1
|
Sun C, Li L, Li D, Wang Z. Discovery of Endothelial-Monocyte Crosstalk in Ischemic-Reperfusion Injury Following Liver Transplantation Based on Integration of Single-Cell RNA and Transcriptome RNA Sequencing. J Cell Mol Med 2025; 29:e70336. [PMID: 39993960 PMCID: PMC11850096 DOI: 10.1111/jcmm.70336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/26/2025] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) commonly complicates liver transplantation (LT). However, the precise mechanisms underlying hepatic IRI remain incompletely understood. We acquired single-cell RNA sequencing (scRNA-seq) and transcriptome RNA sequencing data of LT patients from the GEO database. Employing scRNA-seq, we delved into the interplay between non-immune and immune cells in hepatic IRI, pinpointing genes exhibiting altered expression patterns. Integrating insights gleaned from scRNA-seq and transcriptome RNA sequencing datasets, we deepened our comprehension of cellular interactions and underlying mechanisms in hepatic IRI. Additionally, we conducted preliminary validation of identified gene expression alterations using immunofluorescence techniques. Using scRNA-seq, we detected significant changes in the populations of liver sinusoidal endothelial cells (LSECs) and monocytes after hepatic ischemia-reperfusion injury (IRI). By integrating scRNA-seq with bulk transcriptome RNA sequencing data, we identified key genes with dysregulated expression in LSECs (ICAM1, SOCS3, NFKBIZ, JUND, TNFRSF12A and HSPA6) and monocytes (SOCS3, JUND, FPR2 and NR4A2). Our analysis of cell communication indicated that the ANXA1-FPR2 axis might be a pivotal signature in mediating interactions between LSECs and monocytes. We then established a mouse model for IRI, and further analyses using flow cytometry and immunofluorescence showed a significant increase in monocyte proportion post-IR (p < 0.01). Consistently, Western Blot also revealed significant upregulation of ANXA1 and FPR2 (p < 0.01). Our study elucidated the cellular interactions and signalling pathways following IRI. The interplay between LSECs and monocytes likely triggers a cascade of events, promoting monocyte infiltration and amplifying inflammatory responses, thus worsening the deleterious effects of IRI.
Collapse
Affiliation(s)
- Chao Sun
- Liver Transplantation Center, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Organ TransplantationFudan UniversityShanghaiChina
| | - Li Li
- Liver Transplantation Center, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Organ TransplantationFudan UniversityShanghaiChina
| | - Dan Li
- Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhengxin Wang
- Liver Transplantation Center, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Organ TransplantationFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Ascic E, Pereira CF. Transcription factor-mediated reprogramming to antigen-presenting cells. Curr Opin Genet Dev 2025; 90:102300. [PMID: 39721321 DOI: 10.1016/j.gde.2024.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Antigen-presenting cells (APCs) are a heterogenous group of immune cells composed by dendritic cells (DCs) and macrophages (Mϕ), which are critical for orchestrating immunity against cancer or infections. Several strategies have been explored to generate APC subsets, including enrichment from peripheral blood and differentiation from pluripotent or multipotent cells. During development, the generation of APC subsets is instructed by transcription factors (TFs). Direct cell reprogramming, also known as transdifferentiation, offers an approach to harness combinations of TFs to generate APCs from unrelated somatic cells, including cancer cells. In this review, we summarize the transcriptional specification of DC subsets, highlight transcriptional networks for their generation, and discuss future applications of DC reprogramming in cancer immunotherapy.
Collapse
Affiliation(s)
- Ervin Ascic
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84 Lund, Sweden.
