1
|
Franklin MA, Salib MN, Gafni J, Pessah IN, Molinski TF. Structure-activity of Bastadins from the marine sponge Ianthella basta. Modulators of the RYR1 Ca 2+ channel. Bioorg Med Chem Lett 2025; 121:130165. [PMID: 40043821 DOI: 10.1016/j.bmcl.2025.130165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
The RYR1 Ca2+ channel mediates essential steps of excitation-contraction in skeletal muscle. Bastadins-5 and -6, highly brominated macrodilactams assembled from tyrosine and tyramine by the marine sponge Ianthella basta, were identified as potent sensitizers of RYR1 channel activation. Here, we present a structure-activity relationships study of a wide panel of bastadins, and related analogs, and define the minimum requirements for stabilizing the RYR1 complex open or closed conformations.
Collapse
Affiliation(s)
- Melanie A Franklin
- Department of Chemistry University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Juliette Gafni
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tadeusz F Molinski
- Department of Chemistry University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Zahradníková A, Pavelková J, Sabo M, Baday S, Zahradník I. Structure-based mechanism of RyR channel operation by calcium and magnesium ions. PLoS Comput Biol 2025; 21:e1012950. [PMID: 40300027 DOI: 10.1371/journal.pcbi.1012950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Ryanodine receptors (RyRs) serve for excitation-contraction coupling in skeletal and cardiac muscle cells in a noticeably different way, not fully understood at the molecular level. We addressed the structure of skeletal (RyR1) and cardiac (RyR2) isoforms relevant to gating by Ca2+ and Mg2+ ions (M2+). Bioinformatics analysis of RyR structures ascertained the EF-hand loops as the M2+ binding inhibition site and revealed its allosteric coupling to the channel gate. The intra-monomeric inactivation pathway interacts with the Ca2+-activation pathway in both RyR isoforms, and the inter-monomeric pathway, stronger in RyR1, couples to the gate through the S23*-loop of the neighbor monomer. These structural findings were implemented in the model of RyR operation based on statistical mechanics and the Monod-Wyman-Changeux theorem. The model, which defines closed, open, and inactivated macrostates allosterically coupled to M2+-binding activation and inhibition sites, approximated the open probability data for both RyR1 and RyR2 channels at a broad range of M2+ concentrations. The proposed mechanism of RyR operation provides a new interpretation of the structural and functional data of mammalian RyR channels on common grounds. This may provide a new platform for designing pharmacological interventions in the relevant diseases of skeletal and cardiac muscles. The synthetic approach developed in this work may find general use in deciphering mechanisms of ion channel functions.
Collapse
Affiliation(s)
- Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Pavelková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Sabo
- Bioinformatics Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University, Istanbul, Türkiye
| | - Ivan Zahradník
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Wang S, Qiao ST, Li PZ, Xie Y, Guo FR, Liu JW, Hu WK, Gao MY, Zheng LJ, Yang FX, Yuchi ZG, Wu SF, Bass C, Gao CF. Y4667D Mutation in the Ryanodine Receptor Confers High Level Resistance to Diamide Insecticides in the Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9920-9931. [PMID: 40198889 DOI: 10.1021/acs.jafc.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Chilo suppressalis is a major rice pest with escalating resistance to diamide insecticides, threatening sustainable management. However, the precise molecular mechanisms underlying this resistance remain unclear. In this study, we assessed the sensitivity of 71 C. suppressalis field populations in China to chlorantraniliprole during 2023-2024 and investigated target-site mutations associated with resistance. The proportion of highly resistant populations increased to 80% in 2023 (RR = 111.6-2706.4) and 90.3% in 2024 (RR = 160-1794.7). Multiple RyR mutations, including Y4667D, were identified in highly resistant populations. Introgressing the Y4667D mutation into a laboratory strain generated the 4667D strain, which exhibited high resistance to chlorantraniliprole and other diamides. Resistance showed autosomal inheritance with incomplete dominance. Modeling and molecular docking revealed that Y4667D reduced CsRyR binding affinity for chlorantraniliprole. Furthermore, Y4667D conferred significant fitness costs such as longer larval duration and reduced reproductive output. These findings provide insights into the molecular mechanisms of diamide resistance, inform pesticide management strategies, and aid the development of novel resistance-breaking pesticides.
Collapse
Affiliation(s)
- Shuai Wang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Song-Tao Qiao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Pei-Zhuo Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuan Xie
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Fang-Rui Guo
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Jin-Wei Liu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Wen-Kai Hu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Meng-Yue Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Ling-Jun Zheng
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Feng-Xia Yang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Zhi-Guang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shun-Fan Wu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, U.K
| | - Cong-Fen Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, Jiangsu, China
| |
Collapse
|
4
|
Góngora-Gamboa C, Ruiz-Sánchez E, Zamora-Bustillos R, Hernández-Núñez E, Ballina-Gómez H. Lethal and sublethal effects of flupyradifurone and cyantraniliprole on two neotropical stingless bee species. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:456-466. [PMID: 39777609 DOI: 10.1007/s10646-024-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Stingless bees are important pollinators in tropical regions, but their survival and behavior have been impacted by various factors, including exposure to insecticides. Here, we evaluated the lethal and sublethal effects of commercial formulations of two widely used insecticides, flupyradifurone (FPF formulation), and cyantraniliprole (CY formulation), on Melipona beecheii and Nannotrigona perilampoides. The study involved oral exposure of bees to insecticides, calculation of the lethal concentration (LC50) and the lethal time (LT50), and evaluation of walking and flight take-off activities. The LC50 values showed that the largest bee, M. beecheii, was more sensitive than N. perilampoides to both insecticides and that the FPF formulation had faster lethal effects in both species (N. perilampoides, 9.6 h; M. beecheii, 5 h) compared to the effects of the CY formulation (N. perilampoides, 17 h; M. beecheii, 24.7 h). Sublethal concentrations (LC50/10 and LC50/100) of both insecticides affected walking and flight take-off activities. After 6-24 h of exposure, both FPF and CY formulations significantly reduced the mean walking speed of N. perilampoides (0.962-1.402 cm/s) and M. beecheii (2.026-2.589 cm/s) compared to the control groups (N. perilampoides: 1.648-1.941 cm/s; M. beecheii: 2.759-3.471 cm/s). Additionally, the FPF and the CY formulation impaired individual flight take-off in both species. This study provides the first comprehensive evaluation of the lethal and sublethal effects of flupyradifurone and cyantraniliprole on M. beecheii and N. perilampoides, offering valuable information for future research on insecticide toxicity in stingless bees.
Collapse
Affiliation(s)
| | - Esaú Ruiz-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico.
| | | | - Emanuel Hernández-Núñez
- Departamento de Posgrado e Investigación, Instituto Tecnológico Superior de Calkiní, Calkiní, Campeche, Mexico
| | - Horacio Ballina-Gómez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico
| |
Collapse
|
5
|
Zhang Y, Peng Z, Luo P, Zhu L, He Q, Pei C, Yin D, Zhang W, Zhang S, Cai Z. Diamide insecticides in PM 2.5: The unreported rural and urban air pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137055. [PMID: 39754883 DOI: 10.1016/j.jhazmat.2024.137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM2.5) and associated health risks have not been studied. We reported for the first time the extensive distributions of PM2.5-bound DAIs in rural and urban areas of China, one of the world's largest agricultural countries. Eight DAIs were analyzed, and five were consistently detected in PM2.5 samples at concentrations primarily of pg m-3 level. Evident spatial/temporal variations were observed, with generally more serious DAIs' contamination and long-term health risks in rural areas during spring, summer and autumn. The first exploration of DAIs' toxicities on human bronchial epithelial cells discovered their capability of inhibiting cell viabilities, further demonstrating the potential detrimental effects of these emerging pollutants in PM2.5. This study confirms the widespread appearance of DAIs in PM2.5, emphasizing the need and urgency for concern about their pollution in both rural and urban air.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, PR China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong.
| | - Zifang Peng
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Peiru Luo
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong
| | - Qingyun He
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Congcong Pei
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
6
|
Liu B, Huang Y, Liu X, Yang H, Li S, Li Y. A comparative study of the controllable release and insecticidal efficacy for two typical carrier methods on diamide insecticide delivery system. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106313. [PMID: 40015905 DOI: 10.1016/j.pestbp.2025.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Using nano/microcarriers of pesticides in sustainable pest management represents a promising strategy for enhancing pesticide efficiency while mitigating environmental harm. The reported pesticide loading methods include one-step self-assembly encapsulation and two-step absorption loading, but the controllable release and insecticidal efficacy of these two methods have been infrequently evaluated. Herein, the typical diamide insecticide cyantraniliprole (CTP) was employed as the model pesticide. A hydrogen bond-driven one-step self-assembly method and a chemical deposition method were utilized to fabricate highly dispersed polylactic acid (PLA) microspheres and calcium carbonate (CaCO3) microspheres. The resulting CTP-loaded PLA microspheres (CTP-PLA MS) and CaCO3 microspheres (CTP-CaCO3 MS) both exhibited high adhesion, resistance to rain erosion, and insecticidal activity under laboratory conditions. However, the functional CTP-PLA MS demonstrated superior sustained pesticide release performance, higher pesticide loading capacity, and less application amount than that of CTP-CaCO3 MS. At the same time, the acute toxicity of CTP-PLA MS exhibited slightly reduced acute toxicity to honeybees (Apis mellifera), signifying enhanced biocompatibility. Finally, the CTP-PLA MS maintained superior insecticidal efficacy than the normal CTP in controlling O. nubilalis at a low concentration. The present study represents a promising pesticide carrier as a highly efficient, eco-friendly agent for sustained management of O. nubilalis.
