1
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Blanco-Domínguez R, Barros L, Carreira M, van der Ploeg M, Condeço C, Marsères G, Ferreira C, Costa C, Ferreira CM, Déchanet-Merville J, de Miranda NFCC, Mensurado S, Silva-Santos B. Dual modulation of cytotoxic and checkpoint receptors tunes the efficacy of adoptive Delta One T cell therapy against colorectal cancer. NATURE CANCER 2025:10.1038/s43018-025-00948-9. [PMID: 40240620 DOI: 10.1038/s43018-025-00948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
Colorectal cancer (CRC) remains a challenge for current immunotherapies. Vδ1+ γδ T cells offer a promising alternative because of their HLA-I-independent cytotoxicity and natural tissue tropism. We developed Delta One T (DOT) cells, a Vδ1+ γδ T cell-based adoptive cell therapy clinically explored for hematological malignancies but not yet for solid tumors. Here we demonstrate the capacity of DOT cells to target CRC cell lines and patient-derived specimens and organoids in vitro and to control tumor growth in an orthotopic xenograft model of CRC. Notwithstanding, we found tumor-infiltrating DOT cells to exhibit a dysregulated balance of cytotoxic and inhibitory receptors that paralleled that of endogenous Vδ1+ tumor-infiltrating lymphocytes and limited their cytotoxicity. To maximize efficacy, we unveil two strategies, increasing targeting through upregulation of NKG2D ligands upon butyrate administration and blocking the checkpoints TIGIT and PD1, which synergistically unleashed DOT cell cytotoxicity. These findings support DOT cell-based combinatorial approaches for CRC treatment.
Collapse
Affiliation(s)
| | - Leandro Barros
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | | | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gabriel Marsères
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Cristina Ferreira
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Carla Costa
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Carlos M Ferreira
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Julie Déchanet-Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- Equipe labelisée LIGUE Contre le Cancer, Bordeaux, France
| | | | - Sofia Mensurado
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Bruno Silva-Santos
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Biały S, Bogunia-Kubik K. Uncovering the mysteries of human gamma delta T cells: from origins to novel therapeutics. Front Immunol 2025; 16:1543454. [PMID: 40276509 PMCID: PMC12018481 DOI: 10.3389/fimmu.2025.1543454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Gamma delta (γδ) T cells represent a unique and distinct population of lymphocytes that bridge the innate and adaptive immune responses. This functional duality positions them as one of the pivotal elements in the evolution and development of the human body's defense mechanisms. This review aims to provide a comprehensive and in-depth overview of γδ T cells, covering their origins, development, classification, and functional roles in immunology. Special attention is given to their involvement in the pathogenesis of autoimmune and cancer-related diseases-areas that remain subjects of intensive research with many unanswered questions. Additionally, this article explores the therapeutic potential of γδ T cells, which hold promise as a novel approach to treating various difficult-to-manage diseases. The review also presents an analysis of the latest clinical studies utilizing γδ T cells, emphasizing their emerging role in modern medicine. The ultimate goal of this work is to offer a holistic perspective on the current state of research on γδ T cells and their prospective applications in immunotherapy and cancer treatment, highlighting their potential to become a groundbreaking tool in future medical interventions.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of
Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
4
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Park WH, Lee HK. Human γδ T cells in the tumor microenvironment: Key insights for advancing cancer immunotherapy. Mol Cells 2025; 48:100177. [PMID: 39778860 PMCID: PMC11833627 DOI: 10.1016/j.mocell.2025.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The role of γδ T cells in antitumor responses has gained significant attention due to their major histocompatibility complex (MHC)-independent killing mechanisms, which are functionally distinct from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, the γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes within the tumor microenvironment (TME). Although the underlying mechanisms remain unclear, recent studies suggest that these subset-specific differences may arise from divergent activation pathways. Vδ1 TILs appear to be mainly activated by γδ T-cell receptor (TCR) signaling, whereas Vδ2 TILs seem to rely on alternative pathways, such as natural killer (NK) receptor-mediated activation. In addition to phenotypic studies, cancer immunotherapies, such as engineered γδ T cells, γδ T-cell engagers, and γδ TCR-based therapies, are under active development. However, despite these advancements, functional heterogeneity and limited persistence within TME remain significant challenges. Overcoming these obstacles could position γδ T-cell therapies as a transformative platform for cancer treatment. Here, we review recent findings on the prognostic significance of human γδ T cells, their phenotypic characteristics, and advances in γδ T-cell therapies, offering valuable insights for the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Miller JW, Johnson JS, Guske C, Mannam G, Hatoum F, Nassar M, Potez M, Fazili A, Spiess PE, Chahoud J. Immune-Based and Novel Therapies in Variant Histology Renal Cell Carcinomas. Cancers (Basel) 2025; 17:326. [PMID: 39858107 PMCID: PMC11763753 DOI: 10.3390/cancers17020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease that represents the most common type of kidney cancer. The classification of RCC is primarily based on distinct morphological and molecular characteristics, with two broad categories: clear cell RCC (ccRCC) and non-clear cell RCC (nccRCC). Clear cell RCC is the predominant subtype, representing about 70-80% of all RCC cases, while non-clear cell subtypes collectively make up the remaining 20-30%. Non-clear cell RCC encompasses many histopathological variants, each with unique biological and clinical characteristics. Additionally, any RCC subtype can undergo sarcomatoid dedifferentiation, which is associated with poor prognosis and rapid disease progression. Recent advances in molecular profiling have also led to the identification of molecularly defined variants, further highlighting the complexity of this disease. While immunotherapy has shown efficacy in some RCC variants and subpopulations, significant gaps remain in the treatment of rare subtypes. This review explores the outcomes of immunotherapy across RCC subtypes, including rare variants, and highlights opportunities for improving care through novel therapies, biomarker-driven approaches, and inclusive clinical trial designs.
