1
|
Maeshima K. The shifting paradigm of chromatin structure: from the 30-nm chromatin fiber to liquid-like organization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025:pjab.101.020. [PMID: 40301047 DOI: 10.2183/pjab.101.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic. In higher eukaryotic cells, chromatin forms condensed yet liquid-like domains, which appear to be the basic unit of chromatin structure, replacing the 30-nm fiber. These domains maintain proper accessibility, ensuring the regulation of DNA reaction processes. During mitosis, these domains assemble to form more gel-like mitotic chromosomes, which are further constrained by condensins and other factors. Based on the available evidence, I discuss the physical properties of chromatin in live cells, emphasizing its viscoelastic nature-balancing local fluidity with global stability to support genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS
- Graduate Institute for Advanced Studies, SOKENDAI
| |
Collapse
|
2
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Predicting gene expression changes from chromatin structure modification. NPJ Syst Biol Appl 2025; 11:34. [PMID: 40234426 PMCID: PMC12000410 DOI: 10.1038/s41540-025-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Spatial organization of chromatin plays a critical role in gene transcription, but connecting population-averaged HiC data to functional outcomes remains a challenge. We present a computational framework linking HiC contact map to gene transcription. Utilizing a bead-spring polymer model informed by HiC contact maps, we generate an ensemble of 3D conformations for a given genomic locus. These conformations are then coupled to gene transcription levels through a Markov chain model, with transition rates derived from molecular dynamics simulations. The efficacy of this framework is demonstrated by simulating the perturbation of a CTCF-mediated TAD boundary, impacting the expression of sox9 and kcnj2. Our model quantitatively reproduces experimentally observed changes in gene expression, revealing that the increased kcnj2 transcription is a consequence of enhancers within the sox9 TAD becoming accessible upon boundary disruption. Quantifying enhancer impact, our model can also identify functional enhancers. This framework enhances our understanding of the relationship between chromosome spatial architecture and gene regulation.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India.
| |
Collapse
|
3
|
Seufert I, Vargas C, Wille SJ, Rippe K. Deregulated enhancer-promoter communication in cancer through altered nuclear architecture. Int J Cancer 2025. [PMID: 40219822 DOI: 10.1002/ijc.35424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
Enhancers are critical regulators of gene expression. Structural variations in cancer genomes can lead to enhancer hijacking, where oncogenes are activated by mistargeted enhancer activity. Novel enhancer-promoter interactions may also arise through chromosomal rearrangements that create extrachromosomal DNA elements. Additionally, fusion proteins and other mutation-induced alterations in protein properties can lead to the aberrant assembly of proteins into large complexes on the size scale of 0.1-1 μm termed onco-condensates. Transcription factors and co-activators accumulate with cis-regulatory elements in these structures, driving oncogenic programs. Here, we review current evidence of how altered genome architecture and macromolecular assembly result in deregulated enhancer-promoter communication. We discuss emerging strategies to exploit these mechanisms for clinical applications.
Collapse
Affiliation(s)
- Isabelle Seufert
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Claire Vargas
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Sina Jasmin Wille
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Hansen AS, Skok JA. Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation. CELL GENOMICS 2025; 5:100813. [PMID: 40118069 PMCID: PMC12008812 DOI: 10.1016/j.xgen.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modeling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, but CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant-specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Anders S Hansen
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
5
|
Crump NT, Milne TA. Is Enhancer Function Driven by Protein-Protein Interactions? From Bacteria to Leukemia. Bioessays 2025:e70006. [PMID: 40195782 DOI: 10.1002/bies.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
The precise regulation of the transcription of genes is essential for normal development and for the maintenance of life. Aberrant gene expression changes drive many human diseases. Despite this, we still do not completely understand how precise gene regulation is controlled in living systems. Enhancers are key regulatory elements that enable cells to specifically activate genes in response to environmental cues, or in a stage or tissue-specific manner. Any model of enhancer activity needs to answer two main questions: (1) how enhancers are able to identify and act on specific genes and (2) how enhancers influence transcription. To address these points, we first outline some of the basic principles that can be established from simpler prokaryotic systems, then discuss recent work on aberrant enhancer activity in leukemia. We argue that highly specific protein-protein interactions are a key driver of enhancer-promoter proximity, allowing enhancer-bound factors to directly act on RNA polymerase and activate transcription.
Collapse
Affiliation(s)
- Nicholas T Crump
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Chen L, Zhang Z, Wang Z, Hong L, Wang H, Zhang J. Barrier effects on the kinetics of cohesin-mediated loop extrusion. Biophys J 2025:S0006-3495(25)00201-2. [PMID: 40181539 DOI: 10.1016/j.bpj.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Chromosome organization mediated by structural maintenance of chromosome complexes is crucial in many organisms. Cohesin extrudes chromatin into loops that are thought to lengthen until it is obstructed by CTCF proteins. In complex cellular environments, the loop extrusion machinery may encounter other chromatin-binding proteins. How these proteins interfere with the cohesin-meditated extrusion process is largely unexplored, but recent experiments have shown that some proteins serve as physical barriers that block cohesin translocation. Other proteins containing a cohesin-interaction motif serve as chemical barriers to induce cohesin pausing through interactions with it. Here, we develop an analytically solvable approach for the loop extrusion model incorporating barriers to investigate the effect of the barrier on the passive extrusion process. To further quantify the impact of barriers, we calculate the mean looping time it takes for cohesin to translocate to form a stable loop before dissociation. Our finding reveals that the physical barrier can accelerate the loop formation, and the degree of acceleration is closely related to the impedance strength of the physical barrier. In particular, the synergy of the cohesin loading site and the physical barrier site accelerates loop formation more significantly. The proximity of the cohesin loading site to the barrier site facilitates the rapid formation of stable loops in long genomes, which implies loop extrusion and chromatin-binding proteins might shape functional genomic organization. Conversely, chemical barriers consistently impede loop formation, with increasing impedance strength of the chemical barrier leading to longer loop formation time. Our study contributes to a more comprehensive understanding of the complexity of the loop extrusion process, providing a new perspective on the potential mechanisms of gene regulation.
Collapse
Affiliation(s)
- Leiyan Chen
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Haohua Wang
- School of Mathematics and Statistics, Hainan University, Haikou 570228, P.R. China.
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
| |
Collapse
|
7
|
Fujishiro S, Sasai M, Maeshima K. Chromatin domains in the cell: Phase separation and condensation. Curr Opin Struct Biol 2025; 91:103006. [PMID: 39983411 DOI: 10.1016/j.sbi.2025.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Negatively charged genomic DNA wraps around positively charged core histone octamers to form nucleosomes, which, along with proteins and RNAs, self-organize into chromatin within the nucleus. In eukaryotic cells, chromatin forms loops that collapse into chromatin domains and serve as functional units of the genome. Chromatin domains vary in physical properties based on gene activity and are assembled into A (euchromatin) and B (heterochromatin) compartments. Since various factors-such as chromatin-binding proteins, histone modifications, transcriptional states, depletion attraction, and cations-can significantly impact chromatin organization, the formation processes of these hierarchical structures remain unclear. No single imaging, genomics, or modeling method can provide a complete picture of the process. Beautiful models can sometimes fool our thinking. In this short review, we critically discuss the formation mechanisms of the chromatin domain in the cell from a physical point of view, including phase separation and condensation.
