1
|
Wang X, Tang W, Zhao J, Ye Z, Xie H, Hewlett I. SARS-CoV-2 Infection Reactivates HIV-1 Replication From Latency in U1 Cells. J Cell Physiol 2025; 240:e70049. [PMID: 40349202 DOI: 10.1002/jcp.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
The global impact of COVID-19, caused by SARS-CoV-2, has infected millions, including those with HIV-1. However, it is unclear if SARS-CoV-2 affects HIV-1 reactivation from latency. Here, we used the U1 cell line to explore how SARS-CoV-2 infection affects HIV-1 reactivation from latency, employing real-time PCR assays and Western blot analysis. Our results show higher levels of HIV-1 RNA after SARS-CoV-2 infection. Importantly, we noticed enhanced reactivation of HIV-1 replication in cells infected with viruses carrying a deletion of amino acids R682, R683, A684 (RRAΔ) in the spike (S) protein, compared to infections with viruses carrying the wild-type S protein. This is involvement of host transcription factors like NFAT, NF-κB p65, Ap-1, and Sp-1, which facilitate HIV production via TCR-related pathways. Additionally, activation of p-TEFb pathways enhances transcription elongation, upregulates Jak/Stat pathways, leading to increased viral replication, while TLR pathways impact the host immune response. Furthermore, RRAΔ showed increased apoptotic activity through both extrinsic and intrinsic apoptotic signaling pathways compared to wild-type SARS-CoV-2. These indicate that SARS-CoV-2 infection could revive HIV-1 replication from latency. The deletion of amino acids R682R683A684 in the viral S protein might regulate further HIV-1 replication and apoptotic conditions, potentially benefiting HIV-1 survival.
Collapse
Affiliation(s)
- Xue Wang
- Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Weichun Tang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jiangqin Zhao
- Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Hang Xie
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Indira Hewlett
- Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Fisher BM, Cevaal PM, Roche M, Lewin SR. HIV Tat as a latency reversing agent: turning the tables on viral persistence. Front Immunol 2025; 16:1571151. [PMID: 40292298 PMCID: PMC12021871 DOI: 10.3389/fimmu.2025.1571151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The 'shock and kill' approach to an HIV cure involves the use of latency reversing agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells through virus induced cytolysis or immune mediated clearance. Most LRAs tested to date have been unable to overcome the blocks to transcription elongation and splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host factors and therefore have associated toxicities. Therefore, there remains a high need for HIV-specific LRAs that can also potently upregulate expression of multiply-spliced HIV RNA and viral protein. The HIV Transactivator of Transcription (Tat) protein plays an important role in viral replication - amplifying transcription from the viral promoter - but it is present at low to negligible levels in latently infected cells. As such, it has been hypothesized that providing Tat in trans could result in efficient HIV reactivation from latency. Recent studies exploring different types of Tat-based LRAs have used different nanoparticles for Tat delivery and describe potent, HIV-specific induction of multiply-spliced HIV RNA and protein ex vivo. However, there are several potential challenges to using Tat as a therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting cells, and challenges in activating truly transcriptionally silent viruses. Identifying ways to mitigate these challenges will be critical to developing effective Tat-based LRA approaches towards an HIV cure.
Collapse
Affiliation(s)
- Bridget M. Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paula M. Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- ATRACT Research Centre, Infectious and Inflammatory Diseases Theme, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Su J, Zhang J, Wang Q, Liu X, Wang S, Ruan Y, Li D. Multiparametric Immune Profiles and Their Potential Role in HIV-1 Disease Progression and Treatment. Pathogens 2025; 14:347. [PMID: 40333129 PMCID: PMC12030533 DOI: 10.3390/pathogens14040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Backgrounds: The rapid initiation of highly active anti-retroviral therapy (HAART) can control HIV-1 viremia and stabilize the long-term health of people living with HIV-1 (PLWH). Despite this, individuals who are diagnosed late and exhibit poor therapeutic efficacy still pose a great challenge to global HIV management. To address this, we conducted comprehensive multiparametric immune profiling and analyzed its association with disease progression and therapeutic efficacy. Methods: Multicolor flow cytometry was used to characterize the circulating immune cell composition and cellular phenotypes in 40 treatment-naive individuals (16 chronic, 24 newly diagnosed), 26 HAART-treated individuals, and 18 healthy controls. Comparative analyses of T cell subsets, immune activation markers, and viral load signatures were performed, followed by network construction. We carried out principal component analysis and displayed the data by dimensionality reduction. Results: Persistent immune activation, dysregulated regulatory immunity, and aberrant memory differentiation markers were identified in T cells of HIV-1-infected individuals and were associated with disease progression. Additionally, HAART-treated patients which did not fully restore CD4 T cells exhibited higher levels of activated markers, suggesting possible biomarkers of therapeutic efficacy. Conclusions: This study describes changes in immune cell profiles throughout HIV-1 disease progression and explores suitable laboratory predictors for future clinical and therapeutic settings by monitoring pathological immune cell events.
Collapse
Affiliation(s)
- Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Junjie Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Qianying Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Xiaojing Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| |
Collapse
|
4
|
Pascoe RD, Kim Y, Rhodes A, Ong J, Tumpach C, Gubser C, Chang JJ, McMahon JH, Lewin SR, Rasmussen TA. Targeting Ikaros and Aiolos with pomalidomide fails to reactivate or induce apoptosis of the latent HIV reservoir. J Virol 2025; 99:e0167624. [PMID: 39902962 PMCID: PMC11915836 DOI: 10.1128/jvi.01676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/12/2025] [Indexed: 02/06/2025] Open
Abstract
HIV persists in people living with HIV (PLHIV) on antiretroviral therapy (ART) in long-lived and proliferating latently infected CD4+ T cells that selectively express pro-survival proteins, including the zinc finger proteins, Ikaros and Aiolos. In this study, we investigated whether pomalidomide, an immunomodulatory agent that induces degradation of Ikaros and Aiolos, could increase the death of HIV-infected cells and/or reverse HIV latency. Using an in vitro model of CD4+ T cells infected with a green fluorescent protein (GFP) reporter virus, pomalidomide increased the expression of the pro-survival protein B cell lymphoma (Bcl)-2 and did not increase apoptosis of GFP+ HIV productively infected CD4+ T cells. Pomalidomide also increased the expression of CD155 and UL16-binding protein (ULBP) stress proteins on GFP+ HIV productively infected CD4+ T cells, but this did not translate to enhanced clearance following co-culture with a natural killer (NK) cell line. Using CD4+ T cells from PLHIV on ART, pomalidomide ex vivo activated memory CD4+ T cells resulting in elevated HLA-DR expression and induced CD4+ T cell proliferation but only in the presence of T cell receptor stimulation with anti-CD3 and anti-CD28. There was no effect on cell-associated HIV RNA or the frequency of intact HIV DNA. In conclusion, despite an increase in stress protein expression, promoting Ikaros and Aiolos degradation in CD4+ T cells using pomalidomide did not directly induce apoptosis of HIV-infected cells or induce HIV latency reversal.IMPORTANCEPeople living with HIV (PLHIV) require lifelong antiretroviral therapy (ART) due to the persistence of latently infected cells. The zinc finger proteins, Ikaros and Aiolos, have recently been implicated in promoting the persistence of latently infected cells. In this study, we investigated the effects of pomalidomide, an immunomodulatory imide drug that induces the degradation of Ikaros and Aiolos, on HIV latency reversal and death of infected cells. Using CD4+ T cells from people living with HIV on suppressive antiretroviral therapy, as well as an in vitro model of productive HIV infection, we found that pomalidomide induced T cell activation and expression of stress proteins but no evidence of latency reversal or selective death of infected cells.
