1
|
Fernandez JC, Azim MF, Adams N, Strong M, Piya S, Xu M, Brunkard JO, Hewezi T, Sams CE, Burch-Smith TM. Glucosinolates can act as signals to modulate intercellular trafficking via plasmodesmata. THE NEW PHYTOLOGIST 2025; 246:1163-1182. [PMID: 40095529 DOI: 10.1111/nph.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. In Arabidopsis thaliana embryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between altered ISE2 expression and intercellular trafficking. Gene expression analyses in Arabidopsis tissues where ISE2 expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected. Concomitant with changes in the expression of GLS-related genes, plants with abnormal ISE2 expression contained altered GLS metabolic profiles compared with wild-type (WT) counterparts. Indeed, changes in the expression of GLS-associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking. These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole-type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.
Collapse
Affiliation(s)
- Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Nicole Adams
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Morgan Strong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI, 53706, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Carl E Sams
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
2
|
Rico-Medina A, Laibach N, Fontanet-Manzaneque JB, Blasco-Escámez D, Lozano-Elena F, Martignago D, Caño-Delgado AI. Molecular and physiological characterization of brassinosteroid receptor BRI1 mutants in Sorghum bicolor. THE NEW PHYTOLOGIST 2025; 246:1113-1127. [PMID: 40078107 DOI: 10.1111/nph.20443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025]
Abstract
The high sequence and structural similarities between BRASSINOSTEROID INSENSITIVE 1 (BRI1) brassinosteroid (BR) receptors of Arabidopsis (AtBRI1) and sorghum (SbBRI1) prompted us to study the functionally conserved roles of BRI1 in both organisms. Introducing sorghum SbBRI1 in Arabidopsis bri1 mutants restores defective growth and developmental phenotypes to wild-type levels. Sorghum mutants for SbBRI1 show defective BR sensitivity and impaired plant growth and development throughout the entire sorghum life cycle. Embryonic analysis of sorghum primary root techniques permits to trace back root growth and development to early stages in an unprecedented way, revealing the functionally conserved roles of the SbBRI1 receptor in BR perception during meristem development. RNA-seq analysis uncovers the downstream regulation of the SbBRI1 pathway in cell wall biogenesis during cell growth. Together, these results uncover that the sorghum SbBRI1 protein plays functionally conserved roles in plant growth and development, while encouraging the study of BR pathways in sorghum and its implications for improving resilience in cereal crops.
Collapse
Affiliation(s)
- Andrés Rico-Medina
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Natalie Laibach
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - David Blasco-Escámez
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Fidel Lozano-Elena
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Damiano Martignago
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| |
Collapse
|
3
|
Hu ZL, Wei H, Sun L, Russinova E. Plant steroids on the move: mechanisms of brassinosteroid export. Trends Biochem Sci 2025:S0968-0004(25)00052-0. [PMID: 40251078 DOI: 10.1016/j.tibs.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Brassinosteroids (BRs) are essential plant steroidal hormones that regulate growth and development. The recent discoveries of ATP-binding cassette subfamily B (ABCB) members, ABCB19 and ABCB1, as BR transporters highlight the significance of active export to the apoplast in maintaining BR homeostasis and enabling effective signaling. This review focuses on the latest progress in understanding ABCB-mediated BR transport, with particular attention to the structural and functional characterization of arabidopsis ABCB19 and ABCB1. These findings reveal both conserved and distinct features in substrate recognition and transport mechanisms, providing valuable insights into their roles in hormonal regulation. Additionally, the evolutionary conservation of ABC transporters in mediating steroid-based signaling across biological kingdoms underscores their fundamental biological significance.
