1
|
Zhou J, Tison K, Zhou H, Bai L, Acharyya RK, McEachern D, Metwally H, Wang Y, Pitter M, Choi JE, Vatan L, Liao P, Yu J, Lin H, Jiang L, Wei S, Gao X, Grove S, Parolia A, Cieslik M, Kryczek I, Green MD, Lin JX, Chinnaiyan AM, Leonard WJ, Wang S, Zou W. STAT5 and STAT3 balance shapes dendritic cell function and tumour immunity. Nature 2025:10.1038/s41586-025-09000-3. [PMID: 40369063 DOI: 10.1038/s41586-025-09000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Immune checkpoint blockade (ICB) has transformed cancer therapy1,2. The efficacy of immunotherapy depends on dendritic cell-mediated tumour antigen presentation, T cell priming and activation3,4. However, the relationship between the key transcription factors in dendritic cells and ICB efficacy remains unknown. Here we found that ICB reprograms the interplay between the STAT3 and STAT5 transcriptional pathways in dendritic cells, thereby activating T cell immunity and enabling ICB efficacy. Mechanistically, STAT3 restrained the JAK2 and STAT5 transcriptional pathway, determining the fate of dendritic cell function. As STAT3 is often activated in the tumour microenvironment5, we developed two distinct PROTAC (proteolysis-targeting chimera) degraders of STAT3, SD-36 and SD-2301. STAT3 degraders effectively degraded STAT3 in dendritic cells and reprogrammed the dendritic cell-transcriptional network towards immunogenicity. Furthermore, STAT3 degrader monotherapy was efficacious in treatment of advanced tumours and ICB-resistant tumours without toxicity in mice. Thus, the crosstalk between STAT3 and STAT5 transcriptional pathways determines the dendritic cell phenotype in the tumour microenvironment and STAT3 degraders hold promise for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kole Tison
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Haibin Zhou
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Longchuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ranjan Kumar Acharyya
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna McEachern
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hoda Metwally
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Pitter
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jae Eun Choi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Long Jiang
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xue Gao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shaomeng Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Vick SC, Domenjo-Vila E, Frutoso M, Glabman RA, Warrier LS, Hughes SM, Kirby AC, Fialkow MF, Hladik F, Prlic M, Lund JM. Mucosal tissue NK cells tune their function between optimal anti-pathogen activity and tissue protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647286. [PMID: 40291684 PMCID: PMC12026740 DOI: 10.1101/2025.04.04.647286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Preserving barrier integrity is of great importance in mucosal tissues while simultaneously defending against inflammatory threats and exposures to pathogens. NK cells at barrier sites are essential for viral control during infections such as herpes simplex virus 2 (HSV-2) but must also balance pathogen response with tissue protection. We have characterized human tissue NK cells in the vaginal tissue (VT) as having distinct effector and tissue protective functions. Using scRNA-seq and high- parameter flow cytometry, we uncovered a unique signature for VT NK cells, indicating a reduced effector phenotype with increased factors related to tissue residency and immunoregulation at steady state. Despite their functionally quiescent nature, these cells were able to respond robustly to inflammatory signals, suggesting they are poised for pathogen response. We found that the gene signatures between mouse and human NK cells were remarkably similar, demonstrating the feasibility of using a mouse model to probe distinct NK cell functions during mucosal infection. In mice, VT NK cells responded robustly to acute HSV-2 infection and retained an enhanced recall potential after viral clearance. They also secreted tissue repair factors and played a role in restricting tissue damage following viral infection. Our data, using both human tissues and a mouse model, reveal an unexpected role of mucosal tissue NK cells in the VT in balancing host protection with tissue repair in the context of localized mucosal tissue infection.
