1
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
2
|
Chen R, Lukianova E, van der Loeff IS, Spegarova JS, Willet JDP, James KD, Ryder EJ, Griffin H, IJspeert H, Gajbhiye A, Lamoliatte F, Marin-Rubio JL, Woodbine L, Lemos H, Swan DJ, Pintar V, Sayes K, Ruiz-Morales ER, Eastham S, Dixon D, Prete M, Prigmore E, Jeggo P, Boyes J, Mellor A, Huang L, van der Burg M, Engelhardt KR, Stray-Pedersen A, Erichsen HC, Gennery AR, Trost M, Adams DJ, Anderson G, Lorenc A, Trynka G, Hambleton S. NUDCD3 deficiency disrupts V(D)J recombination to cause SCID and Omenn syndrome. Sci Immunol 2024; 9:eade5705. [PMID: 38787962 DOI: 10.1126/sciimmunol.ade5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.
Collapse
Affiliation(s)
- Rui Chen
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Elena Lukianova
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | | | - Joseph D P Willet
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Edward J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Helen Griffin
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Akshada Gajbhiye
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Frederic Lamoliatte
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Jose L Marin-Rubio
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Henrique Lemos
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Swan
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Valeria Pintar
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kamal Sayes
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | | | - Simon Eastham
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Joan Boyes
- Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Andrew Mellor
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Hans Christian Erichsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
- Open Targets, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
4
|
Ushakov DS, Finke S. Tissue optical clearing and 3D imaging of virus infections. Adv Virus Res 2023; 116:89-121. [PMID: 37524483 DOI: 10.1016/bs.aivir.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.
Collapse
Affiliation(s)
- Dmitry S Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Stefan Finke
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Hahn AM, Vogg L, Brey S, Schneider A, Schäfer S, Palmisano R, Pavlova A, Sandrock I, Tan L, Fichtner AS, Prinz I, Ravens S, Winkler TH. A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. Cell Rep 2023; 42:112253. [PMID: 36920908 DOI: 10.1016/j.celrep.2023.112253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/14/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
The clonal selection theory describes key features of adaptive immune responses of B and T cells. For αβ T cells and B cells, antigen recognition and selection principles are known at a detailed molecular level. The precise role of the antigen receptor in γδ T cells remains less well understood. To better understand the role of the γδ T cell receptor (TCR), we generate an orthotopic TCRδ transgenic mouse model. We demonstrate a multi-layered functionality of γδ TCRs and diverse roles of CDR3δ-mediated selection during γδ T cell development. Whereas epithelial populations using Vγ5 or Vγ7 chains are almost unaffected in their biology in the presence of the transgenic TCRδ chain, pairing with Vγ1 positively selects γδ T cell subpopulations with distinct programs in several organs, thereby distorting the repertoire. In conclusion, our data support dictation of developmental tropism together with adaptive-like recognition principles in a single antigen receptor.
Collapse
Affiliation(s)
- Anne M Hahn
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lisa Vogg
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Brey
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andrea Schneider
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen (OICE), Competence Unit, FAU, 91058 Erlangen, Germany
| | - Anna Pavlova
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | | | - Likai Tan
- Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Immo Prinz
- Medizinische Hochschule Hannover, Hannover, Germany; Institute for Systems Immunology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
6
|
Hodgson R, Crockford TL, Bhandari A, Kepple JD, Back J, Cawthorne E, Abeler-Dörner L, Laing AG, Clare S, Speak A, Adams DJ, Dougan G, Hayday AC, Deobagkar-Lele M, Cornall RJ, Bull KR. Prolidase Deficiency Causes Spontaneous T Cell Activation and Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:547-557. [PMID: 36637239 PMCID: PMC9946897 DOI: 10.4049/jimmunol.2200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/10/2022] [Indexed: 01/14/2023]
Abstract
Prolidase deficiency (PD) is a multisystem disorder caused by mutations in the PEPD gene, which encodes a ubiquitously expressed metallopeptidase essential for the hydrolysis of dipeptides containing C-terminal proline or hydroxyproline. PD typically presents in childhood with developmental delay, skin ulcers, recurrent infections, and, in some patients, autoimmune features that can mimic systemic lupus erythematosus. The basis for the autoimmune association is uncertain, but might be due to self-antigen exposure with tissue damage, or indirectly driven by chronic infection and microbial burden. In this study, we address the question of causation and show that Pepd-null mice have increased antinuclear autoantibodies and raised serum IgA, accompanied by kidney immune complex deposition, consistent with a systemic lupus erythematosus-like disease. These features are associated with an accumulation of CD4 and CD8 effector T cells in the spleen and liver. Pepd deficiency leads to spontaneous T cell activation and proliferation into the effector subset, which is cell intrinsic and independent of Ag receptor specificity or antigenic stimulation. However, an increase in KLRG1+ effector CD8 cells is not observed in mixed chimeras, in which the autoimmune phenotype is also absent. Our findings link autoimmune susceptibility in PD to spontaneous T cell dysfunction, likely to be acting in combination with immune activators that lie outside the hemopoietic system but result from the abnormal metabolism or loss of nonenzymatic prolidase function. This knowledge provides insight into the role of prolidase in the maintenance of self-tolerance and highlights the importance of treatment to control T cell activation.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jessica D. Kepple