Collapse
Affiliation(s)
- Rachel D. Pascoe
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jesslyn Ong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Jones JE, Gunderson CE, Wigdahl B, Nonnemacher MR. Impact of chromatin on HIV-1 latency: a multi-dimensional perspective. Epigenetics Chromatin 2025; 18:9. [PMID: 40055755 PMCID: PMC11889793 DOI: 10.1186/s13072-025-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that infects multiple immune cell types and integrates into host cell DNA termed provirus. Under antiretroviral control, provirus in cells is able to evade targeting by both host immune surveillance and antiretroviral drug regimens. Additionally, the provirus remains integrated for the life of the cell, and clonal expansion establishes a persistent reservoir. As host cells become quiescent following the acute stage of infection, the provirus also enters a latent state characterized by low levels of transcription and virion production. Proviral latency may last years or even decades, but stimuli such as immune activation, accumulation of viral proteins, and certain medications can trigger reactivation of proviral gene expression. Left untreated, this can lead to virema, development of pathogenic out comes, and even death as the immune system becomes weakened and dysregulated. Over the last few decades, the role of chromatin in both HIV-1 latency and reactivation has been characterized in-depth, and a number of host factors have been identified as key players in modifying the local (2D) chromatin environment of the provirus. Here, the impact of the 2D chromatin environment and its related factors are reviewed. Enzymes that catalyze the addition or removal of covalent groups from histone proteins, such as histone deacetylase complexes (HDACs) and methyltransferases (HMTs) are of particular interest, as they both alter the affinity of histones for proviral DNA and function to recruit other proteins that contribute to chromatin remodeling and gene expression from the provirus. More recently, advances in next-generation sequencing and imaging technology has enabled the study of how the higher-order (3D) chromatin environment relates to proviral latency, including the impacts of integration site and cell type. All together, these multi-dimensional factors regulate latency by influencing the degree of accessibility to the proviral DNA by transcription machinery. Finally, additional implications for therapeutics and functional studies are proposed and discussed.
Collapse
Affiliation(s)
- Joanna E Jones
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Chelsea E Gunderson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
6
|
Pardons M, Lambrechts L, Noppe Y, Termote L, De Braekeleer S, Vega J, Van Gulck E, Gerlo S, Vandekerckhove L. Blood and tissue HIV-1 reservoirs display plasticity and lack of compartmentalization in virally suppressed people. Nat Commun 2025; 16:2173. [PMID: 40038305 PMCID: PMC11880387 DOI: 10.1038/s41467-025-57332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Characterizing the HIV-1 reservoir in blood and tissues is crucial for the development of curative strategies. Using an HIV Tat mRNA-containing lipid nanoparticle (Tat-LNP) in combination with panobinostat, we show that p24+ cells from blood and lymph nodes exhibit distinct phenotypes. Blood p24+ cells are found in both central/transitional (TCM/TTM) and effector memory subsets, mostly lack CXCR5 expression and are enriched in GZMA+ cells. In contrast, most lymph node p24+ cells display a TCM/TTM phenotype, with approximately 50% expressing CXCR5 and nearly all lacking GZMA expression. Furthermore, germinal center T follicular helper cells do not appear to harbor the translation-competent reservoir in long-term suppressed individuals. Near full-length HIV-1 sequencing in longitudinal samples from matched blood, lymph nodes, and gut indicates that clones of infected cells, including those carrying an inducible provirus, persist and spread across various anatomical compartments. Finally, uniform genetic diversity across sites suggests the absence of ongoing replication in tissues under treatment.
Collapse
Affiliation(s)
- Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Liesbet Termote
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sofie De Braekeleer
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Jerel Vega
- Arcturus Therapeutics, 10628 Science Center Drive, Suite 250, San Diego, California, USA
| | - Ellen Van Gulck
- Johnson & Johnson Innovative Medicine, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Wu Z, Xie ZP, Cui XX, Sun XB, Zhao FY, Wang N, Li Y, Wang H, Zhang L, Shen J, Chen F, Sun H, He J. HIV and the gut microbiome: future research hotspots and trends. Front Microbiol 2025; 16:1466419. [PMID: 39990153 PMCID: PMC11844347 DOI: 10.3389/fmicb.2025.1466419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Background The use of highly active antiretroviral therapy has transformed AIDS into a chronic infectious disease, but issues of chronic inflammation and immune system activation persist. Modulating the gut microbiome of patients may improve this situation, yet the specific association mechanisms between HIV and the gut microbiome remain unclear. This study aims to explore the research hotspots and trends of the HIV and the gut microbiome, providing direction for future research. Methods We conducted a search of the Web of Science Core Collection database up to April 30, 2024 to retrieve articles related to the relationship between the HIV and the gut microbiome. The scientific achievements and research frontiers in this field were analyzed using CiteSpace, VOSviewer, and Bibliometrix statistical software. Results As of April 30, 2024, a total of 379 articles met the inclusion criteria. The number of publications in this field peaked in 2023, and the number of articles published after 2020 declined. The country with the highest number of publications was the United States (184 articles), and the institution with the most publications was the University of Colorado (USA) (21 articles). The author with the most publications was Routy Jean-Pierre (Canada) (14 articles). High-frequency keywords, aside from the key terms, included "HIV," "inflammation," "immune activation," "gut microbiota," and "translocation." Keyword burst results indicated that short-chain fatty acids, T cells and obesity might become the focus of future research. Conclusion The research hotspots in this field should prioritize examining the role of the primary gut microbiome metabolite, short-chain fatty acids, in reducing immune system activation and inflammation. Another emerging area of interest could be the investigation into the annual increase in obesity rates within this field. Furthermore, understanding the metabolic mechanisms of short-chain fatty acids in T cells is essential. Additionally, multi-omics analysis holds potential.
Collapse
Affiliation(s)
- Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Zhan-Peng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Xin-Xin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Xiang-Bin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Fang-Yi Zhao
- Medical School of Shihezi University, Shihezi, China
| | - Nuo Wang
- Medical School of Shihezi University, Shihezi, China
| | - Yu Li
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Haixia Wang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Li Zhang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Jing Shen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Fulei Chen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Haogang Sun
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Jia He
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| |
Collapse
|
8
|
Chen W, Berkhout B, Pasternak AO. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr HIV/AIDS Rep 2025; 22:15. [PMID: 39903363 PMCID: PMC11794352 DOI: 10.1007/s11904-025-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist in various cell types and tissues and reignite active replication if therapy is stopped. Persistence of the viral reservoirs in people with HIV-1 (PWH) is the main obstacle to achieving a cure. Identification and characterization of cellular and tissue HIV-1 reservoirs is thus central to the cure research. Here, we discuss emerging insights into the phenotype of HIV-1 reservoir cells. RECENT FINDINGS HIV-1 persists in multiple tissues, anatomic locations, and cell types. Although contributions of different CD4 + T-cell subsets to the HIV-1 reservoir are not equal, all subsets harbor a part of the viral reservoir. A number of putative cellular markers of the HIV-1 reservoir have been proposed, such as immune checkpoint molecules, integrins, and pro-survival factors. CD32a expression was shown to be associated with a very prominent enrichment in HIV-1 DNA, although this finding has been challenged. Recent technological advances allow unbiased single-cell phenotypic analyses of cells harbouring total or intact HIV-1 proviruses. A number of phenotypic markers have been reported by several independent studies to be enriched on HIV-1 reservoir cells. Expression of some of these markers could be mechanistically linked to the reservoir persistence, as they could for instance shield the reservoir cells from the immune recognition or promote their survival. However, so far no single phenotypic marker, or combination of markers, can effectively distinguish HIV-infected from uninfected cells or identify all reservoir cells.
