective interconnected molecular pathways, directly linked to the central PI3K/AKT pathway, common to both BAV-associated TAD patients and hamsters. The defects indicate smooth muscle cell shift towards the synthetic phenotype induced by endothelial-to-mesenchymal transition, oxidative stress and inflammation. WNT signaling represent one genetic factor that may cause structural aortic abnormalities and aneurysm predisposition, whereas hemodynamics is the main trigger of molecular alterations, probably determining aortopathy progression. We identify twenty-seven novel potential biomarkers with a high predictive value.
Collapse
Affiliation(s)
- Bárbara Pozo-Vilumbrales
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain; Biomedical Research Institute of Málaga and Platform on Nanomedicine (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Laura Martín-Chaves
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain; Biomedical Research Institute of Málaga and Platform on Nanomedicine (IBIMA-Plataforma BIONAND), Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - María Teresa Soto-Navarrete
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain; Biomedical Research Institute of Málaga and Platform on Nanomedicine (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Biomedical Research Institute of Málaga and Platform on Nanomedicine (IBIMA-Plataforma BIONAND), Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge Rodríguez-Capitán
- Biomedical Research Institute of Málaga and Platform on Nanomedicine (IBIMA-Plataforma BIONAND), Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain; Biomedical Research Institute of Málaga and Platform on Nanomedicine (IBIMA-Plataforma BIONAND), Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
6
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
7
|
Barrientos NB, Shoppell EA, Boyd RJ, Culotta VC, McCallion AS. Proof of concept study deploying CRISPR inhibition and activation opens key avenues for systematic biological exploration in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.613289. [PMID: 39345571 PMCID: PMC11430107 DOI: 10.1101/2024.09.16.613289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The application of CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) technologies in zebrafish has the potential to expand its capacity for the study of gene function significantly. We report proof-of-principle data evaluating transient expression of a codon optimized CRISPRi/a system for zebrafish across established pigmentary and growth phenotypes. A codon-optimized and catalytically inactive cas9 gene ( dcas9 ) was cloned upstream of codon-optimized Krüppel associated box (KRAB) and methyl-CpG binding protein 2 (MeCP2) for CRISPRi, and VP64 for CRISPRa. To validate CRISPRi, we targeted key genes in melanocyte differentiation ( sox10, mitfa, and mitfb) ; and melanin production (tyrosinase; tyr ). Microinjection of CRISPRi mRNA and single guide RNAs (sgRNAs) targeting the tyr promoter or 5'-UTR resulted in larvae with hypopigmented epidermal melanocytes. CRISPRi-mediated targeting of the promoters or 5'-UTR of transcription factors mitfa and mitfb also results in pronounced hypopigmentation of epidermal melanocytes ( mitfa ), and RPE ( mitfb ). Also, CRISPRi targeting of the sox10 promoter results in hypopigmentation of both epidermal melanocytes and RPE consistent with its role upstream of mitfa and mitfb , and tyr . Finally, we tested both CRISPRi/a to modulate a single gene to yield hypomorphic and hypermorphic effects, selecting mrap2a as our target. This gene regulates energy homeostasis and somatic growth via inhibition of the melanocortin 4 receptor gene ( mc4r ). We demonstrate that inactivating or activating mrap2a with CRISPRi/a significantly decreases or increases larval body length, respectively. We demonstrate that CRISPRi/a can modulate control of zebrafish gene expression, facilitating efficient assay of candidate gene function and disease relevance.
Collapse
|
8
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
9
|
Brückner A, Brandtner A, Rieck S, Matthey M, Geisen C, Fels B, Stei M, Kusche-Vihrog K, Fleischmann BK, Wenzel D. Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE -/- mice. Angiogenesis 2024; 27:719-738. [PMID: 38965173 PMCID: PMC11564227 DOI: 10.1007/s10456-024-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
Collapse
Affiliation(s)
- Alexander Brückner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Adrian Brandtner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Geisen
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Benedikt Fels
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Bernd K Fleischmann
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
10
|
Henderson DJ, Alqahtani A, Chaudhry B, Cook A, Eley L, Houyel L, Hughes M, Keavney B, de la Pompa JL, Sled J, Spielmann N, Teboul L, Zaffran S, Mill P, Liu KJ. Beyond genomic studies of congenital heart defects through systematic modelling and phenotyping. Dis Model Mech 2024; 17:dmm050913. [PMID: 39575509 PMCID: PMC11603121 DOI: 10.1242/dmm.050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024] Open
Abstract
Congenital heart defects (CHDs), the most common congenital anomalies, are considered to have a significant genetic component. However, despite considerable efforts to identify pathogenic genes in patients with CHDs, few gene variants have been proven as causal. The complexity of the genetic architecture underlying human CHDs likely contributes to this poor genetic discovery rate. However, several other factors are likely to contribute. For example, the level of patient phenotyping required for clinical care may be insufficient for research studies focused on mechanistic discovery. Although several hundred mouse gene knockouts have been described with CHDs, these are generally not phenotyped and described in the same way as CHDs in patients, and thus are not readily comparable. Moreover, most patients with CHDs carry variants of uncertain significance of crucial cardiac genes, further complicating comparisons between humans and mouse mutants. In spite of major advances in cardiac developmental biology over the past 25 years, these advances have not been well communicated to geneticists and cardiologists. As a consequence, the latest data from developmental biology are not always used in the design and interpretation of studies aimed at discovering the genetic causes of CHDs. In this Special Article, while considering other in vitro and in vivo models, we create a coherent framework for accurately modelling and phenotyping human CHDs in mice, thereby enhancing the translation of genetic and genomic studies into the causes of CHDs in patients.
Collapse
Affiliation(s)
- Deborah J. Henderson
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrew Cook
- University College London, Zayed Centre for Research, London WC1N 1DZ, UK
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Lucile Houyel
- Congenital and Pediatric Cardiology Unit, M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Marina Hughes
- Cardiology Department, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - John Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto M5G 1XS, Canada. Department of Medical Biophysics, University of Toronto, Toronto M5G 1XS, Canada
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell, Oxfordshire OX11 0RD, UK
| | - Stephane Zaffran
- Aix Marseille Université, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France
| | - Pleasantine Mill
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen J. Liu
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Markouli M, Papachristou A, Politis A, Boviatsis E, Piperi C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules 2024; 14:1231. [PMID: 39456164 PMCID: PMC11506736 DOI: 10.3390/biom14101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Gliomas represent the most common primary Central Nervous System (CNS) tumors, characterized by increased heterogeneity, dysregulated intracellular signaling, extremely invasive properties, and a dismal prognosis. They are generally resistant to existing therapies and only a few molecular targeting options are currently available. In search of signal transduction pathways with a potential impact in glioma growth and immunotherapy, the Slit guidance ligands (Slits) and their Roundabout (Robo) family of receptors have been revealed as key regulators of tumor cells and their microenvironment. Recent evidence indicates the implication of the Slit/Robo signaling pathway in inflammation, cell migration, angiogenesis, and immune cell infiltration of gliomas, suppressing or promoting the expression of pivotal proteins, such as cell adhesion molecules, matrix metalloproteinases, interleukins, angiogenic growth factors, and immune checkpoints. Herein, we discuss recent data on the significant implication of the Slit/Robo signaling pathway in glioma pathology along with the respective targeting options, including immunotherapy, monoclonal antibody therapy, and protein expression modifiers.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Athina Papachristou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| | - Anastasios Politis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| |
Collapse
|
12
|
Terriaca S, Scioli MG, Bertoldo F, Pisano C, Nardi P, Balistreri CR, Magro D, Belmonte B, Savino L, Ferlosio A, Orlandi A. miRNA-Driven Regulation of Endothelial-to-Mesenchymal Transition Differs among Thoracic Aortic Aneurysms. Cells 2024; 13:1252. [PMID: 39120283 PMCID: PMC11312012 DOI: 10.3390/cells13151252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Thoracic aortic aneurysms (TAAs) represent a serious health concern, as they are associated with early aortic dissection and rupture. TAA formation is triggered by genetic conditions, in particular Marfan syndrome (MFS) and bicuspid aortic valve (BAV). During the aneurysmatic process, aortic endothelial cells can undergo endothelial-to-mesenchymal transition (End-MT) with consequent phenotypic and functional alterations. We previously documented that MFS TAA is characterized by miR-632-driven End-MT exacerbation, whereas in BAV aortopathy, the occurrence of this process remains still controversial. We investigated the End-MT process and the underlined regulatory mechanisms in BAV, TAV and MFS TAA tissues. Gene expression and immunohistochemical analysis were performed in order to analyze some important miRNAs and genes characterizing End-MT. We documented that BAV endothelium maintains the expression of the endothelial homeostasis markers, such as ERG, CD31 and miR-126-5p, while it shows lower levels of miR-632 and mesenchymal markers compared with MFS. Interestingly, we also found higher levels of miR-632 in MFS patients' blood. Our findings definitively demonstrate that the End-MT process does not characterize BAV that, among the other TAAs, better maintains the endothelial features. In addition, our results suggest miR-632 as a promising diagnostic/prognostic factor in MFS aortopathy.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Paolo Nardi
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy; (F.B.); (C.P.); (P.N.)