Collapse
Affiliation(s)
- Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher Guske
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Firas Hatoum
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Marine Potez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Safavi A, Samir J, Singh M, Bonomi M, Louie RY, Micklethwaite K, Luciani F. Identification of clonally expanded γδ T-cell populations during CAR-T cell therapy. Immunol Cell Biol 2025; 103:60-72. [PMID: 39500484 DOI: 10.1111/imcb.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 01/02/2025]
Abstract
Anti-CD19 Chimeric Antigen Receptor (CAR)-T cell therapies have shown promise for treating B cell malignancies, but the clinical outcome is influenced by both the CAR-T product and the patient's immune system. The role of γδ T cells in the context of CAR-T cell therapy remains poorly understood. This study investigates the transcriptional heterogeneity, clonal expansion and dynamics of γδ T cells in patients undergoing anti-CD19 CAR-T cell therapy. Longitudinal single cell multi-omics analysis was performed on γδ T cells from four patients receiving anti-CD19 CAR-T cell therapy. Single cell RNA-seq, antibody-based protein profiling (AbSeq) and full-length TCRγδ sequences revealed clonally expanded populations displaying plasticity in T cell differentiation, and temporal dynamics of large clones, suggesting ongoing expansion and differentiation. Clonally expanded γδ T cells had heterogeneous gene expression profiles, occupying seven transcriptionally distinct clusters. Analysis of chemokine markers indicated cluster-specific homing tendencies of circulating γδ T cells to peripheral tissues. We found unexpectedly high frequencies of Vδ1 and Vδ3 cells in the blood with distinct gene and protein expression profiles. This analysis provides insights into the dynamic and heterogeneous nature of γδ T cells following anti-CD19 CAR-T cell therapy, contributing valuable information for optimizing CAR-T cell therapies in B cell malignancies.
Collapse
Affiliation(s)
- Arman Safavi
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jerome Samir
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Martina Bonomi
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Raymond Yip Louie
- School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Fabio Luciani
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Future Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
King LA, Veth M, Iglesias-Guimarais V, Blijdorp I, Kloosterman J, Vis AN, Roovers RC, Hulsik DL, Riedl T, Adang AE, Parren PW, van Helden PM, de Gruijl TD, van der Vliet HJ. Leveraging Vγ9Vδ2 T cells against prostate cancer through a VHH-based PSMA-Vδ2 bispecific T cell engager. iScience 2024; 27:111289. [PMID: 39628574 PMCID: PMC11612814 DOI: 10.1016/j.isci.2024.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Vγ9Vδ2 T cells constitute a homogeneous effector T cell population that lyses tumors of different origin, including the prostate. We generated a bispecific T cell engager (bsTCE) to direct Vγ9Vδ2 T cells to PSMA+ prostate cancer (PCa) cells. The PSMA-Vδ2 bsTCE triggered healthy donor and PCa patient-derived Vγ9Vδ2 T cells to lyse PSMA+ PCa cell lines and patient-derived tumor cells while sparing normal prostate cells and enhanced Vγ9Vδ2 T cell antigen cross-presentation to CD8+ T cells. Vγ9Vδ2 T cell expressed NKG2D and DNAM-1 contributed to Vγ9Vδ2 T cell activation and tumor lysis at low PSMA-Vδ2 bsTCE concentrations. In vivo models confirmed the antitumor efficacy of the bsTCE and demonstrated a half-life of 6-7 days. Tissue-cross reactivity analysis was in line with known tissue distribution of PSMA and Vγ9Vδ2 T cells. Together these data show the PSMA-Vδ2 bsTCE to represent a promising anti-tumor strategy and supports its ongoing evaluation in a phase 1/2a clinical trial in therapy refractory metastatic castration-resistant PCa.
Collapse
Affiliation(s)
- Lisa A. King
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | | | - Iris Blijdorp
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
| | - Jan Kloosterman
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - André N. Vis
- Prostate Cancer Network the Netherlands, Amsterdam, the Netherlands
- Department of Urology, Amsterdam UMC, Vrije Universiteit Amsterdam, HV Amsterdam 1081, the Netherlands
| | | | | | - Thilo Riedl
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
| | | | - Paul W.H.I. Parren
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
9
|
Luo X, Lv Y, Yang J, Long R, Qiu J, Deng Y, Tang G, Zhang C, Li J, Zuo J. Gamma delta T cells in cancer therapy: from tumor recognition to novel treatments. Front Med (Lausanne) 2024; 11:1480191. [PMID: 39748921 PMCID: PMC11693687 DOI: 10.3389/fmed.2024.1480191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Traditional immunotherapies mainly focus on αβ T cell-based strategies, which depend on MHC-mediated antigen recognition. However, this approach poses significant challenges in treating recurrent tumors, as immune escape mechanisms are widespread. γδ T cells, with their ability for MHC-independent antigen presentation, offer a promising alternative that could potentially overcome limitations observed in traditional immunotherapies. These cells play a role in tumor immune surveillance through a unique mechanism of antigen recognition and synergistic interactions with other immune effector cells. In this review, we will discuss the biological properties of the Vδ1 and Vδ2 T subsets of γδ T cells, their immunomodulatory role within the tumor microenvironment, and the most recent clinical advances in γδ T cell-based related immunotherapies, including cell engaging strategies and adoptive cell therapy.
Collapse
Affiliation(s)
- Xinyu Luo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yufan Lv
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinsai Yang
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rou Long
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jieya Qiu
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqi Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guiyang Tang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chaohui Zhang
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiale Li
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianhong Zuo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
Lim W, Iyer N. A GD (Gamma-Delta) type of cancel culture. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100740. [PMID: 39717204 PMCID: PMC11664092 DOI: 10.1016/j.iotech.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
γδ T cells represent an 'unconventional' class of CD3+ lymphocytes with unique phenotypical and functional attributes that distinguishes them from their αβ T-cell receptor-expressing counterparts. Studies investigating the roles of γδ T cells in cancer have shown that these cells are indispensable for effective tumor control and their presence within the tumor may be of prognostic significance. Currently, there is significant interest in harnessing γδ T cells for cancer treatment, and research efforts have focused on the development of γδ T-cell-based strategies that are efficacious against cancer. Several therapeutic approaches using γδ T cells have been described, premised on the expansion of γδ T cells or γδ chimeric antigen receptor T therapy. The potential for broad, unbiased and 'off-the-shelf' applicability in cancer treatment, drives ongoing and future research and methodologies by which γδ T cells can be exploited for therapeutic use. In this review, we will briefly outline the characteristics of γδ T cells and describe how these work within and promote proper functioning of the cancer-immunity cycle. Additionally, we will introduce strategies that are less commonly described and may potentially be more efficacious than other types of therapy. Our discussion will expand upon presently known applications and even highlight the versatility of this immune subset as cancer therapeutics. γδ T-cell-based treatment is an emerging strategy and should be considered for cancelling cancer.
