1
|
Masullo LA, Kowalewski R, Honsa M, Heinze L, Xu S, Steen PR, Grabmayr H, Pachmayr I, Reinhardt SCM, Perovic A, Kwon J, Oxley EP, Dickins RA, Bastings MMC, Parish IA, Jungmann R. Spatial and stoichiometric in situ analysis of biomolecular oligomerization at single-protein resolution. Nat Commun 2025; 16:4202. [PMID: 40328783 PMCID: PMC12056017 DOI: 10.1038/s41467-025-59500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Latest advances in super-resolution microscopy allow the study of subcellular features at the level of single proteins, which could lead to discoveries in fundamental biological processes, specifically in cell signaling mediated by membrane receptors. Despite these advances, accurately extracting quantitative information on molecular arrangements of proteins at the 1-20 nm scale through rigorous image analysis remains a significant challenge. Here, we present SPINNA (Single-Protein Investigation via Nearest-Neighbor Analysis): an analysis framework that compares nearest-neighbor distances from experimental single-protein position data with those obtained from realistic simulations based on a user-defined model of protein oligomerization states. We demonstrate SPINNA in silico, in vitro, and in cells. In particular, we quantitatively assess the oligomerization of the epidermal growth factor receptor (EGFR) upon EGF treatment and investigate the dimerization of CD80 and PD-L1, key surface ligands involved in immune cell signaling. Importantly, we offer an open-source Python implementation and a GUI to facilitate SPINNA's widespread use in the scientific community.
Collapse
Affiliation(s)
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Monique Honsa
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Larissa Heinze
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Shuhan Xu
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Philipp R Steen
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Heinrich Grabmayr
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Isabelle Pachmayr
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maartje M C Bastings
- Institute of Materials and Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
2
|
Radmacher N, Chizhik AI, Nevskyi O, Gallea JI, Gregor I, Enderlein J. Molecular Level Super-Resolution Fluorescence Imaging. Annu Rev Biophys 2025; 54:163-184. [PMID: 39952270 DOI: 10.1146/annurev-biophys-071524-105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Over the last 30 years, fluorescence microscopy, renowned for its sensitivity and specificity, has undergone a revolution in resolving ever-smaller details. This advancement began with stimulated emission depletion (STED) microscopy and progressed with techniques such as photoactivatable localization microscopy and stochastic optical reconstruction microscopy (STORM). Single-molecule localization microscopy (SMLM), which encompasses methods like direct STORM, has significantly enhanced image resolution. Even though its speed is slower than that of STED, SMLM achieves higher resolution by overcoming photobleaching limitations, particularly through DNA point accumulation for imaging in nanoscale topography (DNA-PAINT), which continuously renews fluorescent labels. Additionally, cryo-fluorescence microscopy and advanced techniques like minimal photon fluxes imaging (MINFLUX) have pushed the boundaries toward molecular resolution SMLM. This review discusses the latest developments in SMLM, highlighting methods like resolution enhancement by sequential imaging (RESI) and PAINT-MINFLUX and exploring axial localization techniques such as supercritical angle fluorescence and metal-induced energy transfer. These advancements promise to revolutionize fluorescence microscopy, providing resolution comparable to that of electron microscopy.
Collapse
Affiliation(s)
- Niels Radmacher
- Third Institute of Physics - Biophysics, Georg August University of Göttingen, Göttingen, Germany;
| | - Alexey I Chizhik
- Third Institute of Physics - Biophysics, Georg August University of Göttingen, Göttingen, Germany;
| | - Oleksii Nevskyi
- Third Institute of Physics - Biophysics, Georg August University of Göttingen, Göttingen, Germany;
| | - José Ignacio Gallea
- Third Institute of Physics - Biophysics, Georg August University of Göttingen, Göttingen, Germany;
| | - Ingo Gregor
- Third Institute of Physics - Biophysics, Georg August University of Göttingen, Göttingen, Germany;
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University of Göttingen, Göttingen, Germany;
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Ashwood B, Tokmakoff A. Kinetics and dynamics of oligonucleotide hybridization. Nat Rev Chem 2025; 9:305-327. [PMID: 40217001 DOI: 10.1038/s41570-025-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 05/15/2025]
Abstract
The hybridization of short nucleic acid strands is a remarkable spontaneous process that is foundational to biotechnology and nanotechnology and plays a crucial role in gene expression, editing and DNA repair. Decades of research into the mechanism of hybridization have resulted in a deep understanding of its thermodynamics, but many questions remain regarding its kinetics and dynamics. Recent advances in experiments and molecular dynamics simulations of nucleic acids are enabling more direct insight into the structural dynamics of hybridization, which can test long-standing assumptions regarding its mechanism. In this Review, we summarize the current state of knowledge of hybridization kinetics, discuss the barriers to a molecular description of hybridization dynamics, and highlight the new approaches that have begun uncovering the dynamics of hybridization and the duplex ensemble. The kinetics and dynamics of hybridization are highly sensitive to the composition of nucleic acids, and we emphasize recent discoveries and open questions on the role of nucleobase sequence and chemical modifications.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Andrei Tokmakoff
- Department of Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
de Zwaan K, Huo R, Hensgens MN, Wienecke HL, Tekpınar M, Geertsema H, Grußmayer K. High-Throughput Single-Molecule Microscopy with Adaptable Spatial Resolution Using Exchangeable Oligonucleotide Labels. ACS NANO 2025; 19:13149-13159. [PMID: 40145776 PMCID: PMC11984304 DOI: 10.1021/acsnano.4c18502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Super-resolution microscopy facilitates the visualization of cellular structures at a resolution approaching the molecular level. Especially, super-resolution techniques based on the localization of single molecules have relatively modest instrument requirements and are thus good candidates for adoption in bioimaging. However, their low-throughput nature hampers their applicability in biomolecular research and screening. Here, we propose a workflow for more efficient data collection, starting with the scanning of large areas using fast fluctuation-based imaging, followed by single-molecule localization microscopy of selected cells. To achieve this workflow, we exploit the versatility of DNA oligo hybridization kinetics with DNA-PAINT probes to tailor the fluorescent blinking toward high-throughput and high-resolution imaging. Additionally, we employ super-resolution optical fluctuation imaging (SOFI) to analyze statistical fluctuations in the DNA-PAINT binding kinetics, thereby tolerating much denser blinking and facilitating accelerated imaging speeds. Thus, we demonstrate 30-300-fold faster imaging of different cellular structures compared to conventional DNA-PAINT imaging, albeit at a lower resolution. Notably, by tuning the image medium and data processing though, we can flexibly switch between high-throughput SOFI (scanning an FOV of 0.65 mm × 0.52 mm within 4 min of total acquisition time) and super-resolution DNA-PAINT microscopy and thereby demonstrate that combining DNA-PAINT and SOFI enables one to adapt image resolution and acquisition time based on the imaging needs. We envision this approach to be especially powerful when combined with multiplexing and 3D imaging.
Collapse
Affiliation(s)
- Klarinda de Zwaan
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Ran Huo
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Myron N.F. Hensgens
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Hannah Lena Wienecke
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Miyase Tekpınar
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Hylkje Geertsema
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Kristin Grußmayer
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Unterauer EM, Schentarra EM, Jevdokimenko K, Boushehri SS, Marr C, Opazo F, Fornasiero EF, Jungmann R. Protocol for SUM-PAINT spatial proteomic imaging generating neuronal architecture maps in rat hippocampal neurons. STAR Protoc 2025; 6:103637. [PMID: 40048420 PMCID: PMC11928808 DOI: 10.1016/j.xpro.2025.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
To unravel the complexity of biological processes, it is necessary to resolve the underlying protein organization down to single proteins. Here, we present a protocol for secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a DNA-PAINT-based super-resolution microscopy technique that is capable of resolving virtually unlimited protein species with single-protein resolution. We describe the steps to prepare neuronal cultures, troubleshoot and conduct SUM-PAINT experiments, and analyze the resulting feature-rich neuronal cell atlases using unsupervised machine learning approaches. For complete details on the use and execution of this protocol, please refer to Unterauer et al.1.