Collapse
Affiliation(s)
- Shin Fujishiro
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan.
| | - Masaki Sasai
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan; Department of Complex Systems Science, Nagoya University, Nagoya, 464-8603, Japan.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
8
|
Lee J, Chen LF, Gaudin S, Gupta K, Spakowitz A, Boettiger AN. Kinetic organization of the genome revealed by ultra-resolution, multiscale live imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645817. [PMID: 40236138 PMCID: PMC11996339 DOI: 10.1101/2025.03.27.645817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the last decade, sequencing methods like Hi-C have made it clear the genome is intricately folded, and that this organization contributes significantly to the control of gene expression and thence cell fate and behavior. Single-cell DNA tracing microscopy and polymer physics-based simulations of genome folding have proposed these population-scale patterns arise from motor- driven, heterogeneous movement, rather than stable 3D genomic architecture, implying that motion, rather than structure, is key to understanding genome function. However, tools to directly observe this motion in vivo have been limited in coverage and resolution. Here we describe TRansposon Assisted Chromatin Kinetic Imaging Technology (TRACK-IT), which combines a suite of imaging and labeling improvements to achieve ultra-resolution in space and time, with self-mapping transposons to distribute labels across the chromosome, uncovering dynamic behaviors across four orders of magnitude of genomic separation. We find that sequences separated by sub-megabase distances, typically 200-500 nm of nanometers apart, can transition to close proximity in tens of seconds - faster than previously hypothesized. This rapid motion is dependent upon cohesin and is exhibited only within certain genomic domains. Domain borders act as kinetic impediments to this search process, substantially slowing the rate and frequency of the transition to proximity. The genomic separation-dependent scaling of the search time for cis-interactions within a domain violates predictions of diffusion, suggesting motor driven folding. This distinctive scaling is lost following cohesin depletion, replaced with a behavior consistent with diffusion. Finally, we found cohesin containing cells exhibited rare, processive movements, not seen in cohesin depleted cells. These processive trajectories exhibit extrusion rates of ∼2.7 kb/s across three distinct genomic intervals, faster than recent in vitro measurements and prior estimates from in vivo data. Taken together, these results reveal a genome in motion across multiple genomic and temporal scales, where motor-dependent extrusion divides the sequence, not into spatially separate domains, but into kinetically separated domains that experience accelerated local search.
Collapse
|
9
|
Thirumalai D, Shi G, Shin S, Hyeon C. Organization and Dynamics of Chromosomes. Annu Rev Phys Chem 2025; 76:565-588. [PMID: 39971382 DOI: 10.1146/annurev-physchem-082423-024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How long thread-like eukaryotic chromosomes fit tidily in the small volume of the nucleus without significant entanglement is just beginning to be understood, thanks to major advances in experimental techniques. Several polymer models, which reproduce contact maps that measure the probabilities that two loci are in spatial contact, have predicted the 3D structures of interphase chromosomes. Data-driven approaches, using contact maps as input, predict that mitotic helical chromosomes are characterized by a switch in handedness, referred to as perversion. By using experimentally derived effective interactions between chromatin loci in simulations, structures of conventional and inverted nuclei have been accurately predicted. Polymer theory and simulations show that the dynamics of individual loci in chromatin exhibit subdiffusive behavior but the diffusion exponents are broadly distributed, which accords well with experiments. Although coarse-grained models are successful, many challenging problems remain, which require the creation of new experimental and computational tools to understand genome biology.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
10
|
Bafna A, Banks G, Vasilyev V, Dallmann R, Hastings MH, Nolan PM. Zinc finger homeobox-3 (ZFHX3) orchestrates genome-wide daily gene expression in the suprachiasmatic nucleus. eLife 2025; 14:RP102019. [PMID: 40117332 PMCID: PMC11928027 DOI: 10.7554/elife.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light-12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science Campus, Didcot, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxfordshire, United Kingdom
| | - Gareth Banks
- Medical Research Council, Harwell Science Campus, Didcot, United Kingdom
- Nottingham Trent University, Nottingham, United Kingdom
| | - Vadim Vasilyev
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | | | - Patrick M Nolan
- Medical Research Council, Harwell Science Campus, Didcot, United Kingdom
| |
Collapse
|
11
|
Bird A. Cohesin as an essential disruptor of chromosome organization. Mol Cell 2025; 85:1054-1057. [PMID: 39909042 DOI: 10.1016/j.molcel.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/03/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Cohesin is a multi-subunit molecular machine that is able to create lateral chromatin loops within a linear chromosome fiber. Despite intense study, a consensus view of the functional significance of loop extrusion has remained elusive. This perspective proposes a rationale based on the need for continual disruption of spurious higher-order chromatin secondary structures. It is argued that cohesin-mediated chromosomal churn ensures broad accessibility to the diffusible factors on which genome function depends.
Collapse
Affiliation(s)
- Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Edinburgh EH9 3BF, UK.
| |
Collapse
|
12
|
Papale A, Segueni J, El Maroufi H, Noordermeer D, Holcman D. Insulation between adjacent TADs is controlled by the width of their boundaries through distinct mechanisms. Proc Natl Acad Sci U S A 2025; 122:e2413112122. [PMID: 40063813 PMCID: PMC11929393 DOI: 10.1073/pnas.2413112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Topologically associating domains (TADs) are sub-Megabase regions in vertebrate genomes with enriched intradomain interactions that restrict enhancer-promoter contacts across their boundaries. However, the mechanisms that separate TADs remain incompletely understood. Most boundaries between TADs contain CTCF binding sites (CBSs), which individually contribute to the blocking of Cohesin-mediated loop extrusion. Using genome-wide classification, here we show that the width of TAD boundaries forms a continuum from narrow to highly extended and correlates with CBSs distribution, chromatin features, and gene regulatory elements. To investigate how these boundary widths emerge, we modified the random crosslinker polymer model to incorporate specific boundary configurations, enabling us to evaluate the differential impact of boundary composition on TAD insulation. Our analysis, using three generic boundary categories, identifies differential influence on TAD insulation, with varying local and distal effects on neighboring domains. Notably, we find that increasing boundary width reduces long-range inter-TAD contacts, as confirmed by Hi-C data. While blocking loop extrusion at boundaries indirectly promotes spurious intermingling of neighboring TADs, extended boundaries counteract this effect, emphasizing their role in establishing genome organization. In conclusion, TAD boundary width not only enhances the efficiency of loop extrusion blocking but may also modulate enhancer-promoter contacts over long distances across TAD boundaries, providing a further mechanism for transcriptional regulation.