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Daniele Magro
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy; (C.R.B.); (D.M.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy;
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Luca Savino
- Anatomic Pathology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (S.T.); (L.S.)
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (A.F.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
13
|
Yu M, Bouatia-Naji N. Insights into the Inherited Basis of Valvular Heart Disease. Curr Cardiol Rep 2024; 26:381-392. [PMID: 38581562 DOI: 10.1007/s11886-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE OF REVIEW: Increases in the availability of genetic data and advances in the tools and methods for their analyses have enabled well-powered genetic association studies that have significantly enhanced our understanding of the genetic factors underlying both rare and common valve diseases. Valvular heart diseases, such as congenital valve malformations and degenerative valve lesions, increase the risk of heart failure, arrhythmias, and sudden death. In this review, we provide an updated overview of our current understanding of the genetic mechanisms underlying valvular heart diseases. With a focus on discoveries from the past 5 years, we describe recent insights into genetic risk and underlying biological pathways. RECENT FINDINGS: Recently acquired knowledge around valvular heart disease genetics has provided important insights into novel mechanisms related to disease pathogenesis. Newly identified risk loci associated valvular heart disease mainly regulate the composition of the extracellular matrix, accelerate the endothelial-to-mesenchymal transition, contribute to cilia formation processes, and play roles in lipid metabolism. Large-scale genomic analyses have identified numerous risk loci, genes, and biological pathways associated with degenerative valve disease and congenital valve malformations. Shared risk genes suggest common mechanistic pathways for various valve pathologies. More recent studies have combined cardiac magnetic resonance imaging and machine learning to offer a novel approach for exploring genotype-phenotype relationships regarding valve disease. Progress in the field holds promise for targeted prevention, particularly through the application of polygenic risk scores, and innovative therapies based on the biological mechanisms for predominant forms of valvular heart diseases.
Collapse
Affiliation(s)
- Mengyao Yu
- Shanghai Pudong Hospital, Human Phenome Institute, Fudan University Pudong Medical Center, Zhangjiang Fudan International Innovation Center, Fundan University, 825 Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | | |
Collapse
|
14
|
Mills AC, Sandhu HK, Ikeno Y, Tanaka A. Heritable thoracic aortic disease: a literature review on genetic aortopathies and current surgical management. Gen Thorac Cardiovasc Surg 2024; 72:293-304. [PMID: 38480670 DOI: 10.1007/s11748-024-02017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
Heritable thoracic aortic disease puts patients at risk for aortic aneurysms, rupture, and dissections. The diagnosis and management of this heterogenous patient population continues to evolve. Last year, the American Heart Association/American College of Cardiology Joint Committee published diagnosis and management guidelines for aortic disease, which included those with genetic aortopathies. Additionally, evolving research studying the implications of underlying genetic aberrations with new genetic testing continues to become available. In this review, we evaluate the current literature surrounding the diagnosis and management of heritable thoracic aortic disease, as well as novel therapeutic approaches and future directions of research.
Collapse
Affiliation(s)
- Alexander C Mills
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Harleen K Sandhu
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Yuki Ikeno
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Akiko Tanaka
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Gaye B, Vignac M, Gådin JR, Ladouceur M, Caidahl K, Olsson C, Franco-Cereceda A, Eriksson P, Björck HM. Predictive machine learning models for ascending aortic dilatation in patients with bicuspid and tricuspid aortic valves undergoing cardiothoracic surgery: a prospective, single-centre and observational study. BMJ Open 2024; 14:e067977. [PMID: 38508639 PMCID: PMC10961501 DOI: 10.1136/bmjopen-2022-067977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVES The objective of this study was to develop clinical classifiers aiming to identify prevalent ascending aortic dilatation in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). DESIGN AND SETTING A prospective, single-centre and observational cohort. PARTICIPANTS The study involved 543 BAV and 491 TAV patients with aortic valve disease and/or ascending aortic dilatation, excluding those with coronary artery disease, undergoing cardiothoracic surgery at the Karolinska University Hospital (Sweden). MAIN OUTCOME MEASURES Predictors of high risk of ascending aortic dilatation (defined as ascending aorta with a diameter above 40 mm) were identified through the application of machine learning algorithms and classic logistic regression models. EXPOSURES Comprehensive multidimensional data, including valve morphology, clinical information, family history of cardiovascular diseases, prevalent diseases, demographic details, lifestyle factors, and medication. RESULTS BAV patients, with an average age of 60.4±12.4 years, showed a higher frequency of aortic dilatation (45.3%) compared with TAV patients, who had an average age of 70.4±9.1 years (28.9% dilatation, p <0.001). Aneurysm prediction models for TAV patients exhibited mean area under the receiver-operating-characteristic curve (AUC) values above 0.8, with the absence of aortic stenosis being the primary predictor, followed by diabetes and high-sensitivity C reactive protein. Conversely, prediction models for BAV patients resulted in AUC values between 0.5 and 0.55, indicating low usefulness for predicting aortic dilatation. Classification results remained consistent across all machine learning algorithms and classic logistic regression models. CONCLUSION AND RECOMMENDATION Cardiovascular risk profiles appear to be more predictive of aortopathy in TAV patients than in patients with BAV. This adds evidence to the fact that BAV-associated and TAV-associated aortopathy involves different pathways to aneurysm formation and highlights the need for specific aneurysm preventions in these patients. Further, our results highlight that machine learning approaches do not outperform classical prediction methods in addressing complex interactions and non-linear relations between variables.