Collapse
Affiliation(s)
- Eduard M Unterauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva-Maria Schentarra
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany; Data & Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany; NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
6
|
Toms L, FitzPatrick L, Auckland P. Super-resolution microscopy as a drug discovery tool. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100209. [PMID: 39824440 DOI: 10.1016/j.slasd.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look. Now, after nearly two decades, super-resolution microscopy has begun to address previously unmet challenges in the study of human disease and is poised to become a pivotal tool in drug discovery.
Collapse
Affiliation(s)
- Lauren Toms
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom
| | - Philip Auckland
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| |
Collapse
|
7
|
Lokesh NR, Pownall ME. Microscopy methods for the in vivo study of nanoscale nuclear organization. Biochem Soc Trans 2025; 53:BST20240629. [PMID: 39898979 DOI: 10.1042/bst20240629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Eukaryotic genomes are highly compacted within the nucleus and organized into complex 3D structures across various genomic and physical scales. Organization within the nucleus plays a key role in gene regulation, both facilitating regulatory interactions to promote transcription while also enabling the silencing of other genes. Despite the functional importance of genome organization in determining cell identity and function, investigating nuclear organization across this wide range of physical scales has been challenging. Microscopy provides the opportunity for direct visualization of nuclear structures and has pioneered key discoveries in this field. Nonetheless, visualization of nanoscale structures within the nucleus, such as nucleosomes and chromatin loops, requires super-resolution imaging to go beyond the ~220 nm diffraction limit. Here, we review recent advances in imaging technology and their promise to uncover new insights into the organization of the nucleus at the nanoscale. We discuss different imaging modalities and how they have been applied to the nucleus, with a focus on super-resolution light microscopy and its application to in vivo systems. Finally, we conclude with our perspective on how continued technical innovations in super-resolution imaging in the nucleus will advance our understanding of genome structure and function.
Collapse
Affiliation(s)
- Nidhi Rani Lokesh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| | - Mark E Pownall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| |
Collapse
|
8
|
Anderson MC, Dharmasri PA, Damenti M, Metzbower SR, Laghaei R, Blanpied TA, Levy AD. Trans-synaptic molecular context of NMDA receptor nanodomains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.22.573055. [PMID: 38187545 PMCID: PMC10769418 DOI: 10.1101/2023.12.22.573055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tight coordination of the spatial relationships between protein complexes is required for cellular function. In neuronal synapses, many proteins responsible for neurotransmission organize into subsynaptic nanoclusters whose trans-cellular alignment modulates synaptic signal propagation. However, the spatial relationships between these proteins and NMDA receptors (NMDARs), which are required for learning and memory, remain undefined. Here, we mapped the relationship of key NMDAR subunits to reference proteins in the active zone and postsynaptic density using multiplexed super-resolution DNA-PAINT microscopy. GluN2A and GluN2B subunits formed nanoclusters with diverse configurations that, surprisingly, were not localized near presynaptic vesicle release sites marked by Munc13-1. Despite this, we found a subset of release sites was enriched with NMDARs, and modeling of glutamate release and receptor activation in measured synapses indicated this nanotopography promotes NMDAR activation. This subset of release sites was internally denser with Munc13-1, aligned with abundant PSD-95, and associated closely with specific NMDAR nanodomains. Further, NMDAR activation drove rapid reorganization of this release site/receptor relationship, suggesting a structural mechanism for tuning NMDAR-mediated synaptic transmission. This work reveals a new principle regulating NMDAR signaling and suggests that synaptic functional architecture depends on the assembly of and trans-cellular spatial relationships between multiprotein nanodomains.
Collapse
Affiliation(s)
- Michael C Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Current address: Nikon Instruments Inc, Melville, NY, USA
| | - Martina Damenti
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah R Metzbower
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Current address: Nikon Instruments Inc, Melville, NY, USA
| | - Rozita Laghaei
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas A Blanpied
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Hong F. Programmable DNA Reactions for Advanced Fluorescence Microscopy in Bioimaging. SMALL METHODS 2024:e2401279. [PMID: 39679773 DOI: 10.1002/smtd.202401279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Biological organisms are composed of billions of molecules organized across various length scales. Direct visualization of these biomolecules in situ enables the retrieval of vast molecular information, including their location, species, and quantities, which is essential for understanding biological processes. The programmability of DNA interactions has made DNA-based reactions a major driving force in extending the limits of fluorescence microscopy, allowing for the study of biological complexity at different scales. This review article provides an overview of recent technological advancements in DNA-based fluorescence microscopy, highlighting how these innovations have expanded the technique's capabilities in terms of target multiplexity, signal amplification, super-resolution, and mechanical properties. These advanced DNA-based fluorescence microscopy techniques have been widely used to uncover new biological insights at the molecular level.
Collapse
Affiliation(s)
- Fan Hong
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Fertan E, Hung C, Danial JSH, Lam JYL, Preman P, Albertini G, English EA, Böken D, Livesey FJ, De Strooper B, Patani R, Klenerman D. Clearance of beta-amyloid and tau aggregates is size dependent and altered by an inflammatory challenge. Brain Commun 2024; 7:fcae454. [PMID: 39749010 PMCID: PMC11694676 DOI: 10.1093/braincomms/fcae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular beta-amyloid aggregation and inflammation are in a complex and not fully understood interplay during hyperphosphorylated tau aggregation and pathogenesis of Alzheimer's disease. Our group has previously shown that an immune challenge with tumour necrosis factor alpha can alter extracellular beta-sheet containing aggregates in human-induced pluripotent stem cell-derived cortical neurons carrying familial Alzheimer's disease-related presenilin 1 mutations. Here, using single-molecule detection and super-resolution imaging techniques, we quantified and characterized the intra- and extracellular beta-amyloid and AT8-positive tau aggregates. Our results indicate a pre-existing Alzheimer's disease-like pathology caused by the presenilin 1 mutation, with increased beta-amyloid aggregates in both the cell lysate and conditioned media compared to isogenic controls and also increased intracellular tau aggregates. The main effect of tumour necrosis factor alpha treatment on presenilin 1 neurons was the formation of larger intracellular beta-amyloid aggregates. In contrast, isogenic controls showed more significant changes with tumour necrosis factor alpha treatment with an increase in beta-amyloid aggregates in the media but not intracellularly and an increase in tau aggregates in both the media and cell lysate, suggesting a chronic inflammation-driven mechanism for the development of sporadic Alzheimer's disease. Remarkably, we also found significant morphological differences between intra- and extracellular beta-amyloid and tau aggregates in human-induced pluripotent stem cell-derived cortical neurons, suggesting these neurons can only clear aggregates when small, and that larger aggregates stay inside the neurons. While majority of the beta-amyloid aggregates were cleared into the media, a greater portion of the tau aggregates remained intracellular. This size-dependent aggregate clearance was also shown to be conserved in vivo, using soaked and homogenized mouse and human post-mortem Alzheimer's disease brain samples. As such, our results are proposing a previously unknown, size-dependent aggregate clearance mechanism, which can possibly explain the intracellular aggregation of tau and extracellular aggregation of beta-amyloid.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christy Hung
- The Francis Crick Institute, University College London, London NW1 1AT, UK
- Department of Neuroscience, City University of Hong Kong, Kowloon 999007, Hong Kong SAR
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pranav Preman
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
| | - Giulia Albertini
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
| | - Elizabeth A English
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Frederick J Livesey
- Zayed Centre for Research into Rare Disease in Children, University College London, Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Rickie Patani
- The Francis Crick Institute, University College London, London NW1 1AT, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
11
|
Lučinskaitė E, Bokhobza AFE, Stannard A, Meletiou A, Estell C, West S, Michele LD, Soeller C, Clowsley AH. Reduced Non-Specific Binding of Super-Resolution DNA-PAINT Markers by Shielded DNA-PAINT Labeling Protocols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405032. [PMID: 39422065 PMCID: PMC11657032 DOI: 10.1002/smll.202405032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/09/2024] [Indexed: 10/19/2024]
Abstract
The DNA-based single molecule super-resolution imaging approach, DNA-PAINT, can achieve nanometer resolution of single targets. However, the approach can suffer from significant non-specific background signals originating from non-specifically bound DNA-conjugated DNA-PAINT secondary antibodies as shown here. Using dye-modified oligonucleotides the location of DNA-PAINT secondary antibody probes can easily be observed with widefield imaging prior to beginning a super-resolution measurement. This reveals that a substantial proportion of DNA probes can accumulate, non-specifically, within the nucleus, as well as across the cytoplasm, of cells. Here, Shielded DNA-PAINT labeling is introduced, a method using partially or fully double-stranded docking strand sequences, prior to labeling, in buffers with increased ionic strength to greatly reduce non-specific interactions in the nucleus as well as the cytoplasm. This new labeling approach is evaluated against various conditions and it is shown that applying Shielded DNA-PAINT can reduce non-specific events approximately five-fold within the nucleus. This marked reduction in non-specific binding of probes during the labeling procedure is comparable to results obtained with unnatural left-handed DNA albeit at a fraction of the cost. Shielded DNA-PAINT is a straightforward adaption of current DNA-PAINT protocols and enables nanometer precision imaging of nuclear targets with low non-specific backgrounds.