Collapse
Affiliation(s)
- Andrea Papale
- Department of Biology, Computational Biology and Applied Mathematics, Ecole Normale Supérieure, Institute of Biology at Ecole normale Superieure, Université Paris Sciences et Lettres, Paris 75005, France
| | - Julie Segueni
- Genome Biology Department, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Hanae El Maroufi
- Genome Biology Department, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Daan Noordermeer
- Genome Biology Department, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - David Holcman
- Department of Biology, Computational Biology and Applied Mathematics, Ecole Normale Supérieure, Institute of Biology at Ecole normale Superieure, Université Paris Sciences et Lettres, Paris 75005, France
- Department of Applied Mathematics and Theoretical Physics, Churchill College, University of Cambridge, Cambridge CB30DS, United Kingdom
| |
Collapse
|
13
|
Buka K, Parteka-Tojek Z, Agarwal A, Denkiewicz M, Korsak S, Chiliński M, Banecki KH, Plewczynski D. Improved cohesin HiChIP protocol and bioinformatic analysis for robust detection of chromatin loops and stripes. Commun Biol 2025; 8:437. [PMID: 40082674 PMCID: PMC11906747 DOI: 10.1038/s42003-025-07847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Chromosome Conformation Capture (3 C) methods, including Hi-C (a high-throughput variation of 3 C), detect pairwise interactions between DNA regions, enabling the reconstruction of chromatin architecture in the nucleus. HiChIP is a modification of the Hi-C experiment that includes a chromatin immunoprecipitation (ChIP) step, allowing genome-wide identification of chromatin contacts mediated by a protein of interest. In mammalian cells, cohesin protein complex is one of the major players in the establishment of chromatin loops. We present an improved cohesin HiChIP experimental protocol. Using comprehensive bioinformatic analysis, we show that a dual chromatin fixation method compared to the standard formaldehyde-only method, results in a substantially better signal-to-noise ratio, increased ChIP efficiency and improved detection of chromatin loops and architectural stripes. Additionally, we propose an automated pipeline called nf-HiChIP ( https://github.com/SFGLab/hichip-nf-pipeline ) for processing HiChIP samples starting from raw sequencing reads data and ending with a set of significant chromatin interactions (loops), which allows efficient and timely analysis of multiple samples in parallel, without requiring additional ChIP-seq experiments. Finally, using advanced approaches for biophysical modelling and stripe calling we generate accurate loop extrusion polymer models for a region of interest and provide a detailed picture of architectural stripes, respectively.
Collapse
Affiliation(s)
- Karolina Buka
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland.
| | - Zofia Parteka-Tojek
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Abhishek Agarwal
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
| | - Michał Denkiewicz
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Sevastianos Korsak
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Mateusz Chiliński
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof H Banecki
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Dariusz Plewczynski
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland.
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland.
| |
Collapse
|
14
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. Curr Opin Genet Dev 2025; 92:102328. [PMID: 40080917 DOI: 10.1016/j.gde.2025.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia M Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Tjalsma SJD, Rinzema NJ, Verstegen MJAM, Robers MJ, Nieto-Aliseda A, Gremmen RA, Allahyar A, Muraro MJ, Krijger PHL, de Laat W. Long-range enhancer-controlled genes are hypersensitive to regulatory factor perturbations. CELL GENOMICS 2025; 5:100778. [PMID: 40010352 PMCID: PMC11960515 DOI: 10.1016/j.xgen.2025.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Cell-type-specific gene activation is regulated by enhancers, sometimes located at large genomic distances from target gene promoters. Whether distal enhancers require specific factors to orchestrate gene regulation remains unclear. Here, we used enhancer distance-controlled reporter screens to find candidate factors. We depleted them and employed activity-by-contact predictions to genome-wide classify genes based on enhancer distance. Predicted distal enhancers typically control tissue-restricted genes and often are strong enhancers. We find cohesin, but also mediator, most specifically required for long-range activation, with cohesin repressing short-range gene activation and prioritizing distal over proximal HBB genes competing for shared enhancers. Long-range controlled genes are also most sensitive to perturbations of other regulatory proteins and to BET inhibitor JQ1, this being more a consequence of their distinct enhancer features than distance. Our work predicts that lengthening of intervening sequences can help limit the expression of target genes to specialized cells with optimal trans-factor environments.
Collapse
Affiliation(s)
- Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels J Rinzema
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michelle J Robers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrea Nieto-Aliseda
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Gremmen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Amin Allahyar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Brunner A, Morero NR, Zhang W, Hossain MJ, Lampe M, Pflaumer H, Halavatyi A, Peters JM, Beckwith KS, Ellenberg J. Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis. J Cell Biol 2025; 224:e202405169. [PMID: 39786339 PMCID: PMC11716112 DOI: 10.1083/jcb.202405169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/14/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures. By contrast, the more abundant Cohesin-STAG2 accumulates on chromosomes only gradually later in G1, is responsible for compaction inside TAD structures, and forms paired complexes upon completed nuclear import. Our quantitative time-resolved mapping of mitotic and interphase loop extruders in single cells reveals that the nested loop architecture formed by the sequential action of two Condensins in mitosis is seamlessly replaced by a less compact but conceptually similar hierarchically nested loop architecture driven by the sequential action of two Cohesins.
Collapse
Affiliation(s)
- Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Natalia Rosalía Morero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wanlu Zhang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - M. Julius Hossain
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Hannah Pflaumer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kai S. Beckwith
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Science for Life Laboratory (SciLifeLab), Solna, Sweden
| |
Collapse
|
17
|
Mader A, Rodriguez AI, Yuan T, Surovtsev I, King MC, Mochrie SGJ. Coarse-grained chromatin dynamics by tracking multiple similarly labeled gene loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640402. [PMID: 40060506 PMCID: PMC11888427 DOI: 10.1101/2025.02.27.640402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The "holy grail" of chromatin research would be to follow the chromatin configuration in individual live cells over time. One way to achieve this goal would be to track the positions of multiple loci arranged along the chromatin polymer with fluorescent labels. Use of distinguishable labels would define each locus uniquely in a microscopic image but would restrict the number of loci that could be observed simultaneously, because of experimental limits to the number of distinguishable labels. Use of the same label for all loci circumvents this limitation but requires a (currently lacking) framework for how to establish each observed locus identity, i.e. to which genomic position it corresponds. Here we analyze theoretically, using simulations of Rouse-model polymers, how single-particle-tracking of multiple identically-labeled loci enables determination of loci identity. We show that the probability of correctly assigning observed loci to genomic positions converges exponentially to unity as the number of observed loci configurations increases. The convergence rate depends only weakly on the number of labeled loci, so that even large numbers of loci can be identified with high fidelity by tracking them across about 8 independent chromatin configurations. In the case of two distinct labels that alternate along the chromatin polymer, we find that the probability of the correct assignment converges faster than for same-labeled loci, requiring observation of fewer independent chromatin configurations to establish loci identities. Finally, for a modified Rouse-model polymer, that realizes a population of dynamic loops, we find that the success probability also converges to unity exponentially as the number of observed loci configurations increases, albeit slightly more slowly than for a classical Rouse model polymer. Altogether, these results establish particle tracking of multiple identically- or alternately-labeled loci over time as a feasible way to infer temporal dynamics of the coarse-grained configuration of the chromatin polymer in individual living cells.