Collapse
Affiliation(s)
- Bamba Gaye
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maxime Vignac
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Kenneth Caidahl
- Clinical Physiology Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Christian Olsson
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Adzraku SY, Cao C, Zhou Q, Yuan K, Hao X, Li Y, Yuan S, Huang Y, Xu K, Qiao J, Ju W, Zeng L. Endothelial Robo4 suppresses endothelial-to-mesenchymal transition induced by irradiation and improves hematopoietic reconstitution. Cell Death Dis 2024; 15:159. [PMID: 38383474 PMCID: PMC10881562 DOI: 10.1038/s41419-024-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bone marrow ablation is routinely performed before hematopoietic stem cell transplantation (HSCT). Hematopoietic stem and progenitor cells (HSPCs) require a stable bone marrow microenvironment to expand and refill the peripheral blood cell pool after ablation. Roundabout guidance receptor 4 (Robo4) is a transmembrane protein exclusive to endothelial cells and is vital in preserving vascular integrity. Hence, the hypothesis is that Robo4 maintains the integrity of bone marrow endothelial cells following radiotherapy. We created an endothelial cell injury model with γ-radiation before Robo4 gene manipulation using lentiviral-mediated RNAi and gene overexpression techniques. We demonstrate that Robo4 and specific mesenchymal proteins (Fibronectin, Vimentin, αSma, and S100A4) are upregulated in endothelial cells exposed to irradiation (IR). We found that Robo4 depletion increases the expression of endoglin (CD105), an auxiliary receptor for the transforming growth factor (TGF-β) family of proteins, and promotes endothelial-to-mesenchymal transition (End-MT) through activation of both the canonical (Smad) and non-canonical (AKT/NF-κB) signaling pathways to facilitate Snail1 activation and its nuclear translocation. Endothelial Robo4 overexpression stimulates the expression of immunoglobulin-like adhesion molecules (ICAM-1 and VCAM-1) and alleviates irradiation-induced End-MT. Our coculture model showed that transcriptional downregulation of endothelial Robo4 reduces HSPC proliferation and increases HSC quiescence and apoptosis. However, Robo4 overexpression mitigated the damaged endothelium's suppressive effects on HSC proliferation and differentiation. These findings indicate that by controlling End-MT, Robo4 preserves microvascular integrity after radiation preconditioning, protects endothelial function, and lessens the inhibitory effect of damaged endothelium on hematopoietic reconstitution.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Can Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Qi Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaowen Hao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shengnan Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
17
|
Lin Y, Yang Q, Lin X, Liu X, Qian Y, Xu D, Cao N, Han X, Zhu Y, Hu W, He X, Yu Z, Kong X, Zhu L, Zhong Z, Liu K, Zhou B, Wang Y, Peng J, Zhu W, Wang J. Extracellular Matrix Disorganization Caused by ADAMTS16 Deficiency Leads to Bicuspid Aortic Valve With Raphe Formation. Circulation 2024; 149:605-626. [PMID: 38018454 DOI: 10.1161/circulationaha.123.065458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.
Collapse
Affiliation(s)
- Ying Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Qifan Yang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaoping Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xianbao Liu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Yi Qian
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Dilin Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Naifang Cao
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (X.H.)
| | - Yanqing Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wangxing Hu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaopeng He
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhengyang Yu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiangmin Kong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Lianlian Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhiwei Zhong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Kai Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences (B.Z.)
| | - Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Health Science Center, China (Y.W.)
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Jian'an Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute (J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| |
Collapse
|
18
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 699] [Impact Index Per Article: 699.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
19
|
Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol 2024; 61:51-60. [PMID: 38431463 PMCID: PMC10978279 DOI: 10.1053/j.seminhematol.2024.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
20
|
Coll M, Fernández-Falgueras A, Iglesias A, Brugada R. Valvulopathies and Genetics: Where are We? Rev Cardiovasc Med 2024; 25:40. [PMID: 39077344 PMCID: PMC11263169 DOI: 10.31083/j.rcm2502040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 07/31/2024] Open
Abstract
Valvulopathies are among the most common cardiovascular diseases, significantly increasing morbidity and mortality. While many valvular heart diseases are acquired later in life, an important genetic component has been described, particularly in mitral valve prolapse and bicuspid aortic valve. These conditions can arise secondary to genetic syndromes such as Marfan disease (associated with mitral valve prolapse) or Turner syndrome (linked to the bicuspid aortic valve) or may manifest in a non-syndromic form. When cardiac valve disease is the primary cause, it can appear in a familial clustering or sporadically, with a clear genetic component. The identification of new genes, regulatory elements, post-transcriptional modifications, and molecular pathways is crucial to identify at-risk familial carriers and for developing novel therapeutic strategies. In the present review we will discuss the numerous genetic contributors of heart valve diseases.
Collapse
Affiliation(s)
- Mònica Coll
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Anna Fernández-Falgueras
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
| | - Anna Iglesias
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28014 Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
21
|
Zhang H. Bicuspid aortic valve repair-current techniques, outcomes, challenges, and future perspectives. Front Cardiovasc Med 2024; 10:1295146. [PMID: 38235290 PMCID: PMC10791802 DOI: 10.3389/fcvm.2023.1295146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart condition that can lead to some valve-related complications, such as aortic stenosis and/or regurgitation, and is often associated with aortic root dilation. With the development and refinement of BAV repair techniques over the past three decades, surgical repair of BAV has emerged as an effective treatment option, offering symptomatic relief and improved outcomes. This review aims to summarize the current techniques, outcomes, and challenges of BAV repair, and to provide potential future perspectives in the field.
Collapse
Affiliation(s)
- Haiyu Zhang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Mizrak D, Zhao Y, Feng H, Macaulay J, Tang Y, Sultan Z, Zhao G, Guo Y, Zhang J, Yang B, Eugene Chen Y. Single-Molecule Spatial Transcriptomics of Human Thoracic Aortic Aneurysms Uncovers Calcification-Related CARTPT-Expressing Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2023; 43:2285-2297. [PMID: 37823268 PMCID: PMC10842613 DOI: 10.1161/atvbaha.123.319329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yang Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jane Macaulay
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Tang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Zain Sultan
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Guizhen Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Yang K, Cui S, Wang J, Xu T, Du H, Yue H, Ye H, Guo J, Zhang J, Li P, Guo Y, Pan C, Pang J, Wang J, Yu X, Zhang C, Liu Z, Chen Y, Xu F. Early Progression of Abdominal Aortic Aneurysm is Decelerated by Improved Endothelial Barrier Function via ALDH2-LIN28B-ELK3 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302231. [PMID: 37822152 PMCID: PMC10646281 DOI: 10.1002/advs.202302231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/25/2023] [Indexed: 10/13/2023]
Abstract
The involvement of endothelial barrier function in abdominal aortic aneurysm (AAA) and its upstream regulators remains unknown. Single-cell RNA sequencing shows that disrupted endothelial focal junction is an early (3 days) and persistent (28 days) event during Angiotensin II (Ang II)-induced AAA progression. Consistently, mRNA sequencing on human aortic dissection tissues confirmed downregulated expression of endothelial barrier-related genes. Aldehyde dehydrogenase 2 (ALDH2), a negative regulator of AAA, is found to be upregulated in the intimal media of AAA samples, leading to testing its role in early-stage AAA. ALDH2 knockdown/knockout specifically in endothelial cells (ECs) significantly increases expression of EC barrier markers related to focal adhesion and tight junction, restores endothelial barrier integrity, and suppresses early aortic dilation of AAA (7 and 14 days post-Ang II). Mechanically, ELK3 acts as an ALDH2 downstream regulator for endothelial barrier function preservation. At the molecular level, ALDH2 directly binds to LIN28B, a regulator of ELK3 mRNA stability, hindering LIN28B binding to ELK3 mRNA, thereby depressing ELK3 expression and impairing endothelial barrier function. Therefore, preserving vascular endothelial barrier integrity via ALDH2-specific knockdown in ECs holds therapeutic potential in the early management of AAAs.