Collapse
Affiliation(s)
- Bingrui Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yucong Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xingyu Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huiying Yang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shaochen Li
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yahui Li
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
7
|
Mei W, Yang G, Ye G, Yang Y, Wu Y. Differential contributions of the ryanodine receptor I4723M and I4723K mutations to diamide resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106292. [PMID: 40015884 DOI: 10.1016/j.pestbp.2025.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
The common cutworm, Spodoptera litura, is a significant pest that damaging various crops. Previous research has shown that the I4723M mutation in the ryanodine receptor of S. litura (SlRyR), which is equivalent to the Plutella xylostella RyR I4790M, confers approximately 20-fold resistance to chlorantraniliprole. Recently, we identified a new I4723K mutation in SlRyR, in addition to I4723M, from the HZ23 population of S. litura collected in 2023 from Huizhou, Guangdong province, China. This study characterized the resistance to diamides conferred by these two point mutations of SlRyR. The HZ23 population demonstrated an 81-fold resistance to chlorantraniliprole, and the frequencies of the wild type allele 4723I and two mutant alleles 4723M and 4723K were 0.055, 0.93 and 0.015, respectively. Through marker-assisted selection, we isolated three strains from the HZ23 population, named HZ-4723I, HZ-4723M, and HZ-4723K, homozygous for each of the three alleles. Compared to the HZ-4723I strain, the HZ-4723M strain displayed medium-level resistance (23- to 43-fold), whereas the HZ-4723K strain exhibited high-level resistance (> 500-fold) to four diamides including chlorantraniliprole, cyantraniliprole, flubendiamide, and tetraniliprole. Genetic analysis revealed that resistance to chlorantraniliprole conferred by either I4723M or I4723K mutations was autosomal, incompletely recessive, and tightly linked with the SlRyR mutations. Given that the I4723K mutation confers much higher levels of diamide resistance than the I4723M mutation, the continued intensive use of diamide insecticides is likely to increase the frequency of the I4723K mutation in S. litura field populations. Our findings provide valuable insights for the monitoring and management of diamide resistance in this pest species.
Collapse
Affiliation(s)
- Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guiqun Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guofang Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Wei R, Chen Q, Zhang L, Liu C, Liu C, Yin CC, Hu H. Structural insights into transmembrane helix S0 facilitated RyR1 channel gating by Ca 2+/ATP. Nat Commun 2025; 16:1936. [PMID: 39994184 PMCID: PMC11850639 DOI: 10.1038/s41467-025-57074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
The type-1 ryanodine receptor (RyR1) is an intracellular calcium release channel for skeletal muscle excitation-contraction coupling. Previous structural studies showed that the RyR1 activity is modulated by the exogenous regulators including caffeine, ryanodine, PCB-95 and diamide. An additional transmembrane helix, located adjacent to S1 and S4, has been observed in some structures, although its function remains unclear. Here, we report that using a mild purification procedure, this helix is co-purified with RyR1 and is designated as S0. When RyR1 is coupled with S0, it can be activated by Ca2+ to an open state; however when decoupled from S0, it remains in primed state. S0 regulates the channel conformation by directly affecting the TM domain via the pVSD-S0-S4/S5 linker coupling, which facilitates the dilation of S6. Our results demonstrate that S0 is an essential component of RyR1 and plays a key role in the physiological regulation of RyR1 channel gating.
Collapse
Affiliation(s)
- Risheng Wei
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen; Shenzhen, Guangdong, 518172, China
| | - Lei Zhang
- Electron Microscopy Analysis Laboratory, Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Congcong Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; Shenzhen, Guangdong, 518112, China
| | - Chuang Liu
- Center for Biological Cryo-EM, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Chang-Cheng Yin
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen; Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
9
|
Jensen-Brickley MA, Glimsdal L, Johnson A, Stacy E, Santana-Rodriguez K, Mattingly K, Villeneuve DL, Hockett R, Blackwell B, Cavallin J, LaLone CA. Computational new approach methods guide focused testing and enhance understanding of chlorantraniliprole toxicity across species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae057. [PMID: 39881569 DOI: 10.1093/etojnl/vgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 01/31/2025]
Abstract
Diamide insecticides, specifically chlorantraniliprole (CHL), have been rising in popularity over the past decade, becoming one of the most widely used insecticide classes globally. These insecticides target the ryanodine receptor (RyR), primarily for control of lepidopteran agricultural pests. Field studies have revealed that some lepidopteran species have developed mutations where a methionine in a particular position (e.g., I4790M) increases resistance to CHL. The toxicity data for CHL across species is limited, as is the case for many chemicals, which creates an opportunity to apply both traditional toxicity test methods and new approach methods (NAMs) to address data gaps. Here, the U.S. Environmental Protection Agency's Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was used to query the RyR to generate susceptibility predictions for species exposed to CHL to fill those data gaps. These SeqAPASS results generated testable hypotheses that were used to guide focused acute aquatic toxicity studies using Daphnia magna, Daphnia pulex, Pimephales promelas, and Danio rerio. The fish species were not sensitive to CHL, whereas D. magna and D. pulex were found to be sensitive to CHL at environmentally relevant concentrations, despite having the methionine residue in the position of the I4790M resistance mutation. Additional SeqAPASS results showed that many other species, including beneficial pollinators and Lepidoptera, are predicted as likely susceptible to CHL. This study provided multiple lines of evidence toward the unlikelihood for the I4790M mutation to be the primary cause of resistance across species, filled knowledge gaps concerning CHL toxicity across species, and generated predictions of susceptibility for nontarget species that are not generally amenable to toxicity testing. This work presents a case example that demonstrates how NAMs can be used in combination with other types of data to direct targeted testing and build confidence in predictive approaches for their use in risk assessment.
Collapse
Affiliation(s)
- Marissa A Jensen-Brickley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
- University of Minnesota-Duluth, Duluth, MN, United States
| | - Leah Glimsdal
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Abigail Johnson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
| | | | - Kali Mattingly
- SpecPro Sustainment and Environmental, San Antonio, TX, United States
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
| | - Russ Hockett
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
| | - Brett Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
| | - Jenna Cavallin
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States
| |
Collapse
|
10
|
Lin L, Wang C, Wang W, Jiang H, Murayama T, Kobayashi T, Hadiatullah H, Chen YS, Wu S, Wang Y, Korza H, Gu Y, Zhang Y, Du J, Van Petegem F, Yuchi Z. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance. Nat Commun 2024; 15:9056. [PMID: 39428398 PMCID: PMC11491487 DOI: 10.1038/s41467-024-53490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
The resistance of pests to common insecticides is a global issue that threatens food production worldwide. Diamide insecticides target insect ryanodine receptors (RyRs), causing uncontrolled calcium release from the sarcoplasmic and endoplasmic reticulum. Despite their high potency and species selectivity, several resistance mutations have emerged. Using a chimeric RyR (chiRyR) approach and cryo-electron microscopy (cryo-EM), we investigate how insect RyRs engage two different diamide insecticides from separate families: flubendiamide, a phthalic acid derivative, and tetraniliprole, an anthranilic compound. Both compounds target the same site in the transmembrane region of the RyR, albeit with different poses, and promote channel opening through coupling with the pore-forming domain. To explore the resistance mechanisms, we also solve two cryo-EM structures of chiRyR carrying the two most common resistance mutations, I4790M and G4946E, both alone and in complex with the diamide insecticide chlorantraniliprole. The resistance mutations perturb the local structure, directly reducing the binding affinity and altering the binding pose. Our findings elucidate the mode of action of different diamide insecticides, reveal the molecular mechanism of resistance mutations, and provide important clues for the development of novel pesticides that can bypass the resistance mutations.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Changshi Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wenlan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shunfan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Henryk Korza
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Jiamu Du
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Filip Van Petegem
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Chen YS, Garcia-Castañeda M, Charalambous M, Rossi D, Sorrentino V, Van Petegem F. Cryo-EM investigation of ryanodine receptor type 3. Nat Commun 2024; 15:8630. [PMID: 39366997 PMCID: PMC11452665 DOI: 10.1038/s41467-024-52998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Ryanodine Receptor isoform 3 (RyR3) is a large ion channel found in the endoplasmic reticulum membrane of many different cell types. Within the hippocampal region of the brain, it is found in dendritic spines and regulates synaptic plasticity. It controls myogenic tone in arteries and is upregulated in skeletal muscle in early development. RyR3 has a unique functional profile with a very high sensitivity to activating ligands, enabling high gain in Ca2+-induced Ca2+ release. Here we solve high-resolution cryo-EM structures of RyR3 in non-activating and activating conditions, revealing structural transitions that occur during channel opening. Addition of activating ligands yields only open channels, indicating an intrinsically high open probability under these conditions. RyR3 has reduced binding affinity to the auxiliary protein FKBP12.6 due to several sequence variations in the binding interface. We map disease-associated sequence variants and binding sites for known pharmacological agents. The N-terminal region contains ligand binding sites for a putative chloride anion and ATP, both of which are targeted by sequence variants linked to epileptic encephalopathy.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Maricela Garcia-Castañeda
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Maria Charalambous
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Xiang SZ, Liu KJ, Wang JJ, Ye HJ, Fan LJ, Song L, Wang XH, Wang PY. From Proline to Chlorantraniliprole Mimics: Computer-Aided Design, Simple Preparation, and Excellent Insecticidal Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39363717 DOI: 10.1021/acs.jafc.4c03125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Chlorantraniliprole (CHL), a favored agricultural insecticide, is renowned for its high efficiency and broad-spectrum effectiveness against lepidoptera insects. However, the urgency for new insecticide development is underscored by the intricate multistep preparation process and modest overall yields of CHL, along with the escalating challenge of insect resistance. In response, we have crafted CHL mimics from proline employing computer-aided drug design. Molecular docking analysis of CHL's interactions with the ryanodine receptor (RyR) revealed that the nitrogen atom within the pyrazole moiety does not engage in pivotal interactions. Its removal may not abolish bioactivity entirely but could substantially simplify the synthetic process, thereby enhancing atom economy. This revelation prompted the exclusion of nitrogen and the subsequent formation of a pyrrole ring, enabling the meticulous design of synthetic pathways characterized by cost-effective precursors, streamlined synthesis, the avoidance of toxic reagents, minimal instrumentation, and high yields in the pursuit of innovative RyR modulators. Among these modulators, A1 and B1, obtained with yields exceeding 60%, showcased exceptional insecticidal potency, with LC50 values spanning from 0.12 to 1.47 mg L-1 against P. xylostella and M. separate. The inhibitory effects of these two compounds on insect detoxification enzymes imply a reduced likelihood of eliciting resistance in comparison to CHL, a finding further corroborated by their insecticidal potency against resistant pests. Moreover, molecular docking, MD simulations, and DFT calculations provided valuable structural insights, potentially unraveling the superior insecticidal activity of these two molecules, and thus paving the way for developing more potent insecticides.