Collapse
Affiliation(s)
- Alexander Mader
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Andrew I Rodriguez
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Tianyu Yuan
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G J Mochrie
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
18
|
Coßmann J, Kos PI, Varamogianni-Mamatsi V, Assenheimer DS, Bischof TA, Kuhn T, Vomhof T, Papantonis A, Giorgetti L, Gebhardt JCM. Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis. Nat Commun 2025; 16:1833. [PMID: 39979259 PMCID: PMC11842872 DOI: 10.1038/s41467-025-56889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The three-dimensional folding of chromosomes is essential for nuclear functions such as DNA replication and gene regulation. The emergence of chromatin architecture is thus an important process during embryogenesis. To shed light on the molecular and kinetic underpinnings of chromatin architecture formation, we characterized biophysical properties of cohesin and CTCF binding to chromatin and their changes upon cofactor depletion using single-molecule imaging in live developing zebrafish embryos. We found that chromatin-bound fractions of both cohesin and CTCF increased significantly between the 1000-cell and shield stages, which we could explain through changes in both their association and dissociation rates. Moreover, increasing binding of cohesin restricted chromatin motion, potentially via loop extrusion, and showed distinct stage-dependent nuclear distribution. Polymer simulations with experimentally derived parameters recapitulated the experimentally observed gradual emergence of chromatin architecture. Our findings reveal molecular kinetics underlying chromatin architecture formation during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Jonas Coßmann
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Pavel I Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Devin S Assenheimer
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Tobias A Bischof
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Timo Kuhn
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Ulm, Germany.
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany.
| |
Collapse
|
19
|
Lee U, Laguillo-Diego A, Wong W, Ni Z, Cheng L, Li J, Pelham-Webb B, Pertsinidis A, Leslie C, Apostolou E. Post-mitotic transcriptional activation and 3D regulatory interactions show locus- and differentiation-specific sensitivity to cohesin depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638153. [PMID: 40034648 PMCID: PMC11875242 DOI: 10.1101/2025.02.13.638153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Prior studies showed that structural loops collapse upon acute cohesin depletion, while regulatory enhancer-promoter (E-P) loops largely persist, consistent with minimal transcriptional changes. However, these studies, conducted in asynchronous cells, could not resolve whether cohesin is required for the establishment of regulatory interactions and transcriptional activation during cell division or cell state transitions. To address this gap, we degraded RAD21, a core cohesin subunit, in naïve mouse embryonic stem cells (ESCs) transitioning from mitosis to G1 either in self-renewal condition or during differentiation toward formative pluripotency. Although most structural loops failed to be re-established without cohesin, about 35% of regulatory loops reformed at normal or higher frequencies. Cohesin-independent loops showed characteristics of strong active enhancers and promoters and a significant association with H3K27ac mitotic bookmarks. However, inhibition of CBP/p300 during mitotic exit did not impact these cohesin-independent interactions, suggesting the presence of complex compensatory mechanisms. At the transcriptional level, cohesin depletion induced only minor changes, supporting that post-mitotic transcriptional reactivation is largely independent of cohesin. The few genes with impaired reactivation were directly bound by RAD21 at their promoters, engaged in many structural loops, and located within strongly insulated TADs with low gene density. Importantly, degrading cohesin during the M-to-G1 transition in the presence of EpiLC differentiation signals revealed a larger group of susceptible genes, including key signature genes and transcription factors. Impaired activation of these genes was partly due to the failure to establish de novo EpiLC-specific interactions in the absence of cohesin. These experiments revealed locus-specific and context-specific dependencies between cohesin, E-P interactions, and transcription.
Collapse
Affiliation(s)
- UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Molecular Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065, USA
| | - Alejandra Laguillo-Diego
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Zhangli Ni
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lingling Cheng
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
20
|
Tsukamoto S, Mofrad MRK. Bridging scales in chromatin organization: Computational models of loop formation and their implications for genome function. J Chem Phys 2025; 162:054122. [PMID: 39918128 DOI: 10.1063/5.0232328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 05/08/2025] Open
Abstract
Chromatin loop formation plays a crucial role in 3D genome interactions, with misfolding potentially leading to irregular gene expression and various diseases. While experimental tools such as Hi-C have advanced our understanding of genome interactions, the biophysical principles underlying chromatin loop formation remain elusive. This review examines computational approaches to chromatin folding, focusing on polymer models that elucidate chromatin loop mechanics. We discuss three key models: (1) the multi-loop-subcompartment model, which investigates the structural effects of loops on chromatin conformation; (2) the strings and binders switch model, capturing thermodynamic chromatin aggregation; and (3) the loop extrusion model, revealing the role of structural maintenance of chromosome complexes. In addition, we explore advanced models that address chromatin clustering heterogeneity in biological processes and disease progression. The review concludes with an outlook on open questions and current trends in chromatin loop formation and genome interactions, emphasizing the physical and computational challenges in the field.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
- Molecular Biophysics and Integrative BioImaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Barth R, Davidson IF, van der Torre J, Taschner M, Gruber S, Peters JM, Dekker C. SMC motor proteins extrude DNA asymmetrically and can switch directions. Cell 2025; 188:749-763.e21. [PMID: 39824185 DOI: 10.1016/j.cell.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear. Here, we examine the directionality of DNA loop extrusion by SMCs using in vitro single-molecule experiments. We find that cohesin and SMC5/6 do not reel in DNA from both sides, as reported before, but instead extrude DNA asymmetrically, although the direction can switch over time. Asymmetric DNA loop extrusion thus is the shared mechanism across all eukaryotic SMC complexes. For cohesin, direction switches strongly correlate with the turnover of the subunit NIPBL, during which DNA strand switching may occur. Apart from expanding by extrusion, loops frequently diffuse and shrink. The findings reveal that SMCs, surprisingly, can switch directions.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
22
|
Lokesh NR, Pownall ME. Microscopy methods for the in vivo study of nanoscale nuclear organization. Biochem Soc Trans 2025; 53:BST20240629. [PMID: 39898979 DOI: 10.1042/bst20240629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Eukaryotic genomes are highly compacted within the nucleus and organized into complex 3D structures across various genomic and physical scales. Organization within the nucleus plays a key role in gene regulation, both facilitating regulatory interactions to promote transcription while also enabling the silencing of other genes. Despite the functional importance of genome organization in determining cell identity and function, investigating nuclear organization across this wide range of physical scales has been challenging. Microscopy provides the opportunity for direct visualization of nuclear structures and has pioneered key discoveries in this field. Nonetheless, visualization of nanoscale structures within the nucleus, such as nucleosomes and chromatin loops, requires super-resolution imaging to go beyond the ~220 nm diffraction limit. Here, we review recent advances in imaging technology and their promise to uncover new insights into the organization of the nucleus at the nanoscale. We discuss different imaging modalities and how they have been applied to the nucleus, with a focus on super-resolution light microscopy and its application to in vivo systems. Finally, we conclude with our perspective on how continued technical innovations in super-resolution imaging in the nucleus will advance our understanding of genome structure and function.