Collapse
Affiliation(s)
- Wenxuan Chen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Li MY, Jiang J, Li JG, Niu H, Ying YL, Tian R, Long YT. Nanopore approaches for single-molecule temporal omics: promises and challenges. Nat Methods 2025; 22:241-253. [PMID: 39558099 DOI: 10.1038/s41592-024-02492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/18/2024] [Indexed: 11/20/2024]
Abstract
The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.
Collapse
Affiliation(s)
- Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Jie Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jun-Ge Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongyan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Man S, Jansen J, Kroeze S, Geijtenbeek TBH, Kootstra NA. Transcriptomic HIV-1 reservoir profiling reveals a role for mitochondrial functionality in HIV-1 latency. PLoS Pathog 2025; 21:e1012822. [PMID: 39792798 PMCID: PMC11723532 DOI: 10.1371/journal.ppat.1012822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies. This flow-FISH method was employed to isolate CD4+ T cells expressing abortive or elongated HIV-1 transcripts from five ART-naïve PWH for transcriptomic analysis by 3' RNA sequencing. Supervised cluster analysis identified several differentially expressed mitochondrial genes in infected CD4+ T cells with abortive HIV-1 transcripts compared to cells containing elongated HIV-1 transcripts. Notably, enhancing mitochondrial function induced HIV-1 transcription in PBMC from PWH. Our data strongly suggests that cellular metabolism is involved in maintaining HIV-1 latency and show that improving mitochondrial functions induces HIV-1 transcriptional activity in PWH. These findings underline the relevance of metabolic regulation in HIV-1 infection, and support the development of strategies modulating immunometabolism to target viral latency.
Collapse
Affiliation(s)
- Shirley Man
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Jade Jansen
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Stefanie Kroeze
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| |
Collapse
|
11
|
Murzin AI, Elfimov KA, Gashnikova NM. The Proviral Reservoirs of Human Immunodeficiency Virus (HIV) Infection. Pathogens 2024; 14:15. [PMID: 39860976 PMCID: PMC11768375 DOI: 10.3390/pathogens14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction. If treatment is not effective enough or is interrupted, the proviral reservoir can reactivate. Early initiation of ART improves the prognosis of the course of HIV infection, which is explained by the reduction in the proviral reservoir pool observed in the early stages of the disease. Different HIV subtypes present differences in the number of latent reservoirs, as determined by structural and functional differences. Unique signatures of patients with HIV, such as elite controllers, have control over viral replication and can be said to have achieved a functional cure for HIV infection. Uncovering the causes of this phenomenon will bring humanity closer to curing HIV infection, potential approaches to which include stem cell transplantation, clustered regularly interspaced short palindromic repeats (CRISPR)/cas9, "Shock and kill", "Block and lock", and the application of broad-spectrum neutralizing antibodies (bNAbs).
Collapse
Affiliation(s)
- Andrey I. Murzin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Russia; (K.A.E.); (N.M.G.)
| | | | | |
Collapse
|
12
|
Wei Y, Ma HK, Wong ME, Papasavvas E, Konnikova L, Tebas P, Morgenstern R, Montaner LJ, Ho YC. BACH2-driven tissue resident memory programs promote HIV-1 persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628794. [PMID: 39763845 PMCID: PMC11702684 DOI: 10.1101/2024.12.16.628794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors. BACH2 was the leading transcription factor that shaped gut tissue resident memory T cells (TRMs) into long-lived memory with restrained interferon-induced effector function. We found that HIV-1-infected cells were enriched in TRMs (80.8%). HIV-1-infected cells had increased BACH2 transcription factor accessibility, TRM (CD49a, CD69, CD103) and survival (IL7R) gene expression, and Th17 polarization (RORC, CCR6). In vitro gut CD4+ T cell infection revealed preferential infection and persistence of HIV-1 in CCR6+ TRMs. Overall, we found BACH2-driven TRM program promotes HIV-1 persistence and BACH2 as a new therapeutic target.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haocong Katherine Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Michelle E. Wong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | - Liza Konnikova
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Pablo Tebas
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Ricardo Morgenstern
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
13
|
Yang X, Zhen C, Huang H, Jiao Y, Fan X, Zhang C, Song J, Wang S, Zhou C, Yang X, Yuan J, Zhang J, Xu R, Wang FS. Implications of accumulation of clonally expanded and senescent CD4 +GNLY + T cells in immunological non-responders of HIV-1 infection. Emerg Microbes Infect 2024; 13:2396868. [PMID: 39239709 PMCID: PMC11441045 DOI: 10.1080/22221751.2024.2396868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Increased CD4+GNLY+ T cells have been confirmed to be inversely associated with CD4+ T cell count in immunological non-responders (INRs), however, the underlying mechanisms are unknown. This study aimed to elucidate the characteristics of CD4+GNLY+ T cells and their relationship with immune restoration. Single-cell RNA sequencing, single-cell TCR sequencing, and flow cytometry were used to analyze the frequency, phenotypes, and function of CD4+GNLY+ T cells. Moreover, Enzyme linked immunosorbent assay was performed to detect plasma cytokines production in patients. CD4+GNLY+ T cells were found to be highly clonally expanded, characterized by higher levels of cytotoxicity, senescence, P24, and HIV-1 DNA than CD4+GNLY- T cells. Additionally, the frequency of CD4+GNLY+ T cells increased after ART, and further increased in INRs, and were positively associated with the antiretroviral therapy duration in INR. Furthermore, increased IL-15 levels in INRs positively correlated with the frequency and senescence of CD4+GNLY+ T cells, suggesting that CD4+GNLY+ T cells may provide new insights for understanding the poor immune reconstitution of INRs. In conclusion, increased, highly clonally expanded, and senescent CD4+GNLY+ T cells may contribute to poor immune reconstitution in HIV-1 infection.
Collapse
Affiliation(s)
- Xiuhan Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Huihuang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Yanmei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Songshan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chunbao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - XinXin Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinhong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiyuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Ruonan Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Fu-Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Semenova L, Wang Y, Falcinelli S, Archin N, Cooper-Volkheimer AD, Margolis DM, Goonetilleke N, Murdoch DM, Rudin CD, Browne EP. Machine learning approaches identify immunologic signatures of total and intact HIV DNA during long-term antiretroviral therapy. eLife 2024; 13:RP94899. [PMID: 39250423 PMCID: PMC11383529 DOI: 10.7554/elife.94899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning (ML) approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A leave-one-covariate-out inference approach identified specific HIV reservoir and clinical-demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical-demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, ML algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA . The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.
Collapse
Affiliation(s)
| | - Yingfan Wang
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Shane Falcinelli
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
| | - Nancie Archin
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| | | | - David M Margolis
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| | - Nilu Goonetilleke
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
| | | | - Cynthia D Rudin
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Edward P Browne
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| |
Collapse
|
15
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. J Exp Med 2024; 221:e20240391. [PMID: 39141127 PMCID: PMC11323366 DOI: 10.1084/jem.20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Chica and Heinz Schaller (CHS) Research Group, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
16
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
17
|
Zaman F, Smith ML, Balagopal A, Durand CM, Redd AD, Tobian AAR. Spatial technologies to evaluate the HIV-1 reservoir and its microenvironment in the lymph node. mBio 2024; 15:e0190924. [PMID: 39058091 PMCID: PMC11324018 DOI: 10.1128/mbio.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The presence of the HIV-1 reservoir, a group of immune cells that contain intact, integrated, and replication-competent proviruses, is a major challenge to cure HIV-1. HIV-1 reservoir cells are largely unaffected by the cytopathic effects of viruses, antiviral immune responses, or antiretroviral therapy (ART). The HIV-1 reservoir is seeded early during HIV-1 infection and augmented during active viral replication. CD4+ T cells are the primary target for HIV-1 infection, and recent studies suggest that memory T follicular helper cells within the lymph node, more precisely in the B cell follicle, harbor integrated provirus, which contribute to viral rebound upon ART discontinuation. The B cell follicle, more specifically the germinal center, possesses a unique environment because of its distinct property of being partly immune privileged, potentially allowing HIV-1-infected cells within the lymph nodes to be protected from CD8+ T cells. This modified immune response in the germinal center of the follicle is potentially explained by the exclusion of CD8+ T cells and the presence of T regulatory cells at the junction of the follicle and extrafollicular region. The proviral makeup of HIV-1-infected cells is similar in lymph nodes and blood, suggesting trafficking between these compartments. Little is known about the cell-to-cell interactions, microenvironment of HIV-1-infected cells in the follicle, and trafficking between the lymph node follicle and other body compartments. Applying a spatiotemporal approach that integrates genomics, transcriptomics, and proteomics to investigate the HIV-1 reservoir and its neighboring cells in the lymph node has promising potential for informing HIV-1 cure efforts.