Collapse
Affiliation(s)
- W.K. Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | - N.G. Iyer
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
12
|
Yu X, Song L, Cen L, Cao B, Tao R, Shen Y, Abate-Daga D, Rodriguez PC, Conejo-Garcia JR, Wang X. Pan-cancer γδ TCR analysis uncovers clonotype diversity and prognostic potential. Cell Rep Med 2024; 5:101764. [PMID: 39368482 PMCID: PMC11513832 DOI: 10.1016/j.xcrm.2024.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Gamma-delta T cells (γδ T cells) play a crucial role in both innate and adaptive immunity within tumors, yet their presence and prognostic value in cancer remain underexplored. This study presents a large-scale analysis of γδ T cell receptor (γδ TCR) reads from 11,000 tumor samples spanning 33 cancer types, utilizing the TRUST4 algorithm. Our findings reveal extensive diversity in γδ TCR clonality and gene expression, underscoring the potential of γδ T cells as prognostic biomarkers in various cancers. We further demonstrate the utility of TCR gamma (TRG) and delta (TRD) gene expression from standard RNA-sequencing (RNA-seq) data. This comprehensive dataset offers a valuable resource for advancing γδ T cell research, with implications for enhanced immunotherapy approaches or alternative therapeutic strategies. Additionally, our centralized database supports translational research into the therapeutic significance of γδ T cells.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Prognosis
- Clone Cells
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Gene Expression Regulation, Neoplastic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ranran Tao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuanyuan Shen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 PMCID: PMC7616870 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, Peter Gorer Dept of Immunobiology, King’s College London, and CRUK City of London Cancer Centre, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, Ma Q, Chen Y, Xu F, Shi X, Liu Z, Wang C. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. NATURE NANOTECHNOLOGY 2024; 19:1569-1578. [PMID: 39054386 DOI: 10.1038/s41565-024-01722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Gamma-delta (γδ) T cell-based cancer immunotherapies represent a promising avenue for cancer treatment. However, their development is challenged by the limited expansion and differentiation of the cells ex vivo. Here we induced the endogenous expansion and activation of γδ T cells through oral administration of garlic-derived nanoparticles (GNPs). We found that GNPs could significantly promote the proliferation and activation of endogenous γδ T cells in the intestine, leading to generation of large amount of interferon-γ (IFNγ). Moreover GNP-treated mice showed increased levels of chemokine CXCR3 in intestinal γδ T cells, which can drive their migration from the gut to the tumour environment. The translocation of γδ T cells and IFNγ from the intestine to extraintestinal subcutaneous tumours remodels the tumour immune microenvironment and synergizes with anti-PD-L1, inducing robust antitumour immunity. Our study delineates mechanistic insight into the complex gut-tumour interactome and provides an alternative approach for γδ T cell-based immunotherapy.
Collapse
MESH Headings
- Animals
- Interferon-gamma/metabolism
- Nanoparticles/chemistry
- Garlic/chemistry
- Mice
- Administration, Oral
- Immunotherapy/methods
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Cell Line, Tumor
- Female
- B7-H1 Antigen/metabolism
- Intestines/immunology
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
- Jialu Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yue Yu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yue Zhang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Huaxing Dai
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Qianyu Yang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Beilei Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Qingle Ma
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Yitong Chen
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Fang Xu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Xiaolin Shi
- Medical College of Soochow University, Suzhou, China
| | - Zhuang Liu
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Liu J, Wu M, Yang Y, Mei X, Wang L, Wang J, Wang Z, He S, Liu H, Jiang H, Qu S, Zhang Y, Chen Y, Tian X, Huang Y, Wang H. BTN3A1 expressed in cervical cancer cells promotes Vγ9Vδ2 T cells exhaustion through upregulating transcription factors NR4A2/3 downstream of TCR signaling. Cell Commun Signal 2024; 22:459. [PMID: 39342337 PMCID: PMC11439235 DOI: 10.1186/s12964-024-01834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Clinical trials have shown that immunotherapy based on Vγ9Vδ2 T cells (Vδ2 T cells) is safe and well-tolerated for various cancers including cervical cancer (CC), but its overall treatment efficacy remains limited. Therefore, exploring the mechanisms underlying the suboptimal efficacy of Vδ2 T cell-based cancer immunotherapy is crucial for enabling its successful clinical translation. METHODS Tumor samples from CC patients and CC cell line-derived xenograft (CDX) mice were analyzed using flow cytometry to examine the exhausted phenotype of tumor-infiltrating Vδ2 T cells. The interrelationship between BTN3A1 expression and Vδ2 T cells in CC, along with their correlation with patient prognosis, was analyzed using data from The Cancer Genome Atlas (TCGA) database. CC cell lines with BTN3A1 knockout (KO) and overexpression (OE) were constructed through lentivirus transduction, which were then co-cultured with expanded Vδ2 T cells, followed by detecting the function of Vδ2 T cells using flow cytometry. The pathways and transcription factors (TFs) related to BTN3A1-induced Vδ2 T cells exhaustion and the factors affecting BTN3A1 expression were identified by RNA-seq analysis, which was confirmed by flow cytometry, Western Blot, and gene manipulation. RESULTS Tumor-infiltrating Vδ2 T cells exhibited an exhausted phenotype in both CC patients and CDX mice. BTN3A1 expressed in CC is highly enhancing exhaustion markers, while reducing the secretion of effector molecules in Vδ2 T cells. Blocking TCR or knocking down nuclear receptor subfamily 4 group A (NR4A) 2/3 can reverse BTN3A1-induced exhaustion in Vδ2 T cells. On the other hand, IFN-γ secreted by Vδ2 T cells promoted the expression of BTN3A1 and PD-L1. CONCLUSIONS Through binding γδ TCRs, BTN3A1 expressed on tumor cells, which is induced by IFN-γ, can promote Vδ2 T cells to upregulate the expression of TFs NR4A2/3, thereby affecting their activation and expression of exhaustion-related molecules in the tumor microenvironment (TME). Therefore, targeting BTN3A1 might overcome the immunosuppressive effect of the TME on Vδ2 T cells in CC.