Collapse
|
25
|
Jeoffrey SMH, Kalyanasundaram A, Zafar MA, Ziganshin BA, Elefteriades JA. Genetic Overlap of Spontaneous Dissection of Either the Thoracic Aorta or the Coronary Arteries. Am J Cardiol 2023; 205:69-74. [PMID: 37591066 DOI: 10.1016/j.amjcard.2023.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Ascending thoracic aortic dissection (ATAD) is a well-known vascular cause of sudden death. Spontaneous coronary artery dissections (SCAD) are emerging as an important cause of early-onset myocardial infarction and sudden death. Genetic variants in multiple connective tissue genes have been recognized to underlie ATAD; other genetic variants have similarly been recognized to underlie SCAD. Little data are available regarding any genetic commonality between ATAD and SCAD. Our objective is to determine and characterize any genetic overlap between genes coding for ATAD and SCAD. We identified and reviewed 17 retrospective and prospective genetic studies of thoracic aortic dissection and SCAD published between 2016 and 2022 identified through PubMed and Orbis. Articles highlighting the significant plausible triggers for ATAD or SCAD individually were analyzed. No previous study reviewed both ATAD and SCAD genetics together. Separate lists of causative genes were constructed for ATAD and SCAD-and then commonalities were sought. A Venn diagram was constructed to display the genetic overlap and common physiologic pathways involved. We identified a definite, meaningful overlap of 15 independent genes based on a genome-wide association study or other genetic methods. The associated genetic pathways involved various biologic processes including elastin degradation, smooth muscle cell function, and the TGFβ-pathway. The overlapping genes included the following: COL3A1, TGFB2, SMAD3, MYLK, TGFBR2, TGFBR1, LOX, FBN1, NOTCH1, ELN, COL5A1, COL5A2, COL1A2, MYH11, and TLN1. The corresponding molecular pathways were investigated and correlated for both diseases. We are not aware of other studies searching for genetic commonalities between ATAD and SCAD. We have successfully identified overlapping genes-and their corresponding molecular pathways-for ATAD and SCAD. We hope that these insights will lead to further clinical and scientific understanding of each disease through study of their fundamental commonalities.
Collapse
Affiliation(s)
| | - Asanish Kalyanasundaram
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
26
|
Bulut HI, Arjomandi Rad A, Syrengela AA, Ttofi I, Djordjevic J, Kaur R, Keiralla A, Krasopoulos G. A Comprehensive Review of Management Strategies for Bicuspid Aortic Valve (BAV): Exploring Epidemiology, Aetiology, Aortopathy, and Interventions in Light of Recent Guidelines. J Cardiovasc Dev Dis 2023; 10:398. [PMID: 37754827 PMCID: PMC10531880 DOI: 10.3390/jcdd10090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVE bicuspid aortic valve (BAV) stands as the most prevalent congenital heart condition intricately linked to aortic pathologies encompassing aortic regurgitation (AR), aortic stenosis, aortic root dilation, and aortic dissection. The aetiology of BAV is notably intricate, involving a spectrum of genes and polymorphisms. Moreover, BAV lays the groundwork for an array of structural heart and aortic disorders, presenting varying degrees of severity. Establishing a tailored clinical approach amid this diverse range of BAV-related conditions is of utmost significance. In this comprehensive review, we delve into the epidemiology, aetiology, associated ailments, and clinical management of BAV, encompassing imaging to aortic surgery. Our exploration is guided by the perspectives of the aortic team, spanning six distinct guidelines. METHODS We conducted an exhaustive search across databases like PubMed, Ovid, Scopus, and Embase to extract relevant studies. Our review incorporates 84 references and integrates insights from six different guidelines to create a comprehensive clinical management section. RESULTS BAV presents complexities in its aetiology, with specific polymorphisms and gene disorders observed in groups with elevated BAV prevalence, contributing to increased susceptibility to other cardiovascular conditions. The altered hemodynamics inherent to BAV instigate adverse remodelling of the aorta and heart, thus fostering the development of epigenetically linked aortic and heart diseases. Employing TTE screening for first-degree relatives of BAV patients might be beneficial for disease tracking and enhancing clinical outcomes. While SAVR is the primary recommendation for indicated AVR in BAV, TAVR might be an option for certain patients endorsed by adept aortic teams. In addition, proficient teams can perform aortic valve repair for AR cases. Aortic surgery necessitates personalized evaluation, accounting for genetic makeup and risk factors. While the standard aortic replacement threshold stands at 55 mm, it may be tailored to 50 mm or even 45 mm based on patient-specific considerations. CONCLUSION This review reiterates the significance of considering the multifactorial nature of BAV as well as the need for further research to be carried out in the field.
Collapse
Affiliation(s)
- Halil Ibrahim Bulut
- Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey;
| | | | | | - Iakovos Ttofi
- Department of Cardiothoracic Surgery, Oxford University Hospital NHS Foundation Trust, Oxford OX3 9DU, UK; (I.T.); (J.D.); (R.K.); (A.K.)
| | - Jasmina Djordjevic
- Department of Cardiothoracic Surgery, Oxford University Hospital NHS Foundation Trust, Oxford OX3 9DU, UK; (I.T.); (J.D.); (R.K.); (A.K.)
| | - Ramanjit Kaur
- Department of Cardiothoracic Surgery, Oxford University Hospital NHS Foundation Trust, Oxford OX3 9DU, UK; (I.T.); (J.D.); (R.K.); (A.K.)
| | - Amar Keiralla
- Department of Cardiothoracic Surgery, Oxford University Hospital NHS Foundation Trust, Oxford OX3 9DU, UK; (I.T.); (J.D.); (R.K.); (A.K.)
| | - George Krasopoulos
- Department of Cardiothoracic Surgery, Oxford University Hospital NHS Foundation Trust, Oxford OX3 9DU, UK; (I.T.); (J.D.); (R.K.); (A.K.)
| |
Collapse
|
27
|
Gehlen J, Stundl A, Debiec R, Fontana F, Krane M, Sharipova D, Nelson CP, Al-Kassou B, Giel AS, Sinning JM, Bruenger CMH, Zelck CF, Koebbe LL, Braund PS, Webb TR, Hetherington S, Ensminger S, Fujita B, Mohamed SA, Shrestha M, Krueger H, Siepe M, Kari FA, Nordbeck P, Buravezky L, Kelm M, Veulemans V, Adam M, Baldus S, Laugwitz KL, Haas Y, Karck M, Mehlhorn U, Conzelmann LO, Breitenbach I, Lebherz C, Urbanski P, Kim WK, Kandels J, Ellinghaus D, Nowak-Goettl U, Hoffmann P, Wirth F, Doppler S, Lahm H, Dreßen M, von Scheidt M, Knoll K, Kessler T, Hengstenberg C, Schunkert H, Nickenig G, Nöthen MM, Bolger AP, Abdelilah-Seyfried S, Samani NJ, Erdmann J, Trenkwalder T, Schumacher J. Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovasc Res 2023; 119:857-866. [PMID: 35727948 PMCID: PMC10153415 DOI: 10.1093/cvr/cvac099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The present study aims to characterize the genetic risk architecture of bicuspid aortic valve (BAV) disease, the most common congenital heart defect. METHODS AND RESULTS We carried out a genome-wide association study (GWAS) including 2236 BAV patients and 11 604 controls. This led to the identification of a new risk locus for BAV on chromosome 3q29. The single nucleotide polymorphism rs2550262 was genome-wide significant BAV associated (P = 3.49 × 10-08) and was replicated in an independent case-control sample. The risk locus encodes a deleterious missense variant in MUC4 (p.Ala4821Ser), a gene that is involved in epithelial-to-mesenchymal transformation. Mechanistical studies in zebrafish revealed that loss of Muc4 led to a delay in cardiac valvular development suggesting that loss of MUC4 may also play a role in aortic valve malformation. The GWAS also confirmed previously reported BAV risk loci at PALMD (P = 3.97 × 10-16), GATA4 (P = 1.61 × 10-09), and TEX41 (P = 7.68 × 10-04). In addition, the genetic BAV architecture was examined beyond the single-marker level revealing that a substantial fraction of BAV heritability is polygenic and ∼20% of the observed heritability can be explained by our GWAS data. Furthermore, we used the largest human single-cell atlas for foetal gene expression and show that the transcriptome profile in endothelial cells is a major source contributing to BAV pathology. CONCLUSION Our study provides a deeper understanding of the genetic risk architecture of BAV formation on the single marker and polygenic level.