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer Back
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Adam G. Laing
- Department of Immunobiology, King’s College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom; and
| | - Simon Clare
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | | | - Adrian C. Hayday
- Department of Immunobiology, King’s College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom; and
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J. Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine R. Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Lisci M, Griffiths GM. Arming a killer: mitochondrial regulation of CD8 + T cell cytotoxicity. Trends Cell Biol 2023; 33:138-147. [PMID: 35753961 DOI: 10.1016/j.tcb.2022.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
While once regarded as ATP factories, mitochondria have taken the spotlight as important regulators of cellular homeostasis. The past two decades have witnessed an intensifying interest in the study of mitochondria in cells of the immune system, with many new and unexpected roles for mitochondria emerging. Immune cells offer intriguing insights as mitochondria appear to play different roles at different stages of T cell development, matching the changing functions of the cells. Here we briefly review the multifaceted roles of mitochondria during T cell differentiation, focusing on CD8+ cytotoxic T lymphocytes (CTLs) and we consider how mitochondrial dysfunction can contribute to CTL exhaustion. In addition, we highlight a newly appreciated role for mitochondria as homeostatic regulators of CTL-mediated killing and explore the emerging literature describing mechanisms linking cytosolic and mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Miriam Lisci
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
8
|
del Molino del Barrio I, Hayday TS, Laing AG, Hayday AC, Di Rosa F. COVID-19: Using high-throughput flow cytometry to dissect clinical heterogeneity. Cytometry A 2023; 103:117-126. [PMID: 34811890 PMCID: PMC9011838 DOI: 10.1002/cyto.a.24516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
Here we consider how high-content flow cytometric methodology at appropriate scale and throughput rapidly provided meaningful biological data in our recent studies of COVID-19, which we discuss in the context of other similar investigations. In our work, high-throughput flow cytometry was instrumental to identify a consensus immune signature in COVID-19 patients, and to investigate the impact of SARS-CoV-2 exposure on patients with either solid or hematological cancers. We provide here some examples of our 'holistic' approach, in which flow cytometry data generated by lymphocyte and myelomonocyte panels were integrated with other analytical metrics, including SARS-CoV-2-specific serum antibody titers, plasma cytokine/chemokine levels, and in-depth clinical annotation. We report how selective differences between T cell subsets were revealed by a newly described flow cytometric TDS assay to distinguish actively cycling T cells in the peripheral blood. By such approaches, our and others' high-content flow cytometry studies collectively identified overt abnormalities and subtle but critical changes that discriminate the immuno-signature of COVID-19 patients from those of healthy donors and patients with non-COVID respiratory infections. Thereby, these studies offered several meaningful biomarkers of COVID-19 severity that have the potential to improve the management of patients and of hospital resources. In sum, flow cytometry provides an important means for rapidly obtaining data that can guide clinical decision-making without requiring highly expensive, sophisticated equipment, and/or "-omics" capabilities. We consider how this approach might be further developed.
Collapse
Affiliation(s)
- Irene del Molino del Barrio
- Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- University College LondonLondonUK
- Cancer Research UK Cancer Immunotherapy AcceleratorLondonUK
| | - Thomas S. Hayday
- Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
| | - Adam G. Laing
- Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
| | - Adrian C. Hayday
- Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- Cancer Research UK Cancer Immunotherapy AcceleratorLondonUK
- Immunosurveillance LaboratoryThe Francis Crick InstituteLondonUK
| | - Francesca Di Rosa
- Institute of Molecular Biology and PathologyNational Research Council of ItalyRomeItaly
| |
Collapse
|
9
|
Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O, Wilson R, Cacheiro P, Frost A, Keskivali-Bond P, Vardal B, McCoy A, Cheng TK, Santos L, Wells S, Smedley D, Mallon AM, Parkinson H. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res 2023; 51:D1038-D1045. [PMID: 36305825 PMCID: PMC9825559 DOI: 10.1093/nar/gkac972] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 01/30/2023] Open
Abstract
The International Mouse Phenotyping Consortium (IMPC; https://www.mousephenotype.org/) web portal makes available curated, integrated and analysed knockout mouse phenotyping data generated by the IMPC project consisting of 85M data points and over 95,000 statistically significant phenotype hits mapped to human diseases. The IMPC portal delivers a substantial reference dataset that supports the enrichment of various domain-specific projects and databases, as well as the wider research and clinical community, where the IMPC genotype-phenotype knowledge contributes to the molecular diagnosis of patients affected by rare disorders. Data from 9,000 mouse lines and 750 000 images provides vital resources enabling the interpretation of the ignorome, and advancing our knowledge on mammalian gene function and the mechanisms underlying phenotypes associated with human diseases. The resource is widely integrated and the lines have been used in over 4,600 publications indicating the value of the data and the materials.