Collapse
MESH Headings
- Humans
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/metabolism
- Female
- Animals
- Up-Regulation
- Signal Transduction
- Mice
- Cell Line, Tumor
- Butyrophilins/genetics
- Butyrophilins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Gene Expression Regulation, Neoplastic
- Receptors, Steroid
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Zhang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China.
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Tran K, Kumari AN, Raghu D, Cox DR, Goh SK, Perini MV, Muralidharan V, Tebbutt NC, Behren A, Mariadason J, Williams DS, Mielke LA. T cell factor 1 (TCF-1) defines T cell differentiation in colorectal cancer. iScience 2024; 27:110754. [PMID: 39280606 PMCID: PMC11401206 DOI: 10.1016/j.isci.2024.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The presence of precursor to exhausted (Tpex) CD8+ T cells is important to maintain robust immunity following treatment with immune checkpoint inhibition (ICI). Impressive responses to ICI are emerging in patients with stage II-III mismatch repair (MMR)-deficient (dMMR) colorectal cancer (CRC). We found 64% of dMMR and 15% of mismatch repair-proficient (pMMR) stage III CRCs had a high frequency of tumor infiltrating lymphocytes (TIL-hi). Furthermore, expression of TCF-1 (Tcf7) by CD8+ T cells predicted improved patient prognosis and Tpex cells (CD3+CD8+TCF-1+PD-1+) were abundant within lymphoid aggregates of stage III CRCs. In contrast, CD3+CD8+TCF-1-PD-1+ cells were more abundant at the invasive front and tumor core, while γδ T cells were equally abundant in all tumor areas. Interestingly, no differences in the frequency of Tpex cells were observed between TIL-hi dMMR and TIL-hi pMMR CRCs. Therefore, Tpex cell function and ICI response rates in TIL-hi CRC warrants further investigation.
Collapse
Affiliation(s)
- Kelly Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Anita N. Kumari
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Daniel R.A. Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Marcos V. Perini
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Niall C. Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - John Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - David S. Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Lisa A. Mielke
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
17
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
18
|
Ng JWK, Cheung AMS. γδ T-cells in human malignancies: insights from single-cell studies and analytical considerations. Front Immunol 2024; 15:1438962. [PMID: 39281674 PMCID: PMC11392790 DOI: 10.3389/fimmu.2024.1438962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
γδ T-cells are a rare population of T-cells with both adaptive and innate-like properties. Despite their low prevalence, they have been found to be implicated various human diseases. γδ T-cell infiltration has been associated with improved clinical outcomes in solid cancers, prompting renewed interest in understanding their biology. To date, their biology remains elusive due to their low prevalence. The introduction of high-resolution single-cell sequencing has allowed various groups to characterize key effector subsets in various contexts, as well as begin to elucidate key regulatory mechanisms directing the differentiation and activity of these cells. In this review, we will review some of insights obtained from single-cell studies of γδ T-cells across various malignancies and highlight some important questions that remain unaddressed.
Collapse
Affiliation(s)
- Jeremy Wee Kiat Ng
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Alice Man Sze Cheung
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
19
|
Stary V, Pandey RV, List J, Kleissl L, Deckert F, Kabiljo J, Laengle J, Gerakopoulos V, Oehler R, Watzke L, Farlik M, Lukowski SW, Vogt AB, Stary G, Stockinger H, Bergmann M, Pilat N. Dysfunctional tumor-infiltrating Vδ1 + T lymphocytes in microsatellite-stable colorectal cancer. Nat Commun 2024; 15:6949. [PMID: 39138181 PMCID: PMC11322529 DOI: 10.1038/s41467-024-51025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Although γδ T cells are known to participate in immune dysregulation in solid tumors, their relevance to human microsatellite-stable (MSS) colorectal cancer (CRC) is still undefined. Here, using integrated gene expression analysis and T cell receptor sequencing, we characterized γδ T cells in MSS CRC, with a focus on Vδ1 + T cells. We identified Vδ1+ T cells with shared motifs in the third complementarity-determining region of the δ-chain, reflective of antigen recognition. Changes in gene and protein expression levels suggested a dysfunctional effector state of Vδ1+ T cells in MSS CRC, distinct from Vδ1+ T cells in microsatellite-instable (MSI). Interaction analysis highlighted an immunosuppressive role of fibroblasts in the dysregulation of Vδ1+ T cells in MSS CRC via the TIGIT-NECTIN2 axis. Blocking this pathway with a TIGIT antibody partially restored cytotoxicity of the dysfunctional Vδ1 phenotype. These results define an operative pathway in γδ T cells in MSS CRC.
Collapse
MESH Headings
- Humans
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/immunology
- Microsatellite Instability
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Microsatellite Repeats/genetics
- Gene Expression Regulation, Neoplastic
- Female
- Male
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
Collapse
Affiliation(s)
- Victoria Stary
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria.