Collapse
Affiliation(s)
- Jan Gehlen
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Anja Stundl
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Federica Fontana
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Markus Krane
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Baravan Al-Kassou
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Ann-Sophie Giel
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Jan-Malte Sinning
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | | | - Carolin F Zelck
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Laura L Koebbe
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Thomas R Webb
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Buntaro Fujita
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Malakh Shrestha
- Department of Adult and Pediatric Cardiothoracic Surgery, Vascular Surgery, Heart and Lung Transplantation, Hannover Medical School, Hannover, Germany
| | - Heike Krueger
- Department of Adult and Pediatric Cardiothoracic Surgery, Vascular Surgery, Heart and Lung Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Siepe
- Heart Center Freiburg/Bad Krozingen, University Freiburg/Bad Krozingen, Freiburg, Germany
| | - Fabian Alexander Kari
- Heart Center Freiburg/Bad Krozingen, University Freiburg/Bad Krozingen, Freiburg, Germany
| | - Peter Nordbeck
- Medizinische Klinik und Poliklinik I, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Buravezky
- Medizinische Klinik und Poliklinik I, University Hospital Würzburg, Würzburg, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Verena Veulemans
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matti Adam
- Department of Medicine III, Heart Center Cologne, University Hospital Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Medicine III, Heart Center Cologne, University Hospital Cologne, Cologne, Germany
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Yannick Haas
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Karck
- Department of Cardiothoracic Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Mehlhorn
- Department of Cardiothoracic Surgery, Helios Klinik Karlsruhe, Karlsruhe, Germany
| | | | - Ingo Breitenbach
- Department of Cardiothoracic Surgery and Vascular Surgery, Clinic of Braunschweig, Braunschweig, Germany
| | - Corinna Lebherz
- Department of Medicine I, Cardiology/Angiology/Intensive Care, University Hospital Aachen, Aachen, Germany
| | - Paul Urbanski
- Department of Cardiovascular Surgery, Cardiovascular Clinic, Rhön-Klinikum Campus Bad Neustadt, Neustadt, Germany
| | - Won-Keun Kim
- Department of Cardiology, Heart Center, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Joscha Kandels
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Nowak-Goettl
- Department of Clinical Chemistry, Thrombosis and Hemostasis Unit, University Hospital of Kiel and Lübeck, Kiel, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Felix Wirth
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz von Scheidt
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Katharina Knoll
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Thorsten Kessler
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Heribert Schunkert
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Georg Nickenig
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Aidan P Bolger
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jeanette Erdmann
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University Heart Centre Lübeck, University of Lübeck, Lübeck, Germany
| | - Teresa Trenkwalder
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Liu Z, Lami B, Ikonomou L, Gu M. Unlocking the potential of induced pluripotent stem cells for neonatal disease modeling and drug development. Semin Perinatol 2023; 47:151729. [PMID: 37012138 PMCID: PMC10133195 DOI: 10.1016/j.semperi.2023.151729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Neonatal lung and heart diseases, albeit rare, can result in poor quality of life, often require long-term management and/or organ transplantation. For example, Congenital Heart Disease (CHD) is one of the most common type of congenital disabilities, affecting nearly 1% of the newborns, and has complex and multifactorial causes, including genetic predisposition and environmental influences. To develop new strategies for heart and lung regeneration in CHD and neonatal lung disease, human induced pluripotent stem cells (hiPSCs) provide a unique and personalized platform for future cell replacement therapy and high-throughput drug screening. Additionally, given the differentiation potential of iPSCs, cardiac cell types such as cardiomyocytes, endothelial cells, and fibroblasts and lung cell types such Type II alveolar epithelial cells can be derived in a dish to study the fundamental pathology during disease progression. In this review, we discuss the applications of hiPSCs in understanding the molecular mechanisms and cellular phenotypes of CHD (e.g., structural heart defect, congenital valve disease, and congenital channelopathies) and congenital lung diseases, such as surfactant deficiencies and Brain-Lung-Thyroid syndrome. We also provide future directions for generating mature cell types from iPSCs, and more complex hiPSC-based systems using three-dimensional (3D) organoids and tissue-engineering. With these potential advancements, the promise that hiPSCs will deliver new CHD and neonatal lung disease treatments may soon be fulfilled.
Collapse
Affiliation(s)
- Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Bonny Lami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, United States; Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
30
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
31
|
Jaouadi H, Jopling C, Bajolle F, Théron A, Faucherre A, Gerard H, Al Dybiat S, Ovaert C, Bonnet D, Avierinos JF, Zaffran S. Expanding the phenome and variome of the ROBO-SLIT pathway in congenital heart defects: toward improving the genetic testing yield of CHD. J Transl Med 2023; 21:160. [PMID: 36855159 PMCID: PMC9976407 DOI: 10.1186/s12967-023-03994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Recent studies have shown the implication of the ROBO-SLIT pathway in heart development. Within this study, we aimed to further assess the implication of the ROBO and SLIT genes mainly in bicuspid aortic valve (BAV) and other human congenital heart defects (CHD). METHODS We have analyzed a cohort of singleton exome sequencing data comprising 40 adult BAV patients, 20 pediatric BAV patients generated by the Pediatric Cardiac Genomics Consortium, 10 pediatric cases with tetralogy of Fallot (ToF), and one case with coarctation of the aorta. A gene-centered analysis of data was performed. To further advance the interpretation of the variants, we intended to combine more than 5 prediction tools comprising the assessment of protein structure and stability. RESULTS A total of 24 variants were identified. Only 4 adult BAV patients (10%) had missense variants in the ROBO and SLIT genes. In contrast, 19 pediatric cases carried variants in ROBO or SLIT genes (61%). Three BAV patients with a severe phenotype were digenic. Segregation analysis was possible for two BAV patients. For the homozygous ROBO4: p.(Arg776Cys) variant, family segregation was consistent with an autosomal recessive pattern of inheritance. The ROBO4: c.3001 + 3G > A variant segregates with the affected family members. Interestingly, these variants were also found in two unrelated patients with ToF highlighting that the same variant in the ROBO4 gene may underlie different cardiac phenotypes affecting the outflow tract development. CONCLUSION Our results further reinforce the implication of the ROBO4 gene not only in BAV but also in ToF hence the importance of its inclusion in clinical genetic testing. The remaining ROBO and SLIT genes may be screened in patients with negative or inconclusive genetic tests.
Collapse
Affiliation(s)
- Hager Jaouadi
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, LabEx ICST, Montpellier, France
| | - Fanny Bajolle
- Service de Cardiologie Congénitale Et Pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker-Enfants Malades, APHP and Université Paris Cité, Paris, France
| | - Alexis Théron
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France
- Department of Cardiac Surgery, La Timone Hospital, AP-HM, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, LabEx ICST, Montpellier, France
| | - Hilla Gerard
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Sarab Al Dybiat
- Department of Pediatric Cardiology, Timone Enfant Hospital, AP-HM, Marseille, France
| | - Caroline Ovaert
- Department of Pediatric Cardiology, Timone Enfant Hospital, AP-HM, Marseille, France
| | - Damien Bonnet
- Service de Cardiologie Congénitale Et Pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker-Enfants Malades, APHP and Université Paris Cité, Paris, France
| | - Jean-François Avierinos
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France
- Department of Cardiology, La Timone Hospital, AP-HM, Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, 13005, Marseille, France.