Collapse
Affiliation(s)
- Tudor Groza
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| | - Federico Lopez Gomez
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| | - Hamed Haseli Mashhadi
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| | - Violeta Muñoz-Fuentes
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| | - Osman Gunes
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| | - Robert Wilson
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| | - Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anthony Frost
- Mary Lyon Centre at MRC Harwell, Harwell Campus OX11 7UE, UK
| | | | - Bora Vardal
- Mary Lyon Centre at MRC Harwell, Harwell Campus OX11 7UE, UK
| | - Aaron McCoy
- Mary Lyon Centre at MRC Harwell, Harwell Campus OX11 7UE, UK
| | - Tsz Kwan Cheng
- Mary Lyon Centre at MRC Harwell, Harwell Campus OX11 7UE, UK
| | - Luis Santos
- Research Data Team, The Turing Institute, 96 Euston Rd, London NW1 2DB, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Campus OX11 7UE, UK
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ann-Marie Mallon
- Research Data Team, The Turing Institute, 96 Euston Rd, London NW1 2DB, UK
| | - Helen Parkinson
- European Bioinformatics Institute, European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton CB10 1SD, UK
| |
Collapse
|
10
|
Natalini A, Simonetti S, Favaretto G, Lucantonio L, Peruzzi G, Muñoz-Ruiz M, Kelly G, Contino AM, Sbrocchi R, Battella S, Capone S, Folgori A, Nicosia A, Santoni A, Hayday AC, Di Rosa F. Improved memory CD8 T cell response to delayed vaccine boost is associated with a distinct molecular signature. Front Immunol 2023; 14:1043631. [PMID: 36865556 PMCID: PMC9973452 DOI: 10.3389/fimmu.2023.1043631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Gabriele Favaretto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Lorenzo Lucantonio
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gavin Kelly
- Bioinformatic and Biostatistics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Alfredo Nicosia
- CEINGE, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom.,Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
11
|
Hodgson R, Xu X, Anzilotti C, Deobagkar-Lele M, Crockford TL, Kepple JD, Cawthorne E, Bhandari A, Cebrian-Serrano A, Wilcock MJ, Davies B, Cornall RJ, Bull KR. NDRG1 is induced by antigen-receptor signaling but dispensable for B and T cell self-tolerance. Commun Biol 2022; 5:1216. [PMID: 36357486 PMCID: PMC9649591 DOI: 10.1038/s42003-022-04118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Peripheral tolerance prevents the initiation of damaging immune responses by autoreactive lymphocytes. While tolerogenic mechanisms are tightly regulated by antigen-dependent and independent signals, downstream pathways are incompletely understood. N-myc downstream-regulated gene 1 (NDRG1), an anti-cancer therapeutic target, has previously been implicated as a CD4+ T cell clonal anergy factor. By RNA-sequencing, we identified Ndrg1 as the third most upregulated gene in anergic, compared to naïve follicular, B cells. Ndrg1 is upregulated by B cell receptor activation (signal one) and suppressed by co-stimulation (signal two), suggesting that NDRG1 may be important in B cell tolerance. However, though Ndrg1-/- mice have a neurological defect mimicking NDRG1-associated Charcot-Marie-Tooth (CMT4d) disease, primary and secondary immune responses were normal. We find that B cell tolerance is maintained, and NDRG1 does not play a role in downstream responses during re-stimulation of in vivo antigen-experienced CD4+ T cells, demonstrating that NDGR1 is functionally redundant for lymphocyte anergy.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xijin Xu
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jessica D Kepple
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Wilcock
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Katherine R Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Barton PR, Davenport AJ, Hukelmann J, Cantrell DA, Stinchcombe JC, Richard AC, Griffiths GM. Super-killer CTLs are generated by single gene deletion of Bach2. Eur J Immunol 2022; 52:1776-1788. [PMID: 36086884 PMCID: PMC9828676 DOI: 10.1002/eji.202249797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Bach2 codes for a transcriptional regulator exerting major influences on T cell-mediated immune regulation. Effector CTLs derived from in vitro activation of murine CD8+ T cells showed increased proliferative and cytolytic capacity in the absence of BACH2. Before activation, BACH2-deficient splenic CD8+ T cells had a higher abundance of memory and reduced abundance of naïve cells compared to wild-type. CTLs derived from central memory T cells were more potently cytotoxic than those derived from naïve T cells, but even within separated subsets, BACH2-deficiency conferred a cytotoxic advantage. Immunofluorescence and electron microscopy revealed larger granules in BACH2-deficient compared to wild-type CTLs, and proteomic analysis showed an increase in granule content, including perforin and granzymes. Thus, the enhanced cytotoxicity observed in effector CTLs lacking BACH2 arises not only from differences in their initial differentiation state but also inherent production of enlarged cytolytic granules. These results demonstrate how a single gene deletion can produce a CTL super-killer.