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| | - Ram V Pandey
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Julia List
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Lisa Kleissl
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Florian Deckert
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Julijan Kabiljo
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Johannes Laengle
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Vasileios Gerakopoulos
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Rudolf Oehler
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Lukas Watzke
- Medical University of Vienna, Department of Pathology, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Samuel W Lukowski
- Department of Human Cancer Immunology, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Anne B Vogt
- Department of Human Cancer Immunology, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Georg Stary
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
| | - Nina Pilat
- Medical University of Vienna, Department of General Surgery, Division of Visceral Surgery, Comprehensive Cancer Center, Vienna, Austria
- Medical University of Vienna, Department of Cardiac Surgery, Vienna, Austria
- Medical University of Vienna, Center for Biomedical Research and Translational Surgery, Vienna, Austria
| |
Collapse
|
20
|
Arias-Badia M, Chang R, Fong L. γδ T cells as critical anti-tumor immune effectors. NATURE CANCER 2024; 5:1145-1157. [PMID: 39060435 DOI: 10.1038/s43018-024-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
While the effector cells that mediate anti-tumor immunity have historically been attributed to αβ T cells and natural killer cells, γδ T cells are now being recognized as a complementary mechanism mediating tumor rejection. γδ T cells possess a host of functions ranging from antigen presentation to regulatory function and, importantly, have critical roles in eliciting anti-tumor responses where other immune effectors may be rendered ineffective. Recent discoveries have elucidated how these differing functions are mediated by γδ T cells with specific T cell receptors and spatial distribution. Their relative resistance to mechanisms of dysfunction like T cell exhaustion has spurred the development of therapeutic approaches exploiting γδ T cells, and an improved understanding of these cells should enable more effective immunotherapies.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Chang
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
21
|
Zhang S, Li L, Liu C, Pu M, Ma Y, Zhang T, Chai J, Li H, Yang J, Chen M, Kong L, Xia T. The use of peripheral CD3 +γδ +Vδ2 + T lymphocyte cells in combination with the ALBI score to predict immunotherapy response in patients with advanced hepatocellular carcinoma: a retrospective study. J Cancer Res Clin Oncol 2024; 150:365. [PMID: 39052085 PMCID: PMC11272815 DOI: 10.1007/s00432-024-05896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Currently, there is a lack of effective indicators for predicting the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC). This study aimed to investigate the expression and prognostic value of peripheral T lymphocyte subsets in advanced HCC. METHODS Patients with advanced HCC who were treated with immune checkpoint inhibitors (ICIs) from December 2021 to December 2023 were included in the study. Flow cytometry was used to detect lymphocyte subsets before treatment. The patients were divided into disease control (DC) and nondisease control (nDC) groups based on treatment efficacy. Relationships between the clinical characteristics/peripheral T lymphocytes and immunotherapy efficacy were analyzed. The effectiveness of peripheral T lymphocyte subsets in predicting immunotherapy efficacy for patients with advanced HCC was analyzed using receiver operating characteristic (ROC) curves. RESULTS A total of 40 eligible patients were included in this study. Non-DC was significantly associated with higher albumin-bilirubin (ALBI) scores. The percentages of γδ+Vδ2+PD1+ T cells and γδ+Vδ2+Tim3+ T cells were greater in the nDC group than in the DC group. Multivariable regression analysis revealed that the ALBI score and T lymphocytes expressing γδ+Vδ2+PD1+ and γδ+Vδ2+Tim3+ were founded to be independent influencing factors. The area under the ROC curve (AUC) values for these combinations was 0.944 (95% CI, 0.882 ~ 1.000). CONCLUSIONS The calculation of the ALBI score and determination of the percentages CD3+γδ+Vδ2+PD1+ T lymphocytes and CD3+γδ+Vδ2+Tim3+ T lymphocytes in the peripheral blood of patients with advanced HCC are helpful for predicting the patients' responses to ICIs, helping to screen patients who may clinically benefit from immunotherapy. RETROSPECTIVELY REGISTERED: number: ChiCTR2400080409, date of registration: 2024-01-29.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/therapy
- Male
- Female
- Retrospective Studies
- Middle Aged
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Aged
- Prognosis
- CD3 Complex/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Luyang Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Chengli Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China.
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China.
- Graduate School of Hebei North University, Zhangjiakou, China.
| | - Meng Pu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yingbo Ma
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry group, Beijing, China
| | - Haoming Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Jun Yang
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Meishan Chen
- Department of Ultrasound, Strategic Support Force Xingcheng Specialized Sanatorium, Huludao, China
| | - Linghong Kong
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tian Xia
- Graduate School of Hebei North University, Zhangjiakou, China
| |
Collapse
|
22
|
Yu X, Song L, Cen L, Cao B, Tao R, Shen Y, Abate-Daga D, Rodriguez PC, Conejo-Garcia JR, Wang X. A pan-cancer gamma delta T cell repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604205. [PMID: 39091790 PMCID: PMC11291071 DOI: 10.1101/2024.07.18.604205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This report presents the largest collection of gamma-delta T cell receptor (γδ TCR) reads in human cancer to date, analyzing about 11,000 patient tumor samples across 33 cancer types using the TRUST4 algorithm. Despite γδ T cells being a small fraction of the T cell population, they play a key role in both innate and adaptive immunity. Our comprehensive analysis reveals their significant presence across all cancer types, specifically highlighting the diverse spectrum and clonality patterns of their γδ receptors. This research highlights the complex roles of γδ T cells in tumor tissues and their potential as prognostic biomarkers. We also demonstrate the utility of T cell receptor gamma (TRG) and delta (TRD) gene expression values from standard RNA-seq data. Ultimately, our work establishes a fundamental resource for future tumor-infiltrating γδ T cell research and may facilitate the development of novel γδ-T-cell-based therapeutic strategies. Together, we demonstrate the strong diversity and prognostic potential of γδ T cells in multiple cancer types.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Current: Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ranran Tao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuanyuan Shen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C. Rodriguez
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| |
Collapse
|
23
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
24
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X, Wang H. γδ T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J Transl Med 2024; 22:553. [PMID: 38858763 PMCID: PMC11163710 DOI: 10.1186/s12967-024-05327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Gamma delta (γδ) T cells demonstrate strong cytotoxicity against diverse cancer cell types in an MHC-independent manner, rendering them promising contenders for cancer therapy. Although amplification and adoptive transfer of γδ T cells are being evaluated in the clinic, their therapeutic efficacy remains unsatisfactory, primarily due to the influence of the immunosuppressive tumor microenvironment (TME). Currently, the utilization of targeted therapeutic antibodies against inhibitory immune checkpoint (ICP) molecules is a viable approach to counteract the immunosuppressive consequences of the TME. Notably, PD-1/PD-L1 checkpoint inhibitors are considered primary treatment options for diverse malignancies, with the objective of preserving the response of αβ T cells. However, γδ T cells also infiltrate various human cancers and are important participants in cancer immunity, thereby influencing patient prognosis. Hence, it is imperative to comprehend the reciprocal impact of the PD-1/PD-L1 axis on γδ T cells. This understanding can serve as a therapeutic foundation for improving γδ T cells adoptive transfer therapy and may offer a novel avenue for future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Wu Y, Yao M, Wu Z, Ma L, Liu C. A new prognostic model based on gamma-delta T cells for predicting the risk and aiding in the treatment of clear cell renal cell carcinoma. Discov Oncol 2024; 15:185. [PMID: 38795225 PMCID: PMC11127908 DOI: 10.1007/s12672-024-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND ccRCC is the prevailing form of RCC, accounting for the majority of cases. The formation of cancer and the body's ability to fight against tumors are strongly connected to Gamma delta (γδ) T cells. METHODS We examined and analyzed the gene expression patterns of 535 individuals diagnosed with ccRCC and 72 individuals serving as controls, all sourced from the TCGA-KIRC dataset, which were subsequently validated through molecular biology experiments. RESULTS In ccRCC, we discovered 304 module genes (DEGRGs) that were ex-pressed differentially and linked to γδ T cells. A risk model for ccRCC was constructed using 13 differentially DEGRGs identified through univariate Cox and LASSO regression analyses, which were found to be associated with prognosis. The risk model exhibited outstanding performance in both the training and validation datasets. The comparison of immune checkpoint inhibitors and the tumor immune microenvironment between the high- and low-risk groups indicates that immunotherapy could lead to positive results for low-risk patients. Moreover, the inhibition of ccRCC cell proliferation, migration, and invasion was observed in cell culture upon knocking down TMSB10, a gene associated with different types of cancers. CONCLUSIONS In summary, we have created a precise predictive biomarker using a risk model centered on γδ T cells, which can anticipate clinical results and provide direction for the advancement of innovative targeted therapies.