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84 Lund, Sweden; Asgard Therapeutics AB, Medicon Village, 223 81 Lund, Sweden; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517 Coimbra, Portugal.
| |
Collapse
|
3
|
Suzuki N, Shimauchi T, Baba S, Nagakura Y, Takahashi J, Ajima S, Tajima M, Kitauchi Y, Kageyama R, Honda T. A case of indeterminate cell histiocytosis with ETV3-NCOA2 translocation. J Dermatol 2025; 52:373-376. [PMID: 39494947 DOI: 10.1111/1346-8138.17530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Indeterminate cell histiocytosis (ICH) is a rare histiocytic disorder characterized by a proliferation of CD1a+ and CD207/langerin- cells. Recent molecular analyses have identified ETV3-NCOA2 translocation as a possible aetiopathogenesis of ICH. Herein, we describe the first Japanese case of ICH with ETV3-NCOA2 translocation. A 79-year-old Japanese man presented with a 1-year history of pruritic erythematous papules and nodules on his trunk and extremities. Histological examination revealed a dense and diffuse sheets-like infiltration of medium-sized histiocyte-like cells from the epidermis to the deep dermis. Immunohistochemically, the atypical cells were positive for CD1a but negative for CD207/langerin. Fluorescence in situ hybridization using NCOA2 break-apart probes confirmed a chromosomal break occurring on NCOA2 monoallele in the tumor cells. Furthermore, ETV3 exon 4-NCOA2 exon 14 translocation was identified in formalin-fixed paraffin-embedded skin samples using reverse transcription polymerase chain reaction and subsequent direct DNA sequencing. He also presented with interspersed eczematous plaques on his trunk and reactive dermatopathic lymphoadenopathy without any infiltration of ICH. He was treated with topical corticosteroids and narrowband UVB phototherapy. Four months later, his ICH skin eruptions, eczematous plaques, and lymphoadenopathy gradually regressed. Our case supports the notion that the detection of ETV3-NCOA2 translocation can be useful for diagnosis of ICH.
Collapse
Affiliation(s)
- Norihito Suzuki
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takatoshi Shimauchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Yuka Nagakura
- Department of Diagnostic Pathology, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Juri Takahashi
- Department of Diagnostic Pathology, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Sayaka Ajima
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mizuho Tajima
- Department of Dermatology, Fuji City General Hospital, Shizuoka, Japan
| | - Yurie Kitauchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Reiko Kageyama
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Cros A, Segura E. IL1R2 Acts as a Negative Regulator of Monocyte Recruitment During Inflammation. Eur J Immunol 2025; 55:e202451468. [PMID: 39610166 PMCID: PMC11739673 DOI: 10.1002/eji.202451468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
IL1-β plays a central role in inflammation but its biological action needs to be tightly controlled. Such negative regulation can be exerted by the decoy receptor IL1R2. However, IL1R2 biology in immune cells remains poorly characterized, in particular in monocytes. Using conditional deficient mice, we show that Il1r2 deficiency in monocytes does not affect their steady-state life cycle but dysregulates their trafficking to inflamed tissues in models of peritonitis and neuro-inflammation. Mechanistically, we found that Il1r2 deficiency in monocytes increases CCL2 secretion in the inflamed peritoneum, thereby amplifying monocyte recruitment from blood. In autoimmune neuro-inflammation, Il1r2 deficiency in monocytes exacerbates disease severity. Our findings suggest that the specific action of IL1R2 in monocytes contributes to a feedback mechanism for fine-tuning the numbers of recruited monocytes during inflammation.
Collapse
Affiliation(s)
- Adeline Cros
- Institut Curie, PSL Research UniversityINSERMParisFrance
| | - Elodie Segura
- Institut Curie, PSL Research UniversityINSERMParisFrance
| |
Collapse
|
5
|
Fondelli F, Willemyns J, Domenech-Garcia R, Mansilla MJ, Godoy-Tena G, Ferreté-Bonastre AG, Agúndez-Moreno A, Presas-Rodriguez S, Ramo-Tello C, Ballestar E, Martínez-Cáceres E. Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis. J Clin Invest 2024; 134:e178949. [PMID: 39287981 PMCID: PMC11527446 DOI: 10.1172/jci178949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to autoantigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14+ monocytes, mature dendritic cells, and vitamin D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HDs). Using multiomics, we identified a switch in these cell types toward proinflammatory features characterized by alterations in the aryl hydrocarbon receptor (AhR) and NF-κB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared with those from HDs, which were fully restored through direct AhR agonism and by use of in vivo or in vitro dimethyl fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.