Collapse
Affiliation(s)
- Philippa R. Barton
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Alexander J. Davenport
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Jens Hukelmann
- Cell Signalling and Immunology Division, School of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Doreen A. Cantrell
- Cell Signalling and Immunology Division, School of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Jane C. Stinchcombe
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Arianne C. Richard
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0REUK
| | - Gillian M Griffiths
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| |
Collapse
|
13
|
Teekas L, Sharma S, Vijay N. Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes. Genes Immun 2022; 23:218-234. [PMID: 36203090 DOI: 10.1038/s41435-022-00186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
Functional diversification, a higher evolutionary rate, and intense positive selection help a limited number of immune genes interact with many pathogens. Repeats in protein-coding regions are a well-known source of functional diversification, adaptive variation, and evolutionary novelty in a short time. Repeats play a crucial role in biochemical functions like functional diversification of transcription regulation, protein kinases, cell adhesion, signaling pathways, morphogenesis, DNA repair, recombination, and RNA processing. Repeat length variation can change the associated protein's interaction, efficacy, and overall protein network. Repeats have an intrinsic unstable nature and can potentially evolve rapidly and expedite the acquisition of complex phenotypic traits and functions. Because of their ability to generate rapid, adaptive variations over short evolutionary distances, repeats are considered "tuning knobs." Repeat length variation in specific genes, like RUNX2 and ALX4, is associated with morphological and physiological changes across vertebrates. Here we study repeat length variation as a potent source of species-specific immune diversification across several clades of tetrapods. Moreover, we provide a clade-wise comprehensive list of immune genes with repeat types for future studies of morphological/evolutionary changes within species groups. We observe significant repeat length variation of FASLG and C1QC in Rodentia and Primates' contrasting species groups, respectively.
Collapse
Affiliation(s)
- Lokdeep Teekas
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
14
|
Pan S, Li S, Zhan Y, Chen X, Sun M, Liu X, Wu B, Li Z, Liu B. Immune status for monitoring and treatment of bladder cancer. Front Immunol 2022; 13:963877. [PMID: 36159866 PMCID: PMC9492838 DOI: 10.3389/fimmu.2022.963877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor prognosis of advanced BC are therapeutic challenges that need to be solved. Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for early BC, and the discovery of immune checkpoint inhibitors has created a new chapter in the treatment of advanced BC. The benefit of immunotherapy is highly anticipated, but its effectiveness still needs to be improved. In this review, we collated and analysed the currently available information and explored the mechaisms by which the internal immune imbalance of BC leads to tumour progression. The relationship between immunity and progression and the prognosis of BC has been explored through tests using body fluids such as blood and urine. These analytical tests have attempted to identify specific immuyne cells and cytokines to predict treatment outcomes and recurrence. The diversity and proportion of immune and matrix cells in BC determine the heterogeneity and immune status of tumours. The role and classification of immune cells have also been redefined, e.g., CD4 cells having recognised cytotoxicity in BC. Type 2 immunity, including that mediated by M2 macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the recurrence and progression of BC. Pathological fibrosis, activated by type 2 immunity and cancer cells, enhances the rate of cancer progression and irreversibility. Elucidating the immune status of BC and clarifying the mechanisms of action of different cells in the tumour microenvironment is the research direction to be explored in the future.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bitian Liu, ;
| |
Collapse
|
15
|
Yao Y, Du Jiang P, Chao BN, Cagdas D, Kubo S, Balasubramaniyam A, Zhang Y, Shadur B, NaserEddin A, Folio LR, Schwarz B, Bohrnsen E, Zheng L, Lynberg M, Gottlieb S, Leney-Greene MA, Park AY, Tezcan I, Akdogan A, Gocmen R, Onder S, Rosenberg A, Soilleux EJ, Johnson E, Jackson PK, Demeter J, Chauvin SD, Paul F, Selbach M, Bulut H, Clatworthy MR, Tuong ZK, Zhang H, Stewart BJ, Bosio CM, Stepensky P, Clare S, Ganesan S, Pascall JC, Daumke O, Butcher GW, McMichael AJ, Simon AK, Lenardo MJ. GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. J Exp Med 2022; 219:213217. [PMID: 35551368 PMCID: PMC9111091 DOI: 10.1084/jem.20201405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6−/− mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6−/− mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.