Collapse
Affiliation(s)
| | | | - Andrew Stannard
- Department of ChemistryImperial College LondonLondonW12 OBZUK
| | - Anna Meletiou
- Department of PhysiologyUniversity of BernBern3012Switzerland
| | - Chris Estell
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Steven West
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | | | | |
Collapse
|
12
|
Marcano-García LF, Zaza C, Dalby OPL, Joseph MD, Cappellari MV, Simoncelli S, Aramendía PF. Quantitative Analysis of Protein-Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy. NANO LETTERS 2024; 24:13834-13842. [PMID: 39432814 PMCID: PMC11528428 DOI: 10.1021/acs.nanolett.4c04394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Current methods for determining equilibrium constants often operate in three-dimensional environments, which may not accurately reflect interactions with membrane-bound proteins. With our technique, based on single-molecule localization microscopy (SMLM), we directly determine protein-protein association (Ka) and dissociation (Kd) constants in cellular environments by quantifying associated and isolated molecules and their interaction area. We introduce Kernel Surface Density (ks-density,) a novel method for determining the accessible area for interacting molecules, eliminating the need for user-defined parameters. Simulation studies validate our method's accuracy across various density and affinity conditions. Applying this technique to T cell signaling proteins, we determine the 2D association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments, advancing our knowledge of complex biological processes.
Collapse
Affiliation(s)
- Luis F. Marcano-García
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Cecilia Zaza
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
| | - Olivia P. L. Dalby
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Megan D. Joseph
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - M. Victoria Cappellari
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Sabrina Simoncelli
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Pedro F. Aramendía
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
13
|
Mezgec K, Snoj J, Ulčakar L, Ljubetič A, Tušek Žnidarič M, Škarabot M, Jerala R. Coupling of Spectrin Repeat Modules for the Assembly of Nanorods and Presentation of Protein Domains. ACS NANO 2024; 18:28748-28763. [PMID: 39392430 PMCID: PMC11503911 DOI: 10.1021/acsnano.4c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Modular protein engineering is a powerful approach for fabricating high-molecular-weight assemblies and biomaterials with nanoscale precision. Herein, we address the challenge of designing an extended nanoscale filamentous architecture inspired by the central rod domain of human dystrophin, which protects sarcolemma during muscle contraction and consists of spectrin repeats composed of three-helical bundles. A module of three tandem spectrin repeats was used as a rigid building block self-assembling via coiled-coil (CC) dimer-forming peptides. CC peptides were precisely integrated to maintain the spectrin α-helix continuity in an appropriate frame to form extended nanorods. An orthogonal set of customizable CC heterodimers was harnessed for modular rigid domain association, which could be additionally regulated by metal ions and chelators. We achieved a robust assembly of rigid rods several micrometers in length, determined by atomic force microscopy and negative stain transmission electron microscopy. Furthermore, these rigid rods can serve as a scaffold for the decoration of diverse proteins or biologically active peptides along their length with adjustable spacing up to tens of nanometers, as confirmed by the DNA-PAINT super-resolution microscopy. This demonstrates the potential of modular bottom-up protein engineering and tunable CCs for the fabrication of functionalized protein biomaterials.
Collapse
Affiliation(s)
- Klemen Mezgec
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Snoj
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Liza Ulčakar
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department
of Biotechnology and Systems Biology, National
Institute of Biology, SI-1000 Ljubljana, Slovenia
| | - Miha Škarabot
- Condensed
Matter Department, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- CTGCT, Centre
of Technology of Gene and Cell Therapy, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Distinct active zone protein machineries mediate Ca 2+ channel clustering and vesicle priming at hippocampal synapses. Nat Neurosci 2024; 27:1680-1694. [PMID: 39160372 PMCID: PMC11682530 DOI: 10.1038/s41593-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Action potentials trigger neurotransmitter release at the presynaptic active zone with spatiotemporal precision. This is supported by protein machinery that mediates synaptic vesicle priming and clustering of CaV2 Ca2+ channels nearby. One model posits that scaffolding proteins directly tether vesicles to CaV2s; however, here we find that at mouse hippocampal synapses, CaV2 clustering and vesicle priming are executed by separate machineries. CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins but distinct interaction motifs independently execute these functions. In transfected cells, Liprin-α and RIM form co-assemblies that are separate from CaV2-organizing complexes. At synapses, Liprin-α1-Liprin-α4 knockout impairs vesicle priming but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering CaV2s. We conclude that active zones consist of distinct machineries to organize CaV2s and prime vesicles, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Hellmeier J, Strauss S, Xu S, Masullo LA, Unterauer EM, Kowalewski R, Jungmann R. Quantification of absolute labeling efficiency at the single-protein level. Nat Methods 2024; 21:1702-1707. [PMID: 38658647 PMCID: PMC11399078 DOI: 10.1038/s41592-024-02242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art super-resolution microscopy allows researchers to spatially resolve single proteins in dense clusters. However, accurate quantification of protein organization and stoichiometries requires a general method to evaluate absolute binder labeling efficiency, which is currently unavailable. Here we introduce a universally applicable approach that uses a reference tag fused to a target protein of interest. By attaching high-affinity binders, such as antibodies or nanobodies, to both the reference tag and the target protein, and then employing DNA-barcoded sequential super-resolution imaging, we can correlate the location of the reference tag with the target molecule binder. This approach facilitates the precise quantification of labeling efficiency at the single-protein level.