Collapse
Affiliation(s)
- Nidhi Rani Lokesh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| | - Mark E Pownall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| |
Collapse
|
23
|
Kittle RH, Levo M. Exploring the interplay between enhancer-promoter interactions and transcription. Curr Opin Genet Dev 2025; 90:102303. [PMID: 39808848 DOI: 10.1016/j.gde.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved. In this brief review, we discuss recent studies exploring this relationship across scales: from developmental stages to the minutes surrounding transcriptional activation and from the tissue level to single-allele subcellular dynamics. We discuss how seemingly contradictory observations might be reconciled and contribute to a refined causal relationship between E-P interactions and transcription, with mutual influences.
Collapse
Affiliation(s)
- Ryan H Kittle
- Department of Genetics and Development, Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michal Levo
- Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
24
|
McLean TC, Balaguer-Pérez F, Chandanani J, Thomas CM, Aicart-Ramos C, Burick S, Olinares PDB, Gobbato G, Mundy JEA, Chait BT, Lawson DM, Darst SA, Campbell EA, Moreno-Herrero F, Le TBK. KorB switching from DNA-sliding clamp to repressor mediates long-range gene silencing in a multi-drug resistance plasmid. Nat Microbiol 2025; 10:448-467. [PMID: 39849085 PMCID: PMC11790492 DOI: 10.1038/s41564-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB-KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.5 kb away. We resolved the tripartite crystal structure of a KorB-KorA-DNA co-complex, revealing that KorA latches KorB into a closed clamp state. DNA-bound KorA thus stimulates repression by stalling KorB sliding at target promoters to occlude RNA polymerase holoenzymes. Together, our findings explain the mechanistic basis for KorB role switching from a DNA-sliding clamp to a co-repressor and provide an alternative mechanism for long-range regulation of gene expression in bacteria.
Collapse
Affiliation(s)
- Thomas C McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Joshua Chandanani
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sophia Burick
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Julia E A Mundy
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - David M Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Elizabeth A Campbell
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA.
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| |
Collapse
|
25
|
Coulon A. Interphase chromatin biophysics and mechanics: new perspectives and open questions. Curr Opin Genet Dev 2025; 90:102296. [PMID: 39724779 DOI: 10.1016/j.gde.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The physical organization and properties of chromatin within the interphase nucleus are intimately linked to a wide range of functional DNA-based processes. In this context, interphase chromatin mechanics - that is, how chromatin, physically, responds to forces - is gaining increasing attention. Recent methodological advances for probing the force-response of chromatin in cellulo open new avenues for research, as well as new questions. This review discusses emerging views from these approaches and others, including recent in vitro single-molecule studies of cohesin and condensin motor activities, providing insights into physical and material aspects of chromatin, its plasticity in the context of functional processes, its nonequilibrium or 'active matter' properties, and the importance of factors such as chromatin fiber tension and stiffness. This growing field offers exciting opportunities to better understand the interplay between interphase chromosome structure, dynamics, mechanics, and functions.
Collapse
Affiliation(s)
- Antoine Coulon
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664 Laboratoire Dynamique du Noyau, CNRS UMR168 Laboratoire Physique des Cellules et Cancer, 75005 Paris, France.
| |
Collapse
|
26
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. ARXIV 2025:arXiv:2501.16799v1. [PMID: 39975433 PMCID: PMC11838700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H. Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia Mesquita Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
27
|
Li WS, Carter LM, Almassalha LM, Gong R, Pujadas-Liwag EM, Kuo T, MacQuarrie KL, Carignano M, Dunton C, Dravid V, Kanemaki MT, Szleifer I, Backman V. Mature chromatin packing domains persist after RAD21 depletion in 3D. SCIENCE ADVANCES 2025; 11:eadp0855. [PMID: 39854464 PMCID: PMC11759041 DOI: 10.1126/sciadv.adp0855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains. Our results indicate that packing domains are not physical manifestation of TADs. Using electron microscopy, we found that only 20% of packing domains are lost upon RAD21 depletion. The effect of RAD21 depletion is restricted to small, poorly packed (nascent) packing domains. In addition, we present evidence that cohesin-mediated loop extrusion generates nascent domains that undergo maturation through nucleosome posttranslational modifications. Our results demonstrate that a 3D genomic structure, composed of packing domains, is generated through cohesin activity and nucleosome modifications.
Collapse
Affiliation(s)
- Wing Shun Li
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lucas M. Carter
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Luay Matthew Almassalha
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Ruyi Gong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Emily M. Pujadas-Liwag
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Tiffany Kuo
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Kyle L. MacQuarrie
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cody Dunton
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak Dravid
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, Evanston, IL 60208, USA
| | - Masato T. Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
28
|
Jusuf JM, Grosse-Holz S, Gabriele M, Mach P, Flyamer IM, Zechner C, Giorgetti L, Mirny LA, Hansen AS. Genome-wide absolute quantification of chromatin looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632736. [PMID: 39935886 PMCID: PMC11812599 DOI: 10.1101/2025.01.13.632736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of 26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop quantification and report that loops generally occur with low probabilities, generalizing recent live imaging results to the whole genome.
Collapse
Affiliation(s)
- James M. Jusuf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Simon Grosse-Holz
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Michele Gabriele
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
| | - Christoph Zechner
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Scuola Internazionale Superiori di Studi Avanzati, 34136 Trieste, Italy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
30
|
Valades-Cruz CA, Barth R, Abdellah M, Shaban HA. Genome-wide analysis of the biophysical properties of chromatin and nuclear proteins in living cells with Hi-D. Nat Protoc 2025; 20:163-179. [PMID: 39198619 DOI: 10.1038/s41596-024-01038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/22/2024] [Indexed: 09/01/2024]
Abstract
To understand the dynamic nature of the genome, the localization and rearrangement of DNA and DNA-binding proteins must be analyzed across the entire nucleus of single living cells. Recently, we developed a computational light microscopy technique, called high-resolution diffusion (Hi-D) mapping, which can accurately detect, classify and map diffusion dynamics and biophysical parameters such as the diffusion constant, the anomalous exponent, drift velocity and model physical diffusion from the data at a high spatial resolution across the genome in living cells. Hi-D combines dense optical flow to detect and track local chromatin and nuclear protein motion genome-wide and Bayesian inference to characterize this local movement at nanoscale resolution. Here we present the Python implementation of Hi-D, with an option for parallelizing the calculations to run on multicore central processing units (CPUs). The functionality of Hi-D is presented to the users via user-friendly documented Python notebooks. Hi-D reduces the analysis time to less than 1 h using a multicore CPU with a single compute node. We also present different applications of Hi-D for live-imaging of DNA, histone H2B and RNA polymerase II sequences acquired with spinning disk confocal and super-resolution structured illumination microscopy.
