1
|
Zhang Z, Wang X, Zhao C, Zhu H, Liao X, Tsai HI. STING and metabolism-related diseases: Roles, mechanisms, and applications. Cell Signal 2025; 132:111833. [PMID: 40294833 DOI: 10.1016/j.cellsig.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway plays a critical role in innate immunity, acting as a central mediator that links cytosolic DNA sensing to inflammatory signaling. STING not only responds to cellular metabolic states but also actively regulates key metabolic processes, including glycolysis, lipid metabolism, and redox balance. This bidirectional interaction underscores the existence of a dynamic feedback mechanism between STING signaling and metabolic pathways, which is essential for maintaining cellular homeostasis. This review provides a comprehensive analysis, beginning with an in-depth overview of the classical STING signaling pathway, followed by a detailed examination of its reciprocal regulation of various metabolic pathways. Additionally, it explores the role and mechanisms of STING signaling in metabolic disorders, including obesity, diabetes, and atherosclerosis. By integrating these insights into the mutual regulation between STING and its metabolism, novel therapeutic strategies targeting this pathway in metabolic diseases have been proposed.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Chuangchuang Zhao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
She F, Zhang T, Lee TH. Multifaceted role of zipper-interacting protein kinase beyond cell death: Implication of ZIPK dysregulation in neuronal and vascular injuries. Pharmacol Res 2025; 216:107793. [PMID: 40409521 DOI: 10.1016/j.phrs.2025.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Zipper-interacting protein kinase (ZIPK) belongs to the death-associated protein kinase (DAPK) family and is a serine/threonine kinase. ZIPK is ubiquitously expressed in different types of tissues and cells. ZIPK is involved in many cellular functions, including cell death, smooth muscle contraction, transcriptional regulation, inflammatory signaling and the regulation of angiogenesis. The dysregulation of ZIPK has been shown to be involved in multiple diseases, including cancer, neurological diseases such as stroke, and cardiovascular diseases such as hypertension. The molecular mechanisms by which ZIPK inhibits the development of cancer have been well studied, but less is known about how ZIPK dysregulation is involved in vascular and neurological diseases. In this review, we summarize the current knowledge about the cellular processes in which ZIPK is involved and the pathological relevance of ZIPK dysregulation in diseases, with a focus on the role of ZIPK in vascular and neuronal functions. The molecular mechanisms by which ZIPK dysregulation contributes to cancer and vascular and neuronal diseases are discussed. We also review recent advances in the development of ZIPK modulators and their potential in treating vascular damage and neurological disorders. Multiple findings support that ZIPK has important functions in regulating vascular homeostasis and serves as a novel therapeutic target for alleviating neurological diseases.
Collapse
Affiliation(s)
- Fei She
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
3
|
Yao S, Chen S, Wang A, Liang Z, Liu X, Gao Y, Cai H. BAG2 Inhibits Cervical Cancer Progression by Modulating Type I Interferon Signaling through Stabilizing STING. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e70005. [PMID: 40364789 DOI: 10.1002/advs.202414637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Cervical cancer possesses high morbidity and mortality rates, and a comprehensive understanding of its molecular underpinnings is essential for advancing clinical management strategies. The innate immune sensor STING, which activates type I interferon signaling, plays a pivotal role in enhancing anti-tumor activity. Despite increased attention to STING's involvement in cervical cancer, the regulatory mechanisms governing its protein homeostasis remain poorly understood. In this study, it is found that the BAG2-STUB1 complex regulates ubiquitin proteasomal degradation of STING, which affects the development of cervical cancer. Mechanistically, BAG2 inhibits ubiquitination of STING and stabilizes it by interacting with STING. Specifically, BAG2 inhibits STUB1 from attaching the K48-linked ubiquitin chains at K338 and K370 of STING by forming a complex with STUB1. Functionally, enhanced BAG2 expression suppresses cervical cancer progression by activating the type I interferon pathway in a STING-dependent manner. Notably, clinical cervical cancer samples revealed a positive correlation between BAG2 and STING levels, with low BAG2 expression is strongly linked to advanced disease and poor prognosis in cervical cancer. Collectively, these findings elucidate the molecular mechanism by which the BAG2-STUB1 complex regulates STING homeostasis, underscoring BAG2's potential as a diagnostic biomarker and therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Siming Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| |
Collapse
|
4
|
Yang S, Yang Y, Xu L, Hao C, Chen J. DAPK3 is Essential for DBP-Induced Autophagy of Mouse Leydig Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413936. [PMID: 40047320 PMCID: PMC12061289 DOI: 10.1002/advs.202413936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Indexed: 05/10/2025]
Abstract
Dibutyl phthalate (DBP) has been widely used in the manufacture of various daily and industrial products. As one of the most important endocrine disruptors, DBP has male reproductive toxicity and can lead to testicular dysfunction. In view of the fact that Leydig cells are important functional and structural units in the testis, their damage will affect testicular function. However, the underlying mechanism of DBP-caused damage to mouse Leydig cells remains elusive. In the study, it is confirmed that DBP can promote the expression of death-associated protein kinase 3 (DAPK3), thereby inducing autophagy of mouse Leydig cells by using in vivo and in vitro experiments. Also, bioinformatics analysis and molecular biology experimental techniques are utilized to further demonstrate that DBP-induced upregulation of DAPK3 results from both the activated transcription by specific protein 2 (Sp2) and the decreased ubiquitination and degradation by parkin RBR E3 ubiquitin-protein ligase (PRKN). Interestingly, melatonin can inhibit both Sp2/DAPK3 and PRKN/DAPK3 signaling pathways by inhibiting oxidative stress, thereby alleviating DBP-induced autophagy of mouse Leydig cells. Overall, the study unravels a novel regulatory mechanism of DBP-induced autophagy of mouse Leydig cells and identifies DAPK3 as a potential therapeutic target for DBP-caused damage to the male reproductive system.