Collapse
Affiliation(s)
| | | | - Shuhan Xu
- Max Planck Institute of Biochemistry, Planegg, Germany
| | | | | | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
16
|
Steen PR, Unterauer EM, Masullo LA, Kwon J, Perovic A, Jevdokimenko K, Opazo F, Fornasiero EF, Jungmann R. The DNA-PAINT palette: a comprehensive performance analysis of fluorescent dyes. Nat Methods 2024; 21:1755-1762. [PMID: 39112798 PMCID: PMC11399092 DOI: 10.1038/s41592-024-02374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT. Here we defined four key parameters characterizing performance: brightness, signal-to-background ratio, DNA-PAINT docking site damage and off-target signal. We then analyzed 18 fluorescent dyes in three spectral regions and examined them both in DNA origami nanostructures, establishing a reference standard, and in a cellular environment, targeting the nuclear pore complex protein Nup96. Finally, having identified several well-performing dyes for each excitation wavelength, we conducted simultaneous three-color DNA-PAINT combined with Exchange-PAINT to image six protein targets in neurons at ~16 nm resolution in less than 2 h. We thus provide guidelines for DNA-PAINT dye selection and evaluation and an overview of performances of commonly used dyes.
Collapse
Affiliation(s)
- Philipp R Steen
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eduard M Unterauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
17
|
Chang TJ, Yang TT. Multiplexed Nanoscopy via Buffer Exchange. ACS NANO 2024; 18:23445-23456. [PMID: 39143924 PMCID: PMC11363122 DOI: 10.1021/acsnano.4c06829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Understanding cellular functions, particularly in their intricate complexity, can greatly benefit from the spatial mapping of diverse molecules through multitarget single-molecule localization microscopy (SMLM). Existing methodologies, primarily restricting the encoding dimensions to color and lifetime or requiring cyclic staining, often involve broad chromatic detection, specialized optical configurations, or sophisticated labeling techniques. Here, we propose a simple approach called buffer-exchange stochastic optical reconstruction microscopy (beSTORM), which introduces an additional dimension to differentiate between single molecules irrespective of their spectral properties. This method leverages the distinguishable photoblinking responses to distinct buffer conditions, offering a straightforward yet effective means of fluorophore discrimination. Through buffer exchanges, beSTORM achieves multitarget SMLM imaging with minimal crosstalk. Direct integration with expansion microscopy (ExM) demonstrates its capability to resolve up to six proteins at the molecular level within a single emission color without chromatic aberration. Overall, beSTORM presents a highly compatible imaging platform, promising significant advancements in highly multiplexed nanoscopy for exploring multiple targets in biological systems with nanoscale precision.
Collapse
Affiliation(s)
- Ting-Jui
Ben Chang
- Department
of Electrical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - T. Tony Yang
- Department
of Electrical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Piantanida L, Dickinson GD, Majikes JM, Clay W, Liddle JA, Andersen T, Hayden EJ, Kuang W, Hughes WL. DNA-PAINT Probe Modifications Support High-Resolution Imaging with Shorter Binding Domains. ACS NANO 2024; 18:22369-22377. [PMID: 39109416 DOI: 10.1021/acsnano.4c06886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
DNA-based Points Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) is an effective super resolution microscopy technique, and its optimization is key to improve nanoscale detection. The state-of-the-art improvements that are at the base of this optimization have been first routinely validated on DNA nanostructure devices before being tested on biological samples. This allows researchers to finely tune DNA-PAINT imaging features in a more controllable in vitro environment. Dye-labeled oligonucleotide probes with short hybridization domains can expand DNA-PAINT's detection by targeting short nucleotide sequences and improving resolution, speed, and multiplexing. However, developing these probes is challenging as their brief bound state makes them difficult to capture under routine imaging conditions. To extend dwell binding times and promote duplex stability, we introduced structural and chemical modifications to our imager probes. The modifications included mini-hairpins and/or Bridged Nucleic Acids (BNA); both of which increase the thermomechanical stability of a DNA duplex. Using this approach we demonstrate DNA-PAINT imaging with approximately 5 nm resolution using a 4-nucleotide hybridization domain that is 43% shorter than previously reported probes. Imager probes with such short hybridization domains are key for improving detection on DNA nanostructure devices because they have the capability to target a larger number of binding domains per localization unit. This is essential for metrology applications such as Nucleic Acid Memory (NAM) where the information density is dependent on the binding site length. The selected imager probes reported here present imaging resolution equivalent to current state-of-the-art DNA-PAINT probes, creating a strategy to image shorter DNA domains for nanoscience and nanotechnology alike.
Collapse
Affiliation(s)
- Luca Piantanida
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - George D Dickinson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jacob M Majikes
- National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - William Clay
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - J Alexander Liddle
- National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Tim Andersen
- Department of Computer Science, Boise State University, Boise, Idaho 83725, United States
| | - Eric J Hayden
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department of Biological Sciences, Boise State University, Boise, Idaho 83725, United States
| | - Wan Kuang
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William L Hughes
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
19
|
Tang Z, Zhou P. Elaborating the Fluorescence Regulation and Quenching Mechanism of Sulfur-for-Oxygen Replacement for Fluorophores. Chemphyschem 2024:e202400503. [PMID: 39080510 DOI: 10.1002/cphc.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Thio-caged fluorophores can be effectively desulfurized into their oxygenated derivatives through visible light, thereby restoring the strong emission of fluorophores, and are applied in the field of live cell super-resolution imaging. Herein, we theoretically investigated the reasons for the low fluorescence quantum yields of a series of thio-caged fluorophores and the underlying reasons for the differences in fluorescence quantum yields of their oxygenated derivatives. The calculation results show that the S atom on the thiocarbonyl group is more likely to excite n electrons to form the nπ* state, which reduces the energy of the nπ* state and leads to fluorescence quenching. In contrast, the O atom on the carbonyl group is more likely to excite π electrons to form ππ* state, which is the main reason for restoring the strong emission of fluorophore. Meanwhile, the calculation results show that the difference of fluorescence intensity caused by oxygenated derivatives is determined by the number of the carbonyl group, which affects the vibronic coupling between ππ* and nπ* states and thereby leads to fluorescence quenching. These results can effectively reveal the fluorescence quenching mechanism of thio-caged fluorophores and the luminescence mechanism of their oxygenated derivatives, and provide correct and guiding design strategies for the development of new thio-caged fluorophores.
Collapse
Affiliation(s)
- Zhe Tang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Panwang Zhou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
20
|
Li C, Xie X, Li M, Wang H, Cheng X, Zhang J, Li Q, Li J, Zuo X, Fan C, Shen J. Ultrafast Super-Resolution Imaging Exploiting Spontaneous Blinking of Static Excimer Aggregates. J Am Chem Soc 2024; 146:18948-18957. [PMID: 38959409 DOI: 10.1021/jacs.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Single-molecule localization methods have been popularly exploited to obtain super-resolved images of biological structures. However, the low blinking frequency of randomly switching emission states of individual fluorophores greatly limits the imaging speed of single-molecule localization microscopy (SMLM). Here we present an ultrafast SMLM technique exploiting spontaneous fluorescence blinking of cyanine dye aggregates confined to DNA framework nanostructures. The DNA template guides the formation of static excimer aggregates as a "light-harvesting nanoantenna", whereas intermolecular excitation energy transfer (EET) between static excimers causes collective ultrafast fluorescence blinking of fluorophore aggregates. This DNA framework-based strategy enables the imaging of DNA nanostructures with 12.5-fold improvement in speed compared to conventional SMLM. Further, we demonstrate the use of this strategy to track the movement of super-resolved DNA nanostructures for over 20 min in a microfluidic system. Thus, this ultrafast SMLM holds great potential for revealing the dynamic processes of biomacromolecules in living cells.