Collapse
Affiliation(s)
- Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Mengfei Yao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Cheng Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
26
|
Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, Scotti GM, Socci C, Cesana G, Olmi S, Morelli MJ, Falconi M, Giustina A, Bonini C, Piemonti L, Ruggiero E, Petrelli A. Fat-to-blood recirculation of partially dysfunctional PD-1 +CD4 Tconv cells is associated with dysglycemia in human obesity. iScience 2024; 27:109032. [PMID: 38380252 PMCID: PMC10877684 DOI: 10.1016/j.isci.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefano Olmi
- San Marco Hospital GSD, Zingonia, Bergamo, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Massimo Falconi
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
27
|
Davies D, Kamdar S, Woolf R, Zlatareva I, Iannitto ML, Morton C, Haque Y, Martin H, Biswas D, Ndagire S, Munonyara M, Gillett C, O'Neill O, Nussbaumer O, Hayday A, Wu Y. PD-1 defines a distinct, functional, tissue-adapted state in Vδ1 + T cells with implications for cancer immunotherapy. NATURE CANCER 2024; 5:420-432. [PMID: 38172341 PMCID: PMC10965442 DOI: 10.1038/s43018-023-00690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Checkpoint inhibition (CPI), particularly that targeting the inhibitory coreceptor programmed cell death protein 1 (PD-1), has transformed oncology. Although CPI can derepress cancer (neo)antigen-specific αβ T cells that ordinarily show PD-1-dependent exhaustion, it can also be efficacious against cancers evading αβ T cell recognition. In such settings, γδ T cells have been implicated, but the functional relevance of PD-1 expression by these cells is unclear. Here we demonstrate that intratumoral TRDV1 transcripts (encoding the TCRδ chain of Vδ1+ γδ T cells) predict anti-PD-1 CPI response in patients with melanoma, particularly those harboring below average neoantigens. Moreover, using a protocol yielding substantial numbers of tissue-derived Vδ1+ cells, we show that PD-1+Vδ1+ cells display a transcriptomic program similar to, but distinct from, the canonical exhaustion program of colocated PD-1+CD8+ αβ T cells. In particular, PD-1+Vδ1+ cells retained effector responses to TCR signaling that were inhibitable by PD-1 engagement and derepressed by CPI.
Collapse
Affiliation(s)
- Daniel Davies
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Richard Woolf
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- St. John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | | | - Cienne Morton
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Department of Medical Oncology, Guy's Hospital, London, UK
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Hannah Martin
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK
| | - Dhruva Biswas
- Academic Foundation Programme, King's College Hospital, London, UK
| | - Susan Ndagire
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | | | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | - Olga O'Neill
- Advanced Sequencing Facility, Francis Crick Institute, London, UK
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK.
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Department of Medical Oncology, Guy's Hospital, London, UK.
| |
Collapse
|
28
|
Luo J, Shi X, Liu Y, Wang J, Wang H, Yang X, Sun Q, Hui Z, Wei F, Ren X, Zhao H. Immune checkpoint ligands expressed on mature high endothelial venules predict poor prognosis of NSCLC: have a relationship with CD8 + T lymphocytes infiltration. Front Immunol 2024; 15:1302761. [PMID: 38390332 PMCID: PMC10882939 DOI: 10.3389/fimmu.2024.1302761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Background An insufficient number of intratumoral CD8+ T lymphocytes is a major barrier to antitumor immunity and immunotherapy. High endothelial venules (HEVs) are the major sites through which lymphocytes enter tumors; however, the molecular mechanism through which HEVs mediate CD8+ T lymphocyte infiltration remains poorly understood. Methods Forty-two patients with stage IIIA lung adenocarcinoma, who underwent surgery, were recruited. Multiplex immunohistochemical staining was conducted on tumor tissues to detect the immune checkpoint ligands (ICLs) expressed in the HEVs, blood vessels, and lymphatics. A new ICL score model was constructed to evaluate ligand expression. The relationship between ICL score, tumor-infiltrating CD8+ T cell frequency, and survival of patients was investigated. Results Mature HEVs, but not blood vessels or lymphatics, mediated CD8+ T cell infiltration. However, the ICLs expressed on mature HEVs could negatively regulate CD8+ T cell entry into tertiary lymphoid structures (TLSs). In addition, according to the results obtained using our ICLtotal score model, the expression of ICLs on HEVs was observed to be a predictor of both CD8+ T cell infiltration and survival, in which a high ICLtotal score > 1 represent a weak CD8+ T cell infiltration and a high ICLtotal score > 2 predicts poor survival. Conclusion Using the ICL score model, we discovered that ICLs expressed on HEVs are indicative of CD8+ T cell subset infiltration in TLSs, as well as of patient survival with lung cancer.
