1
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025; 22:563-596. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
3
|
Coats SR, Su TH, Luderman Miller Z, King AJ, Ortiz J, Reddy A, Alaei SR, Jain S. Porphyromonas gingivalis outer membrane vesicles divert host innate immunity and promote inflammation via C4' monophosphorylated lipid A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:1008-1021. [PMID: 40131356 PMCID: PMC12123218 DOI: 10.1093/jimmun/vkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/05/2024] [Indexed: 03/27/2025]
Abstract
Porphyromonas gingivalis (Pg) is a prevalent pathogen that promotes human periodontal disease (PD) and exacerbates systemic comorbidities such as atherosclerosis, rheumatoid arthritis, and Alzheimer's disease. Pg produces nonphosphorylated tetra-acylated lipid A (NPLA) in its outer membrane (OM) that evades host Toll-like receptor 4 (TLR4), inflammasome pathways, and cationic peptides, enhancing bacterial survival. Here, we show that Pg also releases outer membrane vesicles (OMVs) that engage and divert host cell TLR4, inflammasome, and LL-37 responses away from the microbe. We determined that Pg OMVs are enriched for C4' monophosphoryl lipid A (C4'-MPLA), an established agonist for TLR4-TRIF-IFNβ and inflammasome-IL-1β responses. Comparisons of Pg 381 and Pg 33277 stationary phase cultures revealed higher OMV production by Pg 381, which correlates with its higher proinflammatory pathogenicity. The cationic peptide, polymyxin B (PMB), which selectively binds lipid A C4'-phosphate, reduces OMV-stimulated HEK cell TLR4 activation and THP-1 cell IL-1β production, confirming the proinflammatory role for OMV-C4'-MPLA. Similar to PMB, the host defense peptide, LL-37, inhibits OMV-C4'-MPLA-dependent HEK cell TLR4 activation. PMB and LL-37 also blocked OMV-C4'-MPLA-driven TLR4 activation in human umbilical vein endothelial cells. Finally, wild-type Pg-containing OM-NPLA is highly resistant to LL-37 antimicrobial activity, whereas the ΔlpxF mutant bacterium, retaining OM-C4'-MPLA, is killed by the peptide. In summary, Pg escapes host TLR4 signaling, inflammasome activation, and LL-37 interaction by retaining immunoevasive OM-NPLA. Moreover, Pg dispenses proinflammatory OMV-C4'-MPLA, which engages and redirects those host defenses. We suggest that OMV-C4'-MPLA triggers elevated IFNβ and IL-1β cytokines, which typify PD comorbidities, and drive PD-related alveolar bone loss.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| | - Thet Hnin Su
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| | - Zoe Luderman Miller
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| | - Alisa J King
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Joshua Ortiz
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Angel Reddy
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Sarah R Alaei
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, United States
| | - Sumita Jain
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, United States
| |
Collapse
|
4
|
Li Y, Xu Y, Jin C, Qiu J, Jiao X, Pan Z, Guo Y. Salmonella-NLRP3 Inflammasome Crosstalk: Host Defense Activation Versus Bacterial Immune Evasion Strategies. J Inflamm Res 2025; 18:5133-5148. [PMID: 40255664 PMCID: PMC12009050 DOI: 10.2147/jir.s519902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
The innate immune system plays a crucial role in defending against Salmonella infection. Inflammasomes are macromolecular complexes that assemble in response to the recognition of pathogen- or danger-associated molecular patterns. These complexes serve as signaling platforms for the activation of inflammatory Caspases, which subsequently triggers the maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18. This process also initiates pyroptosis, a highly inflammatory form of programmed cell death characterized by lytic cell lysis. Salmonella are intracellular pathogens that proliferate within epithelial cells and macrophages, posing a significant public health risk in both developed and developing countries. During Salmonella infection, the canonical NLRP3 and NLRC4 inflammasome, as well as non-canonical inflammasome, are activated. Unlike NLRC4 and non-canonical inflammasomes, which play crucial roles during intestinal infection phases, the role of NLRP3 inflammasome in resisting Salmonella infection demonstrates a higher degree of complexity and uncertainty. Nonetheless, the activation of NLRP3 inflammasome, along with the downstream innate and adaptive responses, form a robust host immune barrier against potential pathogens. Therefore, successful pathogens must evolve multiple mechanisms to circumvent or counteract these immune barriers. Here we review and discuss the mechanisms of NLRP3 inflammasome activation triggered by intracellular Salmonella, as well as the multiple strategies employed by Salmonella to avoid or delay NLRP3 inflammasome activation. A deeper understanding of how NLRP3 inflammasomes recognize Salmonella and how pathogens evade NLRP3 activation has the potential to facilitate the development of novel prevention and control measures for Salmonella infection.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Ying Xu
- The Department of Economics and Management, Jiangsu College of Tourism, Jiangsu, People’s Republic of China
| | - Cheng Jin
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Jiayi Qiu
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yaxin Guo
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Hsu CW, Okano T, Niinuma Y, Leewananthawet A, Iida T, Onsoi P, Boonyaleka K, Ashida H, Suzuki T. A complex of NLRP3 with caspase-4 is essential for inflammasome activation by Tannerella forsythia infection. Int Immunol 2025; 37:261-271. [PMID: 39673522 DOI: 10.1093/intimm/dxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis, a chronic inflammatory disease of periodontal tissue, is often associated with a group of pathogenic bacteria known as the "red complex", including Tannerella forsythia. Previous papers showed that T. forsythia induces many kinds of inflammatory cytokines including interleukin (IL)-1β regulated by inflammasome activation. However, the physiological function of periodontitis and the mechanism to induce inflammasome activation by T. forsythia infection are poorly understood. In this study, we demonstrate that the Nod-like receptor pyrin domain containing 3 (NLRP3) and caspase-4 are essential for inflammasome activation by T. forsythia infection, playing a crucial role in IL-1β maturation in THP-1 cells. We also showed that the knockout of ASC or Gasdermin D suppresses pyroptotic cell death. Moreover, co-immunoprecipitation assays confirmed the formation of a complex involving caspase-4, NLRP3, and ASC following T. forsythia infection. Additionally, reactive oxygen species production was identified as a key factor in caspase-4-mediated NLRP3 inflammasome activation by T. forsythia infection. These results enhance our understanding of inflammasome activation in response to T. forsythia infection and provide new insights into the pathogenic mechanisms of periodontitis.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Yuiko Niinuma
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Anongwee Leewananthawet
- Specialized Dental Center, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tamako Iida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Poramed Onsoi
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Kotchakorn Boonyaleka
- Division of Periodontology, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| |
Collapse
|
6
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
7
|
Shi Y, Magarian Blander J. Patterns of bacterial viability governing noncanonical inflammasome activation. Curr Opin Immunol 2025; 92:102512. [PMID: 39675154 DOI: 10.1016/j.coi.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Noncanonical inflammasomes are instrumental in defense against Gram-negative bacteria, activated primarily by bacterial lipopolysaccharide. This review examines commonalities and distinctions in noncanonical inflammasome activation either by virulence factor activity indicating cellular invasion or by detection of bacterial mRNA signaling the undesired presence of live bacteria in sterile tissue. These inflammasome triggers, alongside other examples discussed, reflect properties exclusive to live bacteria. The emerging picture underscores noncanonical inflammasome activation hinging on detection of indicators of bacterial viability such as the presence of certain molecules or activity of specific processes. The complex interpretation of combinatorial signals is essential for inflammasome activation according to the specific facet of infection confronting the host. Decoding these signals and their convergence on inflammasome activation will inform interventions and therapies for infectious diseases.