Collapse
Affiliation(s)
- Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Brittany N Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD.,Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Arasu Balasubramaniyam
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bella Shadur
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel.,The Garvan Institute of Medical Research, Immunology Division, Darlinghurst, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, Australia
| | - Adeeb NaserEddin
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Les R Folio
- Clinical Center, National Institutes of Health, Bethesda, MD
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Simone Gottlieb
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Akdogan
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevgen Onder
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Avi Rosenberg
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Peter K Jackson
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Janos Demeter
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Florian Paul
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Selbach
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haydar Bulut
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Polina Stepensky
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - John C Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Oliver Daumke
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| |
Collapse
|
16
|
McKenzie DR, Hart R, Bah N, Ushakov DS, Muñoz-Ruiz M, Feederle R, Hayday AC. Normality sensing licenses local T cells for innate-like tissue surveillance. Nat Immunol 2022; 23:411-422. [PMID: 35165446 PMCID: PMC8901436 DOI: 10.1038/s41590-021-01124-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The increasing implication of lymphocytes in general physiology and immune surveillance outside of infection poses the question of how their antigen receptors might be involved. Here, we show that macromolecular aggregates of intraepidermal γδ T cell antigen receptors (TCRs) in the mouse skin aligned with and depended on Skint1, a butyrophilin-like (BTNL) protein expressed by differentiated keratinocytes (KCs) at steady state. Interruption of TCR-mediated 'normality sensing' had no impact on γδ T cell numbers but altered their signature phenotype, while the epidermal barrier function was compromised. In addition to the regulation of steady-state physiology, normality sensing licensed intraepidermal T cells to respond rapidly to subsequent tissue perturbation by using innate tumor necrosis factor (TNF) superfamily receptors. Thus, interfering with Skint1-dependent interactions between local γδ T cells and KCs at steady state increased the susceptibility to ultraviolet B radiation (UVR)-induced DNA damage and inflammation, two cancer-disposing factors.
Collapse
Affiliation(s)
| | | | | | - Dmitry S Ushakov
- The Francis Crick Institute, London, UK
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany
| | - Adrian C Hayday
- The Francis Crick Institute, London, UK.
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
17
|
Abstract
Adaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time. Furthermore, effective COVID-19 vaccines were developed in record time, and their rollout worldwide is already making a significant difference, although major challenges remain in terms of equal access. The pandemic has engaged scientists and the public alike, and terms such as seroprevalence, neutralizing antibodies, antibody escape and vaccine certificates have become familiar to a broad community. Here, we review key findings concerning B cell and antibody (Ab) responses to SARS-CoV-2, focusing on non-severe cases and anti-spike (S) Ab responses in particular, the latter being central to protective immunity induced by infection or vaccination. The emergence of viral variants that have acquired mutations in S acutely highlights the need for continued characterization of both emerging variants and Ab responses against these during the evolving pathogen-immune system arms race.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
18
|
"Moonlighting" at the power plant: how mitochondria facilitate serial killing by CD8 + cytotoxic T cells. Signal Transduct Target Ther 2021; 6:436. [PMID: 34937859 PMCID: PMC8695573 DOI: 10.1038/s41392-021-00846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
|
19
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
O'Meara CP, Guerri L, Lawir DF, Mateos F, Iconomou M, Iwanami N, Soza-Ried C, Sikora K, Siamishi I, Giorgetti O, Peter S, Schorpp M, Boehm T. Genetic landscape of T cells identifies synthetic lethality for T-ALL. Commun Biol 2021; 4:1201. [PMID: 34671088 PMCID: PMC8528931 DOI: 10.1038/s42003-021-02694-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
To capture the global gene network regulating the differentiation of immature T cells in an unbiased manner, large-scale forward genetic screens in zebrafish were conducted and combined with genetic interaction analysis. After ENU mutagenesis, genetic lesions associated with failure of T cell development were identified by meiotic recombination mapping, positional cloning, and whole genome sequencing. Recessive genetic variants in 33 genes were identified and confirmed as causative by additional experiments. The mutations affected T cell development but did not perturb the development of an unrelated cell type, growth hormone-expressing somatotrophs, providing an important measure of cell-type specificity of the genetic variants. The structure of the genetic network encompassing the identified components was established by a subsequent genetic interaction analysis, which identified many instances of positive (alleviating) and negative (synthetic) genetic interactions. Several examples of synthetic lethality were subsequently phenocopied using combinations of small molecule inhibitors. These drugs not only interfered with normal T cell development, but also elicited remission in a model of T cell acute lymphoblastic leukaemia. Our findings illustrate how genetic interaction data obtained in the context of entire organisms can be exploited for targeted interference with specific cell types and their malignant derivatives.