Collapse
|
3
|
Santosa EK, Zhang JM, Sauter JC, Owyong M, Sun JC. Cutting Edge: Cooperative interferon regulatory factor network shapes the NK-cell antiviral response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf041. [PMID: 40180328 DOI: 10.1093/jimmun/vkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
Natural killer (NK) cells are innate lymphocytes that exhibit adaptive traits particularly evident during cytomegalovirus (CMV) infection. Following mouse CMV (MCMV) infection, NK cells upregulate the transcription factors IRF4 and IRF8, which are indispensable for their survival and proliferation upon viral infection. However, it is unclear whether these factors are expressed within the same individual cell and whether deficiency in one could be compensated by the other. In this study, we observed that a subset of NK cells co-express high levels of IRF4 and IRF8 in an NFκB-dependent manner. These IRF4HighIRF8High NK cells are specifically enriched for activated but immature cells with high proliferative potential during MCMV infection. Functionally, NK cells lacking both IRF4 and IRF8 develop normally, but experience a more severe expansion defect during virus exposure compared to NK cells deficient in a single factor. Thus, our study reveals a cooperative interplay between IRF4- and IRF8-dependent transcriptional networks in regulating NK-cell antiviral responses.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| | - Jennifer M Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
4
|
Nabekura T. Immunological memory in natural killer cells. Int Immunol 2025:dxaf016. [PMID: 40388217 DOI: 10.1093/intimm/dxaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/18/2025] [Indexed: 05/20/2025] Open
Abstract
Immune cells are classified into adaptive and innate immune cells. Adaptive immune cells-i.e. T cells and B cells-respond to pathogens in an antigen-specific manner and then provide immunological memory, contributing to long-term host defense against reinfection. In contrast, innate immune cells promptly respond to pathogens, but they are short-lived and have been thought not to contribute to immunological memory. Natural killer (NK) cells are lymphocytes essential for controlling viral infections and cancer. NK cells-which have traditionally been classified as innate immune cells-have recently been revealed as being capable of differentiating into memory NK cells, thus participating in immunological memory, formerly considered to be restricted to adaptive immune cells. Like memory T and B cells, memory NK cells (i) can be long-lived; (ii) display distinct phenotypes from naïve and activated NK cells; (iii) show augmented cellular functions, as compared with naïve NK cells; (iv) have secondary proliferation capacity; and (v) confer an improved host defense when transferred to naïve recipients. Therefore, at least in a broad sense, they fulfill the definition of immunological memory. In this article, I provide an overview of NK cell memory and recent research trends regarding this phenomenon.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Division of Immune Response, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
5
|
Mujal AM, Owyong M, Santosa EK, Sauter JC, Grassmann S, Pedde AM, Meiser P, Wingert CK, Pujol M, Buchholz VR, Lau CM, Böttcher JP, Sun JC. Splenic TNF-α signaling potentiates the innate-to-adaptive transition of antiviral NK cells. Immunity 2025; 58:585-600.e6. [PMID: 40023159 DOI: 10.1016/j.immuni.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Natural killer (NK) cells possess both innate and adaptive features. Here, we investigated NK cell activation across tissues during cytomegalovirus infection, which generates antigen-specific clonal expansion and long-lived memory responses. Longitudinal tracking and single-cell RNA sequencing of NK cells following infection revealed enhanced activation in the spleen, as well as early formation of a CD69lo precursor population that preferentially gave rise to adaptive NK cells. Splenic NK cells demonstrated heightened tumor necrosis factor alpha (TNF-α) signaling and increased expression of the receptor TNFR2, which coincided with elevated TNF-α production by splenic myeloid cells. TNFR2-deficient NK cells exhibited impaired interferon gamma (IFN-γ) production and expansion. TNFR2 signaling engaged two distinct nuclear factor κB (NF-κB) signaling arms-innate effector NK cell responses required canonical NF-κB signaling, whereas non-canonical NF-κB signaling enforced differentiation of CD69lo adaptive NK cell precursors. Thus, NK cell priming in the spleen during viral infection promotes an innate-to-adaptive transition, providing insight into avenues for generating adaptive NK cell immunity across diverse settings.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Animals
- Mice
- Signal Transduction/immunology
- Spleen/immunology
- Immunity, Innate
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/immunology
- NF-kappa B/metabolism
- Adaptive Immunity
- Mice, Inbred C57BL
- Lymphocyte Activation/immunology
- Cytomegalovirus Infections/immunology
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Interferon-gamma/metabolism
- Muromegalovirus/immunology
- Antigens, Differentiation, T-Lymphocyte
- Antigens, CD
- Lectins, C-Type
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna-Marie Pedde
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marine Pujol
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan P Böttcher
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Kratchmarov R, Djeddi S, Dunlap G, He W, Jia X, Burk CM, Ryan T, McGill A, Allegretti JR, Kataru RP, Mehrara BJ, Taylor EM, Agarwal S, Bhattacharyya N, Bergmark RW, Maxfield AZ, Lee S, Roditi R, Dwyer DF, Boyce JA, Buchheit KM, Laidlaw TM, Shreffler WG, Rao DA, Gutierrez-Arcelus M, Brennan PJ. TCF1-LEF1 co-expression identifies a multipotent progenitor cell (T H2-MPP) across human allergic diseases. Nat Immunol 2024; 25:902-915. [PMID: 38589618 PMCID: PMC11849131 DOI: 10.1038/s41590-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenqin He
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Burk
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin M Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Neil Bhattacharyya
- Massachusetts Eye & Ear Institute, Harvard Medical School, Boston, MA, USA
| | - Regan W Bergmark
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Alice Z Maxfield
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Lee
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Roditi
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
9
|