Collapse
Affiliation(s)
- Zi-Liang Hu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Aardening Z, Khandal H, Erlichman OA, Savaldi-Goldstein S. The whole and its parts: cell-specific functions of brassinosteroids. TRENDS IN PLANT SCIENCE 2025; 30:389-408. [PMID: 39562236 DOI: 10.1016/j.tplants.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
Collapse
Affiliation(s)
- Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
5
|
Zolkiewicz K, Oklestkova J, Chmielewska B, Gruszka D. Mutations of the brassinosteroid biosynthesis gene HvDWARF5 enable balance between semi-dwarfism and maintenance of grain size in barley. PHYSIOLOGIA PLANTARUM 2025; 177:e70179. [PMID: 40129050 PMCID: PMC11933512 DOI: 10.1111/ppl.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Brassinosteroids (BRs) are phytohormones which regulate various developmental processes in plants. They are exceptional phytohormones, as they do not undergo long-distance transport between plant organs. However, knowledge about the function of the enzymes that catalyse BR biosynthesis (particularly its early stages) in cereal crops remains limited. Therefore, this study identifies and analyses the function of the HvDWARF5 (HvDWF5) gene, involved in the early stage of BR biosynthesis in barley (Hordeum vulgare), an important cereal crop, using the TILLING (Targeting Induced Local Lesions IN Genomes) approach. The detailed functional analysis allowed for the identification of various mutations in different gene fragments. The influence of these mutations on plant architecture, reproduction, and yield was characterised. Moreover, effects of the missense and intron retention mutations on sequence and splicing of the HvDWF5 transcript, sequence and predicted structure of the encoded HvDWF5 enzyme, and accumulation of endogenous BR were determined. Some of the barley mutants identified in this study showed semi-dwarfism, a trait of particular importance for cereal breeding and yield. However, unlike other BR mutants in cereals, this did not negatively affect grain size or weight. It indicated that mutations in this gene allow for a balance between plant height reduction and maintenance of grain size. Thus, the results of this study provide a novel insight into the role of the HvDWF5 gene in the BR biosynthesis-dependent regulation of architecture and reproduction of the important cereal crop - barley.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural SciencesUniversity of SilesiaKatowicePoland
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental BotanyCzech Academy of Sciences, Palacký UniversityOlomoucCzechia
| | - Beata Chmielewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural SciencesUniversity of SilesiaKatowicePoland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural SciencesUniversity of SilesiaKatowicePoland
| |
Collapse
|
6
|
Bhalerao RP. Intercellular communication: Regulation of plasmodesmata. Curr Biol 2025; 35:R143-R145. [PMID: 39999783 DOI: 10.1016/j.cub.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Intercellular channels called plasmodesmata regulate cell-cell communication in plants. A new study now reveals how the levels of phosphatidylinositol 4-phosphate and the interaction with MCTP proteins can control trafficking via plasmodesmata in plants.
Collapse
Affiliation(s)
- Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden.
| |
Collapse
|
7
|
Pérez-Sancho J, Smokvarska M, Dubois G, Glavier M, Sritharan S, Moraes TS, Moreau H, Dietrich V, Platre MP, Paterlini A, Li ZP, Fouillen L, Grison MS, Cana-Quijada P, Immel F, Wattelet V, Ducros M, Brocard L, Chambaud C, Luo Y, Ramakrishna P, Bayle V, Lefebvre-Legendre L, Claverol S, Zabrady M, Martin PGP, Busch W, Barberon M, Tilsner J, Helariutta Y, Russinova E, Taly A, Jaillais Y, Bayer EM. Plasmodesmata act as unconventional membrane contact sites regulating intercellular molecular exchange in plants. Cell 2025; 188:958-977.e23. [PMID: 39983675 DOI: 10.1016/j.cell.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 11/26/2024] [Indexed: 02/23/2025]
Abstract
Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication. Combining high-resolution microscopy, molecular dynamics, and pharmacological and genetic approaches, we show that cell-cell trafficking is modulated through the combined action of multiple C2 domains transmembrane domain proteins (MCTPs) 3, 4, and 6 ER-PM tethers and phosphatidylinositol-4-phosphate (PI4P) lipid. Graded PI4P amounts regulate MCTP docking to the PM, their plasmodesmata localization, and cell-cell permeability. SAC7, an ER-localized PI4P-phosphatase, regulates MCTP4 accumulation at plasmodesmata and modulates cell-cell trafficking capacity in a cell-type-specific manner. Our findings expand MCS functions in information transmission from intracellular to intercellular cellular activities.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Gwennogan Dubois
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Victor Dietrich
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Matthieu P Platre
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Pepe Cana-Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Françoise Immel
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Valerie Wattelet
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Mathieu Ducros
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Priya Ramakrishna
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | | | | | - Matej Zabrady
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France.