Collapse
Affiliation(s)
- Si Yang
- Department of PhysiologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Ying Yang
- Huankui AcademyJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Linlin Xu
- Department of PathologyThe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Chaoju Hao
- LibraryJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Jiaxiang Chen
- Department of PhysiologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| |
Collapse
|
5
|
ZHU XI, HUANG KAI, KAO XIAOMING, TANG ZHAOHUI, GUO WENJIE, WU TIANCONG, LI QIURONG. Death domain-associated protein (Daxx) impairs colon cancer chemotherapy by inhibiting the cGAS-STING pathway. Oncol Res 2025; 33:1149-1159. [PMID: 40296918 PMCID: PMC12034003 DOI: 10.32604/or.2024.054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 04/30/2025] Open
Abstract
Background Colorectal cancer (CRC) holds the third position in global cancer prevalence mortality. Although chemotherapy is a conventional treatment, recent investigations have shed light on the therapeutic potential of the cGAS cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in CRC management. Despite the primary role of the death domain-associated protein (Daxx) in cellular apoptosis, its influence on the regulation of cGAS-STING activation remains elusive. Methods The Daxx degradation and speck formation were conducted using immunofluorescence and Western blotting. The Daxx knock-down and over-expression in CRC cells were performed to detect in vivo and in vitro migration, proliferation, cGAS-STING activation, and immune responses. Results Our study reveals that treatment with irinotecan (CPT-11) and oxaliplatin (OXA) significantly accelerated the Daxx degradation and diminished the formation of Daxx specks within the nucleus of CRC cells. Genetic elimination of Daxx enhanced the irinotecan and oxaliplatin-induced suppression of proliferation and migration in CRC cells, and overexpression of Daxx resulted in similar results. Mechanistically, Daxx overexpression reduced DNA damage repair by restraining homologous recombination (HR) over non-homologous end-joining (NHEJ), which suppressed TBK1 and IRF3 phosphorylation downstream of the cGAS-STING signal. In a murine model of CT-26 tumors, Daxx knockdown amplified the OXA-mediated tumor growth inhibition by promoting STING activation and immune responses. Conclusions Our findings show that the degradation of nuclear Daxx potentiates the cGAS-STING pathway, thereby bolstering the efficacy of chemotherapy.
Collapse
Affiliation(s)
- XI ZHU
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - KAI HUANG
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - XIAOMING KAO
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - ZHAOHUI TANG
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - WENJIE GUO
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - TIANCONG WU
- Department of Radiation Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - QIURONG LI
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| |
Collapse
|
6
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Dai S, Peng Y, Wang G, Chen C, Chen Q, Yin L, Yan H, Zhang K, Tu M, Lu Z, Wei J, Li Q, Wu J, Jiang K, Zhu Y, Miao Y. LIM domain only 7: a novel driver of immune evasion through regulatory T cell differentiation and chemotaxis in pancreatic ductal adenocarcinoma. Cell Death Differ 2025; 32:271-290. [PMID: 39143228 PMCID: PMC11803110 DOI: 10.1038/s41418-024-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
With advancements in genomics and immunology, immunotherapy has emerged as a revolutionary strategy for tumor treatment. However, pancreatic ductal adenocarcinoma (PDAC), an immunologically "cold" tumor, exhibits limited responsiveness to immunotherapy. This study aimed to address the urgent need to uncover PDAC's immune microenvironment heterogeneity and identify the molecular mechanisms driving immune evasion. Using single-cell RNA sequencing datasets and spatial proteomics, we discovered LIM domain only 7 (LMO7) in PDAC cells as a previously unrecognized driver of immune evasion through Treg cell enrichment. LMO7 was positively correlated with infiltrating regulatory T cells (Tregs) and dysfunctional CD8+ T cells. A series of in vitro and in vivo experiments demonstrated LMO7's significant role in promoting Treg cell differentiation and chemotaxis while inhibiting CD8+ T cells and natural killer cell cytotoxicity. Mechanistically, LMO7, through its LIM domain, directly bound and promoted the ubiquitination and degradation of Foxp1. Foxp1 negatively regulated transforming growth factor-beta (TGF-β) and C-C motif chemokine ligand 5 (CCL5) expression by binding to sites 2 and I/III, respectively. Elevated TGF-β and CCL5 levels contribute to Treg cell enrichment, inducing immune evasion in PDAC. Combined treatment with TGF-β/CCL5 antibodies, along with LMO7 inhibition, effectively reversed immune evasion in PDAC, activated the immune response, and prolonged mouse survival. Therefore, this study identified LMO7 as a novel facilitator in driving immune evasion by promoting Treg cell enrichment and inhibiting cytotoxic effector functions. Targeting the LMO7-Foxp1-TGF-β/CCL5 axis holds promise as a therapeutic strategy for PDAC. Graphical abstract revealing LMO7 as a novel facilitator in driving immune evasion by promoting Tregs differentiation and chemotaxis, inducing CD8+ T/natural killer cells inhibition.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yunpeng Peng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Guangfu Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chongfa Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Han Yan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Qiang Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Junli Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
You Y, Chang Y, Pan S, Bu Q, Ling J, He W, Chen T. Cleavage of Homonuclear Chalcogen-Chalcogen Bonds in a Hybrid Platform in Response to X-Ray Radiation Potentiates Tumor Radiochemotherapy. Angew Chem Int Ed Engl 2025; 64:e202412922. [PMID: 39175166 DOI: 10.1002/anie.202412922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Chalcogens are used as sensitive redox-responsive reagents in tumor therapy. However, chalcogen bonds triggered by external ionizing radiation, rather than by internal environmental stimuli, enable site-directed and real-time drug degradation in target lesions. This approach helps to bypass chemoresistance and global systemic toxicity, presenting a significant advancement over traditional chemoradiotherapy. In this study, we fabricated a hybrid monodisperse organosilica nanoprodrug based on homonuclear single bonds (disulfide bonds (S-S, approximately 240 kJ/mol), diselenium bonds (Se-Se, approximately 172 kJ/mol), and tellurium bonds (Te-Te, 126 kJ/mol)), including ditelluride-bond-bridged MONs (DTeMSNs), diselenide-bond-bridged MONs (DSeMSNs) and disulfide-bond-bridged MONs (DSMSNs). The results demonstrated that differences in electronegativities and atomic radii influenced their oxidation sensitivities and reactivities. Tellurium, with the lowest electronegativity, showed the highest sensitivity, followed by selenium and sulfur. DTeMSNs exhibited highly responsive cleavage upon exposure to X-rays, resulting in oxidation to TeO3 2-. Furthermore, chalcogen-hybridized organosilica was loaded with manganese ions (Mn2+) to enhance the release of Mn2+ during radiotherapy, thereby activating the the stimulator of interferon genes (STING) pathway and enhancing the tumor immune response to inhibit tumor growth. This investigation of hybrid organosilica deepens our understanding of chalcogens response characteristics to radiotherapy and enriches the design principles for nanomedicine based on prodrugs.
Collapse
Affiliation(s)
- Yuanyuan You
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
- Department of Orthopedics of Affiliated Hospital, Department of Pharmacy, Guangdong Medical University, 524001, Zhanjiang, China
| | - Yanzhou Chang
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
- Department of Orthopedics of Affiliated Hospital, Department of Pharmacy, Guangdong Medical University, 524001, Zhanjiang, China
| | - Shuya Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, 325000, Wenzhou, China
| | - Qingyue Bu
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
| | - Jiabao Ling
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital and School of Medicine, Xiamen University, 361000, Xiamen, Fujian, China
| | - Tianfeng Chen
- Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital and department of chemistry, College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, China
| |
Collapse
|
9
|
Fischer TD, Bunker EN, Zhu PP, Le Guerroué F, Hadjian M, Dominguez-Martin E, Scavone F, Cohen R, Yao T, Wang Y, Werner A, Youle RJ. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NF-κB signaling. EMBO J 2025; 44:141-165. [PMID: 39578541 PMCID: PMC11696098 DOI: 10.1038/s44318-024-00291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
STING activation by cyclic dinucleotides induces IRF3- and NF-κB-mediated gene expression in mammals, as well as lipidation of LC3B at Golgi-related membranes. While mechanisms of the IRF3 response are well understood, the mechanisms of NF-κB activation via STING remain unclear. We report here that STING activation induces linear/M1-linked ubiquitin chain (M1-Ub) formation and recruitment of the LUBAC E3 ligase, HOIP, to LC3B-associated Golgi membranes where ubiquitin is also localized. Loss of HOIP prevents formation of M1-Ub chains and reduces STING-induced NF-κB and IRF3 signaling in human THP1 monocytes and mouse bone marrow-derived macrophages, without affecting STING activation. STING-induced LC3B lipidation is not required for M1-Ub chain formation or for immune-related gene expression, but the recently reported STING function in neutralizing Golgi pH may be involved. Thus, LUBAC synthesis of M1-linked ubiquitin chains mediates STING-induced innate immune signaling.