Li JH, Zhou A, Lee CD, Shah SN, Ji JH, Senthilkumar V, Padilla ET, Ball AB, Feng Q, Bustillos CG, Riggan L, Greige A, Divakaruni AS, Annese F, Cooley Coleman JA, Skinner SA, Cowan CW, O'Sullivan TE. MEF2C regulates NK cell effector functions through control of lipid metabolism. Nat Immunol 2024; 25:778-789. [PMID: 38589619 DOI: 10.1038/s41590-024-01811-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Natural killer (NK) cells are a critical first line of defense against viral infection. Rare mutations in a small subset of transcription factors can result in decreased NK cell numbers and function in humans, with an associated increased susceptibility to viral infection. However, our understanding of the specific transcription factors governing mature human NK cell function is limited. Here we use a non-viral CRISPR-Cas9 knockout screen targeting genes encoding 31 transcription factors differentially expressed during human NK cell development. We identify myocyte enhancer factor 2C (MEF2C) as a master regulator of human NK cell functionality ex vivo. MEF2C-haploinsufficient patients and mice displayed defects in NK cell development and effector function, with an increased susceptibility to viral infection. Mechanistically, MEF2C was required for an interleukin (IL)-2- and IL-15-mediated increase in lipid content through regulation of sterol regulatory element-binding protein (SREBP) pathways. Supplementation with oleic acid restored MEF2C-deficient and MEF2C-haploinsufficient patient NK cell cytotoxic function. Therefore, MEF2C is a critical orchestrator of NK cell antiviral immunity by regulating SREBP-mediated lipid metabolism.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Adalia Zhou
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cassidy D Lee
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siya N Shah
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeong Hyun Ji
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vignesh Senthilkumar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qinyan Feng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christian G Bustillos
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Luke Riggan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alain Greige
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fran Annese
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
11
|
Sheppard S, Srpan K, Lin W, Lee M, Delconte RB, Owyong M, Carmeliet P, Davis DM, Xavier JB, Hsu KC, Sun JC. Fatty acid oxidation fuels natural killer cell responses against infection and cancer. Proc Natl Acad Sci U S A 2024; 121:e2319254121. [PMID: 38442180 PMCID: PMC10945797 DOI: 10.1073/pnas.2319254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cells are a vital part of the innate immune system capable of rapidly clearing mutated or infected cells from the body and promoting an immune response. Here, we find that NK cells activated by viral infection or tumor challenge increase uptake of fatty acids and their expression of carnitine palmitoyltransferase I (CPT1A), a critical enzyme for long-chain fatty acid oxidation. Using a mouse model with an NK cell-specific deletion of CPT1A, combined with stable 13C isotope tracing, we observe reduced mitochondrial function and fatty acid-derived aspartate production in CPT1A-deficient NK cells. Furthermore, CPT1A-deficient NK cells show reduced proliferation after viral infection and diminished protection against cancer due to impaired actin cytoskeleton rearrangement. Together, our findings highlight that fatty acid oxidation promotes NK cell metabolic resilience, processes that can be optimized in NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Sam Sheppard
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Katja Srpan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Wendy Lin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Mariah Lee
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Rebecca B. Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY10065
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie and Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Daniel M. Davis
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Joao B. Xavier
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY10065
| |
Collapse
|
12
|
Hildreth AD, Padilla ET, Gupta M, Wong YY, Sun R, Legala AR, O'Sullivan TE. Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production. Nat Metab 2023; 5:2237-2252. [PMID: 37996702 DOI: 10.1038/s42255-023-00934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meha Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yung Yu Wong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan Sun
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Nabekura T, Deborah EA, Tahara S, Arai Y, Love PE, Kako K, Fukamizu A, Muratani M, Shibuya A. Themis2 regulates natural killer cell memory function and formation. Nat Commun 2023; 14:7200. [PMID: 37938555 PMCID: PMC10632368 DOI: 10.1038/s41467-023-42578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Elfira Amalia Deborah
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Saeko Tahara
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Arai
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Koichiro Kako
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
14
|
Piersma SJ, Bangru S, Yoon J, Liu TW, Yang L, Hsieh CS, Plougastel-Douglas B, Kalsotra A, Yokoyama WM. NK cell expansion requires HuR and mediates control of solid tumors and long-term virus infection. J Exp Med 2023; 220:e20231154. [PMID: 37698554 PMCID: PMC10497399 DOI: 10.1084/jem.20231154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes capable of controlling tumors and virus infections through direct lysis and cytokine production. While both T and NK cells expand and accumulate in affected tissues, the role of NK cell expansion in tumor and viral control is not well understood. Here, we show that posttranscriptional regulation by the RNA-binding protein HuR is essential for NK cell expansion without negatively affecting effector functions. HuR-deficient NK cells displayed defects in the metaphase of the cell cycle, including decreased expression and alternative splicing of Ska2, a component of the spindle and kinetochore complex. HuR-dependent NK cell expansion contributed to long-term cytomegalovirus control and facilitated control of subcutaneous tumors but not tumor metastases in two independent tumor models. These results show that posttranscriptional regulation by HuR specifically affects NK cell expansion, which is required for the control of long-term virus infection and solid tumors, but not acute infection or tumor metastases, highlighting fundamental differences with antigen-specific T cell control.