Collapse
MESH Headings
- Humans
- Dendritic Cells/immunology
- Receptors, Aryl Hydrocarbon/immunology
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- Animals
- Mice
- Female
- Male
- Immune Tolerance
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Multiple Sclerosis/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Adult
- Middle Aged
- Monocytes/immunology
- Monocytes/metabolism
- NF-kappa B/metabolism
- NF-kappa B/immunology
- Cholecalciferol/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
Collapse
Affiliation(s)
- Federico Fondelli
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jana Willemyns
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Roger Domenech-Garcia
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria José Mansilla
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Anna G. Ferreté-Bonastre
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Alex Agúndez-Moreno
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Presas-Rodriguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China
| | - Eva Martínez-Cáceres
- Immunology Division, Laboratori Clínic de la Metropolitana Nord, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Zhang S, Gao H, You G, Cao H, Wang Y, Gao L, Zheng SJ. A novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation. Int J Biol Macromol 2024; 279:135525. [PMID: 39260650 DOI: 10.1016/j.ijbiomac.2024.135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
E26-transforming specific (ETS) variant 6 (ETV6) is a transcription factor regulating the expression of interferon stimulating genes (ISGs) and involved in the embryonic development and hematopoietic regulation, but the role of ETV6 in host response to virus infection is not clear. In this study, we show that ETV6 was upregulated in DF-1 cells with poly(I:C) stimulation or IBDV, AIV and ARV infection via engagement of dsRNA by MDA5. Overexpression of ETV6 in DF-1 cells markedly inhibited IBDV-induced type I interferon (IFN-I) and ISGs expressions. In contrast, knockdown, or knockout of ETV6 remarkably inhibited IBDV replication via promoting IFN-I response. Furthermore, our data show that ETV6 negatively regulated host antiviral response to IBDV infection by interaction with TANK binding kinase 1 (TBK1) and subsequently inhibited its phosphorylation. These results uncovered a novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation, furthering our understandings of RNA virus immunosuppression and providing a valuable clue to the development of antiviral reagents for the control of avian RNA virus infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangju You
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
de Juan A, Tabtim-On D, Coillard A, Becher B, Goudot C, Segura E. The aryl hydrocarbon receptor shapes monocyte transcriptional responses to interleukin-4 by prolonging STAT6 binding to promoters. Sci Signal 2024; 17:eadn6324. [PMID: 39405377 DOI: 10.1126/scisignal.adn6324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/25/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Cytokines induce functional and metabolic adaptations in immune cells, typically through transcriptional responses that can be influenced by other extracellular signals and by intracellular factors. The binding of the cytokine interleukin-4 (IL-4) to its receptor induces the phosphorylation and activation of the transcription factor STAT6. The aryl hydrocarbon receptor (AhR), a transcription factor activated by various endogenous and microbe-derived metabolites, modulates the responses of immune cells to danger signals or inflammatory mediators such as cytokines. Here, we investigated cross-talk between the AhR and signaling stimulated by IL-4 in human and mouse monocytes. AhR activation was required for a subset of IL-4-induced transcriptional responses and inhibited the IL-4-induced metabolic switch to fatty acid β-oxidation. The promoters of the genes that were induced by IL-4 in an AhR-dependent manner lacked canonical AhR binding sites, implying a nongenomic mechanism of AhR action. Mechanistically, AhR activation reduced the activity of SHP-1, a phosphatase that targets and inhibits STAT6, and prolonged STAT6 phosphorylation and binding to specific target loci, thus extending the duration of STAT6 activity. Our results identify AhR as a key player in the molecular control of responses to IL-4 in monocytes and suggest a nongenomic mechanism through which AhR ligands may influence the functional responses of cells to IL-4.