Collapse
Affiliation(s)
- Cong Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haozhi Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Rajani RM, Ellingford R, Hellmuth M, Harris SS, Taso OS, Graykowski D, Lam FKW, Arber C, Fertan E, Danial JSH, Swire M, Lloyd M, Giovannucci TA, Bourdenx M, Klenerman D, Vassar R, Wray S, Sala Frigerio C, Busche MA. Selective suppression of oligodendrocyte-derived amyloid beta rescues neuronal dysfunction in Alzheimer's disease. PLoS Biol 2024; 22:e3002727. [PMID: 39042667 PMCID: PMC11265669 DOI: 10.1371/journal.pbio.3002727] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Reduction of amyloid beta (Aβ) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aβ is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aβ in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aβ production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aβ production could be a promising therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Rikesh M. Rajani
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Robert Ellingford
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Mariam Hellmuth
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Samuel S. Harris
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Orjona S. Taso
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - David Graykowski
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Francesca Kar Wey Lam
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
| | - John S. H. Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
- School of Physics and Astronomy, University of St Andrews, St. Andrews, United Kingdom
| | - Matthew Swire
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Marcus Lloyd
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Tatiana A. Giovannucci
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Mathieu Bourdenx
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Selina Wray
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Carlo Sala Frigerio
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| |
Collapse
|
22
|
Metzbower SR, Levy AD, Dharmasri PA, Anderson MC, Blanpied TA. Distinct SAP102 and PSD-95 Nano-organization Defines Multiple Types of Synaptic Scaffold Protein Domains at Single Synapses. J Neurosci 2024; 44:e1715232024. [PMID: 38777601 PMCID: PMC11211720 DOI: 10.1523/jneurosci.1715-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
MAGUK scaffold proteins play a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. In particular, the MAGUKs SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform both overlapping and unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could underlie its unique functions and impact how SAP102 scaffolds synaptic proteins. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses in mixed-sex rat cultured neurons. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters (NCs). However, SAP102 NCs were smaller and denser than PSD-95 NCs across development. Additionally, only a subset of SAP102 NCs co-organized with PSD-95, revealing MAGUK nanodomains within individual synapses containing either one or both proteins. These MAGUK nanodomain types had distinct NC properties and were differentially enriched with the presynaptic release protein Munc13-1. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.
Collapse
Affiliation(s)
- Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael C Anderson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
23
|
Lycas MD, Manley S. DNA-PAINT adaptors make for efficient multiplexing. CELL REPORTS METHODS 2024; 4:100801. [PMID: 38889688 PMCID: PMC11228366 DOI: 10.1016/j.crmeth.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Multiplexed super-resolution imaging offers a route to spatial proteomics; however, time-efficient mapping of many protein species has been challenging. Two recent works in Cell highlight SUM-PAINT and FLASH-PAINT, methods that leverage adaptor DNA strand design to combine advances in multiplexing with increases in speed of label exchange. These advances permit unbiased omics-style analyses to advance biological insights from super-resolution images.
Collapse
Affiliation(s)
- Matthew D Lycas
- Laboratory of Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
24
|
Piantanida L, Liddle JA, Hughes WL, Majikes JM. DNA nanostructure decoration: a how-to tutorial. NANOTECHNOLOGY 2024; 35:273001. [PMID: 38373400 DOI: 10.1088/1361-6528/ad2ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/18/2024] [Indexed: 02/21/2024]
Abstract
DNA Nanotechnology is being applied to multiple research fields. The functionality of DNA nanostructures is significantly enhanced by decorating them with nanoscale moieties including: proteins, metallic nanoparticles, quantum dots, and chromophores. Decoration is a complex process and developing protocols for reliable attachment routinely requires extensive trial and error. Additionally, the granular nature of scientific communication makes it difficult to discern general principles in DNA nanostructure decoration. This tutorial is a guidebook designed to minimize experimental bottlenecks and avoid dead-ends for those wishing to decorate DNA nanostructures. We supplement the reference material on available technical tools and procedures with a conceptual framework required to make efficient and effective decisions in the lab. Together these resources should aid both the novice and the expert to develop and execute a rapid, reliable decoration protocols.
Collapse
Affiliation(s)
- Luca Piantanida
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, B.C., V1V 1V7, Canada
| | - J Alexander Liddle
- National Institute of Standards and Technology, Gaithersburg, MD, 20878, United States of America
| | - William L Hughes
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, B.C., V1V 1V7, Canada
| | - Jacob M Majikes
- National Institute of Standards and Technology, Gaithersburg, MD, 20878, United States of America
| |
Collapse
|
25
|
Unterauer EM, Shetab Boushehri S, Jevdokimenko K, Masullo LA, Ganji M, Sograte-Idrissi S, Kowalewski R, Strauss S, Reinhardt SCM, Perovic A, Marr C, Opazo F, Fornasiero EF, Jungmann R. Spatial proteomics in neurons at single-protein resolution. Cell 2024; 187:1785-1800.e16. [PMID: 38552614 DOI: 10.1016/j.cell.2024.02.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.
Collapse
Affiliation(s)
- Eduard M Unterauer
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Data & Analytics, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Munich, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mahipal Ganji
- Max Planck Institute of Biochemistry, Planegg, Germany; Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
26
|
Schueder F, Rivera-Molina F, Su M, Marin Z, Kidd P, Rothman JE, Toomre D, Bewersdorf J. Unraveling cellular complexity with transient adapters in highly multiplexed super-resolution imaging. Cell 2024; 187:1769-1784.e18. [PMID: 38552613 DOI: 10.1016/j.cell.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.
Collapse
Affiliation(s)
- Florian Schueder
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| | | | - Maohan Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Zach Marin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Chen J, Dai Z, Lv H, Jin Z, Tang Y, Xie X, Shi J, Wang F, Li Q, Liu X, Fan C. Programming crystallization kinetics of self-assembled DNA crystals with 5-methylcytosine modification. Proc Natl Acad Sci U S A 2024; 121:e2312596121. [PMID: 38437555 PMCID: PMC10945798 DOI: 10.1073/pnas.2312596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.
Collapse
Affiliation(s)
- Jielin Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zheze Dai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Zhangjiang Laboratory, Shanghai201210, China
| | - Zhongchao Jin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yuqing Tang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiye Shi
- Division of Physical Biology, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
28
|
Du R, Flynn MJ, Honsa M, Jungmann R, Elowitz MB. miRNA circuit modules for precise, tunable control of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.583048. [PMID: 38559239 PMCID: PMC10979901 DOI: 10.1101/2024.03.12.583048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to express transgenes at specified levels is critical for understanding cellular behaviors, and for applications in gene and cell therapy. Transfection, viral vectors, and other gene delivery methods produce varying protein expression levels, with limited quantitative control, while targeted knock-in and stable selection are inefficient and slow. Active compensation mechanisms can improve precision, but the need for additional proteins or lack of tunability have prevented their widespread use. Here, we introduce a toolkit of compact, synthetic miRNA-based circuit modules that provide precise, tunable control of transgenes across diverse cell types. These circuits, termed DIMMERs (Dosage-Invariant miRNA-Mediated Expression Regulators) use multivalent miRNA regulatory interactions within an incoherent feed-forward loop architecture to achieve nearly uniform protein expression over more than two orders of magnitude variation in underlying gene dosages or transcription rates. They also allow coarse and fine control of expression, and are portable, functioning across diverse cell types. In addition, a heuristic miRNA design algorithm enables the creation of orthogonal circuit variants that independently control multiple genes in the same cell. These circuits allowed dramatically improved CRISPR imaging, and super-resolution imaging of EGFR receptors with transient transfections. The toolbox provided here should allow precise, tunable, dosage-invariant expression for research, gene therapy, and other biotechnology applications.