Collapse
Affiliation(s)
- Shu-Zhen Xiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kong-Jun Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563002,China
| | - Jin-Jing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Hui Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Liu B, Shi T, Yang H, Zhang J, Li Y. Size-dependent effect on controllable release and field insecticidal efficacy of diamide insecticide polylactic acid microspheres delivery systems against Ostrinia nubilalis. Int J Biol Macromol 2024; 278:134659. [PMID: 39128754 DOI: 10.1016/j.ijbiomac.2024.134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
New nano/microcarriers of pesticides represent a highly promising novel field for sustainable pest management. However, despite extensive laboratory research, few studies on the design and evaluation of nanopesticides for field applications exist. In this study, we present a straightforward and green synthetic method of ultrasonic-assisted and hydrogen-bonded self-assembly at the oil-water interface for the synthesis of polylactic acid (PLA) microspheres encapsulating chlorantraniliprole (CAP), with precise control over the size of the microspheres. The resulting CAP-loaded PLA microspheres (CAP-PLA MS) exhibit both high pesticide encapsulation efficiency and stability in natural environments. It has been determined that non-Fickian diffusion mainly controls pesticide release, thus enabling dynamic control over molecular transport speeds. Importantly, our functional CAP-PLA MS demonstrates superior sustained pesticide release performance under both laboratory and field conditions while maintaining better exceptional insecticidal efficacy than normal CAP in controlling O. nubilalis at a concentration of 30 or 45 g/ha. Consequently, we propose that our functional PLA microspheres could serve as ideal pesticide carriers in the sustained treatment of O. nubilalis.
Collapse
Affiliation(s)
- Bingrui Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huiying Yang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Zhang
- Key Laboratory of Green Pesticide and Agricultural Bio-engineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
14
|
Zhou H, Wan F, Lai X, Yan F, Zhang M, Ni Y, Guo Y, Zhang P, Guo F, Klakong M, Peng G, Guo W, Zeng X, Zhang Z, Pan X, Liu Y, Yang L, Li S, Ding W. Synergistic action and mechanism of scoparone, a key bioactive component of Artemisia capillaris, and spirodiclofen against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:5035-5049. [PMID: 38847112 DOI: 10.1002/ps.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plants have numerous defensive secondary metabolites to withstand insect attacks. Scoparone, which is extracted from the medicinal plant Artemisia capillaris, has potent acaricidal effects on Tetranychus cinnabarinus. Spirodiclofen, derived from a tetronic acid derivative, is a potent commercial acaricide that is extensively used globally. However, whether scoparone has synergistic effects when used in conjunction with spirodiclofen and the underlying synergistic mechanism remains unclear. RESULTS Scoparone exhibited a potent synergistic effect when it was combined with spirodiclofen at a 1:9 ratio. Subsequently, cytochrome P450 monooxygenase (P450) activity, RNA-Seq and qPCR assays indicated that the enzyme activity of P450 and the expression of one P450 gene from T. cinnabarinus, TcCYP388A1, were significantly inhibited by scoparone and spirodiclofen + scoparone; conversely, P450 was activated in spirodiclofen-exposed mites. Importantly, RNAi-mediated silencing of the TcCYP388A1 gene markedly increased the susceptibility of spider mites to spirodiclofen, scoparone and spirodiclofen + scoparone, and in vitro, the recombinant TcCYP388A1 protein could metabolize spirodiclofen. Molecular docking and functional analyses further indicated that R117, which is highly conserved in Arachnoidea species, may be a vital specific binding site for scoparone in the mite TcCYP388A1 protein. This binding site was subsequently confirmed using mutagenesis data, which revealed that this binding site was the sole site selected by scoparone in spider mites over mammalian or fly CYP388A1. CONCLUSIONS These results indicate that the synergistic effects of scoparone and spirodiclofen on mites occurs through the inhibition of P450 activity, thus reducing spirodiclofen metabolism. The synergistic effect of this potent natural product on the detoxification enzyme-targeted activity of commercial acaricides may offer a sustainable strategy for pest mite resistance management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangning Lai
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Ni
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Yutong Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Pan Zhang
- Key Laboratory of Molecular Genetics, Guizhou Institute of Tobacco Science, China National Tobacco Corporation, Guiyang, China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Gen Peng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Wenhan Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Xinru Zeng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Zongjin Zhang
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Xingbing Pan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Yu Liu
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Rebbeck RT, Svensson B, Zhang J, Samsó M, Thomas DD, Bers DM, Cornea RL. Kinetics and mapping of Ca-driven calmodulin conformations on skeletal and cardiac muscle ryanodine receptors. Nat Commun 2024; 15:5120. [PMID: 38879623 PMCID: PMC11180167 DOI: 10.1038/s41467-024-48951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/16/2024] [Indexed: 06/19/2024] Open
Abstract
Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jingyan Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Sun H, Wang S, Liu C, Hu WK, Liu JW, Zheng LJ, Gao MY, Guo FR, Qiao ST, Liu JL, Sun B, Gao CF, Wu SF. Risk assessment, fitness cost, cross-resistance, and mechanism of tetraniliprole resistance in the rice stem borer, Chilo suppressalis. INSECT SCIENCE 2024; 31:835-846. [PMID: 37846895 DOI: 10.1111/1744-7917.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30). The realized heritability (h2) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shuai Wang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chong Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Wen-Kai Hu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jin-Wei Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Ling-Jun Zheng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Meng-Yue Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Fang-Rui Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Song-Tao Qiao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jun-Li Liu
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Bo Sun
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
17
|
Bass E, Mutyambai DM, Midega CAO, Khan ZR, Kessler A. Associational Effects of Desmodium Intercropping on Maize Resistance and Secondary Metabolism. J Chem Ecol 2024; 50:299-318. [PMID: 38305931 DOI: 10.1007/s10886-024-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Intercropping is drawing increasing attention as a strategy to increase crop yields and manage pest pressure, however the mechanisms of associational resistance in diversified cropping systems remain controversial. We conducted a controlled experiment to assess the impact of co-planting with silverleaf Desmodium (Desmodium uncinatum) on maize secondary metabolism and resistance to herbivory by the spotted stemborer (Chilo partellus). Maize plants were grown either in the same pot with a Desmodium plant or adjacent to it in a separate pot. Our findings indicate that co-planting with Desmodium influences maize secondary metabolism and herbivore resistance through both above and below-ground mechanisms. Maize growing in the same pot with a Desmodium neighbor was less attractive for oviposition by spotted stemborer adults. However, maize exposed only to above-ground Desmodium cues generally showed increased susceptibility to spotted stemborer herbivory (through both increased oviposition and larval consumption). VOC emissions and tissue secondary metabolite titers were also altered in maize plants exposed to Desmodium cues, with stronger effects being observed when maize and Desmodium shared the same pot. Specifically, benzoxazinoids were strongly suppressed in maize roots by direct contact with a Desmodium neighbor while headspace emissions of short-chain aldehydes and alkylbenzenes were increased. These results imply that direct root contact or soil-borne cues play an important role in mediating associational effects on plant resistance in this system.
Collapse
Affiliation(s)
- Ethan Bass
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel M Mutyambai
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Charles A O Midega
- Poverty and Health Integrated Solutions (PHIS), Kisumu, Kenya
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, South Africa
| | - Zeyaur R Khan
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology, Mbita, Kenya
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Jiang D, Yu Z, He Y, Wang F, Gu Y, Davies TGE, Fan Z, Wang X, Wu Y. Key role of the ryanodine receptor I4790K mutation in mediating diamide resistance in Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104107. [PMID: 38492676 DOI: 10.1016/j.ibmb.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.
Collapse
Affiliation(s)
- Dong Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingshi He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Falong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - T G Emyr Davies
- Insect Molecular Genomics Group, Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Xingliang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Yang J, Wang Y, El Wakil A, Moussian B. Extra-corporeal detoxification in insects. Heliyon 2024; 10:e28392. [PMID: 38560219 PMCID: PMC10981100 DOI: 10.1016/j.heliyon.2024.e28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Upon uptake of toxins, insects launch a detoxification program. This program is deployed in multiple organs and cells to raise their tolerance against the toxin. The molecular mechanisms of this program inside the insect body have been studied and understood in detail. Here, we report on a yet unexplored extra-corporeal detoxification of insecticides in Drosophila melanogaster. Wild-type D. melanogaster incubated with DDT, a contact insecticide, in a closed environment died as expected. However, incubation of a second cohort in the same environment after removal of the dead flies was not lethal. The effect was significantly lower if the flies of the two cohorts were unrelated. Incubation assays with Chlorpyrifos, another contact insecticide, yielded identical results, while incubation assays with Chlorantraniliprole, again a contact insecticide, was toxic for the second cohort of flies. A cohort of flies incubated in a DDT environment after an initial incubation of a honeybee survived treatment. Together, our data suggest that insects including Apis mellifera and D. melanogaster have the capacity to modify their proximate environment. Consequently, in their ecological niche, following individuals might be saved from intoxication thereby facilitating colonisation of an attractive site.