Collapse
Affiliation(s)
- Alba de Juan
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Darawan Tabtim-On
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Alice Coillard
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Christel Goudot
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| |
Collapse
|
8
|
Apps R, Biancotto A, Candia J, Kotliarov Y, Perl S, Cheung F, Farmer R, Mulè MP, Rachmaninoff N, Chen J, Martins AJ, Shi R, Zhou H, Bansal N, Schum P, Olnes MJ, Milanez-Almeida P, Han KL, Sellers B, Cortese M, Hagan T, Rouphael N, Pulendran B, King L, Manischewitz J, Khurana S, Golding H, van der Most RG, Dickler HB, Germain RN, Schwartzberg PL, Tsang JS. Acute and persistent responses after H5N1 vaccination in humans. Cell Rep 2024; 43:114706. [PMID: 39235945 PMCID: PMC11949244 DOI: 10.1016/j.celrep.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/14/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
To gain insight into how an adjuvant impacts vaccination responses, we use systems immunology to study human H5N1 influenza vaccination with or without the adjuvant AS03, longitudinally assessing 14 time points including multiple time points within the first day after prime and boost. We develop an unsupervised computational framework to discover high-dimensional response patterns, which uncover adjuvant- and immunogenicity-associated early response dynamics, including some that differ post prime versus boost. With or without adjuvant, some vaccine-induced transcriptional patterns persist to at least 100 days after initial vaccination. Single-cell profiling of surface proteins, transcriptomes, and chromatin accessibility implicates transcription factors in the erythroblast-transformation-specific (ETS) family as shaping these long-lasting signatures, primarily in classical monocytes but also in CD8+ naive-like T cells. These cell-type-specific signatures are elevated at baseline in high-antibody responders in an independent vaccination cohort, suggesting that antigen-agnostic baseline immune states can be modulated by vaccine antigens alone to enhance future responses.
Collapse
Affiliation(s)
- Richard Apps
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | | | - Julián Candia
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| | - Shira Perl
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIH Oxford-Cambridge Scholars Program, Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, UCB2 0QQ Cambridge, UK
| | - Nicholas Rachmaninoff
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rongye Shi
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Huizhi Zhou
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Paula Schum
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Matthew J Olnes
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | | | - Kyu Lee Han
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Brian Sellers
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA; Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Lisa King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD 20993 USA
| | | | | | - Ronald N Germain
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Center for Systems and Engineering Immunology, Departments of Immunobiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Hu Y, Tzeng SY, Cheng L, Lin J, Villabona-Rueda A, Yu S, Li S, Schneiderman Z, Zhu Y, Ma J, Wilson DR, Shannon SR, Warren T, Rui Y, Qiu C, Kavanagh EW, Luly KM, Zhang Y, Korinetz N, D’Alessio FR, Wang TH, Kokkoli E, Reddy SK, Luijten E, Green JJ, Mao HQ. Supramolecular assembly of polycation/mRNA nanoparticles and in vivo monocyte programming. Proc Natl Acad Sci U S A 2024; 121:e2400194121. [PMID: 39172792 PMCID: PMC11363337 DOI: 10.1073/pnas.2400194121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Size-dependent phagocytosis is a well-characterized phenomenon in monocytes and macrophages. However, this size effect for preferential gene delivery to these important cell targets has not been fully exploited because commonly adopted stabilization methods for electrostatically complexed nucleic acid nanoparticles, such as PEGylation and charge repulsion, typically arrest the vehicle size below 200 nm. Here, we bridge the technical gap in scalable synthesis of larger submicron gene delivery vehicles by electrostatic self-assembly of charged nanoparticles, facilitated by a polymer structurally designed to modulate internanoparticle Coulombic and van der Waals forces. Specifically, our strategy permits controlled assembly of small poly(β-amino ester)/messenger ribonucleic acid (mRNA) nanoparticles into particles with a size that is kinetically tunable between 200 and 1,000 nm with high colloidal stability in physiological media. We found that assembled particles with an average size of 400 nm safely and most efficiently transfect monocytes following intravenous administration and mediate their differentiation into macrophages in the periphery. When a CpG adjuvant is co-loaded into the particles with an antigen mRNA, the monocytes differentiate into inflammatory dendritic cells and prime adaptive anticancer immunity in the tumor-draining lymph node. This platform technology offers a unique ligand-independent, particle-size-mediated strategy for preferential mRNA delivery and enables therapeutic paradigms via monocyte programming.