Collapse
Affiliation(s)
- Yuhua Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Programs, Weill Cornell and Sloan Kettering Institute Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
8
|
Jiang YJ, Cheng YH, Zhu HQ, Wu YL, Nan JX, Lian LH. Palmatine, an isoquinoline alkaloid from Phellodendron amurense Rupr., ameliorated gouty inflammation by inhibiting pyroptosis via NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119231. [PMID: 39701220 DOI: 10.1016/j.jep.2024.119231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Palmatine (Pal), derived from Daemonorops margaritae (Hance) Becc and Phellodendron amurense Rupr. is a natural isoquinoline alkaloid widely used in clearing heat and drying dampness, purging the pathogenic fire and removing symptoms, detoxifying toxins and healing sores. AIM OF THE STUDY Gout is a common metabolic inflammatory disease caused by the deposition of MSU crystals (MSU) in joints and non-articulation structures. Given the multiple toxic side effects of clinical anti-gout medications, there is a need to find a safe and effective alternative. We investigated the therapeutic effects of Pal on MSU crystal-induced acute gouty inflammation, targeting the NLRP3 inflammasome mediated pyroptosis. MATERIALS AND METHODS In vitro, mouse peritoneal macrophages (MPM) and rat articular chondrocytes were stimulated with LPS plus MSU in the presence or absence of Palmatine. In vivo, arthritis models include the acute gouty arthritis model by injecting MSU crystals in the paws of mice and the air pouch acute gout model by injecting MSU crystals into the mouse subcutaneous tissue of the back. Expression of NLRP3 inflammasome activation and NETosis formation was determined by Western blot, ELISA kit, immunohistochemistry, and immunofluorescence. In addition, the anti-cartilage damage of Palmatine on MSU-induced arthritis mice were also evaluated. RESULTS Pal dose-dependently decreased levels of NLRP3 inflammasome activation related proteins NLRP3, ASC, caspase-1, IL-1β, HMGB1 and Cathepsin B. The NETosis protein levels of caspase-11, histone3, PR3 and PAD4 were remarkably reduced by Pal. Pal effectively blocked the activation of NLRP3 inflammasome, attenuated the caspase-11 mediated noncanonical NLRP3 inflammasome activation and intervened the formation of NETs, thereby inhibiting the pyroptosis. In vivo, Pal attenuated MSU-induced inflammation in gouty arthritis and protect the articular cartilage through inhibiting the pyroptosis of proteins NLRP3, ASC, caspase-1, IL-1β, HMGB1 and Cathepsin B, reducing levels of NETosis relevant proteins caspase-11, histone3, PR3 and PAD4 and up-regulating expression of protein MMP-3. CONCLUSION Palmatine ameliorated gouty inflammation by inhibiting pyroptosis via NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yin-Jing Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yong-Hong Cheng
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Hao-Qing Zhu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
9
|
Lin R, Yu Y, Du L, Ding Z, Wang Z, Wei J, Guo Z. Active ingredients of traditional Chinese medicine inhibit NOD-like receptor protein 3 inflammasome: a novel strategy for preventing and treating heart failure. Front Immunol 2025; 16:1520482. [PMID: 39925805 PMCID: PMC11802527 DOI: 10.3389/fimmu.2025.1520482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Heart failure (HF) has emerged as a significant global public health challenge owing to its high rates of morbidity and mortality. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is regarded as a pivotal factor in the onset and progression of HF. Therefore, inhibiting the activation of the NLRP3 inflammasome may represent a promising therapeutic approach for preventing and treating HF. The active ingredients serve as the foundation for the therapeutic effects of traditional Chinese medicine (TCM). Recent research has revealed significant advantages of TCM active ingredients in inhibiting the activation of the NLRP3 inflammasome and enhancing cardiac structure and function in HF. The study aimed to explore the impact of NLRP3 inflammasome activation on the onset and progression of HF, and to review the current advancements in utilizing TCM active ingredients to inhibit the NLRP3 inflammasome for preventing and treating HF. This provides a novel perspective for the future development of precise intervention strategies targeting the NLRP3 inflammasome to prevent and treat HF.
Collapse
Affiliation(s)
- Ruifang Lin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yunfeng Yu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lixin Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zehui Ding
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ziyan Wang
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiaming Wei
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
VanPortfliet JJ, Lei Y, Ramanathan M, Martinez CG, Wong J, Stodola TJ, Hoffmann BR, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this vulnerable population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive cytokine secretion and activation of pyroptotic cell death pathways contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J. VanPortfliet
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Jessica Wong
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | - Kathryn Pflug
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | | | | | - Peter. J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carolyn L. Cannon
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - A. Phillip West
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| |
Collapse
|
11
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Guo NK, Si LN, Li PQ, Gan GF. Nano Acacetin Mitigates Intestinal Mucosal Injury in Sepsis Rats by Protecting Mitochondrial Function and Regulating TRX1 to Inhibit the NLRP3 Pyroptosis Pathway. Int J Nanomedicine 2024; 19:14125-14141. [PMID: 39759963 PMCID: PMC11699839 DOI: 10.2147/ijn.s497081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Background Acacetin (AC) is a flavonoid compound with antiperoxidant, anti-inflammatory, and antiplasmodial activity. However, the solubility of AC is poor and nano acacetin (Nano AC) was synthesized. The intestinal mucosal barrier is impaired in sepsis rats, and the protective effects and mechanism of AC and Nano AC on the intestinal mucosal barrier are unclear. Methods Cecal ligation and perforation (CLP) was used to induce sepsis in rats, and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells were used to observe the effects of AC and our synthesized Nano AC on the amelioration of intestinal mucosal damage. The molecular docking technique was used to predict the binding energy of AC to thioredoxin reductase 1 (TRX1) signaling pathway proteins. TRX1 inhibitor (PX-12) was employed to elucidate the protective signaling pathway of Nano AC in LPS-stimulated intestinal epithelial cells. Results Our synthesized Nano AC, with an average particle size of 17.18 ± 0.48 nm and an uptake rate of 95% in intestinal epithelial cells. The maximum binding capacity of AC to TRX1 was -6.82 kcal/mol, supporting the hypothesis that TRX1 is a potential target of AC. AC and Nano AC ameliorated the survival rate, intestinal mucosal damage score, pathological morphology, hepatic and renal function, and myocardial troponin levels, decreased serum levels of pyroptosis-related factors, upregulated TRX1, down-regulated NOD-like receptor protein 3 inflammasome (NLRP3), cysteinyl aspartate specific proteinase-11 (Caspase-11), Gasdermin D (GSDMD) in sepsis rats. They improved mitochondrial morphology and mitochondrial reactive oxygen species (ROS) levels, reduced pyroptosis levels, and upregulated TRX1, which adjusted NLRP3/ Caspase-11/ GSDMD signaling pathway in LPS-stimulated intestinal epithelial cells. Moreover, Nano AC was more effective. Conclusion AC and Nano-AC can inhibit the NLRP3/Caspase-11/GSDMD signaling pathway by upregulating TRX1 to ameliorate intestinal mucosal injury in sepsis rats, and the effect of Nano AC is more prominent.