Collapse
Affiliation(s)
- Jing Yang
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, University of Tianjin, Tianjin, China
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
20
|
Chakraborty P, Hasan G. ER-Ca 2+ stores and the regulation of store-operated Ca 2+ entry in neurons. J Physiol 2024; 602:1463-1474. [PMID: 36691983 DOI: 10.1113/jp283827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
21
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
22
|
Zhou H, Ning Y, Jian Y, Zhang M, Klakong M, Guo F, Shao Q, Li Y, Yang P, Li Z, Yang L, Li S, Ding W. Functional analysis of a down-regulated transcription factor-SoxNeuroA gene involved in the acaricidal mechanism of scopoletin against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:1593-1606. [PMID: 37986233 DOI: 10.1002/ps.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Insight into the mode of action of plant-derived acaricides will help in the development of sustainable control strategies for mite pests. Scopoletin, a promising plant-derived bioactive compound, displays prominent acaricidal activity against Tetranychus cinnabarinus. The transcription factor SoxNeuroA plays a vital role in maintaining calcium ion (Ca2+ ) homeostasis. Down-regulation of SoxNeuroA gene expression occurs in scopoletin-exposed mites, but the functional role of this gene remains unknown. RESULTS A SoxNeuroA gene from T. cinnabarinus (TcSoxNeuroA) was first cloned and identified. Reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time polymerase chain reaction (qPCR), and Western blotting assays all confirmed that the gene expression and protein levels of TcSoxNeuroA were significantly reduced under scopoletin exposure. Furthermore, RNA interference silencing of the weakly expressed SoxNeuroA gene significantly enhanced the susceptibility of mites to scopoletin, suggesting that the acaricidal mechanism of scopoletin was mediated by the weakly expressed SoxNeuroA gene. Additionally, yeast one-hybrid (Y1H) and dual-luciferase reporter assays revealed that TcSoxNeuroA was a repressor of Orai1 Ca2+ channel gene transcription, and the key binding sequence was ATCAAAG (positions -361 to -368 of the Orai1 promoter). Importantly, site-directed mutagenesis and microscale thermophoresis assays further indicated that ASP185, ARG189, and LYS217, which were key predicted hydrogen-bonding sites in the molecular docking model, may be the vital binding sites for scopoletin in TcSoxNeuroA. CONCLUSION These results demonstrate that the acaricidal mechanism of scopoletin involves inhibition of the transcription factor SoxNeuroA, thus inducing the activation of the Orai1 Ca2+ channel, eventually leading to Ca2+ overload and lethality. Elucidation of the transcription factor-targeted mechanism for this potent plant-derived acaricide has vital implications for the design of next-generation green acaricides with novel targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
23
|
Zhang J, Wu A, Guo L, Wu X, Xu C, Kuang H, Xu X. Nonalcoholic Fatty Liver Disease Development in Male Mice upon Exposure to Flubendiamide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2672-2682. [PMID: 38290497 DOI: 10.1021/acs.est.3c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Flubendiamide (FLU), a widely used diamide insecticide, has been observed to potentiate adipogenesis in 3T3-L1 preadipocytes in vitro. Whether exposure to FLU disrupts hepatic lipid homeostasis in mammals and induces visceral obesity, however, remains unclear. The aim of this study was to assess the effects of FLU when administered orally to male C57BL/6J mice under normal diet (ND) and high-fat diet (HFD) conditions. FLU accumulated at higher levels in the tissues of the HFD group than those of the ND group, indicating that an HFD contributed to the accumulation of lipophilic pesticides in vivo. Notably, FLU (logP = 4.14) is highly lipophilic and easily accumulates in fat. Exposure to FLU had opposing effects on the lipid metabolism of the liver in the ND and HFD groups. Liver triacylglycerol levels in the ND group were reduced, while those in the HFD group were increased, resulting in more severe hepatic steatosis. More lipid accumulation was also observed in HepG2 cells exposed to FLU. Changes in hepatic lipid deposition in vivo occurred as the enhanced transcriptional regulation of the genes involved in lipid uptake, de novo lipogenesis, and fatty acid β-oxidation (FAO). Moreover, an excessive increase in FAO caused oxidative stress, which in turn exacerbated the inflammation of the liver. This study revealed the disruptive effect of FLU exposure on hepatic lipid homeostasis, which may facilitate the triggering of nonalcoholic fatty liver disease in HFD-fed mice.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
24
|
Liu J, Guo B, Zhong S, Shi Y, Li Z, Yu Z, Hao Z, Zhang L, Li F, Wang Y, Li Y. Novel Evodiamine-Based Sulfonamide Derivatives as Potent Insecticide Candidates Targeting Insect Ryanodine Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1292-1301. [PMID: 38178001 DOI: 10.1021/acs.jafc.3c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Pests represent an important impediment to efficient agricultural production and pose a threat to global food security. On the basis of our prior research focused on identifying insecticidal leads targeting insect ryanodine receptors (RyRs), we aimed to identify evodiamine scaffold-based novel insecticides. Thus, a variety of evodiamine-based derivatives were designed, synthesized, and assessed for their insecticidal activity against the larvae of Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The preliminary bioassay results revealed that more than half of the target compounds exhibited superior activity compared to evodiamine, matrine, and rotenone against M. separata. Among these, compound 21m displayed the most potent larvicidal efficiency, with a remarkable mortality rate of 93.3% at 2.5 mg/L, a substantial improvement over evodiamine (10.0% at 10 mg/L), matrine (10.0% at 200 mg/L), and rotenone (30.0% at 200 mg/L). In the case of P. xylostella, compounds 21m and 21o displayed heightened larvicidal activity, boasting LC50 values of 9.37 × 10-2 and 0.13 mg/L, respectively, surpassing that of evodiamine (13.41 mg/L), matrine (291.78 mg/L), and rotenone (18.39 mg/L). A structure-activity relationship analysis unveiled that evodiamine-based derivatives featuring a cyclopropyl sulfonyl group at the nitrogen atom of the B ring and a fluorine atom in the E ring exhibited more potent larvicidal effects. This finding was substantiated by calcium imaging experiments and molecular docking, which suggested that 21m could target insect RyRs, including resistant mutant RyRs of P. xylostella (G4946E and I4790M), with higher affinity than chlorantraniliprole (CHL). Additionally, cytotoxicity assays highlighted that the potent compounds 21i, 21m, and 21o displayed favorable selectivity and low toxicity toward nontarget organisms. Consequently, compound 21m emerges as a promising candidate for further development as an insecticide targeting insect RyRs.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Bingyan Guo
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Siying Zhong
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Yabing Shi
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Zhengping Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zesheng Hao
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan 250100, P. R. China
| | - Li Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Zhou H, Jian Y, Shao Q, Guo F, Zhang M, Wan F, Yang L, Liu Y, Yang L, Li Y, Yang P, Li Z, Li S, Ding W. Development of Sustainable Insecticide Candidates for Protecting Pollinators: Insight into the Bioactivities, Selective Mechanism of Action and QSAR of Natural Coumarin Derivatives against Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18359-18374. [PMID: 37965968 DOI: 10.1021/acs.jafc.3c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Plants employ abundant toxic secondary metabolites to withstand insect attack, while pollinators can tolerate some natural defensive compounds. Coumarins, as promising green alternatives to chemical insecticides, possess wide application prospects in the crop protection field. Herein, the bioactivities of 30 natural coumarin derivatives against Aphis gossypii were assessed and revealed that 6-methylcoumarin exhibited potent aphicidal activity against aphids but displayed no toxicity to honeybees. Additionally, using biochemical, bioinformatic, and molecular assays, we confirmed that the action mode of 6-methylcoumarin against aphids was by inhibiting acetylcholinesterase (AChE). Meanwhile, functional assays revealed that the difference in action site, which located in Lys585 in aphid AChE (equivalent to Val548 in honeybee AChE), was the principal reason for 6-methylcoumarin being toxic to aphids but safe to pollinators. This action site was further validated by mutagenesis data, which uncovered how 6-methylcoumarin was unique selective to the aphid over honeybee or mammalian AChE. Furthermore, a 2D-QSAR model was established, revealing that the central structural feature was H3m, which offers guidance for the future design of more potent coumarin compounds. This work provides a sustainable strategy to take advantage of coumarin analogues for pest management while protecting nontarget pollinators.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Li Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
26
|
Sun P, Zhang Z, Zhao J, Zhang H, Lin L, Wang X, Li L, Cao P, Wang Z, Li Z, Yuchi Z, Li Y. Novel Nitrophenyl Substituted Anthranilic Diamide Derivatives: Design, Synthesis, Selectivity, and Antiresistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17646-17657. [PMID: 37939255 DOI: 10.1021/acs.jafc.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Diamide insecticides have gained popularity due to their high efficacy and low toxicity to nontarget organisms. However, diamide-associated resistance has emerged recently, causing a significant reduction in their potency, thereby hindering sustainable agricultural development. Here, we explored novel diamide insecticide analogs and, using a structure-based approach, rationally designed and synthesized 28 nitrophenyl substituted anthranilic diamides. Most of the compounds showed moderate to good activity against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compounds Ia and Im showed extraordinarily high activity and their mode of action was verified on isolated neurons. Additionally, Im exhibited over 10-fold greater potency than chlorantraniliprole in a HEK293 cell line stably expressing S. frugiperda ryanodine receptors (SfRyRs) containing the resistance mutations, G4891E and I4734M. The binding modes of Im in the SfRyRs were predicted using in silico molecular docking analysis. Our novel nitrophenyl substituted anthranilic diamide derivatives provide valuable insights for the design of insecticidal RyR-targeting compounds to effectively control both wild type and diamide insecticide-resistant lepidopteran pests.