| |
Collapse
|
32
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2185] [Impact Index Per Article: 1092.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
33
|
Huang T, Cheng J, Feng H, Zhou W, Qiu P, Zhou D, Yang D, Zhang J, Willer C, Chen YE, Mizrak D, Yang B. Bicuspid Aortic Valve-Associated Regulatory Regions Reveal GATA4 Regulation and Function During Human-Induced Pluripotent Stem Cell-Based Endothelial-Mesenchymal Transition-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:312-322. [PMID: 36519469 PMCID: PMC10038164 DOI: 10.1161/atvbaha.122.318566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxi Cheng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongshan Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Verstraeten A, Fedoryshchenko I, Loeys B. The emerging role of endothelial cells in the pathogenesis of thoracic aortic aneurysm and dissection. Eur Heart J 2023; 44:1262-1264. [PMID: 36650899 PMCID: PMC10079389 DOI: 10.1093/eurheartj/ehac771] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Aline Verstraeten
- Cardiogenomics and Functional Genomics, Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Antwerp, Belgium
| | - Ivanna Fedoryshchenko
- Cardiogenomics and Functional Genomics, Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Antwerp, Belgium
| | - Bart Loeys
- Cardiogenomics and Functional Genomics, Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Antwerp, Belgium
| |
Collapse
|
35
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
36
|
Zhang Y, Xiong TY, Sondergard L, Mylotte D, Piazza N, Prendergast B, Chen M. Editorial: Bicuspid aortic valve: from pathophysiological mechanisms, imaging diagnosis to clinical treatment methods. Front Cardiovasc Med 2023; 10:1193544. [PMID: 37187793 PMCID: PMC10175770 DOI: 10.3389/fcvm.2023.1193544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- Yi Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Yuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lars Sondergard
- The Heart Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Darren Mylotte
- Department of Cardiology, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Nicolo Piazza
- Division of Cardiology, Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Bernard Prendergast
- Department of Cardiology, St Thomas’ Hospital, London, United Kingdom
- Cleveland Clinic London, London, United Kingdom
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Correspondence: Mao Chen
| |
Collapse
|
37
|
Nguyen TAV, Lino CA, Hang HT, Alves JV, Thang BQ, Shin SJ, Sugiyama K, Matsunaga H, Takeyama H, Yamashiro Y, Yanagisawa H. Protective Role of Endothelial Fibulin-4 in Valvulo-Arterial Integrity. J Am Heart Assoc 2022; 12:e026942. [PMID: 36565192 PMCID: PMC9973605 DOI: 10.1161/jaha.122.026942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Homeostasis of the vessel wall is cooperatively maintained by endothelial cells (ECs), smooth muscle cells, and adventitial fibroblasts. The genetic deletion of fibulin-4 (Fbln4) in smooth muscle cells (SMKO) leads to the formation of thoracic aortic aneurysms with the disruption of elastic fibers. Although Fbln4 is expressed in the entire vessel wall, its function in ECs and relevance to the maintenance of valvulo-arterial integrity are not fully understood. Methods and Results Gene silencing of FBLN4 was conducted on human aortic ECs to evaluate morphological changes and gene expression profile. Fbln4 double knockout (DKO) mice in ECs and smooth muscle cells were generated and subjected to histological analysis, echocardiography, Western blotting, RNA sequencing, and immunostaining. An evaluation of the thoracic aortic aneurysm phenotype and screening of altered signaling pathways were performed. Knockdown of FBLN4 in human aortic ECs induced mesenchymal cell-like changes with the upregulation of mesenchymal genes, including TAGLN and MYL9. DKO mice showed the exacerbation of thoracic aortic aneurysms when compared with those of SMKO and upregulated Thbs1, a mechanical stress-responsive molecule, throughout the aorta. DKO mice also showed progressive aortic valve thickening with collagen deposition from postnatal day 14, as well as turbulent flow in the ascending aorta. Furthermore, RNA sequencing and immunostaining of the aortic valve revealed the upregulation of genes involved in endothelial-to-mesenchymal transition, inflammatory response, and tissue fibrosis in DKO valves and the presence of activated valve interstitial cells. Conclusions The current study uncovers the pivotal role of endothelial fibulin-4 in the maintenance of valvulo-arterial integrity, which influences thoracic aortic aneurysm progression.
Collapse
Affiliation(s)
- Tram Anh Vu Nguyen
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Ph.D. Program in Human Biology, School of Integrative and Global MajorsUniversity of TsukubaIbarakiJapan
| | - Caroline Antunes Lino
- Department of AnatomyUniversity of Sao Paulo, Institute of Biomedical SciencesSao PauloBrazil
| | - Huynh Thuy Hang
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Graduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
| | - Juliano Vilela Alves
- Department of PharmacologyUniversity of Sao Paulo, Ribeirao Preto Medical SchoolRibeirao PretoBrazil
| | - Bui Quoc Thang
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Deputy Head of Scientific Research Department‐ Training center, Cho Ray hospitalHo Chi Minh CityVietnam
| | - Seung Jae Shin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
| | - Kaori Sugiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda UniversityTokyoJapan
| | - Hiroko Matsunaga
- Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan
| | - Haruko Takeyama
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda UniversityTokyoJapan,Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan,Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan,Computational Bio Big‐Data Open Innovation LaboratoryAIST‐Waseda UniversityTokyoJapan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Present address:
Department of Advanced Medical TechnologiesNational Cerebral and Cardiovascular Center Research InstituteOsaka564‐8565Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan,Faculty of MedicineUniversity of TsukubaIbarakiJapan
| |
Collapse
|
38
|
Luyckx I, Verstraeten A, Goumans MJ, Loeys B. SMAD6-deficiency in human genetic disorders. NPJ Genom Med 2022; 7:68. [DOI: 10.1038/s41525-022-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractSMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, SMAD6-deficiency has been associated with three distinctive human congenital conditions, i.e., congenital heart diseases, including left ventricular obstruction and conotruncal defects, craniosynostosis and radioulnar synostosis. Intriguingly, a similar spectrum of heterozygous loss-of-function variants has been reported to cause these clinically distinct disorders without a genotype–phenotype correlation. Even identical nucleotide changes have been described in patients with either a cardiovascular phenotype, craniosynostosis or radioulnar synostosis. These findings suggest that the primary pathogenic variant alone cannot explain the resultant patient phenotype. In this review, we summarise clinical and (patho)genetic (dis)similarities between these three SMAD6-related conditions, compare published Madh6 mouse models, in which the importance and impact of the genetic background with respect to the observed phenotype is highlighted, and elaborate on the cellular key mechanisms orchestrated by SMAD6 in the development of these three discrete inherited disorders. In addition, we discuss future research needed to elucidate the pathogenetic mechanisms underlying these diseases in order to improve their molecular diagnosis, advance therapeutic strategies and facilitate counselling of patients and their families.
Collapse
|
39
|
Jaouadi H, Gérard H, Théron A, Collod-Béroud G, Collart F, Avierinos JF, Zaffran S. Identification of non-synonymous variations in ROBO1 and GATA5 genes in a family with bicuspid aortic valve disease. J Hum Genet 2022; 67:515-518. [PMID: 35534675 DOI: 10.1038/s10038-022-01036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect with a high index of heritability. Patients with BAV have different clinical courses and disease progression. Herein, we report three siblings with BAV and clinical differences. Their clinical presentations include moderate to severe aortic regurgitation, aortic stenosis, and ascending aortic aneurysm. Genetic investigation was carried out using Whole-Exome Sequencing for the three patients. We identified two non-synonymous variants in ROBO1 and GATA5 genes. The ROBO1: p.(Ser327Pro) variant is shared by the three BAV-affected siblings. The GATA5: p.(Gln3Arg) variant is shared only by the two brothers who presented BAV and ascending aortic aneurysm. Their sister, affected by BAV without aneurysm, does not harbor the GATA5: p.(Gln3Arg) variant. Both variants were absent in the patients' fourth brother who is clinically healthy with tricuspid aortic valve. To our knowledge, this is the first association of ROBO1 and GATA5 variants in familial BAV with a potential genotype-phenotype correlation. Our findings are suggestive of the implication of ROBO1 gene in BAV and the GATA5: p.(Gln3Arg) variant in ascending aortic aneurysm. Our family-based study further confirms the intrafamilial incomplete penetrance of BAV and the complex pattern of inheritance of the disease.