Collapse
Affiliation(s)
- Ning-ke Guo
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Li-ning Si
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
- Affiliated Hospital, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Pei-qing Li
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Gui-fen Gan
- Affiliated Hospital, Qinghai University, Xining, Qinghai, People’s Republic of China
| |
Collapse
|
13
|
Wang Z, Liu J, Mou Y, Li Y, Liao W, Yao M, Wang T, Shen H, Sun Q, Tang J. Extinguishing the flames of inflammation: retardant effect of chlorquinaldol on NLRP3-driven diseases. Mol Med 2024; 30:245. [PMID: 39701924 DOI: 10.1186/s10020-024-01016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND NLRP3 inflammasome immoderate activation results in the occurrence of various inflammatory diseases, but the clinic medications targeting NLRP3 inflammasome are still not available currently. The strategy of drug repurposing can reorient the direction of therapy, which is an indispensable method of drug research. In this study, an antimicrobial agent chlorquinaldol (CQ) was conducted to assess the effect on NLRP3 inflammasome and novel clinical value on NLRP3-driven diseases. METHODS The effect of CQ on NLRP3 inflammasome activation and pyroptosis was studied in mouse and human macrophages. ASC oligomerization, intracellular potassium, reactive oxygen species production, and NLRP3-ASC interaction were used to evaluate the suppression mechanism of CQ on inflammasome activation. Finally, the ameliorative effects of CQ in the model of LPS-induced peritonitis, dextran sodium sulfate (DSS)-induced colitis, and monosodium urate (MSU)-induced gouty arthritis were evaluated in vivo. RESULTS CQ is a highly powerful NLRP3 inhibitor that has feeble impact on the NLRC4 or AIM2 inflammasome activation in mouse and human macrophages. Further study indicated that CQ exhibits its suppression effect on NLRP3 inflammasome by blocking NLRP3-ASC interaction and hydroxyl on the benzene ring is vital for the assembly and activation of NLRP3 inflammasome. Furthermore, in vivo experiments demonstrated that administration of CQ has outstanding therapeutic action on LPS-induced peritonitis, DSS-induced colitis, and MSU-induced gouty inflammation in mice. CONCLUSIONS Collectively, the current study discoveries the antimicrobial agent CQ as a potentially specific NLRP3 inhibitor, and its use provides a feasible therapeutic approach for the treatment of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Menglin Yao
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ting Wang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
14
|
Li MR, Lu LQ, Zhang YY, Yao BF, Tang C, Dai SY, Luo XJ, Peng J. Sonic hedgehog signaling facilitates pyroptosis in mouse heart following ischemia/reperfusion via enhancing the formation of CARD10-BCL10-MALT1 complex. Eur J Pharmacol 2024; 984:177019. [PMID: 39343081 DOI: 10.1016/j.ejphar.2024.177019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Pyroptosis has been found to contribute to myocardial ischemia/reperfusion (I/R) injury, but the exact mechanisms that initiate myocardial pyroptosis are not fully elucidated. Sonic hedgehog (SHH) signaling is activated in heart suffered I/R, and intervention of SHH signaling has been demonstrated to protect heart from I/R injury. Caspase recruitment domain-containing protein 10 (CARD10)-B cell lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (CBM) complex could transduce signals from the membrane and induce inflammatory pathways in non-hematopoietic cells, which could be a downstream effector of SHH signaling pathway. This study aims to explore the role of SHH signaling in I/R-induced myocardial pyroptosis and its relationship with the CBM complex. C57BL/6J mice were subjected to 45 min-ischemia followed by 24 h-reperfusion to establish a myocardial I/R model, and H9c2 cells underwent hypoxia/reoxygenation (H/R) to mimic myocardial I/R model in vitro. Firstly, SHH signaling was significantly activated in heart suffered I/R in an autocrine- or paracrine-dependent manner via its receptor PTCH1, and inhibition of SHH signaling decreased myocardial injury via reducing caspase-11-dependent pyroptosis, concomitant with attenuating CBM complex formation. Secondly, suppression of SHH signaling decreased protein kinase C α (PKCα) level, but inhibition of PKCα attenuated CBM complex formation without impacting the protein levels of SHH and PTCH1. Finally, disruption of the CBM complex prevented MALT1 from recruiting of TRAF6, which was believed to trigger the caspase-11-dependent pyroptosis. Based on these results, we conclude that inhibition of SHH signaling suppresses pyroptosis via attenuating PKCα-mediated CARD10-BCL10-MALT1 complex formation in mouse heart suffered I/R.
Collapse
Affiliation(s)
- Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Can Tang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shu-Yan Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
15
|
Kim YJ, Lee SG, Park SY, Jeon SM, Kim SI, Kim KT, Roh T, Lee SH, Lee MJ, Lee J, Kim HJ, Lee SE, Kim JK, Heo JY, Kim IS, Park C, Paik S, Jo EK. Ubiquitin regulatory X (UBX) domain-containing protein 6 is essential for autophagy induction and inflammation control in macrophages. Cell Mol Immunol 2024; 21:1441-1458. [PMID: 39438692 PMCID: PMC11606977 DOI: 10.1038/s41423-024-01222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Ubiquitin regulatory X (UBX) domain-containing protein 6 (UBXN6) is an essential cofactor for the activity of the valosin-containing protein p97, an adenosine triphosphatase associated with diverse cellular activities. Nonetheless, its role in cells of the innate immune system remains largely unexplored. In this study, we report that UBXN6 is upregulated in humans with sepsis and may serve as a pivotal regulator of inflammatory responses via the activation of autophagy. Notably, the upregulation of UBXN6 in sepsis patients was negatively correlated with inflammatory gene profiles but positively correlated with the expression of Forkhead box O3, an autophagy-driving transcription factor. Compared with those of control mice, the macrophages of mice subjected to myeloid cell-specific UBXN6 depletion exhibited exacerbated inflammation, increased mitochondrial oxidative stress, and greater impairment of autophagy and endoplasmic reticulum-associated degradation pathways. UBXN6-deficient macrophages also exhibited immunometabolic remodeling, characterized by a shift to aerobic glycolysis and elevated levels of branched-chain amino acids. These metabolic shifts amplify mammalian target of rapamycin pathway signaling, in turn reducing the nuclear translocation of the transcription factor EB and impairing lysosomal biogenesis. Together, these data reveal that UBXN6 serves as an activator of autophagy and regulates inflammation to maintain immune system suppression during human sepsis.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym Medical Center, Seoul, 05355, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo In Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyung Tae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, 28199, Republic of Korea
| | - Min Joung Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jinyoung Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - So Eui Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
16
|
Zhu L, Tong H, Ren C, Chen K, Luo S, Wang Q, Guo M, Xu Y, Hu M, Fang J, Xu J, Shi P. Inflammation unleashed: The role of pyroptosis in chronic liver diseases. Int Immunopharmacol 2024; 141:113006. [PMID: 39213865 DOI: 10.1016/j.intimp.2024.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Pyroptosis, a newly identified form of programmed cell death intertwined with inflammatory responses, is facilitated by the Gasdermin family's pore-forming activity, leading to cell lysis and the release of pro-inflammatory cytokines. This process is a double-edged sword in innate immunity, offering protection against pathogens while risking excessive inflammation and tissue damage when dysregulated. Specifically, pyroptosis operates through two distinct signaling pathways, namely the Caspase-1 pathway and the Caspase-4/5/11 pathway. In the context of chronic liver diseases like fibrosis and cirrhosis, inflammation emerges as a central contributing factor to their pathogenesis. The identification of inflammation is characterized by the activation of innate immune cells and the secretion of pro-inflammatory cytokines such as IL-1α, IL-1β, and TNF-α. This review explores the interrelationship between pyroptosis and the inflammasome, a protein complex located in liver cells that recognizes danger signals and initiates Caspase-1 activation, resulting in the secretion of IL-1β and IL-18. The article delves into the influence of the inflammasome and pyroptosis on various liver disorders, with a specific focus on their molecular and pathophysiological mechanisms. Additionally, the potential therapeutic implications of targeting pyroptosis for liver diseases are highlighted for future consideration.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao Ren
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Kun Chen
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengnan Luo
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yichen Xu
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinyong Fang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinxian Xu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Peifei Shi
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| |
Collapse
|
17
|
Li W, Liu Q, Qian Y, Wang C, Kong C, Sun L, Sun L, Liu H, Zhang Y, Jiang D, Jiang C, Wang S, Xia P. Adipose triglyceride lipase suppresses noncanonical inflammasome by hydrolyzing LPS. Nat Chem Biol 2024; 20:1434-1442. [PMID: 38413746 DOI: 10.1038/s41589-024-01569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Intracellular recognition of lipopolysaccharide (LPS) by mouse caspase-11 or human caspase-4 is a vital event for the activation of the noncanonical inflammasome. Whether negative regulators are involved in intracellular LPS sensing is still elusive. Here we show that adipose triglyceride lipase (ATGL) is a negative regulator of the noncanonical inflammasome. Through screening for genes participating in the noncanonical inflammasome, ATGL is identified as a negative player for intracellular LPS signaling. ATGL binds LPS and catalyzes the removal of the acylated side chains that contain ester bonds. LPS with under-acylated side chains no longer activates the inflammatory caspases. Cells with ATGL deficiency exhibit enhanced immune responses when encountering intracellular LPS, including an elevated secretion of interleukin-1β, decreased cell viability and increased cell cytotoxicity. Moreover, ATGL-deficient mice show exacerbated responses to endotoxin challenges. Our results uncover that ATGL degrades cytosolic LPS to suppress noncanonical inflammasome activation.