Collapse
Affiliation(s)
- Yizong Hu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Leonardo Cheng
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Jinghan Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Andres Villabona-Rueda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Shuai Yu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - Sixuan Li
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Zachary Schneiderman
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| | - David R. Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Sydney R. Shannon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Tiarra Warren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Yuan Rui
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Chenhu Qiu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Erin W. Kavanagh
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Kathryn M. Luly
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
| | - Yicheng Zhang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Nicole Korinetz
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Tza-Huei Wang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Sashank K. Reddy
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
| | - Jordan J. Green
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD21231
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
11
|
Arunagiri V, Cooper L, Dong H, Class J, Biswas I, Vahora S, Deshpande R, Gopani KH, Hu G, Richner JM, Rong L, Liu J. Suppression of interferon α and γ response by Huwe1-mediated Miz1 degradation promotes SARS-CoV-2 replication. Front Immunol 2024; 15:1388517. [PMID: 39034993 PMCID: PMC11257858 DOI: 10.3389/fimmu.2024.1388517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been demonstrated to limit the host interferon response; however, the underlying mechanism remains unclear. Here, we found that SARS-CoV-2 infection upregulated the E3 ubiquitin ligase Huwe1, which in turn facilitated the degradation of the transcription factor Miz1. The degradation of Miz1 hampered interferon alpha and gamma responses, consequently fostering viral replication and impeding viral clearance. Conversely, silencing or inhibiting Huwe1 enhanced the interferon responses, effectively curbing viral replication. Consistently, overexpressing Miz1 augmented the interferon responses and limited viral replication, whereas silencing Miz1 had the opposite effect. Targeting Huwe1 or overexpressing Miz1 elicited transcriptomic alterations characterized by enriched functions associated with bolstered antiviral response and diminished virus replication. Further study revealed Miz1 exerted epigenetic control over the transcription of specific interferon signaling molecules, which acted as common upstream regulators responsible for the observed transcriptomic changes following Huwe1 or Miz1 targeting. These findings underscore the critical role of the Huwe1-Miz1 axis in governing the host antiviral response, with its dysregulation contributing to the impaired interferon response observed during COVID-19.
Collapse
Affiliation(s)
- Vinothini Arunagiri
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Huali Dong
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Jake Class
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Indrani Biswas
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Sujan Vahora
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Riddhi Deshpande
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Khushi H. Gopani
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Guochang Hu
- Departments of Anesthesiology and Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Justin M. Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jing Liu
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
13
|
Tiniakou I, Hsu PF, Lopez-Zepeda LS, Garipler G, Esteva E, Adams NM, Jang G, Soni C, Lau CM, Liu F, Khodadadi-Jamayran A, Rodrick TC, Jones D, Tsirigos A, Ohler U, Bedford MT, Nimer SD, Kaartinen V, Mazzoni EO, Reizis B. Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation. Sci Immunol 2024; 9:eadi1023. [PMID: 38608038 PMCID: PMC11182672 DOI: 10.1126/sciimmunol.adi1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.