Collapse
Affiliation(s)
- Jing Luo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiuhuan Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yumeng Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xuena Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
29
|
Lien SC, Ly D, Yang SYC, Wang BX, Clouthier DL, St Paul M, Gadalla R, Noamani B, Garcia-Batres CR, Boross-Harmer S, Bedard PL, Pugh TJ, Spreafico A, Hirano N, Razak ARA, Ohashi PS. Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. Nat Commun 2024; 15:1094. [PMID: 38321065 PMCID: PMC10848161 DOI: 10.1038/s41467-024-45449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Immunotherapies targeting PD-1/PD-L1 are now widely used in the clinic to treat a variety of malignancies. While most of the research on T cell exhaustion and PD-1 blockade has been focused on conventional αβ T cells, the contribution of innate-like T cells such as γδ T cells to anti-PD-1/PD-L1 mediated therapy is limited. Here we show that tumor reactive γδ T cells respond to PD-1 blockade in a Merkel cell carcinoma (MCC) patient experiencing a complete response to therapy. We find clonally expanded γδ T cells in the blood and tumor after pembrolizumab treatment, and this Vγ2Vδ1 clonotype recognizes Merkel cancer cells in a TCR-dependent manner. Notably, the intra-tumoral γδ T cells in the MCC patient are characterized by higher expression of PD-1 and TIGIT, relative to conventional CD4 and CD8 T cells. Our results demonstrate that innate-like T cells could also contribute to an anti-tumor response after PD-1 blockade.
Collapse
Affiliation(s)
- Scott C Lien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dalam Ly
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramy Gadalla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Babak Noamani
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Sarah Boross-Harmer
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Albiruni R A Razak
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Lyu C, Sun H, Sun Z, Liu Y, Wang Q. Roles of exosomes in immunotherapy for solid cancers. Cell Death Dis 2024; 15:106. [PMID: 38302430 PMCID: PMC10834551 DOI: 10.1038/s41419-024-06494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Although immunotherapy has made breakthrough progress, its efficacy in solid tumours remains unsatisfactory. Exosomes are the main type of extracellular vesicles that can deliver various intracellular molecules to adjacent or distant cells and organs, mediating various biological functions. Studies have found that exosomes can both activate the immune system and inhibit the immune system. The antigen and major histocompatibility complex (MHC) carried in exosomes make it possible to develop them as anticancer vaccines. Exosomes derived from blood, urine, saliva and cerebrospinal fluid can be used as ideal biomarkers in cancer diagnosis and prognosis. In recent years, exosome-based therapy has made great progress in the fields of drug transportation and immunotherapy. Here, we review the composition and sources of exosomes in the solid cancer immune microenvironment and further elaborate on the potential mechanisms and pathways by which exosomes influence immunotherapy for solid cancers. Moreover, we summarize the potential clinical application prospects of engineered exosomes and exosome vaccines in immunotherapy for solid cancers. Eventually, these findings may open up avenues for determining the potential of exosomes for diagnosis, treatment, and prognosis in solid cancer immunotherapy.
Collapse
Affiliation(s)
- Cong Lyu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
31
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Soleiman Ekhtiyari M, Kfoury Junior JR. Landscape of unconventional γδ T cell subsets in cancer. Mol Biol Rep 2024; 51:238. [PMID: 38289417 DOI: 10.1007/s11033-024-09267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
T cells are broadly categorized into two groups, namely conventional and unconventional T cells. Conventional T cells are the most prevalent and well-studied subset of T cells. On the other hand, unconventional T cells exhibit diverse functions shared between innate and adaptive immune cells. During recent decades, γδ T cells have received attention for their roles in cancer immunity. These cells can detect various molecules, such as lipids and metabolites. Also, they are known for their distinctive ability to recognize and target cancer cells in the tumor microenvironment (TME). This feature of γδ T cells could provide a unique therapeutic tool to fight against cancer. Understanding the role of γδ T cells in TME is essential to prepare the groundwork to use γδ T cells for clinical purposes. Here, we provide recent knowledge regarding the role γδ T cell subsets in different cancer types.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
32
|
Li J, Meng Z, Cao Z, Lu W, Yang Y, Li Z, Lu S. ADGRE5-centered Tsurv model in T cells recognizes responders to neoadjuvant cancer immunotherapy. Front Immunol 2024; 15:1304183. [PMID: 38343549 PMCID: PMC10853338 DOI: 10.3389/fimmu.2024.1304183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Background Neoadjuvant immunotherapy with anti-programmed death-1 (neo-antiPD1) has revolutionized perioperative methods for improvement of overall survival (OS), while approaches for major pathologic response patients' (MPR) recognition along with methods for overcoming non-MPR resistance are still in urgent need. Methods We utilized and integrated publicly-available immune checkpoint inhibitors regimens (ICIs) single-cell (sc) data as the discovery datasets, and innovatively developed a cell-communication analysis pipeline, along with a VIPER-based-SCENIC process, to thoroughly dissect MPR-responding subsets. Besides, we further employed our own non-small cell lung cancer (NSCLC) ICIs cohort's sc data for validation in-silico. Afterward, we resorted to ICIs-resistant murine models developed by us with multimodal investigation, including bulk-RNA-sequencing, Chip-sequencing and high-dimensional cytometry by time of flight (CYTOF) to consolidate our findings in-vivo. To comprehensively explore mechanisms, we adopted 3D ex-vivo hydrogel models for analysis. Furthermore, we constructed an ADGRE5-centered Tsurv model from our discovery dataset by machine learning (ML) algorithms for a wide range of tumor types (NSCLC, melanoma, urothelial cancer, etc.) and verified it in peripheral blood mononuclear cells (PBMCs) sc datasets. Results Through a meta-analysis of multimodal sequential sc sequencing data from pre-ICIs and post-ICIs, we identified an MPR-expanding T cells meta-cluster (MPR-E) in the tumor microenvironment (TME), characterized by a stem-like CD8+ T cluster (survT) with STAT5-ADGRE5 axis enhancement compared to non-MPR or pre-ICIs TME. Through multi-omics analysis of murine TME, we further confirmed the existence of survT with silenced function and immune checkpoints (ICs) in MPR-E. After verification of the STAT5-ADGRE5 axis of survT in independent ICIs cohorts, an ADGRE5-centered Tsurv model was then developed through ML for identification of MPR patients pre-ICIs and post-ICIs, both in TME and PBMCs, which was further verified in pan-cancer immunotherapy cohorts. Mechanistically, we unveiled ICIs stimulated ADGRE5 upregulation in a STAT5-IL32 dependent manner in a 3D ex-vivo system (3D-HYGTIC) developed by us previously, which marked Tsurv with better survival flexibility, enhanced stemness and potential cytotoxicity within TME. Conclusion Our research provides insights into mechanisms underlying MPR in neo-antiPD1 and a well-performed model for the identification of non-MPR.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Sagar. Unraveling the secrets of γδ T cells with single-cell biology. J Leukoc Biol 2024; 115:47-56. [PMID: 38073484 DOI: 10.1093/jleuko/qiad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 01/07/2024] Open