Collapse
Affiliation(s)
- Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeesang Yoon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tom W. Liu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Beatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Zheng S, Wang WX. Physiological and immune profiling of tilapia Oreochromis niloticus gills by high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109070. [PMID: 37709178 DOI: 10.1016/j.fsi.2023.109070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
The physiological and immune functions of fish gills are largely recognized, but their following functional heterogeneity at the single cell scale has been rarely reported. Here, we performed single cell RNA sequencing (scRNA-seq) on the gills of tilapia fish Oreochromis niloticus. We identified a total of 12 cell populations and analyzed their functional heterogeneity. To investigate the physiological function of O. niloticus gills, expression patterns of genes encoding ion transporters were selected from the identified H+-ATPase-rich cells (HR cells), Na+/K+-ATPase-rich cells (NaR cells), and pavement cells. Specific enrichment of ca4a, slc9a1a, and LOC100692482 in the HR cells of O. niloticus gills explained their functions in acid-base regulation. Genes encoding Ca2+ transporters, including atp2b1, LOC100696627, and LOC 100706765, were specifically expressed in the NaR cells. Pavement cells were presumably the main sites responsible for ammonia and urea transports in O. niloticus gills with specific enrichment of Rhbg and LOC100693008, respectively. The expression patterns of the four immune cell subtypes varied greatly, with B cells being enriched with the most immune-related GO terms. KEGG enrichment analysis showed that MAPK signaling pathway was the most enriched pathway among the four types of immune cells in O. niloticus gills. Our results are important in understanding the physiological and immune responses of fish gills at the cellular resolution.
Collapse
Affiliation(s)
- Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
16
|
Santosa EK, Kim H, Rückert T, Le Luduec JB, Abbasi AJ, Wingert CK, Peters L, Frost JN, Hsu KC, Romagnani C, Sun JC. Control of nutrient uptake by IRF4 orchestrates innate immune memory. Nat Immunol 2023; 24:1685-1697. [PMID: 37697097 PMCID: PMC11098052 DOI: 10.1038/s41590-023-01620-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen specificity, clonal expansion and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified that the transcription factor IRF4 integrates signals to coordinate the NK cell response during mouse cytomegalovirus infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest that IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timo Rückert
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
| | | | - Aamna J Abbasi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lila Peters
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joe N Frost
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katharine C Hsu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Leibniz-Science Campus Chronic Inflammation, Berlin, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Cheng MI, Li JH, Riggan L, Chen B, Tafti RY, Chin S, Ma F, Pellegrini M, Hrncir H, Arnold AP, O'Sullivan TE, Su MA. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat Immunol 2023; 24:780-791. [PMID: 36928413 DOI: 10.1038/s41590-023-01463-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.
Collapse
Affiliation(s)
- Mandy I Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Luke Riggan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan Chen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rana Yakhshi Tafti
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Scott Chin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Maureen A Su
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Itkin T, Houghton S, Schreiner R, Lin Y, Badwe CR, Voisin V, Murison A, Seyedhassantehrani N, Kaufmann KB, Garcia-Prat L, Booth GT, Geng F, Liu Y, Gomez-Salinero JM, Shieh JH, Redmond D, Xiang JZ, Josefowicz SZ, Trapnell C, Spencer JA, Zangi L, Hadland B, Dick JE, Xie SZ, Rafii S. Transcriptional Activation of Regenerative Hematopoiesis via Vascular Niche Sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534417. [PMID: 37034724 PMCID: PMC10081204 DOI: 10.1101/2023.03.27.534417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.
Collapse
|