Collapse
Affiliation(s)
- Rongrong Du
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael J. Flynn
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Monique Honsa
- Max Planck Institute of Biochemistry, Martinsried, Germany; Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany; Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Michael B. Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Fertan E, Böken D, Murray A, Danial JSH, Lam JYL, Wu Y, Goh PA, Alić I, Cheetham MR, Lobanova E, Zhang YP, Nižetić D, Klenerman D. Cerebral organoids with chromosome 21 trisomy secrete Alzheimer's disease-related soluble aggregates detectable by single-molecule-fluorescence and super-resolution microscopy. Mol Psychiatry 2024; 29:369-386. [PMID: 38102482 PMCID: PMC11116105 DOI: 10.1038/s41380-023-02333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Understanding the role of small, soluble aggregates of beta-amyloid (Aβ) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aβ) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aβ aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Aoife Murray
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Ivan Alić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dean Nižetić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
30
|
Tolstik E, Lehnart SE, Soeller C, Lorenz K, Sacconi L. Cardiac multiscale bioimaging: from nano- through micro- to mesoscales. Trends Biotechnol 2024; 42:212-227. [PMID: 37806897 DOI: 10.1016/j.tibtech.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
Cardiac multiscale bioimaging is an emerging field that aims to provide a comprehensive understanding of the heart and its functions at various levels, from the molecular to the entire organ. It combines both physiologically and clinically relevant dimensions: from nano- and micrometer resolution imaging based on vibrational spectroscopy and high-resolution microscopy to assess molecular processes in cardiac cells and myocardial tissue, to mesoscale structural investigations to improve the understanding of cardiac (patho)physiology. Tailored super-resolution deep microscopy with advanced proteomic methods and hands-on experience are thus strategically combined to improve the quality of cardiovascular research and support future medical decision-making by gaining additional biomolecular information for translational and diagnostic applications.
Collapse
Affiliation(s)
- Elen Tolstik
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany.
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Strasse 42a, 37075 Göttingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC2067), University of Göttingen, 37073 Göttingen, Germany; Collaborative Research Center SFB1190 Compartmental Gates and Contact Sites in Cells, University of Göttingen, 37073 Göttingen, Germany
| | - Christian Soeller
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kristina Lorenz
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council, Rome, Italy; Institute for Experimental Cardiovascular Medicine, University Freiburg, Elsässer Strasse 2q, 79110 Freiburg, Germany.
| |
Collapse
|
31
|
Helmerich DA, Budiarta M, Taban D, Doose S, Beliu G, Sauer M. PCNA as Protein-Based Nanoruler for Sub-10 nm Fluorescence Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310104. [PMID: 38009560 DOI: 10.1002/adma.202310104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Super-resolution microscopy has revolutionized biological imaging enabling direct insight into cellular structures and protein arrangements with so far unmatched spatial resolution. Today, refined single-molecule localization microscopy methods achieve spatial resolutions in the one-digit nanometer range. As the race for molecular resolution fluorescence imaging with visible light continues, reliable biologically compatible reference structures will become essential to validate the resolution power. Here, PicoRulers (protein-based imaging calibration optical rulers), multilabeled oligomeric proteins designed as advanced molecular nanorulers for super-resolution fluorescence imaging are introduced. Genetic code expansion (GCE) is used to site-specifically incorporate three noncanonical amino acids (ncAAs) into the homotrimeric proliferating cell nuclear antigen (PCNA) at 6 nm distances. Bioorthogonal click labeling with tetrazine-dyes and tetrazine-functionalized oligonucleotides allows efficient labeling of the PicoRuler with minimal linkage error. Time-resolved photoswitching fingerprint analysis is used to demonstrate the successful synthesis and DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is used to resolve 6 nm PCNA PicoRulers. Since PicoRulers maintain their structural integrity under cellular conditions they represent ideal molecular nanorulers for benchmarking the performance of super-resolution imaging techniques, particularly in complex biological environments.
Collapse
Affiliation(s)
- Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Made Budiarta
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Danush Taban
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
32
|
Paloja K, Weiden J, Hellmeier J, Eklund AS, Reinhardt SCM, Parish IA, Jungmann R, Bastings MMC. Balancing the Nanoscale Organization in Multivalent Materials for Functional Inhibition of the Programmed Death-1 Immune Checkpoint. ACS NANO 2024; 18:1381-1395. [PMID: 38126310 PMCID: PMC10795474 DOI: 10.1021/acsnano.3c06552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Dendritic cells (DCs) regulate immune priming by expressing programmed death ligand 1 (PD-L1) and PD-L2, which interact with the inhibitory receptor PD-1 on activated T cells. PD-1 signaling regulates T cell effector functions and limits autoimmunity. Tumor cells can hijack this pathway by overexpressing PD-L1 to suppress antitumor T cell responses. Blocking this inhibitory pathway has been beneficial for the treatment of various cancer types, although only a subset of patients responds. A deepened understanding of the spatial organization and molecular interplay between PD-1 and its ligands may inform the design of more efficacious nanotherapeutics. We visualized the natural molecular PD-L1 organization on DCs by DNA-PAINT microscopy and created a template to engineer DNA-based nanoclusters presenting PD-1 at defined valencies, distances, and patterns. These multivalent nanomaterials were examined for their cellular binding and blocking ability. Our data show that PD-1 nano-organization has profound effects on ligand interaction and that the valency of PD-1 molecules modulates the effectiveness in restoring T cell function. This work highlights the power of spatially controlled functional materials to unravel the importance of multivalent patterns in the PD-1 pathway and presents alternative design strategies for immune-engineering.
Collapse
Affiliation(s)
- Kaltrina Paloja
- Programmable
Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
| | - Jorieke Weiden
- Programmable
Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
| | | | | | - Susanne C. M. Reinhardt
- Max
Planck Institute of Biochemistry, Planegg 82152, Germany
- Faculty
of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich 80539, Germany
| | - Ian A. Parish
- Peter
MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir
Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3128, Australia
| | - Ralf Jungmann
- Max
Planck Institute of Biochemistry, Planegg 82152, Germany
- Faculty
of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich 80539, Germany
| | - Maartje M. C. Bastings
- Programmable
Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
- Interfaculty
Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
33
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site modifies DNA duplex stability and dynamics. Biophys J 2024; 123:118-133. [PMID: 38006207 PMCID: PMC10808028 DOI: 10.1016/j.bpj.2023.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base-pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization of the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base-pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois.