Collapse
Affiliation(s)
- Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Eric N Bunker
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peng-Peng Zhu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - François Le Guerroué
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mahan Hadjian
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eunice Dominguez-Martin
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Robert Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Wang
- Mass Spectrometry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
12
|
Taniguchi H, Chakraborty S, Takahashi N, Banerjee A, Caeser R, Zhan YA, Tischfield SE, Chow A, Nguyen EM, Villalonga ÁQ, Manoj P, Shah NS, Rosario S, Hayatt O, Qu R, de Stanchina E, Chan J, Mukae H, Thomas A, Rudin CM, Sen T. ATR inhibition activates cancer cell cGAS/STING-interferon signaling and promotes antitumor immunity in small-cell lung cancer. SCIENCE ADVANCES 2024; 10:eado4618. [PMID: 39331709 PMCID: PMC11430494 DOI: 10.1126/sciadv.ado4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Patients with small-cell lung cancer (SCLC) have poor prognosis and typically experience only transient benefits from combined immune checkpoint blockade (ICB) and chemotherapy. Here, we show that inhibition of ataxia telangiectasia and rad3 related (ATR), the primary replication stress response activator, induces DNA damage-mediated micronuclei formation in SCLC models. ATR inhibition in SCLC activates the stimulator of interferon genes (STING)-mediated interferon signaling, recruits T cells, and augments the antitumor immune response of programmed death-ligand 1 (PD-L1) blockade in mouse models. We demonstrate that combined ATR and PD-L1 inhibition causes improved antitumor response than PD-L1 alone as the second-line treatment in SCLC. This study shows that targeting ATR up-regulates major histocompatibility class I expression in preclinical models and SCLC clinical samples collected from a first-in-class clinical trial of ATR inhibitor, berzosertib, with topotecan in patients with relapsed SCLC. Targeting ATR represents a transformative vulnerability of SCLC and is a complementary strategy to induce STING-interferon signaling-mediated immunogenicity in SCLC.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Avisek Banerjee
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Caeser
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A. Zhan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sam E. Tischfield
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Evelyn M. Nguyen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Álvaro Quintanal Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Rosario
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Hayatt
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Miyauchi S, Arimoto KI, Liu M, Zhang Y, Zhang DE. Protocol to study the immune profile of syngeneic mouse tumor models. STAR Protoc 2024; 5:103139. [PMID: 38878286 PMCID: PMC11234017 DOI: 10.1016/j.xpro.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Flow cytometry, single-cell RNA sequencing, and other analyses enable us to capture immune profiles of the tumor microenvironment. Here, we present a protocol to characterize the immune profile of tumor-bearing mice. We describe steps for establishing mouse models and preparing single-cell suspensions from tumor tissue and other immune-related organs, which can be further analyzed by flow cytometry and other omics assays. We then detail procedures for staining, flow cytometry analysis, and phenotyping of the immune cell populations. For complete details on the use and execution of this protocol, please refer to Miyauchi et al.1.
Collapse
Affiliation(s)
- Sayuri Miyauchi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kei-Ichiro Arimoto
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yue Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Wang M, Zhang X, Yang H, Li Y, Chen W, Yin A. DNA methylation variations of DNA damage response correlate survival and local immune status in melanomas. Immun Inflamm Dis 2024; 12:e1331. [PMID: 39254643 PMCID: PMC11386344 DOI: 10.1002/iid3.1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 09/11/2024] Open
Abstract
AIM We aimed to explore the impact of DNA methylation alterations on the DNA damage response (DDR) in melanoma prognosis and immunity. MATERIAL & METHODS: Different melanoma cohorts with molecular and clinical data were included. RESULTS Hierarchical clustering utilizing different combinations of DDR-relevant CpGs yielded distinct melanoma subtypes, which were characteristic of different prognoses, transcriptional function profiles of DDR, and immunity and immunotherapy responses but were associated with similar tumor mutation burdens. We then constructed and validated a clinically applicable 4-CpG risk-score signature for predicting survival and immunotherapy response. CONCLUSION Our study describes the close interrelationship among DNA methylation, DDR machinery, local tumor immune status, melanoma prognosis, and immunotherapy response.
Collapse
Affiliation(s)
- Min Wang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Xiao‐dong Zhang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Han‐qing Yang
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Wen‐mei Chen
- Department of Burns and Plastic SurgeryChangzhou Wujin People's HospitalChangzhouChina
| | - An‐an Yin
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Clinic GeneticsFourth Military Medical UniversityXi'anChina
| |
Collapse
|
15
|
Wang J, Tran-Huynh AM, Kim BJ, Chan DW, Holt MV, Fandino D, Yu X, Qi X, Wang J, Zhang W, Wu YH, Anurag M, Zhang XHF, Zhang B, Cheng C, Foulds CE, Ellis MJ. Death-associated protein kinase 3 modulates migration and invasion of triple-negative breast cancer cells. PNAS NEXUS 2024; 3:pgae401. [PMID: 39319326 PMCID: PMC11421662 DOI: 10.1093/pnasnexus/pgae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pull-down assay (KIPA), leading to the observation that death-associated protein kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple-negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with down-regulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by a mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that leucine-zipper protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a newly discovered regulator of EMT/desmosome components that promote TNBC cell migration.