Collapse
Affiliation(s)
- Hager Jaouadi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France
| | - Hilla Gérard
- AP-HM, Hôpital de la Timone, Département de Cardiologie, Marseille, France
| | - Alexis Théron
- Hôpital de la Timone, Département de Chirurgie Cardiaque, Marseille, France
| | | | - Frédéric Collart
- Hôpital de la Timone, Département de Chirurgie Cardiaque, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France.
- AP-HM, Hôpital de la Timone, Département de Cardiologie, Marseille, France.
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France.
| |
Collapse
|
40
|
Lu P, Wang P, Wu B, Wang Y, Liu Y, Cheng W, Feng X, Yuan X, Atteya MM, Ferro H, Sugi Y, Rydquist G, Esmaily M, Butcher JT, Chang CP, Lenz J, Zheng D, Zhou B. A SOX17-PDGFB signaling axis regulates aortic root development. Nat Commun 2022; 13:4065. [PMID: 35831318 PMCID: PMC9279414 DOI: 10.1038/s41467-022-31815-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Developmental etiologies causing complex congenital aortic root abnormalities are unknown. Here we show that deletion of Sox17 in aortic root endothelium in mice causes underdeveloped aortic root leading to a bicuspid aortic valve due to the absence of non-coronary leaflet and mispositioned left coronary ostium. The respective defects are associated with reduced proliferation of non-coronary leaflet mesenchyme and aortic root smooth muscle derived from the second heart field cardiomyocytes. Mechanistically, SOX17 occupies a Pdgfb transcriptional enhancer to promote its transcription and Sox17 deletion inhibits the endothelial Pdgfb transcription and PDGFB growth signaling to the non-coronary leaflet mesenchyme. Restoration of PDGFB in aortic root endothelium rescues the non-coronary leaflet and left coronary ostium defects in Sox17 nulls. These data support a SOX17-PDGFB axis underlying aortic root development that is critical for aortic valve and coronary ostium patterning, thereby informing a potential shared disease mechanism for concurrent anomalous aortic valve and coronary arteries.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yidong Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Cardiovascular Research Center, School of Basic Medical Sciences, Jiaotong University, Xi'an, Shanxi, China
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Cheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuhui Feng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xinchun Yuan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Miriam M Atteya
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Haleigh Ferro
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Grant Rydquist
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Mahdi Esmaily
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ching-Pin Chang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jack Lenz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
41
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
42
|
Jauhiainen S, Kiema M, Hedman M, Laakkonen JP. Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2022; 42:811-818. [PMID: 35587695 DOI: 10.1161/atvbaha.121.316237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Smooth muscle cells and endothelial cells have a remarkable level of plasticity in vascular pathologies. In thoracic and abdominal aortic aneurysms, smooth muscle cells have been suggested to undergo phenotypic switching and to contribute to degradation of the aortic wall structure in response to, for example, inflammatory mediators, dysregulation of growth factor signaling or oxidative stress. Recently, endothelial-to-mesenchymal transition, and a clonal expansion of degradative smooth muscle cells and immune cells, as well as mesenchymal stem-like cells have been suggested to contribute to the progression of aortic aneurysms. What are the factors driving the aortic cell phenotype changes and how vascular flow, known to affect aortic wall structure and to be altered in aortic aneurysms, could affect aortic cell remodeling? In this review, we summarize the current literature on aortic cell heterogeneity and phenotypic switching in relation to changes in vascular flow and aortic wall structure in aortic aneurysms in clinical samples with special focus on smooth muscle and endothelial cells. The differences between thoracic and abdominal aortic aneurysms are discussed.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Marja Hedman
- Institute of Clinical Medicine (M.H.), University of Eastern Finland, Kuopio
- Department of Clinical Radiology, Kuopio University Hospital, Finland (M.H.)
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland (M.H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| |
Collapse
|
43
|
Mizrak D, Feng H, Yang B. Dissecting the Heterogeneity of Human Thoracic Aortic Aneurysms Using Single-Cell Transcriptomics. Arterioscler Thromb Vasc Biol 2022; 42:919-930. [PMID: 35708028 PMCID: PMC9339526 DOI: 10.1161/atvbaha.122.317484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thoracic aortic aneurysm is a life-threatening condition caused by weakening of the thoracic aorta wall, often developing silently until dissection or rupture occurs. Despite substantial efforts in the past decade, there have been no significant therapeutic advances to prevent or clinically manage diverse forms of thoracic aortic aneurysm and dissection with the only effective treatment being surgical repair. There is an urgent need to understand intra- and inter-aneurysmal heterogeneity underlying thoracic aortic aneurysm and dissection pathogenesis. The human aortic wall consists of many cell types and exhibits significant regional heterogeneity. High-throughput single-cell RNA sequencing has emerged as the principal tool to reveal the complexity in human tissues and clinical specimens. Recent single-cell RNA sequencing studies of different aortic cell populations both in vivo and in vitro began to dissect this complexity and have provided valuable information. In this review, we summarize these findings and discuss the potential applications of single-cell transcriptomics and related high-content technologies in human thoracic aortic aneurysm and dissection research, as well as the challenges associated with it.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor (D.M., H.F., B.Y.)
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor (D.M., H.F., B.Y.).,Xiangya School of Medicine, Central South University, Changsha, China (H.F.)
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor (D.M., H.F., B.Y.)
| |
Collapse
|
44
|
Gordon DM, Cunningham D, Zender G, Lawrence PJ, Penaloza JS, Lin H, Fitzgerald-Butt SM, Myers K, Duong T, Corsmeier DJ, Gaither JB, Kuck HC, Wijeratne S, Moreland B, Kelly BJ, Garg V, White P, McBride KL. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genet 2022; 18:e1010236. [PMID: 35737725 PMCID: PMC9258875 DOI: 10.1371/journal.pgen.1010236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant’s effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes. Congenital heart disease is a common group of birth defects that are a leading cause of death in children under one year of age. There is strong evidence that genetics plays a role in causing congenital heart disease. While studies using individual cases have identified causative genes for those with a heart defect when accompanied by other birth defects or intellectual disabilities, for individuals who have only a heart defect without other problems, a genetic cause can be found in fewer than 10%. In this study, we enrolled families where there was more than one individual with a heart defect. This allowed us to take advantage of inheritance by searching for potential disease-causing genetic variants in common among all affected individuals in the family. Among 19 families studied, we were able to find a plausible disease-causing variant in eight of them and identified new genes that may cause or contribute to the presence of a heart defect. Two families had potential disease-causing variants in two different genes. We designed assays to test if the variants led to altered function of the protein coded by the gene, demonstrating a functional consequence that support the gene and variant as contributing to the heart defect. These findings show that studying families may be more effective than using individuals to find causes of heart defects. In addition, this family-based method suggests that changes in more than one gene may be required for a heart defect to occur.
Collapse
Affiliation(s)
- David M. Gordon
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David Cunningham
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick J. Lawrence
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jacqueline S. Penaloza
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Hui Lin
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sara M. Fitzgerald-Butt
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Katherine Myers
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Tiffany Duong
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Donald J. Corsmeier
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jeffrey B. Gaither
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Harkness C. Kuck
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Saranga Wijeratne
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Blythe Moreland
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Benjamin J. Kelly
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Peter White
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Kim L. McBride
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| |
Collapse
|
45
|
Gutierrez J, Davis BA, Nevonen KA, Ward S, Carbone L, Maslen CL. DNA Methylation Analysis of Turner Syndrome BAV. Front Genet 2022; 13:872750. [PMID: 35711915 PMCID: PMC9194862 DOI: 10.3389/fgene.2022.872750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Turner Syndrome (TS) is a rare cytogenetic disorder caused by the complete loss or structural variation of the second sex chromosome. The most common cause of early mortality in TS results from a high incidence of left-sided congenital heart defects, including bicuspid aortic valve (BAV), which occurs in about 30% of individuals with TS. BAV is also the most common congenital heart defect in the general population with a prevalence of 0.5-2%, with males being three-times more likely to have a BAV than females. TS is associated with genome-wide hypomethylation when compared to karyotypically normal males and females. Alterations in DNA methylation in primary aortic tissue are associated with BAV in euploid individuals. Here we show significant differences in DNA methylation patterns associated with BAV in TS found in peripheral blood by comparing TS BAV (n = 12), TS TAV (n = 13), and non-syndromic BAV (n = 6). When comparing TS with BAV to TS with no heart defects we identified a differentially methylated region encompassing the BAV-associated gene MYRF, and enrichment for binding sites of two known transcription factor contributors to BAV. When comparing TS with BAV to euploid women with BAV, we found significant overlapping enrichment for ChIP-seq transcription factor targets including genes in the NOTCH1 pathway, known for involvement in the etiology of non-syndromic BAV, and other genes that are essential regulators of heart valve development. Overall, these findings suggest that altered DNA methylation affecting key aortic valve development genes contributes to the greatly increased risk for BAV in TS.