Collapse
Affiliation(s)
- Pengwei Sun
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ze Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiahui Zhao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hongyuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xinyao Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linshan Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhongwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, 371 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
27
|
Yu Z, Huang Y, Cheng J, Li K, Hong Z, Ren J, Yuan H, Tang L, Wang Z, Fan Z. 3D-QSAR Combination with Molecular Dynamics Simulations to Effectively Design the Active Ryanodine Receptor Agonists against Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16504-16520. [PMID: 37902622 DOI: 10.1021/acs.jafc.3c05223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Computer-aided molecular modeling was applied to design a series of Spodoptera frugiperda RyR agonists. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. MD simulations in the complex with S. frugiperda native, mutant RyR, and mammalian RyR1 under physiological conditions were used to validate the detailed binding mechanism. Binding free energy calculation by molecular mechanics generalized surface area (MM-GBSA) explained the role of key amino acid residues in ligand-receptor binding. Therefore, 14 new compounds were effectively designed and synthesized, and a bioassay indicated that compounds A-2 and A-3 showed comparable activity to that of chloranthraniliprole with LC50 values of 0.27, 0.18, and 0.20 mg L-1, respectively, against S. frugiperda. Most target compounds also displayed good activity against Mythinma separata at 0.1 mg L-1. Molecular docking and MM-GBSA calculations demonstrated that A-3 had a better binding capacity with native and mutant S. frugiperda RyRs.
Collapse
Affiliation(s)
- Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
28
|
Isbilir S, Catchot B, Catchot L, Musser FR, Ahn SJ. Molecular characterization and expression patterns of a ryanodine receptor in soybean looper, Chrysodeixis includens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22047. [PMID: 37602813 DOI: 10.1002/arch.22047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diamide insecticides, such as chlorantraniliprole, have been widely used to control insect pests by targeting the insect ryanodine receptor (RyR). Due to the efficacious insecticidal activity of diamides, as well as an increasing number of resistance cases, the molecular structure of RyR has been studied in many economically important insects. However, no research has been conducted on diamide resistance and RyR in the soybean looper, Chrysodeixis includens, a significant crop pest. In this study, we found moderate resistance to chlorantraniliprole in a field population from Puerto Rico and sequenced the full-length cDNA of the C. includens RyR gene, which encodes a 5124 amino acid-long protein. Genomic analysis revealed that the CincRyR gene consists of 113 exons, one of the largest exon numbers reported for RyR. Alternative splicing sites were detected in the cytosolic region. The protein sequence showed high similarity to other noctuid RyRs. Conserved structural features included the selectivity filter motif critical for ryanodine binding and ion conduction, as well as various domains involved in ion transport. Two mutation sites associated with diamide resistance in other insects were screened but not found in the Puerto Rico field populations or in the susceptible lab strain. Gene expression analysis indicated high expression of RyR in the third instar larval stage, particularly in muscle-containing tissues. Furthermore, exposure to a sublethal dose of chlorantraniliprole reduced RyR expression levels after 96 h. This study provides a molecular basis for understanding RyR structure and sheds light on potential mechanisms of diamide resistance in C. includens.
Collapse
Affiliation(s)
- Sena Isbilir
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Beverly Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Lauren Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Fred R Musser
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
29
|
Šeflová J, Schwarz JA, Smith AN, Svensson B, Blackwell DJ, Phillips TA, Nikolaienko R, Bovo E, Rebbeck RT, Zima AV, Thomas DD, Van Petegem F, Knollmann BC, Johnston JN, Robia SL, Cornea RL. RyR2 Binding of an Antiarrhythmic Cyclic Depsipeptide Mapped Using Confocal Fluorescence Lifetime Detection of FRET. ACS Chem Biol 2023; 18:2290-2299. [PMID: 37769131 PMCID: PMC11648969 DOI: 10.1021/acschembio.3c00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.
Collapse
Affiliation(s)
- Jaroslava Šeflová
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Jacob A Schwarz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abigail N Smith
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Björn C Knollmann
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Răzvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Yang G, Wang Y, Zhou C, Li Y, Gu Y, Li Z, Xu Z, Cheng J, Xu X. Discovery of Novel Diamides Scaffold Containing Monofluoro-acrylamides Activating the Insect Ryanodine Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14137-14150. [PMID: 37733789 DOI: 10.1021/acs.jafc.3c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The research and development of organofluorine chemistry has flourished; in particular, monofluoroalkene has aroused considerable interest from medicinal and organic chemists. It is a significant attempt to introduce monofluoroalkene into agrochemicals. In this study, monofluoroalkene was introduced into diamide molecules and inserted between the aliphatic amide and benzene ring, and 44 compounds have been successfully synthesized. The bioassay results showed that compounds with monofluoro-acrylamide moiety (Z-isomers) had excellent larvicidal activity against lepidopteran pests at 5 mg·L-1. The LC50 values of compounds B16, B18, and B21 against Mythimna separata were 1.02, 1.32, and 0.78 mg·L-1, respectively. 3D-QSAR analysis including the CoMFA model and the CoMSIA model was conducted to illustrate the contributions of steric, electrostatic, hydrophobic, and hydrogen bond fields on the bioactivity. Moreover, typical symptoms caused by chlorantraniliprole including dehydration, shrinkage, and blackening were also observed on the test larvae treated with monofluoro-acrylamide diamide compounds. M. separata central neurons calcium imaging experiment of compound B18 indicated that the monofluoro-acrylamide diamide compounds were potential insect ryanodine receptor activators. The molecular docking was performed in the CHL binding domain of Plutella xylostella RyR and revealed that the predicted binding mode of compound B21 was slightly different from that of CHL. The MM|GBSA dG Bind values of B21 and CHL with P. xylostella RyR were respectively -85.797 and -95.641 kcal·mol-1. The present work explored the insecticidal properties of a new diamide scaffold containing a monofluoro-acrylamide fragment and extended the application of monofluoroalkene in the agrochemical field.
Collapse
Affiliation(s)
- Guantian Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yutong Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yucheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
31
|
Raisch T, Raunser S. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Nat Struct Mol Biol 2023; 30:1411-1427. [PMID: 37845413 DOI: 10.1038/s41594-023-01113-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/31/2023] [Indexed: 10/18/2023]
Abstract
Insecticides are indispensable tools for plant protection in modern agriculture. Despite having highly heterogeneous structures, many neurotoxic insecticides use similar principles to inhibit or deregulate neuronal ion channels. Insecticides targeting pentameric ligand-gated channels are structural mimetics of neurotransmitters or manipulate and deregulate the proteins. Those binding to (pseudo-)tetrameric voltage-gated(-like) channels, on the other hand, are natural or synthetic compounds that directly block the ion-conducting pore or prevent conformational changes in the transmembrane domain necessary for opening and closing the pore. The use of a limited number of inhibition mechanisms can be problematic when resistances arise and become more widespread. Therefore, there is a rising interest in the development of insecticides with novel mechanisms that evade resistance and are pest-insect-specific. During the last decade, most known insecticide targets, many with bound compounds, have been structurally characterized, bringing the rational design of novel classes of agrochemicals within closer reach than ever before.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
32
|
Pang X, Han L, Zhou C, Li Y, Xu X, Shao X, Li Z. Design, Synthesis, and Insecticidal Evaluation of N-Pyridylpyrazole Amide Derivatives Containing 4,5-Dihydroisoxazole Amide as Potential Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13688-13695. [PMID: 37671936 DOI: 10.1021/acs.jafc.3c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Using the 4,5-dihydroisoxazol amide structure to expand the aliphatic amide moiety of chlorantraniliprole, a series of 28 novel N-pyridylpyrazolecarboxamide derivatives containing 4,5-dihydroisoxazol amide fragment were designed and synthesized. All target compounds had been properly characterized and confirmed by 1H NMR, 13C NMR, and HRMS, and the effects were evaluated against Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The bioassay results indicated that most of the target compounds exhibited good insecticidal activities against M. separata and P. xylostella at 50 mg/L; especially, compound A4 showed an LC50 value of 3.27 mg/L against M. separata. Calcium imaging experiments indicated that the target compound A4 had a similar mechanism of action to chlorantraniliprole, causing an increase in the cytoplasmic Ca2+ concentration. The molecular docking revealed the possible binding mode of compound A4 with a ryanodine receptor.
Collapse
Affiliation(s)
- Xiwen Pang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
33
|
Magyar ZÉ, Bauer J, Bauerová-Hlinková V, Jóna I, Gaburjakova J, Gaburjakova M, Almássy J. Eu 3+ detects two functionally distinct luminal Ca 2+ binding sites in ryanodine receptors. Biophys J 2023; 122:3516-3531. [PMID: 37533257 PMCID: PMC10502479 DOI: 10.1016/j.bpj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels, gated by Ca2+ in the cytosol and the sarcoplasmic reticulum lumen. Their regulation is impaired in certain cardiac and muscle diseases. Although a lot of data is available on the luminal Ca2+ regulation of RyR, its interpretation is complicated by the possibility that the divalent ions used to probe the luminal binding sites may contaminate the cytoplasmic sites by crossing the channel pore. In this study, we used Eu3+, an impermeable agonist of Ca2+ binding sites, as a probe to avoid this complication and to gain more specific information about the function of the luminal Ca2+ sensor. Single-channel currents were measured from skeletal muscle and cardiac RyRs (RyR1 and RyR2) using the lipid bilayer technique. We show that RyR2 is activated by the luminal addition of Ca2+, whereas RyR1 is inhibited. These results were qualitatively reproducible using Eu3+. The luminal regulation of RyR1 carrying a mutation associated with malignant hyperthermia was not different from that of the wild-type. RyR1 inhibition by Eu3+ was extremely voltage dependent, whereas RyR2 activation did not depend on the membrane potential. These results suggest that the RyR1 inhibition site is in the membrane's electric field (channel pore), whereas the RyR2 activation site is outside. Using in silico analysis and previous results, we predicted putative Ca2+ binding site sequences. We propose that RyR2 bears an activation site, which is missing in RyR1, but both isoforms share the same inhibitory Ca2+ binding site near the channel gate.