Collapse
Affiliation(s)
- Junkai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anh M Tran-Huynh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoli Qi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Mathews IT, Saminathan P, Henglin M, Liu M, Nadig N, Fang C, Mercader K, Chee SJ, Campbell AM, Patel AA, Tiwari S, Watrous JD, Ramesh K, Dicker M, Dao K, Meyer MA, Jousilahti P, Havulinna AS, Niiranen T, Salomaa V, Joosten LA, Netea MG, Zheng P, Kronenberg M, Patel SP, Gutkind JS, Ottensmeier C, Long T, Kaech SM, Hedrick CC, Cheng S, Jain M, Sharma S. Linoleoyl-lysophosphatidylcholine suppresses immune-related adverse events due to immune checkpoint blockade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24310974. [PMID: 39148854 PMCID: PMC11326322 DOI: 10.1101/2024.08.07.24310974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Immune related adverse events (irAEs) after immune checkpoint blockade (ICB) therapy occur in a significant proportion of cancer patients. To date, the circulating mediators of ICB-irAEs remain poorly understood. Using non-targeted mass spectrometry, here we identify the circulating bio-active lipid linoleoyl-lysophosphatidylcholine (LPC 18:2) as a modulator of ICB-irAEs. In three independent human studies of ICB treatment for solid tumor, loss of circulating LPC 18:2 preceded the development of severe irAEs across multiple organ systems. In both healthy humans and severe ICB-irAE patients, low LPC 18:2 was found to correlate with high blood neutrophilia. Reduced LPC 18:2 biosynthesis was confirmed in preclinical ICB-irAE models, and LPC 18:2 supplementation in vivo suppressed neutrophilia and tissue inflammation without impacting ICB anti-tumor response. Results indicate that circulating LPC 18:2 suppresses human ICB-irAEs, and LPC 18:2 supplementation may improve ICB outcomes by preventing severe inflammation while maintaining anti-tumor immunity.
Collapse
Affiliation(s)
- Ian T. Mathews
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla CA 92093
| | | | - Mir Henglin
- Cedars Sinai Medical Center, Los Angeles CA 90048
| | - Mingyue Liu
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | | | - Camille Fang
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kysha Mercader
- Department of Medicine, University of California San Diego, La Jolla CA 92093
| | - Serena J. Chee
- University of Southampton, Southampton, United Kingdom
- Institute of Systems, Molecular and Integrative Biology,University of Liverpool, Liverpool, United Kingdom
| | | | | | - Saumya Tiwari
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Karthik Ramesh
- Department of Medicine, University of California San Diego, La Jolla CA 92093
| | | | - Khoi Dao
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | | | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Genomics and Immunometabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Pan Zheng
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| | - Sandip Pravin Patel
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla CA 92037
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla CA 92037
- Department of Pharmacology, University of California San Diego, La Jolla CA 92093
| | - Christian Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Institute of Systems, Molecular and Integrative Biology,University of Liverpool, Liverpool, United Kingdom
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Susan M. Kaech
- Salk Institute for Biological Studies, La Jolla CA 92037
| | - Catherine C. Hedrick
- Immunology Center of Georgia and Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912
| | - Susan Cheng
- Cedars Sinai Medical Center, Los Angeles CA 90048
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
17
|
Fan Q, Kuang L, Wang B, Yin Y, Dong Z, Tian N, Wang J, Yin T, Wang Y. Multiple Synergistic Effects of the Microglia Membrane-Bionic Nanoplatform on Mediate Tumor Microenvironment Remodeling to Amplify Glioblastoma Immunotherapy. ACS NANO 2024; 18:14469-14486. [PMID: 38770948 DOI: 10.1021/acsnano.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is a lethal brain tumor with high levels of malignancy. Most chemotherapy agents show serious systemic cytotoxicity and restricted delivery effectiveness due to the impediments of the blood-brain barrier (BBB). Immunotherapy has developed great potential for aggressive tumor treatments. Disappointingly, its efficacy against GBM is hindered by the immunosuppressive tumor microenvironment (TME) and BBB. Herein, a multiple synergistic immunotherapeutic strategy against GBM was developed based on the nanomaterial-biology interaction. We have demonstrated that this BM@MnP-BSA-aPD-1 can transverse the BBB and target the TME, resulting in amplified synergetic effects of metalloimmunotherapy and photothermal immunotherapy (PTT). The journey of this nanoformulation within the TME contributed to the activation of the stimulator of the interferon gene pathway, the initiation of the immunogenic cell death effect, and the inhibition of the programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling axis. This nanomedicine revitalizes the immunosuppressive TME and evokes the cascade effect of antitumor immunity. Therefore, the combination of BM@MnP-BSA-aPD-1 and PTT without chemotherapeutics presents favorable benefits in anti-GBM immunotherapy and exhibits immense potential for clinical translational applications.
Collapse
Affiliation(s)
- Qin Fan
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Lei Kuang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bingyi Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Ying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhufeng Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Nixin Tian
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jiaojiao Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Švajger U, Kamenšek U. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer. Cytokine Growth Factor Rev 2024; 77:76-90. [PMID: 38508954 DOI: 10.1016/j.cytogfr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Collapse
Affiliation(s)
- Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Šlajmerjeva Ulica 6, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana SI-1000, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana SI-1000, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
19
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
20
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
22
|
Wu M, Fan Y, Li L, Yuan J. Bi-directional regulation of type I interferon signaling by heme oxygenase-1. iScience 2024; 27:109185. [PMID: 38420586 PMCID: PMC10901085 DOI: 10.1016/j.isci.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Moderate activation of IFN-I contributes to the body's immune response, but its abnormal expression, stimulated by oxidative stress or other factors causes pathological damage. Heme oxygenase-1 (HO-1), induced by stress stimuli in the body, exerts a central role in cellular protection. Here we showed that HO-1 could promote IFN-1 under Spring Viremia of Carp virus (SVCV) infection and concomitantly attenuate the replication of SVCV. Further characterization of truncated mutants of HO-1 confirmed that intact HO-1 was essential for its antiviral function via IFN-I. Importantly, HO-1 inhibited the IFN-I signal by degrading the IRF3/7 through the autophagy pathway when it was triggered by H2O2 treatment. The iron ion-binding site (His28) was critical for HO-1 to degrade IRF3/7. HO-1 degradation of IRF3/7 is conserved in fish and mammals. Collectively, HO-1 regulates IFN-I positively under viral infection and negatively under oxidative stress, elucidating a mechanism by which HO-1 regulates IFN-I signaling in bi-directions.