Collapse
Affiliation(s)
- Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Lorena S. Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Görkem Garipler
- Department of Biology, New York University; New York, NY, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Nicholas M. Adams
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Colleen M. Lau
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine; Ithaca, NY, USA
| | - Fan Liu
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Tori C. Rodrick
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Drew Jones
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry; Ann Arbor, MI, USA
| | | | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| |
Collapse
|
14
|
Kim S, Chen J, Ou F, Liu TT, Jo S, Gillanders WE, Murphy TL, Murphy KM. Transcription factor C/EBPα is required for the development of Ly6C hi monocytes but not Ly6C lo monocytes. Proc Natl Acad Sci U S A 2024; 121:e2315659121. [PMID: 38564635 PMCID: PMC11009651 DOI: 10.1073/pnas.2315659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - William E. Gillanders
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
15
|
Brand J, Haro M, Lin X, Rimel B, McGregor SM, Lawrenson K, Dinh HQ. Fallopian tube single cell analysis reveals myeloid cell alterations in high-grade serous ovarian cancer. iScience 2024; 27:108990. [PMID: 38384837 PMCID: PMC10879678 DOI: 10.1016/j.isci.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Most high-grade serous ovarian cancers (HGSCs) likely initiate from fallopian tube (FT) epithelia. While epithelial subtypes have been characterized using single-cell RNA-sequencing (scRNA-Seq), heterogeneity of other compartments and their involvement in tumor progression are poorly defined. Integrated analysis of human FT scRNA-Seq and HGSC-related tissues, including tumors, revealed greater immune and stromal transcriptional diversity than previously reported. We identified abundant monocytes in FTs across two independent cohorts. The ratio of macrophages to monocytes is similar between benign FTs, ovaries, and adjacent normal tissues but significantly greater in tumors. FT-defined monocyte and macrophage signatures, cell-cell communication, and gene set enrichment analyses identified monocyte- and macrophage-specific interactions and functional pathways in paired tumors and adjacent normal tissues. Further reanalysis of HGSC scRNA-Seq identified monocyte and macrophage subsets associated with neoadjuvant chemotherapy. Taken together, our work provides data that an altered FT myeloid cell composition could inform the discovery of early detection markers for HGSC.
Collapse
Affiliation(s)
- Joshua Brand
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Marcela Haro
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xianzhi Lin
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- RNA Biology Group, Division of Natural and Applied Sciences and Global Health Research Center, Duke Kunshan University, Kunshan 215316, Jiangsu Province, China
| | - B.J. Rimel
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kate Lawrenson
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Lv D, Jiang H, Yang X, Li Y, Niu W, Zhang D. Advances in understanding of dendritic cell in the pathogenesis of acute kidney injury. Front Immunol 2024; 15:1294807. [PMID: 38433836 PMCID: PMC10904453 DOI: 10.3389/fimmu.2024.1294807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid decline in renal function and is associated with a high morbidity and mortality rate. At present, the underlying mechanisms of AKI remain incompletely understood. Immune disorder is a prominent feature of AKI, and dendritic cells (DCs) play a pivotal role in orchestrating both innate and adaptive immune responses, including the induction of protective proinflammatory and tolerogenic immune reactions. Emerging evidence suggests that DCs play a critical role in the initiation and development of AKI. This paper aimed to conduct a comprehensive review and analysis of the role of DCs in the progression of AKI and elucidate the underlying molecular mechanism. The ultimate objective was to offer valuable insights and guidance for the treatment of AKI.
Collapse
Affiliation(s)
- Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Department of Urology, Afliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weipin Niu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Magisetty J, Gadiraju B, Kondreddy V. Genomic analysis in the colon tissues of omega-3 fatty acid-treated rats identifies novel gene signatures implicated in ulcerative colitis. Int J Biol Macromol 2024; 258:128867. [PMID: 38123036 DOI: 10.1016/j.ijbiomac.2023.128867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Several long-term intervention trials only studied the ex vivo immunological function to elucidate the beneficial mechanisms of n-3 polyunsaturated fatty acids (PUFA) in the ulcerative colitis (UC). An unbiased whole-transcriptome analysis would be more valuable to obtain a comprehensive understanding of the processes and genes regulated by n-3 PUFA in vivo. In this study, we have performed microarray analysis in the colon tissues of dextran sulfate sodium (DSS)-induced UC in rats supplemented with n-6 PUFA, n-3PUFA and long-chain n-3PUFA (LC-n3PUFA). We have identified the novel gene signatures previously not linked to colitis such as Etv3, Clec4d, CD180, CD72, Megf11, and Angptl4 which are most downregulated in both n-3PUFA and LC-n3PUFA groups compared to the n-6PUFA group. The most upregulated genes were Nr1i3, Nptx2, and Zfp810 in both n-3PUFA and LC-n3PUFA groups. The RT-PCR analysis confirmed similar results. Interestingly, LPS treatment in macrophages upregulated the Megf11, Etv3, CD180, and Angptl4, and correlated with increased secretion of cytokines. Gene silencing of Etv3, Megf11, and CD180 in rats using intravascular delivery of siRNA-lipoparticles attenuated the DSS-induced ulceration and mucosal damage. Thus, our genome-wide microarray analysis identified novel genes regulated by omega-3 PUFA and offers new drug targets that could prevent or reduce UC.