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
34
|
Dharmasri PA, DeMarco EM, Anderson MC, Levy AD, Blanpied TA. Loss of postsynaptic NMDARs drives nanoscale reorganization of Munc13-1 and PSD-95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574705. [PMID: 38260705 PMCID: PMC10802569 DOI: 10.1101/2024.01.12.574705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoscale protein organization within the active zone (AZ) and post-synaptic density (PSD) influences synaptic transmission. Nanoclusters of presynaptic Munc13-1 are associated with readily releasable pool size and neurotransmitter vesicle priming, while postsynaptic PSD-95 nanoclusters coordinate glutamate receptors across from release sites to control their opening probability. Nanocluster number, size, and protein density vary between synapse types and with development and plasticity, supporting a wide range of functional states at the synapse. Whether or how the receptors themselves control this critical architecture remains unclear. One prominent PSD molecular complex is the NMDA receptor (NMDAR). NMDARs coordinate several modes of signaling within synapses, giving them the potential to influence synaptic organization through direct protein interactions or through signaling. We found that loss of NMDARs results in larger synapses that contain smaller, denser, and more numerous PSD-95 nanoclusters. Intriguingly, NMDAR loss also generates retrograde reorganization of the active zone, resulting in denser, more numerous Munc13-1 nanoclusters, more of which are aligned with PSD-95 nanoclusters. Together, these changes to synaptic nanostructure predict stronger AMPA receptor-mediated transmission in the absence of NMDARs. Notably, while prolonged antagonism of NMDAR activity increases Munc13-1 density within nanoclusters, it does not fully recapitulate these trans-synaptic effects. Thus, our results confirm that NMDARs play an important role in maintaining pre- and postsynaptic nanostructure and suggest that both decreased NMDAR expression and suppressed NMDAR activity may exert distinct effects on synaptic function, yet through unique architectural mechanisms.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
- Current address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Emily M. DeMarco
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Michael C. Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| |
Collapse
|
35
|
Schueder F, Jungmann R. In Situ Imaging of Proteins Using DNA-PAINT Super-Resolution Microscopy. Methods Mol Biol 2024; 2800:103-113. [PMID: 38709481 DOI: 10.1007/978-1-0716-3834-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The spatial resolution of conventional light microscopy is restricted by the diffraction limit to hundreds of nanometers. Super-resolution microscopy enables single digit nanometer resolution by circumventing the diffraction limit of conventional light microscopy. DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) belongs to the family of single-molecule localization super-resolution approaches. Unique features of DNA-PAINT are that it allows for sub-nanometer resolution, spectrally unlimited multiplexing, proximity detection, and quantitative counting of target molecules. Here, we describe prerequisites for efficient DNA-PAINT microscopy.
Collapse
Affiliation(s)
- Florian Schueder
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Ralf Jungmann
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
- Max Planck Institute of Biochemistry, Planegg, Germany.
| |
Collapse
|
36
|
Berkane R, Ho-Xuan H, Glogger M, Sanz-Martinez P, Brunello L, Glaesner T, Kuncha SK, Holzhüter K, Cano-Franco S, Buonomo V, Cabrerizo-Poveda P, Balakrishnan A, Tascher G, Husnjak K, Juretschke T, Misra M, González A, Dötsch V, Grumati P, Heilemann M, Stolz A. The function of ER-phagy receptors is regulated through phosphorylation-dependent ubiquitination pathways. Nat Commun 2023; 14:8364. [PMID: 38102139 PMCID: PMC10724265 DOI: 10.1038/s41467-023-44101-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.
Collapse
Affiliation(s)
- Rayene Berkane
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Hung Ho-Xuan
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Marius Glogger
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Pablo Sanz-Martinez
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Lorène Brunello
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Tristan Glaesner
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Santosh Kumar Kuncha
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Katharina Holzhüter
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Sara Cano-Franco
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Paloma Cabrerizo-Poveda
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Ashwin Balakrishnan
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | | | - Mohit Misra
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Alexis González
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Banerjee A, Anand M, Kalita S, Ganji M. Single-molecule analysis of DNA base-stacking energetics using patterned DNA nanostructures. NATURE NANOTECHNOLOGY 2023; 18:1474-1482. [PMID: 37591937 PMCID: PMC10716042 DOI: 10.1038/s41565-023-01485-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
The DNA double helix structure is stabilized by base-pairing and base-stacking interactions. However, a comprehensive understanding of dinucleotide base-stacking energetics is lacking. Here we combined multiplexed DNA-based point accumulation in nanoscale topography (DNA-PAINT) imaging with designer DNA nanostructures and measured the free energy of dinucleotide base stacking at the single-molecule level. Multiplexed imaging enabled us to extract the binding kinetics of an imager strand with and without additional dinucleotide stacking interactions. The DNA-PAINT data showed that a single additional dinucleotide base stacking results in up to 250-fold stabilization for the DNA duplex nanostructure. We found that the dinucleotide base-stacking energies vary from -0.95 ± 0.12 kcal mol-1 to -3.22 ± 0.04 kcal mol-1 for C|T and A|C base-stackings, respectively. We demonstrate the application of base-stacking energetics in designing DNA-PAINT probes for multiplexed super-resolution imaging, and efficient assembly of higher-order DNA nanostructures. Our results will aid in designing functional DNA nanostructures, and DNA and RNA aptamers, and facilitate better predictions of the local DNA structure.
Collapse
Affiliation(s)
- Abhinav Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Micky Anand
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Simanta Kalita
- New Chemistry Unit and Chemistry and Physics of Materials Unit, The Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
38
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Molecular definition of distinct active zone protein machineries for Ca 2+ channel clustering and synaptic vesicle priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564439. [PMID: 37961089 PMCID: PMC10634917 DOI: 10.1101/2023.10.27.564439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
39
|
Fazel M, Grussmayer KS, Ferdman B, Radenovic A, Shechtman Y, Enderlein J, Pressé S. Fluorescence Microscopy: a statistics-optics perspective. ARXIV 2023:arXiv:2304.01456v3. [PMID: 37064525 PMCID: PMC10104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Modeling these features is ever more important in quantitatively interpreting microscopy images collected at scales on par or smaller than light's wavelength. Here we review the optics responsible for generating fluorescent images, fluorophore properties, microscopy modalities leveraging properties of both light and fluorophores, in addition to the necessarily probabilistic modeling tools imposed by the stochastic nature of light and measurement.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Kristin S Grussmayer
- Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Boris Ferdman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yoav Shechtman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
40
|
Queiroz Zetune Villa Real K, Mougios N, Rehm R, Sograte-Idrissi S, Albert L, Rahimi AM, Maidorn M, Hentze J, Martínez-Carranza M, Hosseini H, Saal KA, Oleksiievets N, Prigge M, Tsukanov R, Stenmark P, Fornasiero EF, Opazo F. A Versatile Synaptotagmin-1 Nanobody Provides Perturbation-Free Live Synaptic Imaging And Low Linkage-Error in Super-Resolution Microscopy. SMALL METHODS 2023; 7:e2300218. [PMID: 37421204 DOI: 10.1002/smtd.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Imaging of living synapses has relied for over two decades on the overexpression of synaptic proteins fused to fluorescent reporters. This strategy alters the stoichiometry of synaptic components and ultimately affects synapse physiology. To overcome these limitations, here a nanobody is presented that binds the calcium sensor synaptotagmin-1 (NbSyt1). This nanobody functions as an intrabody (iNbSyt1) in living neurons and is minimally invasive, leaving synaptic transmission almost unaffected, as suggested by the crystal structure of the NbSyt1 bound to Synaptotagmin-1 and by the physiological data. Its single-domain nature enables the generation of protein-based fluorescent reporters, as showcased here by measuring spatially localized presynaptic Ca2+ with a NbSyt1- jGCaMP8 chimera. Moreover, the small size of NbSyt1 makes it ideal for various super-resolution imaging methods. Overall, NbSyt1 is a versatile binder that will enable imaging in cellular and molecular neuroscience with unprecedented precision across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Karine Queiroz Zetune Villa Real
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ronja Rehm
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - László Albert
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Amir Mohammad Rahimi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Manuel Maidorn
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jannik Hentze
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Hassan Hosseini
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Kim-Ann Saal
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118, Magdeburg, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
41
|
Friedl K, Mau A, Boroni-Rueda F, Caorsi V, Bourg N, Lévêque-Fort S, Leterrier C. Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. CELL REPORTS METHODS 2023; 3:100571. [PMID: 37751691 PMCID: PMC10545913 DOI: 10.1016/j.crmeth.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023]
Abstract
Single-molecule localization microscopy (SMLM) can reach sub-50 nm resolution using techniques such as stochastic optical reconstruction microscopy (STORM) or DNA-point accumulation for imaging in nanoscale topography (PAINT). Here we implement two approaches for faster multicolor SMLM by splitting the emitted fluorescence toward two cameras: simultaneous two-color DNA-PAINT (S2C-DNA-PAINT) that images spectrally separated red and far-red imager strands on each camera, and spectral demixing dSTORM (SD-dSTORM) where spectrally close far-red fluorophores appear on both cameras before being identified by demixing. Using S2C-DNA-PAINT as a reference for low crosstalk, we evaluate SD-dSTORM crosstalk using three types of samples: DNA origami nanorulers of different sizes, single-target labeled cells, or cells labeled for multiple targets. We then assess if crosstalk can affect the detection of biologically relevant subdiffraction patterns. Extending these approaches to three-dimensional acquisition and SD-dSTORM to three-color imaging, we show that spectral demixing is an attractive option for robust and versatile multicolor SMLM investigations.