Collapse
Affiliation(s)
- Miaomiao Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
| | - Yihui Fan
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, People’s Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, People’s Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, People’s Republic of China
| |
Collapse
|
23
|
Li Y, An W, Lu L, Yuan J, Wu D, Yang Q, Guo J, Yang J, Liu M, He K, Lei X, Xu ZX. O-GlcNAc of STING mediates antiviral innate immunity. Cell Commun Signal 2024; 22:157. [PMID: 38429625 PMCID: PMC10908090 DOI: 10.1186/s12964-024-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND O-GlcNAcylation modification affects multiple physiological and pathophysiolocal functions of cells. Altered O-GlcNAcylation was reported to participate in antivirus response. Stimulator of interferon genes (STING) is an adaptor mediating DNA virus-induced innate immune response. Whether STING is able to be modified by O-GlcNAcylation and how O-GlcNAcylation affects STING-mediated anti-DNA virus response remain unknown. METHODS Metabolomics analysis was used for detecting metabolic alterations in HSV-1 infection cells. Succinylated wheat germ agglutinin (sWGA), co-immunoprecipitation, and pull-down assay were employed for determining O-GlcNAcylation. Mutagenesis PCR was applied for the generation of STING mutants. WT and Sting1-/- C57BL/6 mice (KOCMP-72512-Sting1-B6NVA) were infected with HSV-1 and treated with O-GlcNAcylation inhibitor for validating the role of STING O-GlcNAcylation in antiviral response. RESULTS STING was functionally activated by O-GlcNAcylation in host cells challenged with HSV-1. We demonstrated that this signaling event was initiated by virus infection-enhanced hexosamine biosynthesis pathway (HBP). HSV-1 (or viral DNA mimics) promotes glucose metabolism of host cells with a marked increase in HBP, which provides donor glucosamine for O-GlcNAcylation. STING was O-GlcNAcylated on threonine 229, which led to lysine 63-linked ubiquitination of STING and activation of antiviral immune responses. Mutation of STING T229 to alanine abrogated STING activation and reduced HSV-1 stimulated production of interferon (IFN). Application of 6-diazo-5-oxonorleucine (DON), an agent that blocks the production of UDP-GlcNAc and inhibits O-GlcNAcylation, markedly attenuated the removal of HSV-1 in wild type C57BL/6 mice, leading to an increased viral retention, elevated infiltration of inflammatory cells, and worsened tissue damages to those displayed in STING gene knockout mice. Together, our data suggest that STING is O-GlcNAcylated in HSV-1, which is crucial for an effective antiviral innate immune response. CONCLUSION HSV-1 infection activates the generation of UDP-Glc-NAc by upregulating the HBP metabolism. Elevated UDP-Glc-NAc promotes the O-GlcNAcylation of STING, which mediates the anti-viral function of STING. Targeting O-GlcNAcylation of STING could be a useful strategy for antiviral innate immunity.
Collapse
Affiliation(s)
- Yujia Li
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Wang An
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Liyuan Lu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jiali Yuan
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Danhui Wu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qi Yang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jinrong Guo
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingyu Yang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Mengjie Liu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Kaiyue He
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xinyuan Lei
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
24
|
He Y, Shi Q, Ling Y, Guo H, Fei Y, Wu R, Tang C, Zhang X, Yao L. ABLIM1, a novel ubiquitin E3 ligase, promotes growth and metastasis of colorectal cancer through targeting IĸBα ubiquitination and activating NF-ĸB signaling. Cell Death Differ 2024; 31:203-216. [PMID: 38228802 PMCID: PMC10850134 DOI: 10.1038/s41418-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, has been reported as a suppressor in several tumors whereas its role in colorectal cancer (CRC) remains unknown. In this study, we find that ABLIM1 is up-regulated in CRC patients and high levels of ABLIM1 predict short disease-free survival time. Knock-down of ABLIM1 in CRC cell lines by lenti-virus leads to inhibited cell proliferation, migration, and invasion capabilities in vitro and impaired growth of tumor xenografts and liver metastasis lesions in vivo, while ABLIM1 overexpression accelerates tumor growth and invasion in vitro. Mechanistically, we uncover that ABLIM1 activates the NF-ĸB/CCL-20 signaling through modulating IĸBα ubiquitination and proteasomal-mediated degradation. Further co-immunoprecipitation, in vivo and in vitro ubiquitination assays reveal ABLIM1 as a novel ubiquitin E3 ligase binding to IĸBα. Interestingly, The E3 ligase catalysis activity of ABLIM1 depends on its 402-778aa rather than its LIM domains and its interaction with IĸBα relies on the HP domain. Our findings delineate the oncogenic role of ABLIM1 in CRC progression and reveal it as a novel E3 ligase targeting IĸBα, providing new insights into the regulation of NF-ĸB signaling in tumors.
Collapse
Affiliation(s)
- Ying He
- Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China
| | - Qian Shi
- Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China
| | - Yuhang Ling
- Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China
| | - Huihui Guo
- Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China
| | - Yi Fei
- Department of Colorectal Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Ruoyu Wu
- Department of Gastroenterology, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Chengwu Tang
- Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China.
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China.
| | - Xilin Zhang
- Central Laboratory, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China.
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China.
| | - Linhua Yao
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, 313000, Zhejiang, China.
- Department of Gastroenterology, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
25
|
Güllülü Ö, Mayer BE, Toplek FB. Linking Gene Fusions to Bone Marrow Failure and Malignant Transformation in Dyskeratosis Congenita. Int J Mol Sci 2024; 25:1606. [PMID: 38338888 PMCID: PMC10855549 DOI: 10.3390/ijms25031606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telomere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene fusions in RNA-Seq data from DC patients to provide deeper insights into DC's progression. The most significant DC-specific gene fusions were subsequently put through in silico assessments to ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and propensity for self-association. Selected candidates were then analyzed using deep learning-powered structural predictions and molecular dynamics simulations to gauge their potential for forming higher-order oligomers. Our exploration revealed that genes participating in fusion events play crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors. Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits robust higher-order oligomerization dynamics. To conclude, this research underscores the potential significance of several high-confidence gene fusions in the progression of BMF in DC, particularly through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Additionally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing proteotoxicity-driven hematopoietic disruptions.
Collapse
Affiliation(s)
- Ömer Güllülü
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
26
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
27
|
Lin C, Zeng M, Song J, Li H, Feng Z, Li K, Pei Y. PRRSV alters m 6A methylation and alternative splicing to regulate immune, extracellular matrix-associated function. Int J Biol Macromol 2023; 253:126741. [PMID: 37696370 DOI: 10.1016/j.ijbiomac.2023.126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The alternative splicing and N6-methyladenosine (m6A) modifications occurring during porcine reproductive and respiratory syndrome virus (PRRSV) infections remain poorly understood. Transcriptome and MeRIP-seq analyses were performed to identify the gene expression changes, splicing and m6A modifications in the lungs of PRRSV-infected pigs. In total, 1624 differentially expressed genes (DEGs) were observed between PRRSV-infected and uninfected pigs. We observed significant alterations in alternative splicing (54,367 events) and m6A modifications (2265 DASEs) in numerous genes, including LMO7, SLC25A27, ZNF185, and ECM1, during PRRSV infection. LMO7 and ZNF185 exhibited alternative splicing variants and reduced mRNA expression levels following PRRSV infection. Notably, LMO7 inhibited c-JUN, SMAD3, and FAK expression, whereas ZNF185 affected the expression of FAK, CDH1, and GSK3β downstream. Additionally, ECM1 influenced FAK expression by targeting ITGB3 and AKT2, suggesting its involvement in extracellular matrix accumulation through the ITGB3-AKT2/FAK pathway. These changes may facilitate viral invasion and replication by modulating the expression of genes and proteins participating in crucial cellular processes associated with immunity and the extracellular matrix. We highlight the importance of these genes and their associated pathways in PRRSV infections and suggest that targeting these may be a promising therapeutic approach for treating viral infections.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
28
|
Xu Y, Che D, Zuo X, Fu L, Pi L, Zhou H, Tan Y, Wang K, Gu X. Whole-Exome Sequencing for Identification of Potential Sex-Biased Variants in Kawasaki Disease Patients. Inflammation 2023; 46:2165-2177. [PMID: 37462885 DOI: 10.1007/s10753-023-01869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 11/25/2023]
Abstract
Kawasaki disease (KD) is an autoimmune disease of unknown etiology and has become a main cause of childhood acquired heart disease. KD is more prevalent in males than in females. The reason for this sex bias is unknown. Here, we used whole-exome sequencing (WES) to identify significantly different variants between male and female KD patients. From WES result, a total of 19,500 shared genetic variants in 8421 genes were captured via a series of filters. Further comparisons based on sex were performed to obtain 34 potential sex-biased variants in 34 genes for GO and Reactome Gene Sets enrichment analyses. Moreover, we selected 6 variants associated with immune, cells adhesion, platelet function, homeostasis, and ion channel signaling and expanded the sample size (1247 KD patients containing 713 males and 534 females, 803 healthy population containing 481 males and 322 females) for genotyping validation. From the results, USH2A/rs148135241, LMO7/rs142687160, CEMIP/rs12441101, and EFCC1/rs142391828 presented significant differences of alleles/genotypes frequency distributions between male and female only in KD patients (which were consistent with the result of WES analysis) but not in healthy population. In addition, the result also found that only EFCC1/rs142391828 polymorphism was associated with KD susceptibility. This result suggested that those four variants might play critical roles in sex bias in KD. The study would be in favor of a sex-specific genome atlas establishing and novel sex-specific precision therapies development for KD.