Collapse
Affiliation(s)
- Fatima Zaman
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
| | - Melissa L. Smith
- Department of
Biochemistry and Molecular Genetics, University of Louisville School of
Medicine, Louisville,
Kentucky, USA
| | - Ashwin Balagopal
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Christine M. Durand
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Andrew D. Redd
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
- Laboratory of
Immunoregulation, National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda, Maryland, USA
- Institute of
Infectious Disease and Molecular Medicine, University of Cape
Town, Cape Town,
South Africa
| | - Aaron A. R. Tobian
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| |
Collapse
|
18
|
Varco-Merth B, Chaunzwa M, Duell DM, Marenco A, Goodwin W, Dannay R, Nekorchuk M, Shao D, Busman-Sahay K, Fennessey CM, Silipino L, Hull M, Bosche WJ, Fast R, Oswald K, Shoemaker R, Bochart R, MacAllister R, Labriola CS, Smedley JV, Axthelm MK, Davenport MP, Edlefsen PT, Estes JD, Keele BF, Lifson JD, Lewin SR, Picker LJ, Okoye AA. Impact of alemtuzumab-mediated lymphocyte depletion on SIV reservoir establishment and persistence. PLoS Pathog 2024; 20:e1012496. [PMID: 39173097 PMCID: PMC11373844 DOI: 10.1371/journal.ppat.1012496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Persistence of the rebound-competent viral reservoir (RCVR) within the CD4+ T cell compartment of people living with HIV remains a major barrier to HIV cure. Here, we determined the effects of the pan-lymphocyte-depleting monoclonal antibody (mAb) alemtuzumab on the RCVR in SIVmac239-infected rhesus macaques (RM) receiving antiretroviral therapy (ART). Alemtuzumab administered during chronic ART or at the time of ART initiation induced >95% depletion of circulating CD4+ T cells in peripheral blood and substantial CD4+ T cell depletion in lymph nodes. However, treatment was followed by proliferation and reconstitution of CD4+ T cells in blood, and despite ongoing ART, levels of cell-associated SIV DNA in blood and lymphoid tissues were not substantially different between alemtuzumab-treated and control RM after immune cell reconstitution, irrespective of the time of alemtuzumab treatment. Upon ART cessation, 19 of 22 alemtuzumab-treated RM and 13 of 13 controls rebounded with no difference in the time to rebound between treatment groups. Time to rebound and reactivation rate was associated with plasma viral loads (pVLs) at time of ART initiation, suggesting lymphocyte depletion had no durable impact on the RCVR. However, 3 alemtuzumab-treated RM that had lowest levels of pre-ART viremia, failed to rebound after ART withdrawal, in contrast to controls with similar levels of SIV replication. These observations suggest that alemtuzumab therapy has little to no ability to reduce well-established RCVRs but may facilitate RCVR destabilization when pre-ART virus levels are particularly low.
Collapse
Affiliation(s)
- Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Morgan Chaunzwa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - William Goodwin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rachel Dannay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Danica Shao
- Fred Hutchinson Cancer Research Center, Seattle, Washington State, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rachele Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rhonda MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul T. Edlefsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington State, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
19
|
Vanpouille C, Brichacek B, Pushkarsky T, Dubrovsky L, Fitzgerald W, Mukhamedova N, Garcia‐Hernandez S, Matthies D, Popratiloff A, Sviridov D, Margolis L, Bukrinsky M. HIV-1 Nef is carried on the surface of extracellular vesicles. J Extracell Vesicles 2024; 13:e12478. [PMID: 39016173 PMCID: PMC11252832 DOI: 10.1002/jev2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Extracellular vesicles (EVs) serve as pivotal mediators of intercellular communication in both health and disease, delivering biologically active molecules from vesicle-producing cells to recipient cells. In the context of HIV infection, EVs have been shown to carry the viral protein Nef, a key pathogenic factor associated with HIV-related co-morbidities. Despite this recognition, the specific localisation of Nef within the vesicles has remained elusive. This study addresses this critical knowledge gap by investigating Nef-containing EVs. Less than 1% of the total released Nef was associated with EVs; most Nef existed as free protein released by damaged cells. Nevertheless, activity of EV-associated Nef in downregulating the major cholesterol transporter ABCA1, a critical aspect linked to the pathogenic effects of Nef, was comparable to that of free Nef present in the supernatant. Through a series of biochemical and microscopic assays, we demonstrate that the majority of EV-associated Nef molecules are localised on the external surface of the vesicles. This distinctive distribution prompts the consideration of Nef-containing EVs as potential targets for immunotherapeutic interventions aimed at preventing or treating HIV-associated co-morbidities. In conclusion, our results shed light on the localisation and functional activity of Nef within EVs, providing valuable insights for the development of targeted immunotherapies to mitigate the impact of HIV-associated co-morbidities.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Beda Brichacek
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | | | - Sofia Garcia‐Hernandez
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Anastas Popratiloff
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Dmitri Sviridov
- Baker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
- Faculty of Natural Sciences and MedicineIlia State UniversityTbilisiRepublic of Georgia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
20
|
Coelho J, Roush SM, Xu AM, Puranam K, Mponda M, Kasonkanji E, Mulenga M, Tomoka T, Galeotti J, Brownlee A, Ghadially H, Damania B, Painschab M, Merchant A, Gopal S, Fedoriw Y. HIV and prior exposure to antiretroviral therapy alter tumour composition and tumour: T-cell associations in diffuse large B-cell lymphoma. Br J Haematol 2024; 205:194-206. [PMID: 38769021 PMCID: PMC11245366 DOI: 10.1111/bjh.19531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma worldwide, accounting for up to 40% of new non-Hodgkin Lymphoma (NHL) globally. People living with HIV are up to 17 times more likely to develop NHL, and as such, DLBCL is the leading cause of cancer death in this high-risk population. While histologically indistinguishable, HIV-associated (HIV+) and HIV-negative (HIV-) DLBCL are molecularly distinct, and biological differences may have implications for the development of future therapeutic interventions. Further, the impact of immunologic differences in people with HIV, including preceding ART, remains largely unknown. Here, we investigate the impact of HIV infection and ART exposure on the clinical features of DLBCL and T-cell immune response by performing imaging mass cytometry on our unique patient cohort in Malawi. In this cohort, HIV infection is positively prognostic, and HIV+/ART-naïve patients have the best outcomes. No established biomarkers other than Ki67 are associated with HIV or ART status, and the only tumour-intrinsic biomarkers that remain prognostic are MYC and MYC/BCL2 protein co-expression. Finally, TCR clonality is associated with distinct tumour-T cell interactions by HIV/ART status, indicating differential anti-tumour immune responses. We demonstrate previously undescribed HIV and ART-related differences in the DLBCL tumour microenvironment.