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France.
| |
Collapse
|
8
|
Wei H, Zhu H, Ying W, Janssens H, Kvasnica M, Winne JM, Gao Y, Friml J, Ma Q, Tan S, Liu X, Russinova E, Sun L. Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1. PLANT COMMUNICATIONS 2025; 6:101181. [PMID: 39497419 PMCID: PMC11784272 DOI: 10.1016/j.xplc.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
Collapse
Affiliation(s)
- Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Heyuan Zhu
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wei Ying
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Qian Ma
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Eugenia Russinova
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Pandey SK, Maurya JP, Aryal B, Drynda K, Nair A, Miskolczi P, Singh RK, Wang X, Ma Y, de Souza Moraes T, Bayer EM, Farcot E, Bassel GW, Band LR, Bhalerao RP. A regulatory module mediating temperature control of cell-cell communication facilitates tree bud dormancy release. EMBO J 2024; 43:5793-5812. [PMID: 39363036 PMCID: PMC11612439 DOI: 10.1038/s44318-024-00256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The control of cell-cell communication via plasmodesmata (PD) plays a key role in plant development. In tree buds, low-temperature conditions (LT) induce a switch in plasmodesmata from a closed to an open state, which restores cell-to-cell communication in the shoot apex and releases dormancy. Using genetic and cell-biological approaches, we have identified a previously uncharacterized transcription factor, Low-temperature-Induced MADS-box 1 (LIM1), as an LT-induced, direct upstream activator of the gibberellic acid (GA) pathway. The LIM1-GA module mediates low temperature-induced plasmodesmata opening, by negatively regulating callose accumulation to promote dormancy release. LIM1 also activates expression of FT1 (FLOWERING LOCUS T), another LT-induced factor, with LIM1-FT1 forming a coherent feedforward loop converging on low-temperature regulation of gibberellin signaling in dormancy release. Mathematical modeling and experimental validation suggest that negative feedback regulation of LIM1 by gibberellin could play a crucial role in maintaining the robust temporal regulation of bud responses to low temperature. These results reveal genetic factors linking temperature control of cell-cell communication with regulation of seasonally-aligned growth crucial for adaptation of trees.
Collapse
Affiliation(s)
- Shashank K Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Jay Prakash Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bibek Aryal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Kamil Drynda
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Aswin Nair
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Pal Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Rajesh Kumar Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Xiaobin Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yujiao Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Shandong Academy of Grape, Jinan, Shandong, 250100, P. R. China
| | - Tatiana de Souza Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Etienne Farcot
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden.
| |
Collapse
|
10
|
Qanmber G, Liu Z, Li F, Yang Z. Brassinosteroids in cotton: orchestrating fiber development. THE NEW PHYTOLOGIST 2024; 244:1732-1741. [PMID: 39307962 DOI: 10.1111/nph.20143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Cotton cultivation spans over 30 million hectares across 85 countries and regions, with more than half participating in the global cotton textile trade. The elongated cotton fiber cell is an ideal model for studying cell elongation and understanding plant growth and development. Brassinosteroids (BRs), recognized for their role in cell elongation, offer the potential for improving cotton fiber quality and yield. Despite extensive research highlighting BR's positive impact on fiber development, a comprehensive review on this topic has been lacking. This review addresses this gap, providing a detailed analysis of the latest advancements in BR signaling and its effects on cotton fiber development. We explore the complex network of BR biosynthesis components, signaling molecules, and regulators, including crosstalk with other pathways and transcriptional control mechanisms. Additionally, we propose molecular strategies and highlight key genetic elements for optimizing BR-related genes to enhance fiber quality and yield. The review emphasizes the importance of BR homeostasis and the hormonal landscape during cotton fiber development, offering insights into targeted manipulation opportunities and challenges. This consolidation offers a comprehensive understanding of BR's multifaceted roles in fiber development, outlining a strategic approach for BR optimization in cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