Collapse
Affiliation(s)
- Jacob Gutierrez
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Brett A. Davis
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Kimberly A. Nevonen
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Samantha Ward
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Lucia Carbone
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
- Department of Medicine, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Cheryl L. Maslen
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
46
|
Ganapathi AM, Ranney DN, Peterson MD, Lindsay ME, Patel HJ, Pyeritz RE, Trimarchi S, Hutchison S, Harris KM, Greason KL, Ota T, Montgomery DG, Nienaber CA, Eagle KA, Isselbacher EM, Hughes GC. Location of Aortic Enlargement and Risk of Type A Dissection at Smaller Diameters. J Am Coll Cardiol 2022; 79:1890-1897. [PMID: 35550685 DOI: 10.1016/j.jacc.2022.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous work has demonstrated that more than one-half of acute type A aortic dissections (ATADs) occur at a maximal aortic diameter (MAD) of <5.5 cm. However, no analysis has investigated whether ATAD risk at smaller MADs is more common with modest dilation of the aortic root (AR) or supracoronary ascending aorta (AA) in patients without genetically triggered aortopathy. OBJECTIVES This study sought to determine if the segment of modest aortic dilation affects risk of ATAD. METHODS Using the International Registry of Acute Aortic Dissection (IRAD) database from May 1996 to October 2016, we identified 667 ATAD patients with MAD <5.5 cm. Patients were stratified by location of the largest proximal aortic segment (AR or AA). Patients with known genetically triggered aortopathy were excluded. MADs at time of dissection were compared between AR and AA groups. Secondary outcomes included operation, postoperative outcomes, and long-term survival. RESULTS Of patients with ATAD at an MAD <5.5 cm, 79.5% (n = 530) were in the AA group and 20.5% (n = 137) in the AR group. Modestly dilated ARs (median MAD 4.6 cm [IQR: 4.1-5.0 cm]) dissected at a significantly smaller diameter than modestly dilated AAs (median MAD 4.8 cm [IQR: 4.4-5.1 cm]) (P < 0.01). AR patients were significantly younger than AA patients (58.5 ± 13.0 years vs 63.2 ± 13.3 years; P < 0.01) and more commonly male (78% vs 65%; P < 0.01). Postoperative and long-term outcomes did not differ between groups. CONCLUSIONS ATAD appears to occur at smaller diameters in patients with modest dilation in the AR vs the AA (4.6 vs 4.8 cm). These findings may have implications for future consensus guidelines regarding the management of patients with aortic disease.
Collapse
Affiliation(s)
- Asvin M Ganapathi
- Department of Surgery, Division of Cardiac Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - David N Ranney
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark D Peterson
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark E Lindsay
- Thoracic Aortic Center, Massachusetts General Hospital, Boson, Massachusetts, USA
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Reed E Pyeritz
- Departments of Medicine and Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Santi Trimarchi
- Department of Scienze Cliniche e di Comunita, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico-University of Milan, Milan, Italy
| | - Stuart Hutchison
- Departments of Cardiac Sciences, Medicine, and Radiology, University of Calgary Medical Centre, Calgary, Alberta, Canada
| | - Kevin M Harris
- Cardiovascular Division, Minneapolis Heart Institute, Minneapolis, Minnesota, USA
| | - Kevin L Greason
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Takeyoshi Ota
- Department of Surgery, University of Chicago Medical Center, Chicago, Illinois, USA
| | | | - Christoph A Nienaber
- Cardiology and Aortic Centre, The Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Kim A Eagle
- Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric M Isselbacher
- Thoracic Aortic Center, Massachusetts General Hospital, Boson, Massachusetts, USA
| | - G Chad Hughes
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
47
|
Boureau AS, Karakachoff M, Le Scouarnec S, Capoulade R, Cueff C, de Decker L, Senage T, Verhoye JP, Baufreton C, Roussel JC, Dina C, Probst V, Schott JJ, Le Tourneau T. Heritability of aortic valve stenosis and bicuspid enrichment in families with aortic valve stenosis. Int J Cardiol 2022; 359:91-98. [DOI: 10.1016/j.ijcard.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
|
48
|
Zhao J, Bruche S, Potts HG, Davies B, Mommersteeg MTM. Tissue-Specific Roles for the Slit-Robo Pathway During Heart, Caval Vein, and Diaphragm Development. J Am Heart Assoc 2022; 11:e023348. [PMID: 35343246 PMCID: PMC9075489 DOI: 10.1161/jaha.121.023348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Binding of Slit ligands to their Robo receptors regulates signaling pathways that are important for heart development. Genetic variants in ROBO1and ROBO4 have been linked to congenital heart defects in humans. These defects are recapitulated in mouse models with ubiquitous deletions of the Slit ligands or Robo receptors and include additional heart defects not currently linked to SLIT or ROBO mutations in humans. Given the broad expression patterns of these genes, the question remains open which tissue-specific ligand-receptor interactions are important for the correct development of different cardiac structures. Methods and Results We used tissue-specific knockout mouse models of Robo1/Robo2, Robo4, Slit2 andSlit3 and scored cardiac developmental defects in perinatal mice. Knockout of Robo2 in either the whole heart, endocardium and its derivatives, or the neural crest in ubiquitous Robo1 knockout background resulted in ventricular septal defects. Neural crest-specific removal of Robo2 in Robo1 knockouts showed fully penetrant bicuspid aortic valves (BAV). Endocardial knock-out of either Slit2or Robo4 caused low penetrant BAV. In contrast, endocardial knockout of Slit3 using a newly generated line resulted in fully penetrant BAV, while removal from smooth muscle cells also resulted in BAV. Caval vein and diaphragm defects observed in ubiquitous Slit3 mutants were recapitulated in the tissue-specific knockouts. Conclusions Our data will help understand defects observed in patients with variants in ROBO1 and ROBO4. The results strongly indicate interaction between endocardial Slit3and neural crest Robo2 in the development of BAV, highlighting the need for further studies of this connection.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Physiology, Anatomy & Genetics Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom
| | - Susann Bruche
- Department of Physiology, Anatomy & Genetics Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom
| | - Helen G Potts
- Department of Physiology, Anatomy & Genetics Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom
| | - Benjamin Davies
- Nuffield Department of Medicine Wellcome Centre for Human GeneticsUniversity of Oxford United Kingdom
| | - Mathilda T M Mommersteeg
- Department of Physiology, Anatomy & Genetics Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom
| |
Collapse
|
49
|
Abrial M, Basu S, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE, Burns CG. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech 2022; 15:dmm046979. [PMID: 35098309 PMCID: PMC8990920 DOI: 10.1242/dmm.046979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFβ) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFβ signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFβ signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFβ signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maryline Abrial
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep Basu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mengmeng Huang
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent Butty
- BioMicroCenter, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asya Schwertner
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel Jordan
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Caroline E. Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C. Geoffrey Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
50
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|