Collapse
Affiliation(s)
- Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jacob Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - István Jóna
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - János Almássy
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
34
|
Han C, Rahman MM, Shin J, Kim JH, Lee SH, Kwon M, Timm AE, Ramasamy S, Lee Y, Kang S, Park S, Kim J. Exaptation of I4760M mutation in ryanodine receptor of Spodoptera exigua (Lepidoptera: Noctuidae): Lessons from museum and field samples. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105579. [PMID: 37666604 DOI: 10.1016/j.pestbp.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Since 2007, diamide insecticides have been widely used in Korea to control various types of lepidopteran pests including Spodoptera exigua. For nearly a decade, diamide resistance in field populations of S. exigua across 18 localities has been monitored using bioassays. Despite their short history of use, resistance to diamide insecticides has emerged. Based on the LC50 values, some field populations showed a higher level of resistance to chlorantraniliprole, a diamide insecticide, compared to that of the susceptible strain, although regional and temporal variations were observed. To investigate resistance at a molecular level, we examined three mutations (Y4701C, I4790M, and G4946E) in the ryanodine receptor (RyR), which is the primary mechanism underlying diamide insecticide resistance. DNA sequencing showed that only the I4790M mutation was found in most field populations. As resistance levels varied significantly despite the uniform presence of the I4790M mutation, we considered the presence of another resistance factor. Further, the I4790M mutation was also found in S. exigua specimens collected prior to the commercialization of diamide insecticides in Korea as well as in other countries, such as the USA. This finding led us to hypothesize that the I4790M mutation were predisposed in field populations owing to selection factors other than diamide use. For further clarification, we conducted whole-genome sequencing of S. exigua (449.83 Mb) and re-sequencing of 18 individual whole genomes. However, no additional non-synonymous mutations were detected in the RyR-coding region. Therefore, we concluded that the high level of diamide insecticide resistance in Korean S. exigua is not caused by mutations at the target site, RyR, but is attributed to other factors that need to be investigated in future studies.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea.
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh.
| | - Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Republic of Korea.
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Alicia E Timm
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Youngsu Lee
- Gyeonggi Provincial Agricultural Research and Extension Services, Republic of Korea.
| | - Sera Kang
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Suhyeong Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea; Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Plant Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
35
|
Zhao J, Lin L, Hadiatullah H, Chen W, Huang J, Wu S, Murayama T, Yuchi Z. Characterization of Six Diamide Insecticides on Ryanodine Receptor: Resistance and Species Selectivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11001-11007. [PMID: 37462137 DOI: 10.1021/acs.jafc.3c01750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ryanodine receptor (RyR) has been used as an insecticide target to control many destructive agricultural pests. The effectiveness of these insecticides has been limited by the spread of resistance mutations identified in pest RyRs, but the detailed molecular impacts of the individual mutations on the activity of different diamide compounds have not been fully explored. We created five HEK293 cell lines stably expressing wild type rabbit RyR1, wild type Spodoptera frugiperda RyR (Sf RyR), or Sf RyR carrying different resistance mutations, including G4891E, G4891E/I4734M, and Y4867F, respectively. R-CEPIA1er, a genetically encoded fluorescent protein, was also introduced in these cell lines to report the Ca2+ concentration in the endoplasmic reticulum. We systematically characterized the activities of six commercial diamide insecticides against different RyRs using the time-lapse fluorescence assay. Among them, cyantraniliprole (CYAN) displayed the highest activity against all three resistant Sf RyRs. The good performance of CYAN was confirmed by the toxicity assay using gene-edited Drosophila expressing the mutant RyRs, in which CYAN showed the lowest LD50 value for the double resistant mutant. In addition, we compared their acitivty between mammalian and insect RyRs and found that flubendiamide has the best insect-selectivity. The mechanism of the anti-resistance property and selectivity of the compounds was proposed based on the structural models generated by homology modeling and molecular docking. Our findings provide insights into the mechanism of insect resistance and guidance for developing effective RyR agonists that can selectively target resistant pests.
Collapse
Affiliation(s)
- Jiahui Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Jingmei Huang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunfan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
36
|
Wakil W, Kavallieratos NG, Eleftheriadou N, Sami Ullah M, Naeem A, Rasool KG, Husain M, Aldawood AS. Treatment of Four Stored-Grain Pests with Thiamethoxam plus Chlorantraniliprole: Enhanced Impact on Different Types of Grain Commodities and Surfaces. INSECTS 2023; 14:619. [PMID: 37504625 PMCID: PMC10380574 DOI: 10.3390/insects14070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
An insecticide containing the neonicotinoid thiamethoxam + the diamide chlorantraniliprole was evaluated against adults of Rhyzopertha dominica, Tribolium castaneum, Trogoderma granarium, and Sitophilus oryzae under laboratory bioassays both on freshly treated grain as well as on treated grain stored over 90 days for its persistence in efficacy. In laboratory bioassays, the insecticide was applied on wheat, maize, or rice at four doses, while in persistence bioassays on wheat at the same doses. Mortality and progeny were assessed in both laboratory and persistence bioassays. After 14 days of exposure, S. oryzae exhibited 100% mortality on all three commodities at the highest dose, while R. dominica showed complete mortality on wheat or rice and T. castaneum on wheat. For a period of 90 days, S. oryzae exhibited 42.69% mortality, followed by R. dominica (35.26%), T. castaneum (27.08%), and T. granarium (18.63%) at the highest dose. Progeny was successfully suppressed in all cases of complete mortality in laboratory bioassays and for S. oryzae for 90 days in persistence bioassays. Laboratory trials were also performed on plywood, concrete, ceramic tile, and steel at one dose. The highest mortality was observed on steel, followed by concrete, ceramic tile, and plywood for all insect species tested. This study demonstrates that thiamethoxam + chlorantraniliprole is effective against the tested species depending on exposure, storage period, surface, commodity, and dose.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
- Senckenberg German Entomological Institute, D-15374 Müncheberg, Germany
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Nikoleta Eleftheriadou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Muhammad Sami Ullah
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Aqsa Naeem
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khawaja G Rasool
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mureed Husain
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Cholak S, Saville JW, Zhu X, Berezuk AM, Tuttle KS, Haji-Ghassemi O, Alvarado FJ, Van Petegem F, Subramaniam S. Allosteric modulation of ryanodine receptor RyR1 by nucleotide derivatives. Structure 2023; 31:790-800.e4. [PMID: 37192614 PMCID: PMC10569317 DOI: 10.1016/j.str.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
The coordinated release of Ca2+ from the sarcoplasmic reticulum (SR) is critical for excitation-contraction coupling. This release is facilitated by ryanodine receptors (RyRs) that are embedded in the SR membrane. In skeletal muscle, activity of RyR1 is regulated by metabolites such as ATP, which upon binding increase channel open probability (Po). To obtain structural insights into the mechanism of RyR1 priming by ATP, we determined several cryo-EM structures of RyR1 bound individually to ATP-γ-S, ADP, AMP, adenosine, adenine, and cAMP. We demonstrate that adenine and adenosine bind RyR1, but AMP is the smallest ATP derivative capable of inducing long-range (>170 Å) structural rearrangements associated with channel activation, establishing a structural basis for key binding site interactions that are the threshold for triggering quaternary structural changes. Our finding that cAMP also induces these structural changes and results in increased channel opening suggests its potential role as an endogenous modulator of RyR1 conductance.