11
|
Furuya T, Ohashi-Ito K, Kondo Y. Multiple Roles of Brassinosteroid Signaling in Vascular Development. PLANT & CELL PHYSIOLOGY 2024; 65:1601-1607. [PMID: 38590039 DOI: 10.1093/pcp/pcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signaling pathways. Genetic studies have revealed that mutants that are defective in BR biosynthesis or the BR signaling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
12
|
Chen X, Hu X, Jiang J, Wang X. Functions and Mechanisms of Brassinosteroids in Regulating Crop Agronomic Traits. PLANT & CELL PHYSIOLOGY 2024; 65:1568-1580. [PMID: 38619133 DOI: 10.1093/pcp/pcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number and leaf erectness, and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- College of Agriculture, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
| | - Xiaotong Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- College of Agriculture, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- Sanya Institute of Henan University, 6 Wutong Courtyard, Sanya, Hainan 572025, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- Sanya Institute of Henan University, 6 Wutong Courtyard, Sanya, Hainan 572025, China
| |
Collapse
|
13
|
Poppenberger B, Russinova E, Savaldi-Goldstein S. Brassinosteroids in Focus. PLANT & CELL PHYSIOLOGY 2024; 65:1495-1499. [PMID: 39470365 DOI: 10.1093/pcp/pcae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Sigal Savaldi-Goldstein
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
14
|
Lima RB, Pankaj R, Ehlert ST, Finger P, Fröhlich A, Bayle V, Landrein B, Sampathkumar A, Figueiredo DD. Seed coat-derived brassinosteroid signaling regulates endosperm development. Nat Commun 2024; 15:9352. [PMID: 39472566 PMCID: PMC11522626 DOI: 10.1038/s41467-024-53671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
An angiosperm seed is formed by the embryo and endosperm, which are direct products of fertilization, and by the maternal seed coat. These tissues communicate with each other to ensure synchronized seed development. After fertilization, auxin produced in the endosperm is exported to the integuments where it drives seed coat formation. Here, we show that the seed coat signals back to the endosperm to promote its proliferation via the steroid hormones brassinosteroids (BR). We show that BR regulate cell wall-related processes in the seed coat and that the biophysical properties of this maternal organ determine the proliferation rate of the endosperm in a manner independent of the timing of its cellularization. We thus propose that maternal BR signaling tunes endosperm proliferation to seed coat expansion.
Collapse
Affiliation(s)
- Rita B Lima
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Rishabh Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Sinah T Ehlert
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Pascal Finger
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Anja Fröhlich
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364, Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364, Lyon, France
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany.
| |
Collapse
|
15
|
Beauchet A, Bollier N, Grison M, Rofidal V, Gévaudant F, Bayer E, Gonzalez N, Chevalier C. The CELL NUMBER REGULATOR FW2.2 protein regulates cell-to-cell communication in tomato by modulating callose deposition at plasmodesmata. PLANT PHYSIOLOGY 2024; 196:883-901. [PMID: 38588030 PMCID: PMC11444278 DOI: 10.1093/plphys/kiae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
FW2.2 (standing for FRUIT WEIGHT 2.2), the founding member of the CELL NUMBER REGULATOR (CNR) gene family, was the first cloned gene underlying a quantitative trait locus (QTL) governing fruit size and weight in tomato (Solanum lycopersicum). However, despite this discovery over 20 yr ago, the molecular mechanisms by which FW2.2 negatively regulates cell division during fruit growth remain undeciphered. In the present study, we confirmed that FW2.2 is a membrane-anchored protein whose N- and C-terminal ends face the apoplast. We unexpectedly found that FW2.2 is located at plasmodesmata (PD). FW2.2 participates in the spatiotemporal regulation of callose deposition at PD and belongs to a protein complex which encompasses callose synthases. These results suggest that FW2.2 has a regulatory role in cell-to-cell communication by modulating PD transport capacity and trafficking of signaling molecules during fruit development.