Collapse
Affiliation(s)
- Weitao Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiannv Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunlei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Kong
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Liangliang Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Wang T, Sun G, Tao B. Updated insights into the NLRP3 inflammasome in postoperative cognitive dysfunction: emerging mechanisms and treatments. Front Aging Neurosci 2024; 16:1480502. [PMID: 39411285 PMCID: PMC11474915 DOI: 10.3389/fnagi.2024.1480502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) poses a significant threat to patients undergoing anesthesia and surgery, particularly elderly patients. It is characterized by diminished cognitive functions post surgery, such as impaired memory and decreased concentration. The potential risk factors for POCD include age, surgical trauma, anesthetic type, and overall health condition; however, the precise mechanisms underlying POCD remain elusive. Recent studies suggest that neuroinflammation might be a primary pathogenic factor. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes are implicated in exacerbating POCD by promoting the release of inflammatory factors and proteins that initiate pyroptosis, further influencing the disease process. The regulation of NLRP3 inflammasome activity, including its activation and degradation, is tightly controlled through multiple pathways and mechanisms. In addition, autophagy, a protective mechanism, regulates the NLRP3 inflammasome to control the progression of POCD. This review reviews recent findings on the role of the NLRP3 inflammasome in POCD pathogenesis and discusses therapeutic strategies aimed at reducing NLRP3 sources, inhibiting cellular pyroptosis, and enhancing autophagy.
Collapse
Affiliation(s)
| | | | - Bingdong Tao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Huang C, Huangfu C, Bai Z, Zhu L, Shen P, Wang N, Li G, Deng H, Ma Z, Zhou W, Gao Y. Multifunctional carbomer based ferulic acid hydrogel promotes wound healing in radiation-induced skin injury by inactivating NLRP3 inflammasome. J Nanobiotechnology 2024; 22:576. [PMID: 39300534 PMCID: PMC11411768 DOI: 10.1186/s12951-024-02789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Radiation-induced skin injury is a significant adverse reaction to radiotherapy. However, there is a lack of effective prevention and treatment methods for this complication. Ferulic acid (FA) has been identified as an effective anti-radiation agent. Conventional administrations of FA limit the reaching of it on skin. We aimed to develop a novel FA hydrogel to facilitate the use of FA in radiation-induced skin injury. METHODS We cross-linked carbomer 940, a commonly used adjuvant, with FA at concentrations of 5%, 10%, and 15%. Sweep source optical coherence tomography system, a novel skin structure evaluation method, was applied to investigate the influence of FA on radiation-induced skin injury. Calcein-AM/PI staining, CCK8 assay, hemolysis test and scratch test were performed to investigate the biocompatibility of FA hydrogel. The reducibility of DPPH and ABTS radicals by FA hydrogel was also performed. HE staining, Masson staining, laser Doppler blood flow monitor, and OCT imaging system are used to evaluate the degree of skin tissue damage. Potential differentially expressed genes were screened via transcriptome analysis. RESULTS Good biocompatibility and in vitro antioxidant ability of the FA hydrogels were observed. 10% FA hydrogel presented a better mechanical stability than 5% and 15% FA hydrogel. All three concentrations of FA remarkably promoted the recovery of radiation-induced skin injury by reducing inflammation, oxidative conidiation, skin blood flow, and accelerating skin tissue reconstruction, collagen deposition. FA hydrogel greatly inhibiting the levels of NLRP3, caspase-1, IL-18, pro-IL-1β and IL-1β in vivo and vitro levels through restraining the activation of NLRP3 inflammasome. Transcriptome analysis indicated that FA might regulate wound healing via targeting immune response, inflammatory response, cell migration, angiogenesis, hypoxia response, and cell matrix adhesion. CONCLUSIONS These findings suggest that the novel FA hydrogel is a promising therapeutic method for the prevention and treatment of radiation-induced skin injury patients.
Collapse
Affiliation(s)
- Congshu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
- Department of Traditional Chinese medicine, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Long Zhu
- Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Huifang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China.
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
20
|
Yu P, Li Y, Fu W, Yu X, Sui D, Xu H, Sun W. Microglia Caspase11 non-canonical inflammasome drives fever. Acta Physiol (Oxf) 2024; 240:e14187. [PMID: 38864370 DOI: 10.1111/apha.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
AIM Animals exhibit physiological changes designed to eliminate the perceived danger, provoking similar symptoms of fever. However, a high-grade fever indicates poor clinical outcomes. Caspase11 (Casp11) is involved in many inflammatory diseases. Whether Casp11 leads to fever remains unclear. In this study, we investigate the role of the preoptic area of the hypothalamus (PO/AH) microglia Casp11 in fever. METHODS We perform experiments using a rat model of LPS-induced fever. We measure body temperature and explore the functions of peripheral macrophages and PO/AH microglia in fever signaling by ELISA, immunohistochemistry, immunofluorescence, flow cytometry, macrophage depletion, protein blotting, and RNA-seq. Then, the effects of macrophages on microglia in a hyperthermic environment are observed in vitro. Finally, adeno-associated viruses are used to knockdown or overexpress microglia Casp11 in PO/AH to determine the role of Casp11 in fever. RESULTS We find peripheral macrophages and PO/AH microglia play important roles in the process of fever, which is proved by macrophage and microglia depletion. By RNA-seq analysis, we find Casp11 expression in PO/AH is significantly increased during fever. Co-culture and conditioned-culture simulate the induction of microglia Casp11 activation by macrophages in a non-contact manner. Microglia Casp11 knockdown decreases body temperature, pyrogenic factors, and inflammasome, and vice versa. CONCLUSION We report that Casp11 drives fever. Mechanistically, peripheral macrophages transmit immune signals via cytokines to microglia in PO/AH, which activate the Casp11 non-canonical inflammasome. Our findings identify a novel player, the microglia Casp11, in the control of fever, providing an explanation for the transmission and amplification of fever immune signaling.