Collapse
Affiliation(s)
- Yufen Xu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaoyu Zuo
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Yaqian Tan
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Kejian Wang
- Lin He's Academician Workstation of New Medicine and Clinical Translation at The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
29
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
30
|
Pham PT, Bavuu O, Kim‐Kaneyama J, Lei X, Yamamoto T, Otsuka K, Suto K, Kusunose K, Yagi S, Yamada H, Soeki T, Shimabukuro M, Barber GN, Sata M, Fukuda D. Innate Immune System Regulated by Stimulator of Interferon Genes, a Cytosolic DNA Sensor, Regulates Endothelial Function. J Am Heart Assoc 2023; 12:e030084. [PMID: 37947148 PMCID: PMC10727293 DOI: 10.1161/jaha.123.030084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Sterile inflammation caused by metabolic disorders impairs endothelial function; however, the underlying mechanism by which hyperglycemia induces inflammation remains obscure. Recent studies have suggested that stimulator of interferon genes (STING), a key cytosolic DNA sensor in the innate immune system, contributes to the pathogenesis of inflammatory diseases. This study examines the role of the STING in endothelial dysfunction in streptozotocin-induced diabetic mice. METHODS AND RESULTS Injection of streptozotocin promoted the expression of STING and DNA damage markers in the aorta of wild-type mice. Streptozotocin elevated blood glucose and lipid levels in both wild-type and STING-deficient mice, which showed no statistical differences. Genetic deletion of STING ameliorated endothelial dysfunction as determined by the vascular relaxation in response to acetylcholine (P<0.001) and increased endothelial nitric oxide synthase phosphorylation in the aorta (P<0.05) in STZ-injected mice. Endothelium-independent vascular response to sodium nitroprusside did not differ. Treatment with a direct STING agonist, cyclic GMP-AMP, or mitochondrial DNA increased inflammatory molecule expression (eg, VCAM1 and IFNB) and decreased endothelial nitric oxide synthase phosphorylation in human umbilical vein endothelial cells, partially through the STING pathway. Cyclic GMP-AMP significantly impaired endothelial function of aortic segments obtained from wild-type mice, which was ameliorated in the presence of C-176, a STING inhibitor, or a neutralizing interferon-β antibody. Furthermore, the administration of C-176 ameliorated endothelial dysfunction in STZ-induced diabetic mice (P<0.01). CONCLUSIONS The DNA damage response regulated by STING impairs endothelial function. STING signaling may be a potential therapeutic target of endothelial dysfunction caused by hyperglycemia.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Nitric Oxide Synthase Type III/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/drug effects
- Immunity, Innate
- Humans
- Mice, Inbred C57BL
- Male
- Mice, Knockout
- Signal Transduction
- Phosphorylation
- Vasodilation/drug effects
- Mice
- DNA Damage
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Nucleotides, Cyclic/metabolism
- Nucleotides, Cyclic/pharmacology
Collapse
Affiliation(s)
- Phuong Tran Pham
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Oyunbileg Bavuu
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | | | - Xiao‐Feng Lei
- Department of BiochemistryShowa University School of MedicineTokyoJapan
| | - Takayuki Yamamoto
- Department of Cardiovascular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kenichiro Otsuka
- Department of Cardiovascular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kumiko Suto
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kenya Kusunose
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of Cardiovascular Medicine, Nephrology, and Neurology, Graduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Shusuke Yagi
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Hirotsugu Yamada
- Department of Community Medicine for CardiologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Takeshi Soeki
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Michio Shimabukuro
- Department of Diabetes, Endocrinology and MetabolismFukushima Medical University School of MedicineFukushimaJapan
| | - Glen N. Barber
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Masataka Sata
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Daiju Fukuda
- Department of Cardiovascular MedicineTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of Cardiovascular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
31
|
Bai X, Chen J, Zhang W, Zhou S, Dong L, Huang J, He X. YTHDF2 promotes gallbladder cancer progression and gemcitabine resistance via m6A-dependent DAPK3 degradation. Cancer Sci 2023; 114:4299-4313. [PMID: 37700438 PMCID: PMC10637062 DOI: 10.1111/cas.15953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic RNA and involved in the carcinogenesis of various malignancies. However, the functions and mechanisms of m6A in gallbladder cancer (GBC) remain unclear. In this study, we investigated the role and underlying mechanism of the RNA-binding protein YT521-B homology domain-containing family protein 2 (YTHDF2), an m6A reader, in GBC. Herein, we detected that YTHDF2 was remarkably upregulated in GBC tissues compared to normal gallbladder tissues. Functionally, YTHDF2 overexpression promoted the proliferation, tumor growth, migration, and invasion of GBC cells while inhibiting the apoptosis in vitro and in vivo. Conversely, YTHDF2 knockdown induced opposite results. Mechanistically, we further investigated the underlying mechanism by integrating RNA immunoprecipitation sequencing (RIP-seq), m6A-modified RIP-seq, and RNA sequencing, which revealed that death-associated protein kinase 3 (DAPK3) is a direct target of YTHDF2. YTHDF2 binds to the 3'-UTR of DAPK3 mRNA and facilitates its degradation in an m6A-dependent manner. DAPK3 inhibition restores the tumor-suppressive phenotype induced by YTHDF2 deficiency. Moreover, the YTHDF2/DAPK3 axis induces the resistance of GBC cells to gemcitabine. In conclusion, we reveal the oncogenic role of YTHDF2 in GBC, demonstrating that YTHDF2 increases the mRNA degradation of the tumor suppressor DAPK3 in an m6A-dependent way, which promotes GBC progression and desensitizes GBC cells to gemcitabine. Our findings provide novel insights into potential therapeutic strategies for GBC.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Chen
- Department of GastroenterologyState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Wenqin Zhang
- Department of GastroenterologyState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Shengnan Zhou
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Liangbo Dong
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Jianhao Huang
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Xiaodong He
- Department of General SurgeryState Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
32
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
34
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
35
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
36
|
Mortezaee K, Majidpoor J, Kharazinejad E. The impact of hypoxia on tumor-mediated bypassing anti-PD-(L)1 therapy. Biomed Pharmacother 2023; 162:114646. [PMID: 37011483 DOI: 10.1016/j.biopha.2023.114646] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Extending the durability of response is the current focus in cancer immunotherapy with immune checkpoint inhibitors (ICIs). However, factors like non-immunogenic tumor microenvironment (TME) along with aberrant angiogenesis and dysregulated metabolic systems are negative contributors. Hypoxia is a key TME condition and a critical promoter of tumor hallmarks. It acts on immune and non-immune cells within TME in order for promoting immune evasion and therapy resistance. Extreme hypoxia is a major promoter of resistance to the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor therapy. Hypoxia inducible factor-1 (HIF-1) acts as a key mediator of hypoxia and a critical promoter of resistance to the anti-PD-(L)1. Targeting hypoxia or HIF-1 can thus be an effective strategy for reinvigoration of cellular immunity against cancer. Among various strategies presented so far, the key focus is over vascular normalization, which is an approach highly effective for reducing the rate of hypoxia, increasing drug delivery into the tumor area, and boosting the efficacy of anti-PD-(L)1.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Islamic Republic of Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Islamic Republic of Iran
| | - Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Islamic Republic of Iran.