Collapse
Affiliation(s)
- Jenny Coelho
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina (UNC), Chapel Hill, NC, USA
| | - Sophia M. Roush
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina (UNC), Chapel Hill, NC, USA
| | - Alexander M. Xu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Marriam Mponda
- UNC Project Malawi, Lilongwe, Malawi
- University of Malawi College of Medicine, Lilongwe, Malawi
| | - Edwards Kasonkanji
- UNC Project Malawi, Lilongwe, Malawi
- University of Malawi College of Medicine, Lilongwe, Malawi
| | - Maurice Mulenga
- UNC Project Malawi, Lilongwe, Malawi
- University of Malawi College of Medicine, Lilongwe, Malawi
| | - Tamiwe Tomoka
- UNC Project Malawi, Lilongwe, Malawi
- University of Malawi College of Medicine, Lilongwe, Malawi
| | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina (UNC), Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Amy Brownlee
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina (UNC), Chapel Hill, NC, USA
| | - Hormas Ghadially
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Lilongwe, Malawi
| | - Blossom Damania
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA
| | - Matthew Painschab
- UNC Project Malawi, Lilongwe, Malawi
- University of Malawi College of Medicine, Lilongwe, Malawi
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Division of Hematology, Department of Medicine, UNC, Chapel Hill, NC
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Satish Gopal
- National Cancer Institute Center for Global Health, Rockville, MD, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina (UNC), Chapel Hill, NC, USA
- UNC Project Malawi, Lilongwe, Malawi
- University of Malawi College of Medicine, Lilongwe, Malawi
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Semenova L, Wang Y, Falcinelli S, Archin N, Cooper-Volkheimer AD, Margolis DM, Goonetilleke N, Murdoch DM, Rudin CD, Browne EP. Machine learning approaches identify immunologic signatures of total and intact HIV DNA during long-term antiretroviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567386. [PMID: 38014340 PMCID: PMC10680759 DOI: 10.1101/2023.11.16.567386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A Leave-One-Covariate-Out (LOCO) inference approach identified specific HIV reservoir and clinical-demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical-demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, machine learning algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA. The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.
Collapse
|
22
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
Ashokkumar M, Mei W, Peterson JJ, Harigaya Y, Murdoch DM, Margolis DM, Kornfein C, Oesterling A, Guo Z, Rudin CD, Jiang Y, Browne EP. Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae003. [PMID: 38902848 PMCID: PMC11189801 DOI: 10.1093/gpbjnl/qzae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 06/22/2024]
Abstract
Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jackson J Peterson
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb Kornfein
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Alex Oesterling
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Zhicheng Guo
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Cynthia D Rudin
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Yuchao Jiang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Edward P Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Hasler MF, Speck RF, Kadzioch NP. Humanized mice for studying HIV latency and potentially its eradication. Curr Opin HIV AIDS 2024; 19:157-167. [PMID: 38547338 DOI: 10.1097/coh.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF THE REVIEW The quest for an HIV cure faces a formidable challenge: the persistent presence of latent viral infections within the cells and tissues of infected individuals. This review provides a thorough examination of discussions surrounding HIV latency, the use of humanized mouse models, and strategies aimed at eliminating the latent HIV reservoir. It explores the hurdles and advancements in understanding HIV pathogenesis, mainly focusing on establishing latent reservoirs in CD4 + T cells and macrophages. Introducing the concepts of functional and sterile cures, the review underscores the indispensable role of humanized mouse models in HIV research, offering crucial insights into the efficacy of cART and the ongoing pursuit of an HIV cure. RECENT FINDINGS Here, we highlight studies investigating molecular mechanisms and pathogenesis related to HIV latency in humanized mice and discuss novel strategies for eradicating latent HIV. Emphasizing the importance of analytical cART interruption in humanized mouse studies to gauge its impact on the latent reservoir accurately, the review underlines the ongoing progress and challenges in harnessing humanized mouse models for HIV research. SUMMARY This review suggests that humanized mice models provide valuable insights into HIV latency and potential eradication strategies, contributing significantly to the quest for an HIV cure.
Collapse
Affiliation(s)
- Moa F Hasler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
25
|
Nguyen K, Karn J. The sounds of silencing: dynamic epigenetic control of HIV latency. Curr Opin HIV AIDS 2024; 19:102-109. [PMID: 38547337 PMCID: PMC10990033 DOI: 10.1097/coh.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW This review highlights advances in understanding the epigenetic control mechanisms that regulate HIV-1 latency mechanisms in T-cells and microglial cells and describes the potential of current therapeutic approaches targeting the epigenetic machinery to eliminate or block the HIV-1 latent reservoir. RECENT FINDINGS Large-scale unbiased CRISPR-Cas9 library-based screenings, coupled with biochemical studies, have comprehensively identified the epigenetic factors pivotal in regulating HIV-1 latency, paving the way for potential novel targets in therapeutic development. These studies also highlight how the bivalency observed at the HIV-1 5'LTR primes latent proviruses for rapid reactivation. SUMMARY The HIV-1 latent is established very early during infection, and its persistence is the major obstacle to achieving an HIV-1 cure. Here, we present a succinct summary of the latest research findings, shedding light on the pivotal roles played by host epigenetic machinery in the control of HIV-1 latency. Newly uncovered mechanisms permitting rapid reversal of epigenetic restrictions upon viral reactivation highlight the formidable challenges of achieving enduring and irreversible epigenetic silencing of HIV-1.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
26
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591331. [PMID: 38746186 PMCID: PMC11092494 DOI: 10.1101/2024.04.26.591331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
- Chica and Heinz Schaller (CHS) Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
27
|
Wang M, Yoon J, Reisert H, Das B, Orlinick B, Chiarella J, Halvas EK, Mellors J, Pang AP, Barakat LA, Fikrig M, Cyktor J, Kluger Y, Spudich S, Corley MJ, Farhadian SF. HIV-1-infected T cell clones are shared across cerebrospinal fluid and blood during ART. JCI Insight 2024; 9:e176208. [PMID: 38587074 PMCID: PMC11128194 DOI: 10.1172/jci.insight.176208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.
Collapse
Affiliation(s)
- Meng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | - Jennifer Chiarella
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina P.S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | | | | | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Shelli F. Farhadian
- Section of Infectious Diseases, and
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Roux H, Chomont N. Measuring Human Immunodeficiency Virus Reservoirs: Do We Need to Choose Between Quantity and Quality? J Infect Dis 2024; 229:635-643. [PMID: 37665978 PMCID: PMC10938203 DOI: 10.1093/infdis/jiad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
The persistence of latent viral genomes in people receiving antiretroviral therapy (ART) is the main obstacle to a cure for human immunodeficiency virus (HIV) infection. Viral reservoirs can be defined as cells harboring HIV genomes that have the ability to produce infectious virions. Precise quantification of the cellular reservoirs of HIV is challenging because these cells are rare, heterogeneous, and outnumbered by a larger number of cells carrying defective genomes. In addition, measuring the inducibility of these proviruses requires functional assays and remains technically difficult. The recent development of single-cell and single-viral genome approaches revealed additional layers of complexity: the cell subsets that harbor proviruses are heterogeneous and their ability to be induced is variable. A substantial fraction of intact HIV genomes may be permanently silenced after years of ART, revealing the underappreciated importance of induction assays. As such, a simple approach that would assess simultaneously the genetic intactness and the inducibility of the reservoir is still lacking. In this study, we review recent advances in the development of methods to quantify and characterize persistently infected cells, and we discuss how these findings can inform the design of future assays aimed at measuring the size of the intact and inducible HIV reservoir.