Collapse
Affiliation(s)
- Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Cancer Center, The First Hospital, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Weilun Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
21
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
22
|
Henedak NT, El-Abhar HS, Soubh AA, Abdallah DM. NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci 2024; 351:122813. [PMID: 38857655 DOI: 10.1016/j.lfs.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The cytoplasmic oligomer NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated in most inflammatory and autoimmune diseases. Here, we highlight the significance of NLRP3 in diverse renal disorders, demonstrating its activation in macrophages and non-immune tubular epithelial and mesangial cells in response to various stimuli. This activation leads to the release of pro-inflammatory cytokines, contributing to the development of acute kidney injury (AKI), chronic renal injury, or fibrosis. In AKI, NLRP3 inflammasome activation and pyroptotic renal tubular cell death is driven by contrast and chemotherapeutic agents, sepsis, and rhabdomyolysis. Nevertheless, inflammasome is provoked in disorders such as crystal and diabetic nephropathy, obesity-related renal fibrosis, lupus nephritis, and hypertension-induced renal damage that induce chronic kidney injury and/or fibrosis. The mechanisms by which the inflammatory NLRP3/ Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC)/caspase-1/interleukin (IL)-1β & IL-18 pathway can turn on renal fibrosis is also comprehended. This review further outlines the involvement of dopamine and its associated G protein-coupled receptors (GPCRs), including D1-like (D1, D5) and D2-like (D2-D4) subtypes, in regulating this inflammation-linked renal dysfunction pathway. Hence, we identify D-related receptors as promising targets for renal disease management by inhibiting the functionality of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nada T Henedak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
23
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
24
|
Lu HF, Zhou YC, Hu TY, Yang DH, Wang XJ, Luo DD, Qiu SQ, Cheng BH, Zeng XH. Unraveling the role of NLRP3 inflammasome in allergic inflammation: implications for novel therapies. Front Immunol 2024; 15:1435892. [PMID: 39131161 PMCID: PMC11310156 DOI: 10.3389/fimmu.2024.1435892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Allergic diseases like asthma, allergic rhinitis and dermatitis pose a significant global health burden, driving the search for novel therapies. The NLRP3 inflammasome, a key component of the innate immune system, is implicated in various inflammatory diseases. Upon exposure to allergens, NLRP3 undergoes a two-step activation process (priming and assembly) to form active inflammasomes. These inflammasomes trigger caspase-1 activation, leading to the cleavage of pro-inflammatory cytokines (IL-1β and IL-18) and GSDMD. This process induces pyroptosis and amplifies inflammation. Recent studies in humans and mice strongly suggest a link between the NLRP3 inflammasome, IL-1β, and IL-18, and the development of allergic diseases. However, further research is needed to fully understand NLRP3's specific mechanisms in allergies. This review aims to summarize the latest advances in NLRP3 activation and regulation. We will discuss small molecule drugs and natural products targeting NLRP3 as potential therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xi-Jia Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dan-Dan Luo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Shu-Qi Qiu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Bao-Hui Cheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| |
Collapse
|
25
|
Yin Q, Song SY, Bian Y, Wang Y, Deng A, Lv J, Wang Y. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment. Front Immunol 2024; 15:1381778. [PMID: 38947336 PMCID: PMC11211258 DOI: 10.3389/fimmu.2024.1381778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background The interaction between pyroptosis-a form of programmed cell death-and tumor immunity represents a burgeoning field of interest. Pyroptosis exhibits a dual role in cancer: it can both promote tumor development and counteract it by activating immune responses that inhibit tumor evasion and encourage cell death. Current tumor immunotherapy strategies, notably CAR-T cell therapy and immune checkpoint inhibitors (ICIs), alongside the potential of certain traditional Chinese medicinal compounds, highlight the intricate relationship between pyroptosis and cancer immunity. As research delves deeper into pyroptosis mechanisms within tumor therapy, its application in enhancing tumor immune responses emerges as a novel research avenue. Purpose This review aims to elucidate the mechanisms underlying pyroptosis, its impact on tumor biology, and the advancements in tumor immunotherapy research. Methods A comprehensive literature review was conducted across PubMed, Embase, CNKI, and Wanfang Database from the inception of the study until August 22, 2023. The search employed keywords such as "pyroptosis", "cancer", "tumor", "mechanism", "immunity", "gasdermin", "ICB", "CAR-T", "PD-1", "PD-L1", "herbal medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "immunotherapy", linked by AND/OR, to capture the latest findings in pyroptosis and tumor immunotherapy. Results Pyroptosis is governed by a complex mechanism, with the Gasdermin family playing a pivotal role. While promising for tumor immunotherapy application, research into pyroptosis's effect on tumor immunity is still evolving. Notably, certain traditional Chinese medicine ingredients have been identified as potential pyroptosis inducers, meriting further exploration. Conclusion This review consolidates current knowledge on pyroptosis's role in tumor immunotherapy. It reveals pyroptosis as a beneficial factor in the immunotherapeutic landscape, suggesting that leveraging pyroptosis for developing novel cancer treatment strategies, including those involving traditional Chinese medicine, represents a forward-looking approach in oncology.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anchen Deng
- Department of Neuroscience, Chengdu Shishi School, Chengdu, China
| | - Jianzhen Lv
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Eckhart L, Fischer H. Caspase-5: Structure, Pro-Inflammatory Activity and Evolution. Biomolecules 2024; 14:520. [PMID: 38785927 PMCID: PMC11117641 DOI: 10.3390/biom14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
28
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
29
|
Cai R, Gong X, Li X, Jiang Y, Deng S, Tang J, Ge H, Wu C, Tang H, Wang G, Xie L, Chen X, Hu X, Feng J. Dectin-1 aggravates neutrophil inflammation through caspase-11/4-mediated macrophage pyroptosis in asthma. Respir Res 2024; 25:119. [PMID: 38459541 PMCID: PMC10921740 DOI: 10.1186/s12931-024-02743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.
Collapse
Grants
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
Collapse
Affiliation(s)
- Runjin Cai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guo Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lei Xie
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xuemei Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
30
|
Que X, Zheng S, Song Q, Pei H, Zhang P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis 2024; 11:819-829. [PMID: 37692521 PMCID: PMC10491867 DOI: 10.1016/j.gendis.2023.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 09/12/2023] Open
Abstract
NLRP3 inflammasome, an intracellular multiprotein complex, can be activated by a range of pathogenic microbes or endogenous hazardous chemicals. Its activation results in the release of cytokines such as IL-1β and IL-18, as well as Gasdermin D which eventually causes pyroptosis. The activation of NLRP3 inflammasome is under strict control and regulation by numerous pathways and mechanisms. Its excessive activation can lead to a persistent inflammatory response, which is linked to the onset and progression of severe illnesses. Recent studies have revealed that the subcellular localization of NLRP3 changes significantly during the activation process. In this review, we review the current understanding of the molecular mechanism of NLRP3 inflammasome activation, focusing on the subcellular localization of NLRP3 and the associated regulatory mechanisms. We aim to provide a comprehensive understanding of the dynamic transportation, activation, and degradation processes of NLRP3.