Collapse
Affiliation(s)
- Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Lucia Guerri
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Fernando Mateos
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Mary Iconomou
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Cristian Soza-Ried
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Fundacion Oncoloop & Center for Nuclear Medicine, Santiago, Chile
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Orlando Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Sarah Peter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, Cantrell DA, Paupe V, Prudent J, Stinchcombe JC, Griffiths GM. Mitochondrial translation is required for sustained killing by cytotoxic T cells. Science 2021; 374:eabe9977. [PMID: 34648346 DOI: 10.1126/science.abe9977] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Miriam Lisci
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Philippa R Barton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Lyra O Randzavola
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Claire Y Ma
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Julia M Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vincent Paupe
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| |
Collapse
|
22
|
Stern PL, Dalianis T. Oropharyngeal Squamous Cell Carcinoma Treatment in the Era of Immune Checkpoint Inhibitors. Viruses 2021; 13:1234. [PMID: 34202255 PMCID: PMC8310271 DOI: 10.3390/v13071234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
While head and neck squamous cell carcinomas (HNSCC) are marginally decreasing due to the reduction in exposure to the major risk factors, tobacco and alcohol, the incidence of high-risk human papillomavirus (HPV)-positive oropharynx squamous cell carcinomas (OPSCC), especially those in the tonsil and base of tongue subsites, are increasing. Patients with the latter are younger, display a longer overall survival, and show a lower recurrence rate after standard-of-care treatment than those with HPV-negative OPSCC. This may reflect an important role for immune surveillance and control during the natural history of the virally driven tumour development. Immune deviation through acquisition of immune-suppressive factors in the tumour microenvironment (TME) is discussed in relation to treatment response. Understanding how the different immune factors are integrated in the TME battleground offers opportunities for identifying prognostic biomarkers as well as novel therapeutic strategies. OPSCC generally receive surgery or radiotherapy for early-stage tumour treatment, but many patients present with locoregionally advanced disease requiring multimodality therapies which can involve considerable complications. This review focuses on the utilization of newly emerged immune checkpoint inhibitors (PD-1/PD-L1 pathway) for treatment of HNSCC, in particular HPV-positive OPSCC, since they could be less toxic and more efficacious. PD-1/PD-L1 expression in the TME has been extensively investigated as a biomarker of patient response but is yet to provide a really effective means for stratification of treatment. Extensive testing of combinations of therapeutic approaches by types and sequencing will fuel the next evolution of treatment for OPSCC.
Collapse
Affiliation(s)
- Peter L. Stern
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden;
| |
Collapse
|
23
|
Abstract
In persistent high-risk HPV infection, viral gene expression can trigger some important early changes to immune capabilities which act to protect the lesion from immune attack and subsequently promote its growth and ability for sustained immune escape. This includes immune checkpoint-inhibitor ligand expression (e.g. PD-L1) by tumour or associated immune cells that can block any anti-tumour T-cell effectors. While there are encouraging signs of efficacy for cancer immunotherapies including with immune checkpoint inhibitors, therapeutic vaccines and adoptive cell therapies, overall response and survival rates remain relatively low. HPV oncogene vaccination has shown some useful efficacy in treatment of patients with high-grade lesions but was unable to control later stage cancers. To maximally exploit anti-tumour immune responses, the suppressive factors associated with HPV carcinogenesis must be countered. Importantly, a combination of chemotherapy, reducing immunosuppressive myeloid cells, with therapeutic HPV vaccination significantly improves impact on cancer treatment. Many clinical trials are investigating checkpoint inhibitor treatments in HPV associated cancers but response rates are limited; combination with vaccination is being tested. Further investigation of how chemo- and/or radio-therapy can influence the recovery of effective anti-tumour immunity is warranted. Understanding how to optimally deploy and sequence conventional and immunotherapies is the challenge.