Collapse
Affiliation(s)
- Arthur Beauchet
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Norbert Bollier
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Magali Grison
- CNRS, UMR5200 Laboratoire de Biogenèse Membranaire, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Valérie Rofidal
- IPSiM, CNRS, INRAE, Institut Sup Agro, Université Montpellier, Montpellier F-34060, France
| | - Frédéric Gévaudant
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Emmanuelle Bayer
- CNRS, UMR5200 Laboratoire de Biogenèse Membranaire, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Nathalie Gonzalez
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Christian Chevalier
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| |
Collapse
|
16
|
Zanini AA, Burch-Smith TM. New insights into plasmodesmata: complex 'protoplasmic connecting threads'. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5557-5567. [PMID: 39001658 PMCID: PMC11427835 DOI: 10.1093/jxb/erae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024]
Abstract
Intercellular communication in plants, as in other multicellular organisms, allows cells in tissues to coordinate their responses for development and in response to environmental stimuli. Much of this communication is facilitated by plasmodesmata (PD), consisting of membranes and cytoplasm, that connect adjacent cells to each other. PD have long been viewed as passive conduits for the movement of a variety of metabolites and molecular cargoes, but this perception has been changing over the last two decades or so. Research from the last few years has revealed the importance of PD as signaling hubs and as crucial players in hormone signaling. The adoption of advanced biochemical approaches, molecular tools, and high-resolution imaging modalities has led to several recent breakthroughs in our understanding of the roles of PD, revealing the structural and regulatory complexity of these 'protoplasmic connecting threads'. We highlight several of these findings that we think well illustrate the current understanding of PD as functioning at the nexus of plant physiology, development, and acclimation to the environment.
Collapse
Affiliation(s)
- Andrea A Zanini
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | | |
Collapse
|
17
|
Blanco-Touriñán N, Rana S, Nolan TM, Li K, Vukašinović N, Hsu CW, Russinova E, Hardtke CS. The brassinosteroid receptor gene BRI1 safeguards cell-autonomous brassinosteroid signaling across tissues. SCIENCE ADVANCES 2024; 10:eadq3352. [PMID: 39321293 PMCID: PMC11423886 DOI: 10.1126/sciadv.adq3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in BRASSINOSTEROID INSENSITIVE 1 (BRI1), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by BRI1 expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine BRI1 gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Trevor M. Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Bayer EM, Benitez-Alfonso Y. Plasmodesmata: Channels Under Pressure. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:291-317. [PMID: 38424063 DOI: 10.1146/annurev-arplant-070623-093110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), CNRS UMR5200, Université de Bordeaux, Villenave D'Ornon, France;
| | - Yoselin Benitez-Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
19
|
Tee EE, Faulkner C. Plasmodesmata and intercellular molecular traffic control. THE NEW PHYTOLOGIST 2024; 243:32-47. [PMID: 38494438 DOI: 10.1111/nph.19666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Plasmodesmata are plasma membrane-lined connections that join plant cells to their neighbours, establishing an intercellular cytoplasmic continuum through which molecules can travel between cells, tissues, and organs. As plasmodesmata connect almost all cells in plants, their molecular traffic carries information and resources across a range of scales, but dynamic control of plasmodesmal aperture can change the possible domains of molecular exchange under different conditions. Plasmodesmal aperture is controlled by specialised signalling cascades accommodated in spatially discrete membrane and cell wall domains. Thus, the composition of plasmodesmata defines their capacity for molecular trafficking. Further, their shape and density can likewise define trafficking capacity, with the cell walls between different cell types hosting different numbers and forms of plasmodesmata to drive molecular flux in physiologically important directions. The molecular traffic that travels through plasmodesmata ranges from small metabolites through to proteins, and possibly even larger mRNAs. Smaller molecules are transmitted between cells via passive mechanisms but how larger molecules are efficiently trafficked through plasmodesmata remains a key question in plasmodesmal biology. How plasmodesmata are formed, the shape they take, what they are made of, and what passes through them regulate molecular traffic through plants, underpinning a wide range of plant physiology.