| |
Collapse
|
37
|
Wen Q, Zhang J, Zhang Z, Chen L, Liu H, Han Z, Chen Y, Wang K, Liu J, Sai N, Zhou X, Zhou C, Hu S, Ma L. Cisatracurium besylate rescues Mycobacterium Tuberculosis-infected macrophages from necroptosis and enhances the bactericidal effect of isoniazid. Int Immunopharmacol 2023; 120:110291. [PMID: 37182451 DOI: 10.1016/j.intimp.2023.110291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Tuberculosis is the leading killer among the chronic single-source infectious diseases. Mycobacterium tuberculosis can induce necrotic-dominant multiple modes of cell death in macrophages, which accelerates bacterium dissemination and expands tissue injury in host lungs. Mining drugs to counteract Mycobacterium tuberculosis-induced cell death would be beneficial to tuberculosis patients. METHODS In this study, the protective drug was screened out from the FDA-approved drug library in Mycobacterium tuberculosis-infected macrophages with CCK-8 assay. The death mode regulated by the drug was identified using transcriptomic sequencing, cytomorphological observation, and in the experimental mouse Mycobacterium tuberculosis-infection model. The functional mechanism was explored using western blot, co-immunoprecipitation, and DARTS assay. The intracellular bacterial survival was detected using colony forming unit assays. RESULTS Cisatracurium besylate was identified to be highly protective for the viability of macrophages during Mycobacterium tuberculosis infection via inhibiting necroptosis. Cisatracurium besylate prevented RIPK3 to be associated with the executive molecule MLKL for forming the necroptotic complex, resulting in the inhibition of MLKL phosphorylation and pore formation on cell membrane. However, Cisatracurium besylate did not interfere with the association between RIPK3 with its upstream kinase RIPK1 or ZBP1 but regulated RIPK3 autophosphorylation. Moreover, Cisatracurium besylate significantly inhibited the expansion of intracellular Mycobacterium tuberculosis both in vitro and in vivo, which also displayed a strong auxiliary bacteriostatic effect to support the therapeutic efficacy of isoniazid and rifampicin, the first-line anti-tubercular drugs. CONCLUSION Cisatracurium besylate performs anti-Mycobacterium tuberculosis and anti-necroptotic roles, which potentiates its application to be an adjuvant drug for antituberculosis therapy to assist the battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liru Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Sai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Yang J, Xiang T, Zhu S, Lao Y, Wang Y, Liu T, Li K, Ma Y, Zhong C, Zhang S, Tan W, Lin D, Wu C. Comprehensive Analyses Reveal Effects on Tumor Immune Infiltration and Immunotherapy Response of APOBEC Mutagenesis and Its Molecular Mechanisms in Esophageal Squamous Cell Carcinoma. Int J Biol Sci 2023; 19:2551-2571. [PMID: 37215984 PMCID: PMC10197887 DOI: 10.7150/ijbs.83824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) mutagenesis is prevalent in esophageal squamous cell carcinoma (ESCC). However, the functional role of APOBEC mutagenesis has yet to be fully delineated. To address this, we collect matched multi-omics data of 169 ESCC patients and evaluate characteristics of immune infiltration using multiple bioinformatic approaches based on bulk and single-cell RNA sequencing (scRNA-seq) data and verified by functional assays. We find that APOBEC mutagenesis prolongs overall survival (OS) of ESCC patients. The reason for this outcome is probably due to high anti-tumor immune infiltration, immune checkpoints expression and immune related pathway enrichment, such as interferon (IFN) signaling, innate and adaptive immune system. The elevated AOBEC3A (A3A) activity paramountly contributes to the footprints of APOBEC mutagenesis and is first discovered to be transactivated by FOSL1. Mechanistically, upregulated A3A exacerbates cytosolic double-stranded DNA (dsDNA) accumulation, thus stimulating cGAS-STING pathway. Simultaneously, A3A is associated with immunotherapy response which is predicted by TIDE algorithm, validated in a clinical cohort and further confirmed in mouse models. These findings systematically elucidate the clinical relevance, immunological characteristics, prognostic value for immunotherapy and underlying mechanisms of APOBEC mutagenesis in ESCC, which demonstrate great potential in clinical utility to facilitate clinical decisions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuqian Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China
| |
Collapse
|
39
|
Ma N, Hua R, Yang Y, Liu ZC, Pan J, Yu BY, Sun YF, Xie D, Wang Y, Li ZG. PES1 reduces CD8 + T cell infiltration and immunotherapy sensitivity via interrupting ILF3-IL15 complex in esophageal squamous cell carcinoma. J Biomed Sci 2023; 30:20. [PMID: 36959575 PMCID: PMC10037800 DOI: 10.1186/s12929-023-00912-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.