Collapse
Affiliation(s)
- Hélène Roux
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The complex nature and distribution of the HIV reservoir in tissue of people with HIV remains one of the major obstacles to achieve the elimination of HIV persistence. Challenges include the tissue-specific states of latency and viral persistence, which translates into high levels of reservoir heterogeneity. Moreover, the best strategies to reach and eliminate these reservoirs may differ based on the intrinsic characteristics of the cellular and anatomical reservoir to reach. RECENT FINDINGS While major focus has been undertaken for lymphoid tissues and follicular T helper cells, evidence of viral persistence in HIV and non-HIV antigen-specific CD4 + T cells and macrophages resident in multiple tissues providing long-term protection presents new challenges in the quest for an HIV cure. Considering the microenvironments where these cellular reservoirs persist opens new venues for the delivery of drugs and immunotherapies to target these niches. New tools, such as single-cell RNA sequencing, CRISPR screenings, mRNA technology or tissue organoids are quickly developing and providing detailed information about the complex nature of the tissue reservoirs. SUMMARY Targeting persistence in tissue reservoirs represents a complex but essential step towards achieving HIV cure. Combinatorial strategies, particularly during the early phases of infection to impact initial reservoirs, capable of reaching and reactivating multiple long-lived reservoirs in the body may lead the path.
Collapse
Affiliation(s)
- Daan K J Pieren
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | |
Collapse
|
30
|
Zhang X, Hu Y, Vandenhoudt RE, Yan C, Marconi VC, Cohen MH, Wang Z, Justice AC, Aouizerat BE, Xu K. Computationally inferred cell-type specific epigenome-wide DNA methylation analysis unveils distinct methylation patterns among immune cells for HIV infection in three cohorts. PLoS Pathog 2024; 20:e1012063. [PMID: 38466776 PMCID: PMC10957090 DOI: 10.1371/journal.ppat.1012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/21/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Ying Hu
- Center for Biomedical Information and Information Technology, National Cancer Institute, Rockville, Maryland, United States of America
| | - Ral E. Vandenhoudt
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Chunhua Yan
- Center for Biomedical Information and Information Technology, National Cancer Institute, Rockville, Maryland, United States of America
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine and Department of Global Health, Rollins School of Public Health, Emory University, Georgia, United States of America
- Atlanta Veterans Affairs Healthcare System, Decatur, Georgia, United States of America
| | - Mardge H. Cohen
- Department of Medicine, Stroger Hospital of Cook County, Chicago, Illinois, United States of America
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Amy C. Justice
- VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Bradley E. Aouizerat
- Translational Research Center, College of Dentistry, New York University, New York, New York, United States of America
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, New York, United States of America
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
31
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Yoon H, Dean LS, Jiyarom B, Khadka VS, Deng Y, Nerurkar VR, Chow DC, Shikuma CM, Devendra G, Koh Y, Park J. Single-cell RNA sequencing reveals characteristics of myeloid cells in post-acute sequelae of SARS-CoV-2 patients with persistent respiratory symptoms. Front Immunol 2024; 14:1268510. [PMID: 38259488 PMCID: PMC10800799 DOI: 10.3389/fimmu.2023.1268510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complications in COVID-19 infection remains unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequelae of SARS-CoV-2 infection (PASC) with persistent pulmonary symptoms. The dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing (scRNA-seq) to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from a participant naïve to SARS-CoV-2 (Control) (n=1) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC) (n=2). After integrating scRNA-seq data with a naïve participant from a published dataset, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/CD16+monocytes, and dendritic cells) was increased in PPASC (n=2) compared to controls (n=2). MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis-related (VEGF, WNT, and SMAD) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. Further comparison of PPASC with scRNA-seq data with Severe COVID-19 (n=4) data demonstrated enrichment of fibrotic transcriptional signatures. In PPASC, we observed interactive VEGF ligand-receptor pairs among MLCs, and network modules in CD14+ (cluster 4) and CD16+ (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID-19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS-CoV-2 naïve samples. Conclusion Analysis of a small scRNA-seq dataset demonstrated alterations in the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests a potential role in PPASC development.
Collapse
Affiliation(s)
- Hyundong Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Logan S. Dean
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Vivek R. Nerurkar
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Dominic C. Chow
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care, Queen’s Medical Center, Honolulu, HI, United States
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Juwon Park
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| |
Collapse
|
33
|
Angamuthu D, Vivekanandan S, Hanna LE. Experimental models for HIV latency and molecular tools for reservoir quantification-an update. Clin Microbiol Rev 2023; 36:e0001323. [PMID: 37966222 PMCID: PMC10732067 DOI: 10.1128/cmr.00013-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
A major impediment for HIV cure is the ability of the virus to integrate its genome in the form of replication-competent proviral DNA into the cellular genome of the host and remain transcriptionally silent and hidden from the host's immune defense mechanisms in latent reservoir cells. These latent reservoirs are highly heterogeneous, long-lived cells that are capable of reactivating to restore the viremic stage in virally suppressed individuals upon treatment interruption, thus necessitating life-long antiretroviral treatment. Latency reversal has become one of the most explored therapeutic approaches for eliminating HIV reservoirs and effecting HIV cure. Various aspects governing the establishment, maintenance, and reversal of HIV latency continue to be an enigma and warrant further research. Quantifying the size of the latent reservoir pool is also a challenge as these cells are very few in number and cannot be easily differentiated from uninfected cells. This article provides a comprehensive review of the in vitro and in vivo models currently available for studying HIV latency as well as the recently developed molecular tools for detection and quantification of latent viral reservoirs.
Collapse
Affiliation(s)
- Divyadarshini Angamuthu
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Sandhya Vivekanandan
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Mo Y, Yue M, Yim LY, Zhou R, Yu C, Peng Q, Zhou Y, Luk TY, Lui GCY, Huang H, Lim CYH, Wang H, Liu L, Sun H, Wang J, Song Y, Chen Z. Nicotinamide mononucleotide impacts HIV-1 infection by modulating immune activation in T lymphocytes and humanized mice. EBioMedicine 2023; 98:104877. [PMID: 37980794 PMCID: PMC10694053 DOI: 10.1016/j.ebiom.2023.104877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND HIV-1-associated immune activation drives CD4+ T cell depletion and the development of acquired immunodeficiency syndrome. We aimed to determine the role of nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD) co-enzyme, in CD4+ T cell modulation during HIV-1 infection. METHODS We examined HIV-1 integrated DNA or transcribed RNA, intracellular p24 protein, and T cell activation markers in CD4+ T cells including in vitro HIV-1-infected cells, reactivated patient-derived cells, and in HIV-1-infected humanized mice, under NMN treatment. RNA-seq and CyTOF analyses were used for investigating the effect of NMN on CD4+ T cells. FINDINGS We found that NMN increased the intracellular NAD amount, resulting in suppressed HIV-1 p24 production and proliferation in infected CD4+ T cells, especially in activated CD25+CD4+ T cells. NMN also inhibited CD25 expression on reactivated resting CD4+ T cells derived from cART-treated people living with HIV-1 (PLWH). In HIV-1-infected humanized mice, the frequency of CD4+ T cells was reconstituted significantly by combined cART and NMN treatment as compared with cART or NMN alone, which correlated with suppressed hyperactivation of CD4+ T cells. INTERPRETATION Our results highlight the suppressive role of NMN in CD4+ T cell activation during HIV-1 infection. It warrants future clinical investigation of NMN as a potential treatment in combination with cART in PLWH. FUNDING This work was supported by the Hong Kong Research Grants Council Theme-Based Research Scheme (T11-706/18-N), University Research Committee of The University of Hong Kong, the Collaborative Research with GeneHarbor (Hong Kong) Biotechnologies Limited and National Key R&D Program of China (Grant2021YFC2301900).