Collapse
Affiliation(s)
- Spencer Cholak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katharine S Tuttle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Omid Haji-Ghassemi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
38
|
Du J, Fu Y. Diamide insecticides targeting insect ryanodine receptors: Mechanism and application prospect. Biochem Biophys Res Commun 2023; 670:19-26. [PMID: 37271036 DOI: 10.1016/j.bbrc.2023.05.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
As a Lepidoptera pest, Spodoptera frugiperda has become one of the major migratory pests causing significant damage to crops. It should prevent and control Spodoptera frugiperda with strong reproductive ability, adaptability, and migration ability, and reduce economic losses as much as possible. Chemical insecticides are mainly used in the emergency control of Spodoptera frugiperda. Diamide insecticide is a kind of pesticide that specifically targets the ryanodine receptor of Lepidopteran pests, which makes it safe, effective, targeted, and low toxicity to mammals. So, it is one of the most concerned and fastest-growing pesticide products after neonicotinoid pesticides. Intracellular Ca2+ concentration can be regulated by ryanodine receptors, and the continuous release of Ca2+ eventually leads to the death of pests and achieve the insecticidal effect. This review introduces in detail diamide insecticides that mainly play roles in stomach toxicity, as well as its specific target-ryanodine receptor, and analyzes how the diamide insecticide acts on the ryanodine receptor and how its mechanism of action can provide a theoretical basis for the rational use of highly effective insecticides and solve the resistance problem. Moreover, we also propose several recommendations for reducing resistance to diamide insecticides, and provide a reference for chemical control and resistance studies of Spodoptera frugiperda, which has broad development prospects in today's increasingly concerned about the ecological environment and advocating green environmental protection.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
39
|
Haji-Ghassemi O, Chen YS, Woll K, Gurrola GB, Valdivia CR, Cai W, Li S, Valdivia HH, Van Petegem F. Cryo-EM analysis of scorpion toxin binding to Ryanodine Receptors reveals subconductance that is abolished by PKA phosphorylation. SCIENCE ADVANCES 2023; 9:eadf4936. [PMID: 37224245 PMCID: PMC10208580 DOI: 10.1126/sciadv.adf4936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo-electron microscopy to reveal the binding and structural effects of imperacalcin, showing that it opens the channel pore and causes large asymmetry throughout the cytosolic assembly of the tetrameric RyR. This also creates multiple extended ion conduction pathways beyond the transmembrane region, resulting in subconductance. Phosphorylation of imperacalcin by protein kinase A prevents its binding to RyR through direct steric hindrance, showing how posttranslational modifications made by the host organism can determine the fate of a natural toxin. The structure provides a direct template for developing calcin analogs that result in full channel block, with potential to treat RyR-related disorders.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kellie Woll
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Georgina B. Gurrola
- Universidad Nacional Autónoma de México, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotechnología, Cuaernavaca, Morelos 62271, Mexico
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wenxuan Cai
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Songhua Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hector H. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
KIMURA M, SHODA A, MURATA M, HARA Y, YONOICHI S, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Neurotoxicity and behavioral disorders induced in mice by acute exposure to the diamide insecticide chlorantraniliprole. J Vet Med Sci 2023; 85:497-506. [PMID: 36858584 PMCID: PMC10139785 DOI: 10.1292/jvms.23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Diamide insecticides activate ryanodine receptors expressed in lepidopteran skeletal muscle and promote Ca2+ release in the sarcoplasmic reticulum, causing abnormal contractions and paralysis, leading to death of the pest. Although they had been thought not to act on nontarget organisms, including mammals, adverse effects on vertebrates were recently reported, raising concerns about their safety in humans. We investigated the neurotoxicity of the acute no-observed-adverse-effect level of chlorantraniliprole (CAP), a diamide insecticide, in mice using clothianidin (CLO), a neonicotinoid insecticide, as a positive control. The CLO-administered group showed decreased locomotor activities, increased anxiety-like behaviors, and abnormal human-audible vocalizations, while the CAP-administered group showed anxiety-like behaviors but no change in locomotor activities. The CAP-administered group had greater numbers of c-fos-immunoreactive cells in the hippocampal dentate gyrus, and similar to the results in a CLO-administered group in our previous study. Blood corticosterone levels increased in the CLO-administered group but did not change in the CAP-administered group. Additionally, CAP was found to decreased 3-Methoxytyramine and histamine in mice at the time to maximum concentration. These results suggest that CAP-administered mice are less vulnerable to stress than CLO-administered mice, and the first evidence that CAP exposure increases neuronal activity and induces anxiety-like behavior as well as neurotransmitter disturbances in mammals.
Collapse
Affiliation(s)
- Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science,
Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| | - Tetsushi HIRANO
- Life Science Research Center, University of Toyama, Toyama,
Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental
Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido,
Japan
- Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of
Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo,
Japan
| |
Collapse
|
41
|
Du S, Hu X. Comprehensive Overview of Diamide Derivatives Acting as Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3620-3638. [PMID: 36791236 DOI: 10.1021/acs.jafc.2c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The world's hunger is continuously rising due to conflicts, climate change, pandemics (such as the recent COVID-19), and crop pests and diseases. It is widely accepted that zero hunger is impossible without using agrochemicals to control crop pests and diseases. Diamide insecticides are one of the widely used green insecticides developed in recent years and play important roles in controlling lepidopteran pests. Currently, eight diamine insecticides have been commercialized, which target the insect ryanodine receptors. This review summarizes the development and optimization processes of diamide derivatives acting as ryanodine receptor activators. The review also discusses pest resistance to diamide derivatives and possible solutions to overcome the limitations posed by the resistance. Thus, with reference to structural biology, this study provides an impetus for designing and developing diamide insecticides with improved insecticidal activities.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
42
|
Li J, Wei P, Qin J, Feng K, Shen G, Dou W, Zhang Y, Cao P, Yuchi Z, Van Leeuwen T, He L. Molecular Basis for the Selectivity of the Succinate Dehydrogenase Inhibitor Cyflumetofen between Pest and Predatory Mites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3658-3669. [PMID: 36787109 DOI: 10.1021/acs.jafc.2c06149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acaricides that act as inhibitors of the mitochondrial succinate dehydrogenase (SDHIs) provide excellent control of phytophagous mites but display limited toxicity to predatory mites and other beneficial organisms. However, the molecular mechanism of selectivity is not fully understood. Here, we first confirm that SDHI acaricides are over 10,000-fold more toxic to spider mites than predatory mites. Next, we show that differential penetration, pro-acaricide activation, or metabolism are most likely not the main reason for this selectivity. In contrast, the inhibition of AB-1 on the SDH target is approximately 200-fold more potent in spider mites compared to predatory mites, revealing strong target-site selectivity. Strikingly, a key motif associated with differential binding was identified and validated by gene editing in Drosophila. Our findings contribute to understanding the selectivity of SDHIs, which can be used for the rational design of selective acaricides in support of an integrated pest management.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210046 Nanjing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400715 Chongqing, China
| |
Collapse
|
43
|
Yang G, Zhou C, Wang Y, Li Y, Gu Y, Li Z, Cheng J, Xu X. Anthranilic Diamides Containing Monofluoroalkene Amide Linkers as Potential Insect RyR Activators: Design, Synthesis, Bio-evaluation, and Computational Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2827-2841. [PMID: 36735252 DOI: 10.1021/acs.jafc.2c07680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In order to develop anthranilic diamides with novel chemotypes, a series of anthranilic diamides with acrylamide linkers were designed and synthesized. The results of preliminary bioassays indicated that compounds with a monofluoroalkene amide linker (Z-isomer) exhibited good larvicidal activity against lepidopteran pests. The LC50 values of compound A23 against Mythimna separata and Plutella xylostella were 1.44 and 3.48 mg·L-1, respectively, while those of chlorantraniliprole were 0.08 and 0.06 mg·L-1, respectively. Compound A23 also exhibited the same level of lethal potency against resistant and susceptible strains of Spodoptera frugiperda at 50 mg·L-1. Compound A23 exhibited similar symptoms as chlorantraniliprole in test larvae. Comparative molecular field analysis was conducted to demonstrate the structure-activity relationship. Central neuron calcium imaging experiments indicated that monofluoroalkene compounds were potential ryanodine receptor (RyR) activators and activated calcium channels in both the endoplasmic reticulum and the cell membrane. Molecular docking suggested that A23 had a better binding potency to P. xylostella RyR than chlorantraniliprole. The MM|GBSA dG bind value of A23 with P. xylostella RyR was 117.611 kcal·mol-1. Monofluoroalkene was introduced into anthranilic diamide insecticides for the first time and brought a novel chemotype for insect RyR activators. The feasibility of fluoroalkenes as insecticide fragments was explored.
Collapse
Affiliation(s)
- Guantian Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yutong Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yucheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, U.K
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
44
|
Lin L, Jiang H, Hadiatullah H, Ma R, Korza H, Gu Y, Yuchi Z. Calmodulin Modulation of Insect Ryanodine Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16156-16163. [PMID: 36524829 DOI: 10.1021/acs.jafc.2c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ryanodine receptor (RyR) is a giant calcium release channel located on the membrane of the endoplasmic reticulum (ER). Here, we report the regulation of RyRs from two major agricultural pests, diamondback moth and fall armyworm, by insect calmodulin (CaM). The recombinantly expressed full-length insect RyR could be pulled down by insect CaM in the presence of Ca2+, but the efficiency is lower compared to rabbit RyR1 and insect RyR with the CaM-binding domain (CaMBD) replaced by rabbit RyR1 sequence. Interestingly, the enhanced binding of CaM in the mutant insect RyR resulted in an increased sensitivity to the diamide insecticide chlorantraniliprole (CHL), suggesting that this CaM-CaMBD interface could be targeted by potential synergists acting as molecular glue. The thermodynamics of the binding between insect CaM and CaMBD was characterized by isothermal titration calorimetry, and the key residues responsible for the insect-specific regulation were identified through mutagenesis studies.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Ruifang Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| | - Henryk Korza
- Syngenta Jealott's Hill International Research Centre, Bracknell, BerkshireRG42 6EY, UK
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, BerkshireRG42 6EY, UK
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
- College of Life Sciences, Gannan Normal University, Ganzhou341000, China
- Department of Molecular Pharmacology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin300072, China
| |
Collapse
|
45
|
Ren H, Zhang H, Ni R, Li Y, Li L, Wang W, Tian Y, Pang B, Tan Y. Detection of ryanodine receptor G4911E and I4754M mutation sites and analysis of binding modes of diamide insecticides with RyR on Galeruca daurica (Coleoptera: Chrysomelidae). Front Physiol 2022; 13:1107045. [PMID: 36620218 PMCID: PMC9815114 DOI: 10.3389/fphys.2022.1107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the leaf beetle Galeruca daurica has broken out in the northern grasslands of Inner Mongolia, its management still mainly depends on chemical control using traditional insecticides or with novel action. The study was aim to identify mutation locus associated with resistance to diamide insecticides in field population of G. daurica, to provide a reference for rational selection of insecticides and to avoid the rapid resistance development to diamide insecticides. We cloned the full length of the ryanodine receptor gene of G. daurica (GdRyR), constructed 3D model and transmembrane regions by homologous modeling based on deduced amino acid sequence. Two potential mutation loci (Gly4911Glu and Ile4754Met) and allelic mutation frequencies were detected in individuals of G. daurica. In addition, their binding patterns to two diamide insecticides (chlorantraniliprole, cyantraniliprole) were analyzed separately using a molecular docking method. The full-length cDNA sequence of GdRyR (GenBank accession number: OP828593) was obtained by splicing and assembling, which is 15,399 bp in length and encodes 5,133 amino acids. The amino acid similarity of GdRyR with that of other Coleopteran insects were 86.70%-91.33%, which possessed the typical structural characteristics. An individual resistance allelic mutation frequency test on fifty field leaf beetles has identified 12% and 32% heterozygous individuals at two potential mutation loci Gly4911Glu and Ile4754Met, respectively. The affinity of the I4754M mutant model of GdRyR for chlorantraniliprole and cyantraniliprole was not significantly different from that of the wild type, and all had non-covalent interactions such as hydrogen bonding, hydrophobic interactions and π-cation interactions. However, the G4911E mutant model showed reduced affinity and reduced mode of action with two diamide insecticides, thus affecting the binding stability of the ryanodine receptor to the diamide insecticides. In conclusion, the G4911E mutation in GdRyR may be a potential mechanism for the development of resistance to diamide insecticides on G. daurica and should be a key concern for resistance risk assessment and reasonable applications of diamide insecticides for control in future. Moreover, this study could provide a reference for ryanodine receptor structure-based insecticides design.