Collapse
Affiliation(s)
- Cesar Augusto Valades-Cruz
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Marwan Abdellah
- Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Haitham A Shaban
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, Egypt.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Precision Oncology Center, Department of Oncology Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
31
|
Marchi E, Tiana G. Length-dependent residence time of contacts in simple polymeric models. Phys Rev E 2025; 111:015401. [PMID: 39972849 DOI: 10.1103/physreve.111.015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 02/21/2025]
Abstract
Starting from the reported experimental evidence that the residence time of contacts between the ends of biopolymers is length dependent, we investigate the kinetics of contact breaking in simple polymer models from a theoretical point of view. We solved Kramers equation first for an ideal chain and then for a polymer with attracting ends, and compared the predictions with the results of molecular dynamics simulations. We found that the mean residence time always shows a power-law dependence on the length of the polymer with exponent -1, although it is significantly smaller when obtained from the analysis of a single trajectory than when calculated from independent initial conformations. Only when the interaction is strong (≫kT) and the interaction range is small (of the order of the distance between consecutive monomers) does the residence time converge to that of the Arrhenius equation, independent of the length. We are able to provide expressions of the mean residence time for cases when the exact definition of contact is not available a priori, expressions that can be useful in typical cases of microscopy experiments.
Collapse
Affiliation(s)
- Edoardo Marchi
- INFN, Università degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano, Italy
| | - Guido Tiana
- INFN, Università degli Studi di Milano, Department of Physics and Center for Complexity and Biosystems, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|
32
|
Harke J, Lee JR, Nguyen SC, Arab A, Rakowiecki SM, Hugelier S, Paliou C, Rauseo A, Yunker R, Xu K, Yao Y, Lakadamyali M, Andrey G, Epstein DJ, Joyce EF. Multiple allelic configurations govern long-range Shh enhancer-promoter communication in the embryonic forebrain. Mol Cell 2024; 84:4698-4710.e6. [PMID: 39579767 DOI: 10.1016/j.molcel.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
Developmental gene regulation requires input from enhancers spread over large genomic distances. Our understanding of long-range enhancer-promoter (E-P) communication, characterized as loops, remains incomplete without addressing the role of intervening chromatin. Here, we examine the topology of the entire Sonic hedgehog (Shh) regulatory domain in individual alleles from the mouse embryonic forebrain. Through sequential Oligopaint labeling and super-resolution microscopy, we find that the Shh locus maintains a compact structure that adopts several diverse configurations independent of Shh expression. The most frequent configuration contained distal E-P contacts at the expense of those more proximal to Shh, consistent with an interconnected loop. Genetic perturbations demonstrate that this long-range E-P communication operates by Shh-expression-independent and dependent mechanisms, involving CTCF binding sites and active enhancers, respectively. We propose a model whereby gene regulatory elements secure long-range E-P interactions amid an inherent architectural framework to coordinate spatiotemporal patterns of gene expression.
Collapse
Affiliation(s)
- Jailynn Harke
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeewon R Lee
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Arab
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Paliou
- Andalusian Center for Developmental Biology (CABD), Spanish National Research Council, Pablo de Olavide University, Andalusian Regional Government, Seville, Spain
| | - Antonella Rauseo
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellen Xu
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Melike Lakadamyali
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillaume Andrey
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort MAC, Pomp W, Meaburn K, Taylor T, Shchuka VM, Kocanova S, Nazarova M, Oliveira GM, Mitchell JA, Soutoglou E, Lenstra TL, Molina N, Papantonis A, Bystricky K, Sexton T. Transcription processes compete with loop extrusion to homogenize promoter and enhancer dynamics. SCIENCE ADVANCES 2024; 10:eadq0987. [PMID: 39671497 PMCID: PMC11641109 DOI: 10.1126/sciadv.adq0987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements is believed to be crucial for transcriptional control, but full mechanistic understanding is lacking. We combine simultaneous live tracking of pairs of genomic loci and nascent transcripts with molecular dynamics simulations to assess the Sox2 gene and its enhancer. We find that both loci exhibit more constrained mobility than control sequences due to stalled cohesin at CCCTC-binding factor sites. Strikingly, enhancer mobility becomes constrained on transcriptional firing, homogenizing its dynamics with the gene promoter, suggestive of their cotranscriptional sharing of a nuclear microenvironment. Furthermore, we find transcription and loop extrusion to be antagonistic processes constraining regulatory loci. These findings indicate that modulating chromatin mobility can be an additional, underestimated means for effective gene regulation.
Collapse
Affiliation(s)
- Angeliki Platania
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Cathie Erb
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Mariano Barbieri
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bastien Molcrette
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Erwan Grandgirard
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Marit A. C. de Kort
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, Netherlands
| | - Wim Pomp
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, Netherlands
| | - Karen Meaburn
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Virlana M. Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Silvia Kocanova
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
| | - Mariia Nazarova
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Guilherme Monteiro Oliveira
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tineke L. Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, Netherlands
| | - Nacho Molina
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Tom Sexton
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| |
Collapse
|
34
|
Janissen R, Barth R, Davidson IF, Peters JM, Dekker C. All eukaryotic SMC proteins induce a twist of -0.6 at each DNA loop extrusion step. SCIENCE ADVANCES 2024; 10:eadt1832. [PMID: 39671477 PMCID: PMC11641105 DOI: 10.1126/sciadv.adt1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Eukaryotes carry three types of structural maintenance of chromosome (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion (LE). SMCs modulate DNA supercoiling but remains incompletely understood how this is achieved. Using a single-molecule magnetic tweezers assay that directly measures how much twist is induced by individual SMCs in each LE step, we demonstrate that all three SMC complexes induce the same large negative twist (i.e., linking number change [Formula: see text] of ~-0.6 at each LE step) into the extruded loop, independent of step size and DNA tension. Using ATP hydrolysis mutants and nonhydrolyzable ATP analogs, we find that ATP binding is the twist-inducing event during the ATPase cycle, coinciding with the force-generating LE step. The fact that all three eukaryotic SMC proteins induce the same amount of twist indicates a common DNA-LE mechanism among these SMC complexes.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
- BITZ Transformation Lab, Deggendorf Institute of Technology, Oberschneiding, 94363, Germany
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| | - Iain F. Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| |
Collapse
|
35
|
Alfonso-Gonzalez C, Hilgers V. (Alternative) transcription start sites as regulators of RNA processing. Trends Cell Biol 2024; 34:1018-1028. [PMID: 38531762 DOI: 10.1016/j.tcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription. We discuss how the choice of transcription initiation sites influences RNA processing and the importance of this crosstalk for cell identity and organism function. We also speculate on possible mechanisms underlying the integration of transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwigs University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
36
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
37
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
38
|
Singh S, Granek R. Active fractal networks with stochastic force monopoles and force dipoles: Application to subdiffusion of chromosomal loci. CHAOS (WOODBURY, N.Y.) 2024; 34:113107. [PMID: 39485136 DOI: 10.1063/5.0227341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system. In contrast, force dipoles do not induce subdiffusion, and the early superdiffusive MSD crosses over to a relatively small, system-size-independent saturation value. In addition, we find that force dipoles may lead to "crawling" rotational motion of the whole network, reminiscent of that found for triangular micro-swimmers and consistent with general theories of the rotation of deformable bodies. Moreover, force dipoles lead to network collapse beyond a critical force strength, which persists with increasing system size, signifying a true first-order dynamical phase transition. We apply our results to the motion of chromosomal loci in bacteria and yeast cells' chromatin, where anomalous sub-diffusion, MSD∼tν with ν≃0.4, was found in both normal and cells depleted of adenosine triphosphate (ATP), albeit with different apparent diffusion coefficients. We show that the combination of thermal, monopolar, and dipolar forces in chromatin is typically dominated by the active monopolar and thermal forces, explaining the observed normal cells vs the ATP-depleted cells behavior.