Collapse
Affiliation(s)
- Yufei Mo
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ming Yue
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lok Yan Yim
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Chunhao Yu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Qiaoli Peng
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518112, People's Republic of China
| | - Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tsz-Yat Luk
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Grace Chung-Yan Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Huarong Huang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Chun Yu Hubert Lim
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518112, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jun Wang
- GeneHarbor (Hong Kong) Biotechnologies Ltd., Hong Kong Science Park, Hong Kong SAR, People's Republic of China
| | - Youqiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Center for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, People's Republic of China.
| |
Collapse
|
35
|
Theuerkauf SA, Herrera-Carrillo E, John F, Zinser LJ, Molina MA, Riechert V, Thalheimer FB, Börner K, Grimm D, Chlanda P, Berkhout B, Buchholz CJ. AAV vectors displaying bispecific DARPins enable dual-control targeted gene delivery. Biomaterials 2023; 303:122399. [PMID: 37992599 PMCID: PMC10721713 DOI: 10.1016/j.biomaterials.2023.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.
Collapse
Affiliation(s)
- Samuel A Theuerkauf
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Fabian John
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Luca J Zinser
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Vanessa Riechert
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Frederic B Thalheimer
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Dirk Grimm
- BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany; Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University Hospital, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Petr Chlanda
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; Schaller Research Groups, Heidelberg University, Heidelberg, Germany
| | | | - Christian J Buchholz
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
36
|
Evangelous TD, Berry M, Venkatayogi S, LeMaster C, Geanes ES, De Naeyer N, DeMarco T, Shen X, Li H, Hora B, Solomonis N, Misamore J, Lewis MG, Denny TN, Montefiori D, Shaw GM, Wiehe K, Bradley T, Williams WB. Host immunity associated with spontaneous suppression of viremia in therapy-naïve young rhesus macaques following neonatal SHIV infection. J Virol 2023; 97:e0109423. [PMID: 37874153 PMCID: PMC10688376 DOI: 10.1128/jvi.01094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Collapse
Affiliation(s)
- Tyler D. Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cas LeMaster
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Eric S. Geanes
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Nicole De Naeyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Todd Bradley
- Children’s Mercy Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, Missouri, USA
- Departments of Pediatrics and Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
37
|
Wei Y, Davenport TC, Collora JA, Ma HK, Pinto-Santini D, Lama J, Alfaro R, Duerr A, Ho YC. Single-cell epigenetic, transcriptional, and protein profiling of latent and active HIV-1 reservoir revealed that IKZF3 promotes HIV-1 persistence. Immunity 2023; 56:2584-2601.e7. [PMID: 37922905 PMCID: PMC10843106 DOI: 10.1016/j.immuni.2023.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]). A proliferation program (IKZF3, IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-infected cells. Both latent and transcriptionally active HIV-1-infected cells had increased IKZF3 (Aiolos) expression. Distinct epigenetic programs drove the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells and cellular programs promoting HIV-1 persistence.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Timothy C Davenport
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haocong Katherine Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Delia Pinto-Santini
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Javier Lama
- Asociación Civil Impacta Salud y Educación, Lima 15063, Perú
| | - Ricardo Alfaro
- Centro de Investigaciones Tecnológicas Biomédicas y Medioambientales (CITBM), Lima 07006, Perú
| | - Ann Duerr
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
38
|
Jin J, Bai H, Yan H, Deng T, Li T, Xiao R, Fan L, Bai X, Ning H, Liu Z, Zhang K, Wu X, Liang K, Ma P, Gao X, Hu D. PRMT2 promotes HIV-1 latency by preventing nucleolar exit and phase separation of Tat into the Super Elongation Complex. Nat Commun 2023; 14:7274. [PMID: 37949879 PMCID: PMC10638354 DOI: 10.1038/s41467-023-43060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The HIV-1 Tat protein hijacks the Super Elongation Complex (SEC) to stimulate viral transcription and replication. However, the mechanisms underlying Tat activation and inactivation, which mediate HIV-1 productive and latent infection, respectively, remain incompletely understood. Here, through a targeted complementary DNA (cDNA) expression screening, we identify PRMT2 as a key suppressor of Tat activation, thus contributing to proviral latency in multiple cell line latency models and in HIV-1-infected patient CD4+ T cells. Our data reveal that the transcriptional activity of Tat is oppositely regulated by NPM1-mediated nucleolar retention and AFF4-induced phase separation in the nucleoplasm. PRMT2 preferentially methylates Tat arginine 52 (R52) to reinforce its nucleolar sequestration while simultaneously counteracting its incorporation into the SEC droplets, thereby leading to its functional inactivation to promote proviral latency. Thus, our studies unveil a central and unappreciated role for Tat methylation by PRMT2 in connecting its subnuclear distribution, liquid droplet formation, and transactivating function, which could be therapeutically targeted to eradicate latent viral reservoirs.
Collapse
Affiliation(s)
- Jiaxing Jin
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Bai
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Han Yan
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Ting Deng
- Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Tianyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Lina Fan
- Department of Infectious Diseases, Tianjin Second People's Hospital, Nankai University, 300192, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hanhan Ning
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Zhe Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xudong Wu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Nankai University, 300192, Tianjin, China.
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| | - Deqing Hu
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
39
|
Moar P, Premeaux TA, Atkins A, Ndhlovu LC. The latent HIV reservoir: current advances in genetic sequencing approaches. mBio 2023; 14:e0134423. [PMID: 37811964 PMCID: PMC10653892 DOI: 10.1128/mbio.01344-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Multiple cellular HIV reservoirs in diverse anatomical sites can undergo clonal expansion and persist for years despite suppressive antiretroviral therapy, posing a major barrier toward an HIV cure. Commonly adopted assays to assess HIV reservoir size mainly consist of PCR-based measures of cell-associated total proviral DNA, intact proviruses and transcriptionally competent provirus (viral RNA), flow cytometry and microscopy-based methods to measure translationally competent provirus (viral protein), and quantitative viral outgrowth assay, the gold standard to measure replication-competent provirus; yet no assay alone can provide a comprehensive view of the total HIV reservoir or its dynamics. Furthermore, the detection of extant provirus by these measures does not preclude defects affecting replication competence. An accurate measure of the latent reservoir is essential for evaluating the efficacy of HIV cure strategies. Recent approaches have been developed, which generate proviral sequence data to create a more detailed profile of the latent reservoir. These sequencing approaches are valuable tools to understand the complex multicellular processes in a diverse range of tissues and cell types and have provided insights into the mechanisms of HIV establishment and persistence. These advancements over previous sequencing methods have allowed multiplexing and new assays have emerged, which can document transcriptional activity, chromosome accessibility, and in-depth cellular phenotypes harboring latent HIV, enabling the characterization of rare infected cells across restrictive sites such as the brain. In this manuscript, we provide a review of HIV sequencing-based assays adopted to address challenges in quantifying and characterizing the latent HIV reservoir.
Collapse
Affiliation(s)
- Preeti Moar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Andrew Atkins
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
40
|
Cobos Jiménez V, Geretz A, Tokarev A, Ehrenberg PK, Deletsu S, Machmach K, Mudvari P, Howard JN, Zelkoski A, Paquin-Proulx D, Del Prete GQ, Subra C, Boritz EA, Bosque A, Thomas R, Bolton DL. AP-1/c-Fos supports SIV and HIV-1 latency in CD4 T cells infected in vivo. iScience 2023; 26:108015. [PMID: 37860759 PMCID: PMC10582365 DOI: 10.1016/j.isci.2023.108015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Persistent HIV-1 reservoirs of infected CD4 T cells are a major barrier to HIV-1 cure, although the mechanisms by which they are established and maintained in vivo remain poorly characterized. To elucidate host cell gene expression patterns that govern virus gene expression, we analyzed viral RNA+ (vRNA) CD4 T cells of untreated simian immunodeficiency virus (SIV)-infected macaques by single-cell RNA sequencing. A subset of vRNA+ cells distinguished by spliced and high total vRNA (7-10% of reads) expressed diminished FOS, a component of the Activator protein 1 (AP-1) transcription factor, relative to vRNA-low and -negative cells. Conversely, FOS and JUN, another AP-1 component, were upregulated in HIV DNA+ infected cells compared to uninfected cells from people with HIV-1 on suppressive therapy. Inhibiting c-Fos in latently infected primary cells augmented reactivatable HIV-1 infection. These findings implicate AP-1 in latency establishment and maintenance and as a potential therapeutic target to limit HIV-1 reservoirs.