Collapse
|
24
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
25
|
Hausmann A, Hardt WD. Elucidating host-microbe interactions in vivo by studying population dynamics using neutral genetic tags. Immunology 2020; 162:341-356. [PMID: 32931019 PMCID: PMC7968395 DOI: 10.1111/imm.13266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Host–microbe interactions are highly dynamic in space and time, in particular in the case of infections. Pathogen population sizes, microbial phenotypes and the nature of the host responses often change dramatically over time. These features pose particular challenges when deciphering the underlying mechanisms of these interactions experimentally, as traditional microbiological and immunological methods mostly provide snapshots of population sizes or sparse time series. Recent approaches – combining experiments using neutral genetic tags with stochastic population dynamic models – allow more precise quantification of biologically relevant parameters that govern the interaction between microbe and host cell populations. This is accomplished by exploiting the patterns of change of tag composition in the microbe or host cell population under study. These models can be used to predict the effects of immunodeficiencies or therapies (e.g. antibiotic treatment) on populations and thereby generate hypotheses and refine experimental designs. In this review, we present tools to study population dynamics in vivo using genetic tags, explain examples for their implementation and briefly discuss future applications.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Joseph M, Davies D, Davis R, Jennings A, Zlatareva I, Vantourout P, Wu Y, Sofra V, Cano F, Greco M, Theodoridis E, Freedman JD, Gee S, Chan JNE, Ryan S, Bugallo-Blanco E, Peterson P, Kisand K, Haljasmägi L, Chadli L, Moingeon P, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Ibrahim MAA, Mason J, Lopez Gomez F, Babalola K, Abdul-Jawad S, Cason J, Mant C, Seow J, Graham C, Doores KJ, Di Rosa F, Edgeworth J, Shankar-Hari M, Hayday AC. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26:1623-1635. [PMID: 32807934 DOI: 10.1038/s41591-020-1038-6] [Citation(s) in RCA: 674] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.
Collapse
Affiliation(s)
- Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Irene Del Molino Del Barrio
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Abhishek Das
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Thomas S Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isaac Francos-Quijorna
- Regeneration Group, Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Davies
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, UK
| | - Richard Davis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Aislinn Jennings
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Vasiliki Sofra
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | | | - Efstathios Theodoridis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Joshua D Freedman
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sarah Gee
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Nuo En Chan
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Sarah Ryan
- Department of Inflammation Biology, King's College London, London, UK
| | - Eva Bugallo-Blanco
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Loubna Chadli
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Lauren Martinez
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kate Brooks
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Jeremy Mason
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Federico Lopez Gomez
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Kola Babalola
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Sultan Abdul-Jawad
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - John Cason
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jonathan Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
27
|
Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Joseph M, Davies D, Davis R, Jennings A, Zlatareva I, Vantourout P, Wu Y, Sofra V, Cano F, Greco M, Theodoridis E, Freedman J, Gee S, Chan JNE, Ryan S, Bugallo-Blanco E, Peterson P, Kisand K, Haljasmägi L, Chadli L, Moingeon P, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Ibrahim MAA, Mason J, Lopez Gomez F, Babalola K, Abdul-Jawad S, Cason J, Mant C, Seow J, Graham C, Doores KJ, Di Rosa F, Edgeworth J, Shankar-Hari M, Hayday AC. Author Correction: A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26. [PMID: 32908251 PMCID: PMC7479399 DOI: 10.1038/s41591-020-1038-6 10.1038/s41591-020-1079-x 10.1038/s41591-020-01186-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Collapse
Affiliation(s)
- Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Irene Del Molino Del Barrio
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Abhishek Das
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Thomas S Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isaac Francos-Quijorna
- Regeneration Group, Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Davies
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, UK
| | - Richard Davis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Aislinn Jennings
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Vasiliki Sofra
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | | | - Efstathios Theodoridis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Joshua Freedman
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sarah Gee
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Nuo En Chan
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Sarah Ryan
- Department of Inflammation Biology, King's College London, London, UK
| | - Eva Bugallo-Blanco
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Loubna Chadli
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation in Immuno-inflammation, Servier, France
| | - Lauren Martinez
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kate Brooks
- Infectious Diseases Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Jeremy Mason
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Federico Lopez Gomez
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Kola Babalola
- The European Bioinformatics Institute (EMBL-EBI) Wellcome Genome Campus, Hinxton, UK
| | - Sultan Abdul-Jawad
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - John Cason
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jonathan Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
28
|
Jandke A, Melandri D, Monin L, Ushakov DS, Laing AG, Vantourout P, East P, Nitta T, Narita T, Takayanagi H, Feederle R, Hayday A. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδ T cell compartments. Nat Commun 2020; 11:3769. [PMID: 32724083 PMCID: PMC7387338 DOI: 10.1038/s41467-020-17557-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Butyrophilin-like (Btnl) genes are emerging as major epithelial determinants of tissue-associated γδ T cell compartments. Thus, the development of signature, murine TCRγδ+ intraepithelial lymphocytes (IEL) in gut and skin depends on Btnl family members, Btnl1 and Skint1, respectively. In seeking mechanisms underlying these profound effects, we now show that normal gut and skin γδ IEL development additionally requires Btnl6 and Skint2, respectively, and furthermore that different Btnl heteromers can seemingly shape different intestinal γδ+ IEL repertoires. This formal genetic evidence for the importance of Btnl heteromers also applied to the steady-state, since sustained Btnl expression is required to maintain the signature TCR.Vγ7+ IEL phenotype, including specific responsiveness to Btnl proteins. In sum, Btnl proteins are required to select and to maintain the phenotypes of tissue-protective γδ IEL compartments, with combinatorially diverse heteromers having differential impacts on different IEL subsets.