Collapse
Affiliation(s)
- Jhansi Magisetty
- Department of Biochemistry, Central Food Technological Research Institute, Mysore 570020, India
| | - Bhavani Gadiraju
- Center for Lipid Science & Technology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vijay Kondreddy
- Center for Lipid Science & Technology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
18
|
Wu D, Bi X, Chow KHM. Identification of female-enriched and disease-associated microglia (FDAMic) contributes to sexual dimorphism in late-onset Alzheimer's disease. J Neuroinflammation 2024; 21:1. [PMID: 38178204 PMCID: PMC10765928 DOI: 10.1186/s12974-023-02987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. METHODS In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. RESULTS The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-β binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. CONCLUSION This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
19
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Rigamonti A, Villar J, Segura E. Monocyte differentiation within tissues: a renewed outlook. Trends Immunol 2023; 44:999-1013. [PMID: 37949783 DOI: 10.1016/j.it.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
When recruited to mammalian tissues, monocytes differentiate into macrophages or dendritic cells (DCs). In the past few years, the existence of monocyte-derived DCs (moDCs) was questioned by the discovery of new DC populations with overlapping phenotypes. Here, we critically review the evidence for monocyte differentiation into DCs in tissues and highlight their specific functions. Recent studies have shown that monocyte-derived macrophages (moMacs) with distinct life cycles coexist in tissues, both at steady state and upon inflammation. Integrating studies in mice and humans, we highlight specific features of moMacs during inflammation and tissue repair. We also discuss the notion of monocyte differentiation occurring via a binary fate decision. Deciphering monocyte-derived cell properties is essential for understanding their role in nonresolving inflammation and how they might be targeted for therapies.
Collapse
Affiliation(s)
| | - Javiera Villar
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France
| | - Elodie Segura
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France.
| |
Collapse
|
21
|
Wang Y, Huang Z, Wang X, Yang F, Yao X, Pan T, Li B, Chu J. Real-time fluorescence imaging flow cytometry enabled by motion deblurring and deep learning algorithms. LAB ON A CHIP 2023; 23:3615-3627. [PMID: 37458395 DOI: 10.1039/d3lc00194f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fluorescence imaging flow cytometry (IFC) has been demonstrated as a crucial biomedical technique for analyzing specific cell subpopulations from heterogeneous cellular populations. However, the high-speed flow of fluorescent cells leads to motion blur in cell images, making it challenging to identify cell types from the raw images. In this study, we present a real-time single-cell imaging and classification system based on a fluorescence microscope and deep learning algorithm, which is able to directly identify cell types from motion-blur images. To obtain annotated datasets of blurred images for deep learning model training, we developed a motion deblurring algorithm for the reconstruction of blur-free images. To demonstrate the ability of this system, deblurred images of HeLa cells with various fluorescent labels and HeLa cells at different cell cycle stages were acquired. The trained ResNet achieved a high accuracy of 96.6% for single-cell classification of HeLa cells in three different mitotic stages, with a short processing time of only 2 ms. This technology provides a simple way to realize single-cell fluorescence IFC and real-time cell classification, offering significant potential in various biological and medical applications.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Ziwei Huang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaojie Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei, 230026, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei, 230026, China
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Baoqing Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
22
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Nagel S, Meyer C, Pommerenke C. Establishment of the lymphoid ETS-code reveals deregulated ETS genes in Hodgkin lymphoma. PLoS One 2023; 18:e0288031. [PMID: 37428779 DOI: 10.1371/journal.pone.0288031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