Collapse
Affiliation(s)
- Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Yao Yu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Feng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Sun S, Yu M, Yu L, Huang W, Zhu M, Fu Y, Yan L, Wang Q, Ji X, Zhao J, Wu M. Nrf2 silencing amplifies DNA photooxidative damage to activate the STING pathway for synergistic tumor immunotherapy. Biomaterials 2023; 296:122068. [PMID: 36868032 DOI: 10.1016/j.biomaterials.2023.122068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Photodynamic therapy (PDT)-mediated antitumor immune response depends on oxidative stress intensity and subsequent immunogenic cell death (ICD) in tumor cells, yet the inherent antioxidant system restricts reactive oxygen species (ROS)-associated oxidative damage, which is highly correlated with the upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream products, such as glutathione (GSH). Herein, to overcome this dilemma, we designed a versatile nanoadjuvant (RI@Z-P) to enhance the sensitivity of tumor cells to oxidative stress via Nrf2-specific small interfering RNA (siNrf2). The constructed RI@Z-P could significantly amplify photooxidative stress and achieve robust DNA oxidative damage, activating the stimulator of interferon genes (STING)-dependent immune-sensing to produce interferon-β (IFN-β). Additionally, RI@Z-P together with laser irradiation reinforced tumor immunogenicity by exposing or releasing damage-associated molecular patterns (DAMPs), showing the prominent adjuvant effect for promoting dendritic cell (DC) maturation and T-lymphocyte activation and even alleviating the immunosuppressive microenvironment to some extent.
Collapse
Affiliation(s)
- Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Meishu Zhu
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yanan Fu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lingchen Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| | - Jing Zhao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
41
|
Gentili M, Liu B, Papanastasiou M, Dele-Oni D, Schwartz MA, Carlson RJ, Al'Khafaji AM, Krug K, Brown A, Doench JG, Carr SA, Hacohen N. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat Commun 2023; 14:611. [PMID: 36739287 PMCID: PMC9899276 DOI: 10.1038/s41467-023-36132-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/06/2023] Open
Abstract
Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
Collapse
Affiliation(s)
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | | | | | - Marc A Schwartz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | | | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
42
|
Lui WY, Bharti A, Wong NHM, Jangra S, Botelho MG, Yuen KS, Jin DY. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog 2023; 19:e1011186. [PMID: 36802409 PMCID: PMC9983872 DOI: 10.1371/journal.ppat.1011186] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/03/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Aradhana Bharti
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Nok-Hei Mickey Wong
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Sonia Jangra
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Michael G. Botelho
- Faculty of Dentistry, the University of Hong Kong, Sai Yin Pun, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (K-SY); (D-YJ)
| |
Collapse
|
43
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
44
|
Zheng H, Wu L, Xiao Q, Meng X, Hafiz A, Yan Q, Lu R, Cao J. Epigenetically suppressed tumor cell intrinsic STING promotes tumor immune escape. Biomed Pharmacother 2023; 157:114033. [PMID: 36436495 PMCID: PMC9826630 DOI: 10.1016/j.biopha.2022.114033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022] Open
Abstract
DNA sensing through the cGAS-STING pathway plays an important role in cancer immunosurveillance. Pharmaceutical activation of STING in the tumor environment is considered an attractive approach to induce anti-tumor immunity, but had limited efficacy in the clinic. Several studies have found that STING is epigenetically silenced in many tumors, including colon cancer. This suggests that STING silencing in tumor cells contributes to immune escape and may limit the application of STING agonists. We previously found that inhibition of the KDM5 family histone demethylases restored STING expression in human breast cancer cells and activated the cGAS-STING pathway. In this study, we used MC38 and CT26 syngeneic mouse colorectal cancer models to show that loss of STING in tumor cells accelerates tumor growth. KDM5 inhibitors activate STING expression in mouse colorectal cancer cells and suppress colon cancer growth in immune competent mice in a STING-dependent manner. This study highlights KDM5 inhibitors as novel immune modulators in cancer therapies.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Qian Xiao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xin Meng
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
45
|
Widespread protein N-phosphorylation in organism revealed by SiO2@DpaZn beads based mild-acidic enrichment method. Talanta 2023; 251:123740. [DOI: 10.1016/j.talanta.2022.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
|
46
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
47
|
Liu J, Rui K, Peng N, Luo H, Zhu B, Zuo X, Lu L, Chen J, Tian J. The cGAS-STING pathway: Post-translational modifications and functional implications in diseases. Cytokine Growth Factor Rev 2022; 68:69-80. [PMID: 36151014 DOI: 10.1016/j.cytogfr.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023]
Abstract
Recent studies have illustrated the functional significance of DNA recognition in the activation of innate immune responses among a variety of diseases. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has been found to be modulated by post-translational modifications and can regulate the immune response via type I IFNs. Accumulating evidence indicates a pivotal role of cGAS-STING signaling, being protective or pathogenic, in the development of diseases. Thus, a comprehensive understanding of the post-translational modifications of cGAS-STING pathway and their role in disease development will provide insights in predicting individual disease outcomes and developing appropriate therapies. In this review, we will discuss the regulation of the cGAS-STING pathway and its implications in disease pathologies, as well as pharmacologic strategies to target the cGAS-STING pathway for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Hui Luo
- Department of Rheumatology and immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoxia Zuo
- Department of Rheumatology and immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, China
| | - Jixiang Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
48
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
49
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
50
|
Wei S, Zhang J, Shi R, Yu Z, Chen X, Wang H. Identification of an integrated kinase-related prognostic gene signature associated with tumor immune microenvironment in human uterine corpus endometrial carcinoma. Front Oncol 2022; 12:944000. [PMID: 36158685 PMCID: PMC9491090 DOI: 10.3389/fonc.2022.944000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
In the worldwide, uterine corpus endometrial carcinoma (UCEC) is the sixth most common malignancy in women, and the number of women diagnosed is increasing. Kinase plays an important role in the occurrence and development of malignant tumors. However, the research about kinase in endometrial cancer is still unclear. Here, we first downloaded the gene expression data of 552 UCEC patients and 23 healthy endometrial tissues from The Cancer Genome Atlas (TCGA), obtained 538 kinase-related genes from the previous literature, and calculated 67 differentially expressed kinases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were referenced to identify multiple important biological functions and signaling pathways related to 67 differentially expressed kinases. Using univariate Cox regression and Least absolute shrinkage and selection operator (LASSO), seven kinases (ALPK2, CAMKV, TTK, PTK6, MAST1, CIT, and FAM198B) were identified to establish a prognostic model of endometrial cancer. Then, patients were divided into high- and low-risk groups based on risk scores. Receiver operating characteristic (ROC) curves were plotted to evaluate that the model had a favorable predictive ability. Kaplan–Meier survival analysis suggested that high-risk groups experienced worse overall survival than low-risk groups. qRT-PCR and ISH assays confirmed the consistency between predicted candidate genes and real sample contents. CIBERSORT algorithm and ssGSEA were adopted to investigate the relationship between this signature and tumor immune microenvironment, and revealed that in low- and high-risk groups, the types of tumor-infiltrating immune cells and the immune cell-related functions were significantly different. In summary, a seven-gene signature risk model has been constructed, and could accurately predict the prognosis of UCEC, which may offer ideas and breakthrough points to the kinase-associated development of UCEC.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Yu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwei Chen
- Department of Industrial engineering, Tsinghua University, Beijing, China
| | - Hongbo Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongbo Wang,
| |
Collapse
|