Collapse
Affiliation(s)
- Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
31
|
Fu SL, Qian YY, Dai AN, Li HY, Jin XH, He WT, Kang S, Ding PH. Casp11 Deficiency Alters Subgingival Microbiota and Attenuates Periodontitis. J Dent Res 2024; 103:298-307. [PMID: 38197150 DOI: 10.1177/00220345231221712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Periodontitis (PD) is the primary cause of tooth loss in adults. Porphyromonas gingivalis (P.g), a keystone pathogen, has been identified as a crucial contributor to this process. Pyroptosis activation in PD is acknowledged, with accumulating evidence underscoring the crucial role of Caspase-11 (described as Caspase-4/5 in humans)-mediated noncanonical pyroptosis. However, the mechanism behind its impact on PD remains unclear. In this study, we delved into the interplay between the Caspase-11-mediated noncanonical pyroptosis, subgingival microbiota alteration, and macrophage polarization. Clinical samples from PD patients revealed heightened expression of Caspase-4, gasdermin-D, and their active fragments, pointing to the activation of the noncanonical pyroptosis. Single-cell sequencing analysis linked Caspase-4 with gingival macrophages, emphasizing their involvement in PD. In vitro cell experiments confirmed that P.g-induced pyroptosis was activated in macrophages, with Casp11 deficiency attenuating these effects. In an experimental PD mouse model, Casp11 deficiency led to an alteration in subgingival microbiota composition and reduced alveolar bone resorption. Casp11-/- mice cohousing with wild-type mice confirmed the alteration of the subgingival microbiota and aggravated the alveolar bone resorption. Notably, Casp11 deficiency led to decreased M1-polarized macrophages, corresponding with reduced alveolar bone resorption, uncovering a connection between subgingival microbiota alteration, macrophage M1 polarization, and alveolar bone resorption. Taken together, we showed that Caspase-11 fulfilled a crucial role in the noncanonical pyroptosis in PD, potentially influencing the subgingival microbiota and linking to M1 polarization, which was associated with alveolar bone resorption. These findings underscored the pivotal role of the Caspase-11-mediated noncanonical pyroptosis in PD pathogenesis and may provide critical insights into potential therapeutic avenues for mitigating PD.
Collapse
Affiliation(s)
- S L Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Y Y Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - A N Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - H Y Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - X H Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - W T He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - S Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - P H Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Yi YS. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol 2024; 154:227-238. [PMID: 36437174 DOI: 10.1016/j.semcdb.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Inflammation represents the first-line defense mechanism of the host against pathogens and cellular stress. One of the most critical inflammatory responses is characterized by the activation of inflammasomes, intracellular multiprotein complexes that induce inflammatory signaling pathways in response to various pathogen-associated molecular patterns or danger-associated molecular patterns under physiological and pathological conditions. Inflammasomes are tightly regulated in normal cells, and dysregulation of these complexes is observed in various pathological conditions, especially inflammatory diseases and cancers. Epigenetic regulation has been suggested as a key mechanism in modulating inflammasome activity, and microRNAs (miRNAs) have been implicated in the post-transcriptional regulation of inflammasomes. Therefore, miRNA-mediated epigenetic regulation of inflammasomes in pathological conditions has received considerable attention, and current strategies for targeting inflammasomes have been shown to be effective in the treatment of diseases associated with inflammasome activation. This review summarizes recent studies suggesting the roles of miRNAs in the epigenetic control of inflammasomes and highlights the potential of miRNAs as a therapeutic tool for treating human diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, South Korea.
| |
Collapse
|
33
|
Yi YS. Roles of the Caspase-11 Non-Canonical Inflammasome in Rheumatic Diseases. Int J Mol Sci 2024; 25:2091. [PMID: 38396768 PMCID: PMC10888639 DOI: 10.3390/ijms25042091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that activate inflammatory signaling pathways. Inflammasomes comprise two major classes: canonical inflammasomes, which were discovered first and are activated in response to a variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and non-canonical inflammasomes, which were discovered recently and are only activated in response to intracellular lipopolysaccharide (LPS). Although a larger number of studies have successfully demonstrated that canonical inflammasomes, particularly the NLRP3 inflammasome, play roles in various rheumatic diseases, including rheumatoid arthritis (RA), infectious arthritis (IR), gouty arthritis (GA), osteoarthritis (OA), systemic lupus erythematosus (SLE), psoriatic arthritis (PA), ankylosing spondylitis (AS), and Sjögren's syndrome (SjS), the regulatory roles of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical inflammasomes, in these diseases are still largely unknown. Interestingly, an increasing number of studies have reported possible roles for non-canonical inflammasomes in the pathogenesis of various mouse models of rheumatic disease. This review comprehensively summarizes and discusses recent emerging studies demonstrating the regulatory roles of non-canonical inflammasomes, particularly focusing on the caspase-11 non-canonical inflammasome, in the pathogenesis and progression of various types of rheumatic diseases and provides new insights into strategies for developing potential therapeutics to prevent and treat rheumatic diseases as well as associated diseases by targeting non-canonical inflammasomes.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
34
|
Li Q, Zhang F, Wang H, Tong Y, Fu Y, Wu K, Li J, Wang C, Wang Z, Jia Y, Chen R, Wu Y, Cui R, Wu Y, Qi Y, Qu K, Liu C, Zhang J. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci 2024; 20:1413-1435. [PMID: 38385085 PMCID: PMC10878146 DOI: 10.7150/ijbs.91284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024] Open
Abstract
Caspase-11 detection of intracellular lipopolysaccharide mediates non-canonical pyroptosis, which could result in inflammatory damage and organ lesions in various diseases such as sepsis. Our research found that lactate from the microenvironment of acetaminophen-induced acute liver injury increased Caspase-11 levels, enhanced gasdermin D activation and accelerated macrophage pyroptosis, which lead to exacerbation of liver injury. Further experiments unveiled that lactate inhibits Caspase-11 ubiquitination by reducing its binding to NEDD4, a negative regulator of Caspase-11. We also identified that lactates regulated NEDD4 K33 lactylation, which inhibits protein interactions between Caspase-11 and NEDD4. Moreover, restraining lactylation reduces non-canonical pyroptosis in macrophages and ameliorates liver injury. Our work links lactate to the exquisite regulation of the non-canonical inflammasome, and provides a basis for targeting lactylation signaling to combat Caspase-11-mediated non-canonical pyroptosis and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Qinglin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fengping Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Hai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yingmu Tong
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Kunjin Wu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Jing Li
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Zi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yifan Jia
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Rui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Yun Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Kai Qu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Jingyao Zhang
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| |
Collapse
|
35
|
Akuma DC, Wodzanowski KA, Schwartz Wertman R, Exconde PM, Vázquez Marrero VR, Odunze CE, Grubaugh D, Shin S, Taabazuing C, Brodsky IE. Catalytic activity and autoprocessing of murine caspase-11 mediate noncanonical inflammasome assembly in response to cytosolic LPS. eLife 2024; 13:e83725. [PMID: 38231198 PMCID: PMC10794067 DOI: 10.7554/elife.83725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.