Abstract
Recent technological advancements have enabled us to study the molecular features of cellular states at the single-cell level, providing unprecedented resolution for comprehending the identity and function of a cell. By applying these techniques across multiple time frames, tissues, and diseases, we can delve deeper into the mechanisms governing the development and functions of cell lineages. In this review, I focus on γδ T cells, which are a unique and functionally nonredundant T cell lineage categorized under the umbrella of unconventional T cells. I discuss how single-cell biology is providing unique insights into their development and functions. Furthermore, I explore how single-cell methods can be used to answer several key questions about their biology. These investigations will be essential to fully understand their translational potential, including their role in cytotoxicity and tissue repair in cancer and regeneration.
Collapse
Affiliation(s)
- Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| |
Collapse
|
34
|
Costa GP, Mensurado S, Silva-Santos B. Therapeutic avenues for γδ T cells in cancer. J Immunother Cancer 2023; 11:e007955. [PMID: 38007241 PMCID: PMC10680012 DOI: 10.1136/jitc-2023-007955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/27/2023] Open
Abstract
γδ T cells are regarded as promising effector lymphocytes for next-generation cancer immunotherapies. In spite of being relatively rare in human peripheral blood, γδ T cells are more abundant in epithelial tissues where many tumors develop, and have been shown to actively participate in anticancer immunity as cytotoxic cells or as "type 1" immune orchestrators. A major asset of γδ T cells for tackling advanced cancers is their independence from antigen presentation via the major histocompatibility complex, which clearly sets them apart from conventional αβ T cells. Here we discuss the main therapeutic strategies based on human γδ T cells. These include antibody-based bispecific engagers and adoptive cell therapies, either focused on the Vδ1+ or Vδ2+ γδ T-cell subsets, which can be expanded selectively and differentiated or engineered to maximize their antitumor functions. We review the preclinical data that supports each of the therapeutic strategies under development; and summarize the clinical trials being pursued towards establishing γδ T cell-based treatments for solid and hematological malignancies.
Collapse
Affiliation(s)
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
36
|
Yakou MH, Ghilas S, Tran K, Liao Y, Afshar-Sterle S, Kumari A, Schmid K, Dijkstra C, Inguanti C, Ostrouska S, Wilcox J, Smith M, Parathan P, Allam A, Xue HH, Belz GT, Mariadason JM, Behren A, Drummond GR, Ruscher R, Williams DS, Pal B, Shi W, Ernst M, Raghu D, Mielke LA. TCF-1 limits intraepithelial lymphocyte antitumor immunity in colorectal carcinoma. Sci Immunol 2023; 8:eadf2163. [PMID: 37801516 DOI: 10.1126/sciimmunol.adf2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/07/2023] [Indexed: 10/08/2023]
Abstract
Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.
Collapse
Affiliation(s)
- Marina H Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Sonia Ghilas
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Anita Kumari
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kevin Schmid
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Chantelle Inguanti
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Maxine Smith
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Pavitha Parathan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research; Department of Microbiology, Anatomy, Physiology and Pharmacology; and School of Agriculture, Biomedicine, and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
37
|
Meringa AD, Hernández-López P, Cleven A, de Witte M, Straetemans T, Kuball J, Beringer DX, Sebestyen Z. Strategies to improve γδTCRs engineered T-cell therapies for the treatment of solid malignancies. Front Immunol 2023; 14:1159337. [PMID: 37441064 PMCID: PMC10333927 DOI: 10.3389/fimmu.2023.1159337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- A. D. Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - P. Hernández-López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - A. Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. de Witte
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - T. Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J. Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - D. X. Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Z. Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
38
|
Chen M, Jiang J, Hou J. Single-cell technologies in multiple myeloma: new insights into disease pathogenesis and translational implications. Biomark Res 2023; 11:55. [PMID: 37259170 PMCID: PMC10234006 DOI: 10.1186/s40364-023-00502-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of plasma cells. Although therapeutic advances have been made to improve clinical outcomes and to prolong patients' survival in the past two decades, MM remains largely incurable. Single-cell sequencing (SCS) is a powerful method to dissect the cellular and molecular landscape at single-cell resolution, instead of providing averaged results. The application of single-cell technologies promises to address outstanding questions in myeloma biology and has revolutionized our understanding of the inter- and intra-tumor heterogeneity, tumor microenvironment, and mechanisms of therapeutic resistance in MM. In this review, we summarize the recently developed SCS methodologies and latest MM research progress achieved by single-cell profiling, including information regarding the cancer and immune cell landscapes, tumor heterogeneities, underlying mechanisms and biomarkers associated with therapeutic response and resistance. We also discuss future directions of applying transformative SCS approaches with contribution to clinical translation.
Collapse
Affiliation(s)
- Mengping Chen
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jinxing Jiang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|