Collapse
Affiliation(s)
- Estee E Tee
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Christine Faulkner
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
20
|
Mauceri A, Puccio G, Faddetta T, Abbate L, Polito G, Caldiero C, Renzone G, Lo Pinto M, Alibrandi P, Vaccaro E, Abenavoli MR, Scaloni A, Sunseri F, Cavalieri V, Palumbo Piccionello A, Gallo G, Mercati F. Integrated omics approach reveals the molecular pathways activated in tomato by Kocuria rhizophila, a soil plant growth-promoting bacterium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108609. [PMID: 38615442 DOI: 10.1016/j.plaphy.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.
Collapse
Affiliation(s)
- Antonio Mauceri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy; University of Palermo, SAAF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Teresa Faddetta
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Loredana Abbate
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giulia Polito
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Ciro Caldiero
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Giovanni Renzone
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Margot Lo Pinto
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Pasquale Alibrandi
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Edoardo Vaccaro
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Maria Rosa Abenavoli
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Andrea Scaloni
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Francesco Sunseri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Vincenzo Cavalieri
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | | | - Giuseppe Gallo
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Francesco Mercati
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
21
|
Ying W, Wang Y, Wei H, Luo Y, Ma Q, Zhu H, Janssens H, Vukašinović N, Kvasnica M, Winne JM, Gao Y, Tan S, Friml J, Liu X, Russinova E, Sun L. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 2024; 383:eadj4591. [PMID: 38513023 DOI: 10.1126/science.adj4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.
Collapse
Affiliation(s)
- Wei Ying
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Heyuan Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
22
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
23
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
24
|
Ahmar S, Gruszka D. Mutual dependence of brassinosteroid homeostasis and plasmodesmata permeability. TRENDS IN PLANT SCIENCE 2024; 29:10-12. [PMID: 37919125 DOI: 10.1016/j.tplants.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Brassinosteroids (BRs) are exceptional phytohormones: they do not undergo a long-distance transport between plant organs. However, the mechanism of short-distance (intercellular) transport of BRs remains poorly understood. Recently, Wang et al. provided a novel insight into the mutual dependence of BR homeostasis, their intercellular transport, and plasmodesmata permeability.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
25
|
Brunkard JO. Communicating Across Cell Walls: Structure, Evolution, and Regulation of Plasmodesmatal Transport in Plants. Results Probl Cell Differ 2024; 73:73-86. [PMID: 39242375 DOI: 10.1007/978-3-031-62036-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Plasmodesmata are conduits in plant cell walls that allow neighboring cells to communicate and exchange resources. Despite their central importance to plant development and physiology, our understanding of plasmodesmata is relatively limited compared to other subcellular structures. In recent years, technical advances in electron microscopy, mass spectrometry, and phylogenomics have illuminated the structure, composition, and evolution of plasmodesmata in diverse plant lineages. In parallel, forward genetic screens have revealed key signaling pathways that converge to regulate plasmodesmatal transport, including chloroplast-derived retrograde signaling, phytohormone signaling, and metabolic regulation by the conserved eukaryotic Target of Rapamycin kinase. This review summarizes our current knowledge of the structure, evolution, and regulation of plasmodesmatal transport in plants.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Affiliation(s)
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), Barcelona, Spain.
| |
Collapse
|
27
|
Paterlini A. A year at the forefront of plasmodesmal biology. Biol Open 2023; 12:bio060123. [PMID: 37874138 PMCID: PMC10618598 DOI: 10.1242/bio.060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Cell-cell communication is a central feature of multicellular organisms, enabling division of labour and coordinated responses. Plasmodesmata are membrane-lined pores that provide regulated cytoplasmic continuity between plant cells, facilitating signalling and transport across neighboring cells. Plant development and survival profoundly depend on the existence and functioning of these structures, bringing them to the spotlight for both fundamental and applied research. Despite the rich conceptual and translational rewards in sight, however, the study of plasmodesmata poses significant challenges. This Review will mostly focus on research published between May 2022 and May 2023 and intends to provide a short overview of recent discoveries, innovations, community resources and hypotheses.
Collapse
Affiliation(s)
- Andrea Paterlini
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|