Collapse
Affiliation(s)
- Daniel C Akuma
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Patrick M Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Víctor R Vázquez Marrero
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | | | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Cornelius Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
36
|
Lei R, Yang C, Sun Y, Li D, Hao L, Li Y, Wu S, Li H, Lan C, Fang X. Turning cationic antimicrobial peptide KR-12 into self-assembled nanobiotics with potent bacterial killing and LPS neutralizing activities. NANOSCALE 2024; 16:887-902. [PMID: 38105768 DOI: 10.1039/d3nr05174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gram-negative sepsis has become a substantial and escalating global healthcare challenge due to the growing antibiotic resistance crisis and the sluggish development of new antibiotics. LL-37, a unique Cathelicidin species found in humans, exhibits a wide range of bioactive properties, including direct bactericidal effects, inflammation regulation, and LPS neutralization. KR-12, the smallest yet potent peptide fragment of LL-37, has been modified to create more effective antimicrobials. In this study, we designed two myristoylated derivatives of KR-12, referred to as Myr-KR-12N and Myr-KR-12C. These derivatives displayed remarkable ability to spontaneously assemble into nanoparticles when mixed with deionized water. Myristoylated KR-12 derivatives exhibited broad-spectrum and intensified bactericidal activity by disrupting bacterial cell membranes. In particular, Myr-KR-12N showed superior capability to rescue mice from lethal E. coli-induced sepsis in comparison with the conventional antibiotic meropenem. We also confirmed that the myristoylated KR-12 nanobiotic possesses significant LPS binding capacity and effectively reduces inflammation in vitro. In an in vivo context, Myr-KR-12N outperformed polymyxin B in rescuing mice from LPS-induced sepsis. Crucially, toxicological assessments revealed that neither Myr-KR-12N nor Myr-KR-12C nanobiotics induced meaningful hemolysis or caused damage to the liver and kidneys. Collectively, our study has yielded an innovative nanobiotic with dual capabilities of bactericidal action and LPS-neutralization, offering substantial promise for advancing the clinical translation of antimicrobial peptides and the development of novel antibiotics. This addresses the critical need for effective solutions to combat Gram-negative sepsis, a pressing global medical challenge.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chujun Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yaqi Sun
- China National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dejian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Liman Hao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yang Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Shuijing Wu
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Hui Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
37
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
38
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
39
|
Qian Y, Qian G, Ni H, Zhu D, Gu W, Cai X. Exploratory study on the mechanism of necrotic effect of nourishing cells in the context of genital tract infection in premature rupture of membranes. Medicine (Baltimore) 2023; 102:e36148. [PMID: 38115314 PMCID: PMC10727640 DOI: 10.1097/md.0000000000036148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
To explore the mechanism of necrotic effect of nourishing cells in the context of genital tract infection in premature rupture of membranes (PROM). One hundred eight patients with PROM treated at our hospital from June 2020 to June 2022 were selected as the PROM group. Simultaneously, 108 cases of normal full-term pregnant women were chosen as the control group. Western blot analysis was performed to measure the relative expression levels of cysteinyl aspartate specific proteinase-1 (Caspase-1), cysteinyl aspartate specific proteinase-3 (Caspase-3), nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), and interleukin (IL)-1β proteins, which are associated with necrosis of placental nourishing cells, in the placenta of both groups. TUNEL staining was used to detect the number of apoptotic placental nourishing cells. The differences in necrotic factors of placental nourishing cells were analyzed between full-term and preterm cases in the PROM group, as well as among patients with different genital tract infections. The apoptotic count of placental nourishing cells in the PROM group was 58.46 ± 11.26 cells/field, which was markedly higher than that of the control group (P < .05). The relative expression levels of the necrotic factors Caspase-1, Caspase-3, NLRP3, and IL-1β proteins in placental nourishing cells of the PROM group were 1.32 ± 0.26, 1.19 ± 0.30, 1.29 ± 0.28, and 1.23 ± 0.24, respectively. These values were significantly higher than those of the control group (P < .05). The relative expression levels of the necrotic factors Caspase-1, Caspase-3, NLRP3, and IL-1β proteins in placental nourishing cells were compared between full-term and preterm patients in the PROM group (P > .05). The relative expression levels of the necrotic factors Caspase-1, Caspase-3, NLRP3, and IL-1β proteins in placental nourishing cells were higher in patients with multiple genital tract infections compared to those with single infections or no infections in the PROM group (P < .05). PROM is associated with a significant upregulation of placental nourishing cell apoptosis and necrotic factors, including Caspase-1, Caspase-3, NLRP3, and IL-1β proteins. This upregulation is correlated with the presence of genital tract infections.
Collapse
Affiliation(s)
- Yunying Qian
- Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guiying Qian
- Department of Pharmacy, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haiyan Ni
- Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Danying Zhu
- Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weiqun Gu
- Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ximei Cai
- Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Ghait M, Duduskar SN, Rooney M, Häfner N, Reng L, Göhrig B, Reuken PA, Bloos F, Bauer M, Sponholz C, Bruns T, Rubio I. The non-canonical inflammasome activators Caspase-4 and Caspase-5 are differentially regulated during immunosuppression-associated organ damage. Front Immunol 2023; 14:1239474. [PMID: 38106412 PMCID: PMC10722270 DOI: 10.3389/fimmu.2023.1239474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The non-canonical inflammasome, which includes caspase-11 in mice and caspase-4 and caspase-5 in humans, is upregulated during inflammatory processes and activated in response to bacterial infections to carry out pyroptosis. Inadequate activity of the inflammasome has been associated with states of immunosuppression and immunopathological organ damage. However, the regulation of the receptors caspase-4 and caspase-5 during severe states of immunosuppression is largely not understood. We report that CASP4 and CASP5 are differentially regulated during acute-on-chronic liver failure and sepsis-associated immunosuppression, suggesting non-redundant functions in the inflammasome response to infection. While CASP5 remained upregulated and cleaved p20-GSDMD could be detected in sera from critically ill patients, CASP4 was downregulated in critically ill patients who exhibited features of immunosuppression and organ failure. Mechanistically, downregulation of CASP4 correlated with decreased gasdermin D levels and impaired interferon signaling, as reflected by decreased activity of the CASP4 transcriptional activators IRF1 and IRF2. Caspase-4 gene and protein expression inversely correlated with markers of organ dysfunction, including MELD and SOFA scores, and with GSDMD activity, illustrating the association of CASP4 levels with disease severity. Our results document the selective downregulation of the non-canonical inflammasome activator caspase-4 in the context of sepsis-associated immunosuppression and organ damage and provide new insights for the development of biomarkers or novel immunomodulatory therapies for the treatment of severe infections.