Collapse
Affiliation(s)
- Karoline Friedl
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France; Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Adrien Mau
- Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France; Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Fanny Boroni-Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | | | - Nicolas Bourg
- Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Sandrine Lévêque-Fort
- Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France.
| |
Collapse
|
42
|
Jang S, Narayanasamy KK, Rahm JV, Saguy A, Kompa J, Dietz MS, Johnsson K, Shechtman Y, Heilemann M. Neural network-assisted single-molecule localization microscopy with a weak-affinity protein tag. BIOPHYSICAL REPORTS 2023; 3:100123. [PMID: 37680382 PMCID: PMC10480660 DOI: 10.1016/j.bpr.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Single-molecule localization microscopy achieves nanometer spatial resolution by localizing single fluorophores separated in space and time. A major challenge of single-molecule localization microscopy is the long acquisition time, leading to low throughput, as well as to a poor temporal resolution that limits its use to visualize the dynamics of cellular structures in live cells. Another challenge is photobleaching, which reduces information density over time and limits throughput and the available observation time in live-cell applications. To address both challenges, we combine two concepts: first, we integrate the neural network DeepSTORM to predict super-resolution images from high-density imaging data, which increases acquisition speed. Second, we employ a direct protein label, HaloTag7, in combination with exchangeable ligands (xHTLs), for fluorescence labeling. This labeling method bypasses photobleaching by providing a constant signal over time and is compatible with live-cell imaging. The combination of both a neural network and a weak-affinity protein label reduced the acquisition time up to ∼25-fold. Furthermore, we demonstrate live-cell imaging with increased temporal resolution, and capture the dynamics of the endoplasmic reticulum over extended time without signal loss.
Collapse
Affiliation(s)
- Soohyen Jang
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Kaarjel K. Narayanasamy
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Johanna V. Rahm
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Alon Saguy
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Julian Kompa
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Marina S. Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Metzbower SR, Dharmasri PA, Levy AD, Anderson MC, Blanpied TA. Distinct SAP102 and PSD-95 nano-organization defines multiple types of synaptic scaffold protein domains at single synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557372. [PMID: 37745494 PMCID: PMC10515860 DOI: 10.1101/2023.09.12.557372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The MAGUK family of scaffold proteins plays a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. Of these scaffold proteins, SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform overlapping as well as unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later in development and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could impact how SAP102 clusters synaptic proteins and underlie its ability to perform its unique functions. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters. However, SAP102 nanoclusters were smaller and denser than PSD-95 nanoclusters across development. Additionally, only a subset of SAP102 nanoclusters co-organized with PSD-95, revealing that within individual synapses there are nanodomains that contain either one or both proteins. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.
Collapse
Affiliation(s)
- Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael C. Anderson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
44
|
Dharmasri PA, Levy AD, Blanpied TA. Differential nanoscale organization of excitatory synapses onto excitatory vs inhibitory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556279. [PMID: 37732271 PMCID: PMC10508768 DOI: 10.1101/2023.09.06.556279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters whose precise alignment across the cleft in a trans-synaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses - those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses presynaptic Munc13-1 and postsynaptic PSD-95 both form nanoclusters that demonstrate alignment, underscoring synaptic nanostructure and the trans-synaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell also had a retrograde impact on Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses. Understanding the rules of synapse nanodomain assembly, which themselves are cell-type specific, will be essential for illuminating brain network dynamics.
Collapse
Affiliation(s)
- Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
45
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site and its sequence environment influence DNA duplex stability and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550182. [PMID: 37546925 PMCID: PMC10401965 DOI: 10.1101/2023.07.22.550182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
46
|
Schueder F, Bewersdorf J. Highly Multiplexed Imaging with Speed and Fluorogenic DNA-PAINT. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1069. [PMID: 37613180 DOI: 10.1093/micmic/ozad067.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
|
47
|
Niederauer C, Nguyen C, Wang-Henderson M, Stein J, Strauss S, Cumberworth A, Stehr F, Jungmann R, Schwille P, Ganzinger KA. Dual-color DNA-PAINT single-particle tracking enables extended studies of membrane protein interactions. Nat Commun 2023; 14:4345. [PMID: 37468504 DOI: 10.1038/s41467-023-40065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
DNA-PAINT based single-particle tracking (DNA-PAINT-SPT) has recently significantly enhanced observation times in in vitro SPT experiments by overcoming the constraints of fluorophore photobleaching. However, with the reported implementation, only a single target can be imaged and the technique cannot be applied straight to live cell imaging. Here we report on leveraging this technique from a proof-of-principle implementation to a useful tool for the SPT community by introducing simultaneous live cell dual-color DNA-PAINT-SPT for quantifying protein dimerization and tracking proteins in living cell membranes, demonstrating its improved performance over single-dye SPT.
Collapse
Affiliation(s)
| | - Chikim Nguyen
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands
| | | | - Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
48
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
49
|
Kümmerlin M, Mazumder A, Kapanidis AN. Bleaching-resistant, Near-continuous Single-molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding. Chemphyschem 2023; 24:e202300175. [PMID: 37043705 PMCID: PMC10946581 DOI: 10.1002/cphc.202300175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.
Collapse
Affiliation(s)
- Mirjam Kümmerlin
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| | - Abhishek Mazumder
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
- Structural Biology and Bioinformatics DivisionCSIR-Indian Institute of Chemical Biology4, Raja S. C. Mullick RoadKolkata700 032India
| | - Achillefs N. Kapanidis
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| |
Collapse
|
50
|
Reinhardt SCM, Masullo LA, Baudrexel I, Steen PR, Kowalewski R, Eklund AS, Strauss S, Unterauer EM, Schlichthaerle T, Strauss MT, Klein C, Jungmann R. Ångström-resolution fluorescence microscopy. Nature 2023; 617:711-716. [PMID: 37225882 PMCID: PMC10208979 DOI: 10.1038/s41586-023-05925-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/07/2023] [Indexed: 05/26/2023]
Abstract
Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.
Collapse
Affiliation(s)
- Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | | | - Isabelle Baudrexel
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Philipp R Steen
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Alexandra S Eklund
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Eduard M Unterauer
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Thomas Schlichthaerle
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Maximilian T Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Christian Klein
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|