The human family of ETS transcription factors numbers 28 genes which control multiple aspects of development, notably the differentiation of blood and immune cells. Otherwise, aberrant expression of ETS genes is reportedly involved in forming leukemia and lymphoma. Here, we comprehensively mapped ETS gene activities in early hematopoiesis, lymphopoiesis and all mature types of lymphocytes using public datasets. We have termed the generated gene expression pattern lymphoid ETS-code. This code enabled identification of deregulated ETS genes in patients with lymphoid malignancies, revealing 12 aberrantly expressed members in Hodgkin lymphoma (HL). For one of these, ETS gene ETV3, expression in stem and progenitor cells in addition to that in developing and mature T-cells was mapped together with downregulation in B-cell differentiation. In contrast, subsets of HL patients aberrantly overexpressed ETV3, indicating oncogenic activity in this B-cell malignancy. Analysis of ETV3-overexpressing HL cell line SUP-HD1 demonstrated genomic duplication of the ETV3 locus at 1q23, GATA3 as mutual activator, and suppressed BMP-signalling as mutual downstream effect. Additional examination of the neighboring ETS genes ETS1 and FLI1 revealed physiological activities in B-cell development and aberrant downregulation in HL patient subsets. SUP-HD1 showed genomic loss on chromosome 11, del(11)(q22q25), targeting both ETS1 and FLI1, underlying their downregulation. Furthermore, in the same cell line we identified PBX1-mediated overexpression of RIOK2 which inhibited ETS1 and activated JAK2 expression. Collectively, we codified normal ETS gene activities in lymphopoiesis and identified oncogenic ETS members in HL.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
24
|
Combes AJ, Samad B, Krummel MF. Defining and using immune archetypes to classify and treat cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00578-2. [PMID: 37277485 DOI: 10.1038/s41568-023-00578-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Villar J, Ouaknin L, Cros A, Segura E. Monocytes differentiate along two alternative pathways during sterile inflammation. EMBO Rep 2023:e56308. [PMID: 37191947 DOI: 10.15252/embr.202256308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
During inflammation, monocytes differentiate within tissues into macrophages (mo-Mac) or dendritic cells (mo-DC). Whether these two populations derive from alternative differentiation pathways or represent different stages along a continuum remains unclear. Here, we address this question using temporal single-cell RNA sequencing in an in vitro model, allowing the simultaneous differentiation of human mo-Mac and mo-DC. We find divergent differentiation paths, with a fate decision occurring within the first 24 h and confirm this result in vivo using a mouse model of sterile peritonitis. Using a computational approach, we identify candidate transcription factors potentially involved in monocyte fate commitment. We demonstrate that IRF1 is necessary for mo-Mac differentiation, independently of its role in regulating transcription of interferon-stimulated genes. In addition, we describe the transcription factors ZNF366 and MAFF as regulators of mo-DC development. Our results indicate that mo-Macs and mo-DCs represent two alternative cell fates requiring distinct transcription factors for their differentiation.
Collapse
Affiliation(s)
- Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Léa Ouaknin
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| |
Collapse
|
26
|
Pendse M, De Selle H, Vo N, Quinn G, Dende C, Li Y, Salinas CN, Srinivasan T, Propheter DC, Crofts AA, Koo E, Hassell B, Ruhn KA, Raj P, Obata Y, Hooper LV. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 2023; 12:e78558. [PMID: 37159507 PMCID: PMC10185340 DOI: 10.7554/elife.78558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.
Collapse
Affiliation(s)
- Mihir Pendse
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haley De Selle
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Cristine N Salinas
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander A Crofts
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Eugene Koo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|