Collapse
Affiliation(s)
- Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital, Jena, Germany
| | - Laura Reng
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bianca Göhrig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
41
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
42
|
Wang H, Yan L, Liu L, Lu X, Chen Y, Zhang Q, Chen M, Cai L, Dai Z. A pyroptosis gene-based prognostic model for predicting survival in low-grade glioma. PeerJ 2023; 11:e16412. [PMID: 38025749 PMCID: PMC10652862 DOI: 10.7717/peerj.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Pyroptosis, a lytic form of programmed cell death initiated by inflammasomes, has been reported to be closely associated with tumor proliferation, invasion and metastasis. However, the roles of pyroptosis genes (PGs) in low-grade glioma (LGG) remain unclear. Methods We obtained information for 1,681 samples, including the mRNA expression profiles of LGGs and normal brain tissues and the relevant corresponding clinical information from two public datasets, TCGA and GTEx, and identified 45 differentially expressed pyroptosis genes (DEPGs). Among these DEPGs, nine hub pyroptosis genes (HPGs) were identified and used to construct a genetic risk scoring model. A total of 476 patients, selected as the training group, were divided into low-risk and high-risk groups according to the risk score. The area under the curve (AUC) values of the receiver operating characteristic (ROC) curves verified the accuracy of the model, and a nomogram combining the risk score and clinicopathological characteristics was used to predict the overall survival (OS) of LGG patients. In addition, a cohort from the Gene Expression Omnibus (GEO) database was selected as a validation group to verify the stability of the model. qRT-PCR was used to analyze the gene expression levels of nine HPGs in paracancerous and tumor tissues from 10 LGG patients. Results Survival analysis showed that, compared with patients in the low-risk group, patients in the high-risk group had a poorer prognosis. A risk score model combining PG expression levels with clinical features was considered an independent risk factor. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that immune-related genes were enriched among the DEPGs and that immune activity was increased in the high-risk group. Conclusion In summary, we successfully constructed a model to predict the prognosis of LGG patients, which will help to promote individualized treatment and provide potential new targets for immunotherapy.
Collapse
Affiliation(s)
- Hua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Yan
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiao Liu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhang’an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
43
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
44
|
Wu J, Cai J, Tang Y, Lu B. The noncanonical inflammasome-induced pyroptosis and septic shock. Semin Immunol 2023; 70:101844. [PMID: 37778179 DOI: 10.1016/j.smim.2023.101844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Junru Wu
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, PR China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, PR China.
| |
Collapse
|
45
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
46
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
48
|
Shao X, Liu L, Zhou Y, Zhong K, Gu J, Hu T, Yao Y, Zhou C, Chen W. High-fat diet promotes colitis-associated tumorigenesis by altering gut microbial butyrate metabolism. Int J Biol Sci 2023; 19:5004-5019. [PMID: 37781523 PMCID: PMC10539701 DOI: 10.7150/ijbs.86717] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Dietary fat intake is associated with an increased risk of colitis associated cancer (CAC). A high-fat diet (HFD) leads to systemic low-grade inflammation. The colon is believed to be the first organ suffering from inflammation caused by the infiltration of pro-inflammatory macrophages, and promotes CAC progression. We explored the role of HFD in driving CAC by altering gut microbial butyrate metabolism. Methods: Changes in the gut microbiota caused by HFD were investigated via HFD treatment or fecal microbiota transplantation (FMT). The underlying mechanisms were further explored by analyzing the role of gut microbiota, microbial butyrate metabolism, and NLRP3 inflammasome in colon tissues in a CAC mouse model. Results: HFD accelerated CAC progression in mice, and it could be reversed by broad-spectrum antibiotics (ABX). 16S-rRNA sequencing revealed that HFD inhibited the abundance of butyrate-producing bacteria in the gut. The level of short-chain fatty acids (SCFAs), especially butyrate, in the gut of mice treated with HFD was significantly reduced. In addition, treatment with exogenous butyrate reversed the M1 polarization of proinflammatory macrophages, aggravation of intestinal inflammation, and accelerated tumor growth induced by HFD; the NLRP3/Caspase-1 pathway activated by HFD in the colon was also significantly inhibited. In vitro, macrophages were treated with lipopolysaccharide combined with butyrate to detect the M1 polarization level and NLRP3/Caspase-1 pathway expression, and the results were consistent with those of the in vivo experiments. Conclusion: HFD drives colitis-associated tumorigenesis by inducing gut microbial dysbiosis and inhibiting butyrate metabolism to skew macrophage polarization. Exogenous butyrate is a feasible new treatment strategy for CAC, and has good prospect for clinical application.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215000, Jiangsu, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Kaiqiang Zhong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinrong Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
49
|
Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci 2023; 46:764-779. [PMID: 37500363 DOI: 10.1016/j.tins.2023.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Systemic inflammation, neurovascular dysfunction, and coagulopathy often occur concurrently in neuropathologies. Neutrophils and platelets have crucial synergistic roles in thromboinflammation and are increasingly suspected as effector cells contributing to the pathogenesis of neuroinflammatory diseases. In this review, we summarize the roles of platelet-neutrophil interactions in triggering complex pathophysiological events affecting the brain that may lead to the disruption of brain barriers, infiltration of toxic factors into the parenchyma, and amplification of neuroinflammation through the formation of neutrophil extracellular traps (NETs). We highlight the clinical significance of thromboinflammation in neurological disorders and examine the contributions of damage-associated molecular patterns (DAMPs) derived from platelets and neutrophils. These DAMPs originate from both infectious and non-infectious risk factors and contribute to the activation of inflammasomes during brain disorders. Finally, we identify knowledge gaps in the molecular mechanisms underlying neurodegenerative disease pathogenesis and emphasize the potential of interventions targeting platelets and neutrophils to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; INSERM UMRS 938, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei 11266, Taiwan; Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 42023 Saint-Étienne, France; University Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023 Saint-Etienne, France
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000, France; NeuroTMULille International Laboratory, University of Lille, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; NeuroTMULille International Laboratory, Taipei Medical University, Taipei 10031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Centre, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
50
|
Sun Y, Li J, Wu H, Zhao Z, Cong T, Li L, Zhang X, Yin S, Xiao Z. GABA B Receptor Activation Attenuates Neuronal Pyroptosis in Post-cardiac Arrest Brain Injury. Neuroscience 2023; 526:97-106. [PMID: 37352966 DOI: 10.1016/j.neuroscience.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023]
Abstract
Brain injury is a major cause of death and disability after cardiac arrest (CA). Previous studies have shown that activating GABAB receptors significantly improves neurological function after CA, but the mechanism of this neuronal protection of damaged neurons remains unclear. Thus, the present study aimed to investigate whether GABAB receptor activation protects against neuronal injury and to reveal the underlying protective mechanisms. In this study, rats underwent 10 min of asphyxia to induce CA, and SH-SY5Y cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to establish in vivo and in vitro models of hypoxic neuronal injury. Differential gene expression between CA rats and sham-operated rats was identified using RNA-seq. TUNEL and Nissl staining were used to evaluate cortical neuron damage, while Western blotting, qRT-PCR, and immunofluorescence assays were conducted to measure pyroptosis-related indicators. Furthermore, cellular models with high expression of caspase-11 were established to reveal the novel molecular mechanisms by which GABAB receptor activation exerts neuroprotective effects. Intriguingly, our results showed that caspase-11 and GSDMD were highly expressed in rats experiencing cardiac arrest. Specifically, GSDMD was expressed in neurons in the M1 area of the cerebral cortex. Moreover, activation of the GABAB receptor exerted a protective effect on neurons both in vivo and in vitro. Baclofen attenuated caspase-11 activation and neuronal pyroptosis after CA, and the anti-neuronal pyroptosis effect of baclofen was abolished by overexpression of caspase-11 in neuronal cells. In conclusion, GABAB receptor activation may play a neuroprotective role by alleviating neuronal pyroptosis through a mechanism involving caspase-11.
Collapse
Affiliation(s)
- Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Jinying Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Haikuo Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ziwei Zhao
- Department of Physiology, Basic Medicine College of Dalian Medical University, Dalian 116044, China
| | - Ting Cong
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Xiaonan Zhang
- Department of Physiology, Basic Medicine College of Dalian Medical University, Dalian 116044, China
| | - Shengming Yin
- Department of Physiology, Basic Medicine College of Dalian Medical University, Dalian 116044, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|