Collapse
Affiliation(s)
- Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Daisy Melandri
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Adam G Laing
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Pierre Vantourout
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Philip East
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Narita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo, 202-8585, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum, München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Adrian Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK. .,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK.
| |
Collapse
|
29
|
A Genome-Wide Screen in Mice To Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation. G3-GENES GENOMES GENETICS 2020; 10:1869-1877. [PMID: 32245826 PMCID: PMC7263671 DOI: 10.1534/g3.120.401128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metastatic colonization, whereby a disseminated tumor cell is able to survive and proliferate at a secondary site, involves both tumor cell-intrinsic and -extrinsic factors. To identify tumor cell-extrinsic (microenvironmental) factors that regulate the ability of metastatic tumor cells to effectively colonize a tissue, we performed a genome-wide screen utilizing the experimental metastasis assay on mutant mice. Mutant and wildtype (control) mice were tail vein-dosed with murine metastatic melanoma B16-F10 cells and 10 days later the number of pulmonary metastatic colonies were counted. Of the 1,300 genes/genetic locations (1,344 alleles) assessed in the screen 34 genes were determined to significantly regulate pulmonary metastatic colonization (15 increased and 19 decreased; P < 0.005 and genotype effect <-55 or >+55). While several of these genes have known roles in immune system regulation (Bach2, Cyba, Cybb, Cybc1, Id2, Igh-6, Irf1, Irf7, Ncf1, Ncf2, Ncf4 and Pik3cg) most are involved in a disparate range of biological processes, ranging from ubiquitination (Herc1) to diphthamide synthesis (Dph6) to Rho GTPase-activation (Arhgap30 and Fgd4), with no previous reports of a role in the regulation of metastasis. Thus, we have identified numerous novel regulators of pulmonary metastatic colonization, which may represent potential therapeutic targets.
Collapse
|
30
|
Kamdar S, Hutchinson R, Laing A, Stacey F, Ansbro K, Millar MR, Costeloe K, Wade WG, Fleming P, Gibbons DL. Perinatal inflammation influences but does not arrest rapid immune development in preterm babies. Nat Commun 2020; 11:1284. [PMID: 32152273 PMCID: PMC7062833 DOI: 10.1038/s41467-020-14923-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infection and infection-related complications are important causes of death and morbidity following preterm birth. Despite this risk, there is limited understanding of the development of the immune system in those born prematurely, and of how this development is influenced by perinatal factors. Here we prospectively and longitudinally follow a cohort of babies born before 32 weeks of gestation. We demonstrate that preterm babies, including those born extremely prematurely (<28 weeks), are capable of rapidly acquiring some adult levels of immune functionality, in which immune maturation occurs independently of the developing heterogeneous microbiome. By contrast, we observe a reduced percentage of CXCL8-producing T cells, but comparable levels of TNF-producing T cells, from babies exposed to in utero or postnatal infection, which precedes an unstable post-natal clinical course. These data show that rapid immune development is possible in preterm babies, but distinct identifiable differences in functionality may predict subsequent infection mediated outcomes.
Collapse
Affiliation(s)
- S Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - R Hutchinson
- Department of Neonatology, Homerton University Hospital, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A Laing
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - F Stacey
- Department of Neonatology, Homerton University Hospital, London, UK
| | - K Ansbro
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- University of Sheffield, Sheffield, UK
| | - M R Millar
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - K Costeloe
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - W G Wade
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - P Fleming
- Department of Neonatology, Homerton University Hospital, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - D L Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|