Collapse
Affiliation(s)
- Hao Ren
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Hongling Zhang
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Wenhe Wang
- Forestry station of Ar Horqin Banner, Chifeng, China
| | - Yu Tian
- Grassland Station of Xianghuang Banner, Xilinhot, China
| | - Baoping Pang
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Yu Z, Meng F, Ren J, Gao W, Liu X, Xiong L, Yang N, Li Y, Li Z, Fan Z. 3D-QSAR Directed Discovery of Novel Halogenated Phenyl 3-Trifluoroethoxypyrazole Containing Ultrahigh Active Insecticidal Anthranilic Diamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15665-15681. [PMID: 36503247 DOI: 10.1021/acs.jafc.2c05738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pests are one of the major factors causing crop damage and food security problems worldwide. Based on our previous studies on the discovery of insecticidal leads targeting the ryanodine receptors (RyRs), a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established to design and synthesize a series of anthranilic diamides containing a halogenated phenyl 3-trifluoroethoxypyrazole moiety. The preliminary bioassays disclosed that IIb, IIIb, and IIIf against Mythimna separata showed comparable activity to chloranthraniliprole (LC50: 0.16, 0.16, 0.14, and 0.13 mg·L-1, respectively). More than half of the target compounds displayed good activity against Plutella xylostella, where IIIf was the most active compound, 25 times more active than chloranthraniliprole (LC50: 6.0 × 10-6 versus 1.5 × 10-4 mg·L-1). For Spodoptera frugiperda, IIIf displayed slightly inferior potency to chlorantraniliprole (LC50: 0.47 versus 0.31 mg·L-1). For RyR mutants of S. frugiperda (G4891E, I4734M), compound IIIf could show higher affinity than chlorantraniliprole according to the binding mode and energy in molecular docking experiments. Calcium imaging technique, molecular docking, density functional theory calculations, and electrostatic potential studies validated that the RyR was the target of the most active candidate IIIf, which deserves further development.
Collapse
Affiliation(s)
- Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Fanfei Meng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
47
|
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, Zuilhof H, Qiao J, Yuchi Z. Recent progress in the structural study of ion channels as insecticide targets. INSECT SCIENCE 2022; 29:1522-1551. [PMID: 35575601 DOI: 10.1111/1744-7917.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Ion channels, many expressed in insect neural and muscular systems, have drawn huge attention as primary targets of insecticides. With the recent technical breakthroughs in structural biology, especially in cryo-electron microscopy (cryo-EM), many new high-resolution structures of ion channel targets, apo or in complex with insecticides, have been solved, shedding light on the molecular mechanism of action of the insecticides and resistance mutations. These structures also provide accurate templates for structure-based insecticide screening and rational design. This review summarizes the recent progress in the structural studies of 5 ion channel families: the ryanodine receptor (RyR), the nicotinic acetylcholine receptor (nAChR), the voltage-gated sodium channel (VGSC), the transient receptor potential (TRP) channel, and the ligand-gated chloride channel (LGCC). We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures. The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides. Finally, we discuss how to develop "green" insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongliang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Yunxuan Xie
- Department of Environmental Science, Tianjin University, Tianjin, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
48
|
Zhang L, Chen R, Li X, Xu X, Xu Z, Cheng J, Wang Y, Li Y, Shao X, Li Z. Synthesis, Insecticidal Activities, and 3D-QASR of N-Pyridylpyrazole Amide Derivatives Containing a Phthalimide as Potential Ryanodine Receptor Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12651-12662. [PMID: 36134897 DOI: 10.1021/acs.jafc.2c03971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To develop potent and environment-friendly insecticides, novel N-pyridylpyrazole amide derivatives containing a phthalimide were designed and synthesized. The preliminary bioassay results showed that most of the target compounds exhibited good insecticidal activities. For oriental armyworm (Mythimna separata), compounds E5, E29, E30, and E33 displayed higher than 90% lethal rates at 25 mg L-1. In particular, compound E33 displayed 60% mortality at a lower concentration of 6.25 mg L-1. Besides, compound E33 also showed a 30% lethal rate at 5 mg L-1 against diamondback moth (DBM) (Plutella xylostella). Molecular docking between the most active compound E33 and DBM ryanodine receptor (RyR), comparative molecular field analysis (CoMFA), and density functional theory (DFT) calculations were conducted and discussed. Furthermore, according to vitro studies using a calcium imaging technique, compound E33 was a potent novel lead targeting insect RyR.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ruijia Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanli Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - XuSheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
49
|
Yu Z, Zhang X, Ren J, Yuan H, Gao W, Xiong L, Yang N, Li Y, Li Z, Fan Z. Improving Insecticidal Activity of Chlorantraniliprole by Replacing the Chloropyridinyl Moiety with a Substituted Cyanophenyl Group. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9645-9663. [PMID: 35905435 DOI: 10.1021/acs.jafc.2c03133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insect ryanodine receptors (RyRs) are molecular targets of the anthranilic diamide insecticides. In the present study, a new series of anthranilic diamides containing a cyanophenyl pyrazole moiety were rationally designed by active-fragment assembly and computer-aided design using the 3D structure of Plutella xylostella RyRs as a receptor and chlorantraniliprole as a ligand. Most of the titled compounds showed good toxicity against Mythimna separate, P. xylostella, and Spodoptera frugiperda. Compounds CN06, CN11, and CN16 with corresponding LC50 values of 0.15, 0.29, and 0.52 mg·L-1, respectively, against M. separate showed comparable activity to that of chlorantraniliprole (0.13 mg·L-1). Surprisingly, CN06, CN11, and CN16 with corresponding LC50 values of 1.6 × 10-5, 3.0 × 10-5, and 2.8 × 10-5 mg·L-1, respectively, against P. xylostella were at least 5-fold more active than chlorantraniliprole (1.5 × 10-4 mg·L-1). In the case of S. frugiperda, CN06, CN11, and CN16 had good potency but lower than chlorantraniliprole in terms of LC50 values (0.58, 0.54, and 0.56 mg·L-1 versus 0.31 mg·L-1). Molecular docking of CN06 and chlorantraniliprole to P. xylostella RyRs validated the molecular design, and the calcium imaging technique further proved the potential target of CN06 as RyRs. Compounds CN06, CN11, and CN16 could be more effective than chlorantraniliprole in targeting the resistant RyR mutants of S. frugiperda (G4891E, I4734M) through the binding mode and energy obtained by molecular docking. Density functional theory calculations (DFT) and electrostatic potential (ESP) studies gave the structure-activity relationship. Compounds CN06, CN11, and CN16 could be used as potent insecticide leads for further optimization.
Collapse
Affiliation(s)
- Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiulan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
50
|
Okuma DM, Cuenca A, Nauen R, Omoto C. Large-Scale Monitoring of the Frequency of Ryanodine Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2022; 13:626. [PMID: 35886802 PMCID: PMC9323691 DOI: 10.3390/insects13070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is an important lepidopteran pest in the Americas, and recently invaded the Eastern Hemisphere. In Brazil, FAW is considered the most destructive pest of corn and cotton. FAW has evolved resistance to many insecticides and Bacillus thuringiensis (Bt) proteins. Here, a large-scale monitoring was performed between 2019 and 2021 to assess diamide insecticide susceptibility in more than 65 FAW populations sampled in corn and cotton. We did not detect a significant shift in FAW susceptibility to flubendiamide, but a few populations were less affected by a discriminating rate. F2 screen results of 31 selected FAW populations across regions confirmed that the frequency of diamide resistance alleles remained rather stable. Two laboratory-selected strains exhibited high resistance ratios against flubendiamide, and cross-resistance to anthranilic diamides. Reciprocal crosses indicated that resistance is autosomal and (incompletely) recessive in both strains. F1 backcrosses suggested monogenic resistance, supported by the identification of an I4734M/K target-site mutation in the ryanodine receptor (RyR). Subsequent genotyping of field-collected samples employing a TaqMan-based allelic discrimination assay, revealed a low frequency of RyR I4790M/K mutations significantly correlated with phenotypic diamide resistance. Our findings will help to sustainably employ diamides in FAW resistance management strategies across crops.
Collapse
Affiliation(s)
- Daniela M. Okuma
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ana Cuenca
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred Nobel Str. 50, 40789 Monheim am Rhein, Germany
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
| |
Collapse
|