Collapse
Affiliation(s)
- Sadhana Singh
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rony Granek
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Physics, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
39
|
Rahmaninejad H, Xiao Y, Tortora MMC, Fudenberg G. Dynamic barriers modulate cohesin positioning and genome folding at fixed occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617113. [PMID: 39416077 PMCID: PMC11482749 DOI: 10.1101/2024.10.08.617113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In mammalian interphase cells, genomes are folded by cohesin loop extrusion limited by directional CTCF barriers. This interplay leads to the enrichment of cohesin at barriers, isolation between neighboring topologically associating domains, and elevated contact frequency between convergent CTCF barriers across the genome. However, recent in vivo measurements present a puzzle: reported residence times for CTCF on chromatin are in the range of a few minutes, while lifetimes for cohesin are much longer. Can the observed features of genome folding result from the action of relatively transient barriers? To address this question, we developed a dynamic barrier model, where CTCF sites switch between bound and unbound states with rates that can be directly compared with biophysical measurements. Using this model, we investigated how barrier dynamics would impact observables for a range of experimental genomic and imaging datasets, including ChIP-seq, Hi-C, and microscopy. We found the interplay of CTCF and cohesin binding timescales influence the strength of each of these features, leaving a signature of barrier dynamics even in the population-averaged snapshots offered by genomic datasets. First, in addition to barrier occupancy, barrier bound times are crucial for instructing features of genome folding. Second, the ratio of boundary to extruder lifetime greatly alters simulated ChIP-seq and simulated Hi-C. Third, large-scale changes in chromosome morphology observed experimentally after increasing extruder lifetime require dynamic barriers. By integrating multiple sources of experimental data, our biophysical model argues that CTCF barrier bound times effectively approach those of cohesin extruder lifetimes. Together, we demonstrate how models that are informed by biophysically measured protein dynamics broaden our understanding of genome folding.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
40
|
Zheng F, Han Q. Distinct DNA conformations during forward and backward translocations through a conical nanopore. Analyst 2024; 149:5131-5138. [PMID: 39240188 DOI: 10.1039/d4an01068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
DNA conformations, which encompass the three-dimensional structures of the DNA strand, play a crucial role in genome regulation. During DNA translocation in a nanopore, various conformations occur due to interactions among force fields, the fluidic environment, and polymer features. The most common conformation is folding, where DNA moves through the nanopore in a two-strand or multi-strand manner, influencing the current signature. Factors such as hydrodynamic drag, ionic environments, and DNA length significantly affect these conformations. Notably, conical nanopores, with their asymmetrical geometry, impose unique constraints on DNA translocation. Our findings reveal that during forward translocation, from the narrow (cis) end to the wide (trans) end, DNA experiences less resistance, resulting in shorter translocation times and higher blockade currents. Conversely, backward translocation, from the wide (trans) end to the narrow (cis) end, leads to longer translocation times and more complex conformations due to increased hydrodynamic drag and geometric constraints. This study employs molecular ping-pong methods to confine DNA, further highlighting the intricate dynamics of DNA folding within nanopores. These insights enhance the understanding of DNA behavior in confined environments, contributing to advancements in nanopore-based sensing and sequencing technologies, with implications for genome regulation and biomedical applications.
Collapse
Affiliation(s)
- Fei Zheng
- Cavendish Laboratory, University of Cambridge, CB3 0HE, Cambridge, UK.
| | - Quan Han
- School of Mechanical Engineering, Nanjing Forest University, 211100, Nanjing, China
| |
Collapse
|
41
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
42
|
Solovei I, Mirny L. Spandrels of the cell nucleus. Curr Opin Cell Biol 2024; 90:102421. [PMID: 39180905 DOI: 10.1016/j.ceb.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
S.J. Gould and R. Lewontin in their famous "Spandrels paper" (1979) argued that many anatomical elements arise in evolution not due to their "current utility" but rather due to other "reasons for origin", such as other developmental processes, physical constraints and mechanical forces. Here, in the same spirit, we argue that a variety of molecular processes, physical constraints, and mechanical forces, alone or together, generate structures that are detectable in the cell nucleus, yet these structures themselves may not carry any specific function, being a mere reflection of processes that produced them.
Collapse
Affiliation(s)
- Irina Solovei
- Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Chang LH, Noordermeer D. Permeable TAD boundaries and their impact on genome-associated functions. Bioessays 2024; 46:e2400137. [PMID: 39093600 DOI: 10.1002/bies.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.
Collapse
Affiliation(s)
- Li-Hsin Chang
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Blood and Transplant Research Unit in Precision Cellular Therapeutics, National Institute of Health Research, Oxford, UK
| | - Daan Noordermeer
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
44
|
Liefsoens M, Földes T, Barbi M. Spectral-based detection of chromatin loops in multiplexed super-resolution FISH data. Nat Commun 2024; 15:7670. [PMID: 39237524 PMCID: PMC11377450 DOI: 10.1038/s41467-024-51650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Involved in mitotic condensation, interaction of transcriptional regulatory elements and isolation of structural domains, loop formation has become a paradigm in the deciphering of chromatin architecture and its functional role. Despite the emergence of increasingly powerful genome visualization techniques, the high variability in cell populations and the randomness of conformations still make loop detection a challenge. We introduce an approach for determining the presence and frequency of loops in a collection of experimental conformations obtained by multiplexed super-resolution imaging. Based on a spectral approach, in conjunction with neural networks, this method offers a powerful tool to detect loops in large experimental data sets, both at the population and single-cell levels. The method's performance is confirmed on experimental FISH data where Hi-C and other loop detection results are available. The method is then applied to recently published experimental data, where it provides a detailed and statistically quantified description of the global architecture of the chromosomal region under study.