Collapse
Affiliation(s)
- Viviana Cobos Jiménez
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aviva Geretz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Philip K. Ehrenberg
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Kawthar Machmach
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amanda Zelkoski
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caroline Subra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
41
|
Copertino DC, Holmberg CS, Weiler J, Ward AR, Howard JN, Levinger C, Pang AP, Corley MJ, Dündar F, Zumbo P, Betel D, Gandhi RT, McMahon DK, Bosch RJ, Linden N, Macatangay BJ, Cyktor JC, Eron JJ, Mellors JW, Kovacs C, Benko E, Bosque A, Jones RB. The latency-reversing agent HODHBt synergizes with IL-15 to enhance cytotoxic function of HIV-specific T cells. JCI Insight 2023; 8:e169028. [PMID: 37581929 PMCID: PMC10561764 DOI: 10.1172/jci.insight.169028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.
Collapse
Affiliation(s)
- Dennis C. Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Alina P.S. Pang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael J. Corley
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core and
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Catenion GmbH, Berlin, Germany
| | | | - Doron Betel
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Applied Bioinformatics Core and
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
42
|
Wong M, Wei Y, Ho YC. Single-cell multiomic understanding of HIV-1 reservoir at epigenetic, transcriptional, and protein levels. Curr Opin HIV AIDS 2023; 18:246-256. [PMID: 37535039 PMCID: PMC10442869 DOI: 10.1097/coh.0000000000000809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE OF REVIEW The success of HIV-1 eradication strategies relies on in-depth understanding of HIV-1-infected cells. However, HIV-1-infected cells are extremely heterogeneous and rare. Single-cell multiomic approaches resolve the heterogeneity and rarity of HIV-1-infected cells. RECENT FINDINGS Advancement in single-cell multiomic approaches enabled HIV-1 reservoir profiling across the epigenetic (ATAC-seq), transcriptional (RNA-seq), and protein levels (CITE-seq). Using HIV-1 RNA as a surrogate, ECCITE-seq identified enrichment of HIV-1-infected cells in clonally expanded cytotoxic CD4+ T cells. Using HIV-1 DNA PCR-activated microfluidic sorting, FIND-seq captured the bulk transcriptome of HIV-1 DNA+ cells. Using targeted HIV-1 DNA amplification, PheP-seq identified surface protein expression of intact versus defective HIV-1-infected cells. Using ATAC-seq to identify HIV-1 DNA, ASAP-seq captured transcription factor activity and surface protein expression of HIV-1 DNA+ cells. Combining HIV-1 mapping by ATAC-seq and HIV-1 RNA mapping by RNA-seq, DOGMA-seq captured the epigenetic, transcriptional, and surface protein expression of latent and transcriptionally active HIV-1-infected cells. To identify reproducible biological insights and authentic HIV-1-infected cells and avoid false-positive discovery of artifacts, we reviewed current practices of single-cell multiomic experimental design and bioinformatic analysis. SUMMARY Single-cell multiomic approaches may identify innovative mechanisms of HIV-1 persistence, nominate therapeutic strategies, and accelerate discoveries.
Collapse
Affiliation(s)
- Michelle Wong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
43
|
Marchitto L, Benlarbi M, Prévost J, Laumaea A, Descôteaux-Dinelle J, Medjahed H, Bourassa C, Gendron-Lepage G, Kirchhoff F, Sauter D, Hahn BH, Finzi A, Richard J. Impact of HIV-1 Vpu-mediated downregulation of CD48 on NK-cell-mediated antibody-dependent cellular cytotoxicity. mBio 2023; 14:e0078923. [PMID: 37404017 PMCID: PMC10470595 DOI: 10.1128/mbio.00789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/18/2023] [Indexed: 07/06/2023] Open
Abstract
HIV-1 evades antibody-dependent cellular cytotoxicity (ADCC) responses not only by controlling Env conformation and quantity at the cell surface but also by altering NK cell activation via the downmodulation of several ligands of activating and co-activating NK cell receptors. The signaling lymphocyte activation molecule (SLAM) family of receptors, which includes NTB-A and 2B4, act as co-activating receptors to sustain NK cell activation and cytotoxic responses. These receptors cooperate with CD16 (FcγRIII) and other activating receptors to trigger NK cell effector functions. In that context, Vpu-mediated downregulation of NTB-A on HIV-1-infected CD4 T cells was shown to prevent NK cell degranulation via an homophilic interaction, thus contributing to ADCC evasion. However, less is known on the capacity of HIV-1 to evade 2B4-mediated NK cell activation and ADCC. Here, we show that HIV-1 downregulates the ligand of 2B4, CD48, from the surface of infected cells in a Vpu-dependent manner. This activity is conserved among Vpu proteins from the HIV-1/SIVcpz lineage and depends on conserved residues located in its transmembrane domain and dual phosphoserine motif. We show that NTB-A and 2B4 stimulate CD16-mediated NK cell degranulation and contribute to ADCC responses directed to HIV-1-infected cells to the same extent. Our results suggest that HIV-1 has evolved to downmodulate the ligands of both SLAM receptors to evade ADCC. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) can contribute to the elimination of HIV-1-infected cells and HIV-1 reservoirs. An in-depth understanding of the mechanisms used by HIV-1 to evade ADCC might help develop novel approaches to reduce the viral reservoirs. Members of the signaling lymphocyte activation molecule (SLAM) family of receptors, such as NTB-A and 2B4, play a key role in stimulating NK cell effector functions, including ADCC. Here, we show that Vpu downmodulates CD48, the ligand of 2B4, and this contributes to protect HIV-1-infected cells from ADCC. Our results highlight the importance of the virus to prevent the triggering of the SLAM receptors to evade ADCC.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jade Descôteaux-Dinelle
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Sandberg JK, Leeansyah E, Eller MA, Shacklett BL, Paquin-Proulx D. The Emerging Role of MAIT Cell Responses in Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:511-517. [PMID: 37549397 PMCID: PMC10421619 DOI: 10.4049/jimmunol.2300147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 08/09/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.
Collapse
Affiliation(s)
- Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Michael A. Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| |
Collapse
|
45
|
Yoon H, Dean LS, Jiyarom B, Khadka V, Deng Y, Nerurukar VR, Chow DC, Shikuma CM, Devendra G, Koh Y, Park J. Single-cell RNA sequencing reveals characteristics of myeloid cells in pulmonary post-acute sequelae of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551349. [PMID: 37577518 PMCID: PMC10418075 DOI: 10.1101/2023.07.31.551349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complication in COVID-19 infection remain unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequalae of SARS-CoV-2 infection with persistent pulmonary symptoms (PPASC). However, the dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from participants naïve to SARS-CoV-2 (Control) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC). We analyzed more than 34,139 PBMCs by integrating our dataset with previously reported control datasets (GSM4509024) cell distribution. In total, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14 + /CD16 + monocytes and dendritic cells) was increased in PPASC compared to controls. MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis- related ( VEGF , WNT , and SMAD ) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. In PPASC, we observed interactive VEGF ligand- receptor pairs among MLCs, and network modules in CD14 + (cluster 4) and CD16 + (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID- 19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS- CoV-2 naïve samples. Conclusion This study offers valuable insights into the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests their potential role as a driver of PPASC.
Collapse
|