Collapse
Affiliation(s)
- Michaël Liefsoens
- Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001, Leuven, Belgium.
- LPTMC, Sorbonne Université, CNRS, F-75005, Paris, France.
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| | - Timothy Földes
- LPTMC, Sorbonne Université, CNRS, F-75005, Paris, France.
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, 02139, USA.
| | - Maria Barbi
- LPTMC, Sorbonne Université, CNRS, F-75005, Paris, France
| |
Collapse
|
45
|
Lam JC, Aboreden NG, Midla SC, Wang S, Huang A, Keller CA, Giardine B, Henderson KA, Hardison RC, Zhang H, Blobel GA. YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle. Nat Genet 2024; 56:1938-1952. [PMID: 39210046 PMCID: PMC11687402 DOI: 10.1038/s41588-024-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.
Collapse
Affiliation(s)
- Jessica C Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas G Aboreden
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kate A Henderson
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Viushkov VS, Lomov NA, Rubtsov MA. A Comparison of Two Versions of the CRISPR-Sirius System for the Live-Cell Visualization of the Borders of Topologically Associating Domains. Cells 2024; 13:1440. [PMID: 39273012 PMCID: PMC11394217 DOI: 10.3390/cells13171440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
In recent years, various technologies have emerged for the imaging of chromatin loci in living cells via catalytically inactive Cas9 (dCas9). These technologies facilitate a deeper understanding of the mechanisms behind the chromatin dynamics and provide valuable kinetic data that could not have previously been obtained via FISH applied to fixed cells. However, such technologies are relatively complicated, as they involve the expression of several chimeric proteins as well as sgRNAs targeting the visualized loci, a process that entails many technical subtleties. Therefore, the effectiveness in visualizing a specific target locus may be quite low. In this study, we directly compared two versions of a previously published CRISPR-Sirius method based on the use of sgRNAs containing eight MS2 or PP7 stem loops and the expression of MCP or PCP fused to fluorescent proteins. We assessed the visualization efficiency for several unique genomic loci by comparing the two approaches in delivering sgRNA genes (transient transfection and lentiviral transduction), as well as two CRISPR-Sirius versions (with PCP and with MCP). The efficiency of visualization varied among the loci, and not all loci could be visualized. However, the MCP-sfGFP version provided more efficient visualization in terms of the number of cells with signals than PCP-sfGFP for all tested loci. We also showed that lentiviral transduction was more efficient in locus imaging than transient transfection for both CRISPR-Sirius systems. Most of the target loci in our study were located at the borders of topologically associating domains, and we defined a set of TAD borders that could be effectively visualized using the MCP-sfGFP version of the CRISPR-Sirius system. Altogether, our study validates the use of the CRISPR-Sirius technology for live-cell visualization and highlights various technical details that should be considered when using this method.
Collapse
Affiliation(s)
- Vladimir S. Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.A.L.); (M.A.R.)
| | - Nikolai A. Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.A.L.); (M.A.R.)
| | - Mikhail A. Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.A.L.); (M.A.R.)
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| |
Collapse
|
47
|
Tortora MMC, Fudenberg G. The physical chemistry of interphase loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609419. [PMID: 39229088 PMCID: PMC11370536 DOI: 10.1101/2024.08.23.609419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on in vivo measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between in vitro observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
48
|
Hibino K, Sakai Y, Tamura S, Takagi M, Minami K, Natsume T, Shimazoe MA, Kanemaki MT, Imamoto N, Maeshima K. Single-nucleosome imaging unveils that condensins and nucleosome-nucleosome interactions differentially constrain chromatin to organize mitotic chromosomes. Nat Commun 2024; 15:7152. [PMID: 39169041 PMCID: PMC11339268 DOI: 10.1038/s41467-024-51454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
For accurate mitotic cell division, replicated chromatin must be assembled into chromosomes and faithfully segregated into daughter cells. While protein factors like condensin play key roles in this process, it is unclear how chromosome assembly proceeds as molecular events of nucleosomes in living cells and how condensins act on nucleosomes to organize chromosomes. To approach these questions, we investigate nucleosome behavior during mitosis of living human cells using single-nucleosome tracking, combined with rapid-protein depletion technology and computational modeling. Our results show that local nucleosome motion becomes increasingly constrained during mitotic chromosome assembly, which is functionally distinct from condensed apoptotic chromatin. Condensins act as molecular crosslinkers, locally constraining nucleosomes to organize chromosomes. Additionally, nucleosome-nucleosome interactions via histone tails constrain and compact whole chromosomes. Our findings elucidate the physical nature of the chromosome assembly process during mitosis.
Collapse
Affiliation(s)
- Kayo Hibino
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yuji Sakai
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Toyoaki Natsume
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masa A Shimazoe
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan.
| |
Collapse
|
49
|
Whitney PH, Lionnet T. The method in the madness: Transcriptional control from stochastic action at the single-molecule scale. Curr Opin Struct Biol 2024; 87:102873. [PMID: 38954990 PMCID: PMC11373363 DOI: 10.1016/j.sbi.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progress in live-cell single-molecule microscopy has helped define the biophysical principles underlying this paradox. Beyond transcription factor activity, single-molecule experiments have revealed that at nearly every level of transcription regulation, control emerges from multiple short-lived stochastic interactions, rather than deterministic, stable interactions typical of other biochemical pathways. This architecture generates consistent outcomes that can be rapidly choreographed. Here, we highlight recent results that demonstrate how order in transcription regulation emerges from the apparent molecular-scale chaos and discuss remaining conceptual challenges.
Collapse
Affiliation(s)
- Peter H Whitney
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
50
|
Dong P, Zhang S, Gandin V, Xie L, Wang L, Lemire AL, Li W, Otsuna H, Kawase T, Lander AD, Chang HY, Liu ZJ. Cohesin prevents cross-domain gene coactivation. Nat Genet 2024; 56:1654-1664. [PMID: 39048795 PMCID: PMC11319207 DOI: 10.1038/s41588-024-01852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The contrast between the disruption of genome topology after cohesin loss and the lack of downstream gene expression changes instigates intense debates regarding the structure-function relationship between genome and gene regulation. Here, by analyzing transcriptome and chromatin accessibility at the single-cell level, we discover that, instead of dictating population-wide gene expression levels, cohesin supplies a general function to neutralize stochastic coexpression tendencies of cis-linked genes in single cells. Notably, cohesin loss induces widespread gene coactivation and chromatin co-opening tens of million bases apart in cis. Spatial genome and protein imaging reveals that cohesin prevents gene co-bursting along the chromosome and blocks spatial mixing of transcriptional hubs. Single-molecule imaging shows that cohesin confines the exploration of diverse enhancer and core promoter binding transcriptional regulators. Together, these results support that cohesin arranges nuclear topology to control gene coexpression in single cells.
Collapse
Affiliation(s)
- Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Shu Zhang
- Center for Personal Dynamic Regulomes and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Liangqi Xie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wenhong Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Zhe J Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|