1
|
Stein J, Magni L, Church GM. DNA-PAINT Imaging with Hydrogel Imprinting and Clearing. ACS Sens 2025; 10:3340-3346. [PMID: 40344408 DOI: 10.1021/acssensors.5c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Hydrogel-embedding is a versatile technique in fluorescence microscopy, offering stabilization, optical clearing, and the physical expansion of biological specimens. DNA-PAINT is a super-resolution microscopy approach based on the diffusion and transient binding of fluorescently labeled oligos, but its feasibility in hydrogels has not yet been explored. In this study, we demonstrate that polyacrylamide hydrogels support sufficient diffusion for effective DNA-PAINT imaging. Using acrydite-anchored oligonucleotides imprinted from patterned DNA origami nanostructures and microtubule filaments in fixed cells, we find that hydrogel embedding preserves docking strand positioning at the nanoscale. Sample clearing via protease treatment had minor structural effects on the microtubule structure and enhanced diffusion and accessibility to hydrogel-imprinted docking strands. Our work demonstrates promising potential for diffusion and binding-based fluorescence imaging applications in hydrogel-embedded samples.
Collapse
Affiliation(s)
- Johannes Stein
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Lorenzo Magni
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - George M Church
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Zhou ZQ, Liu SC, Wang J, Chen KL, Xie BK, Ying YL, Long YT. Exploring a solid-state nanopore approach for single-molecule protein detection from single cells. Chem Sci 2025; 16:8501-8508. [PMID: 40236591 PMCID: PMC11996040 DOI: 10.1039/d5sc01764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/05/2025] [Indexed: 04/17/2025] Open
Abstract
Direct protein analysis from complex cellular samples is crucial for understanding cellular diversity and disease mechanisms. Here, we explored the potential of SiN x solid-state nanopores for single-molecule protein analysis from complex cellular samples. Using the LOV2 protein as a model, we designed a nanopore electrophoretic driver protein and fused it with LOV2, thereby enhancing the capture efficiency of the target protein. Then, we performed ex situ single-cell protein analysis by directly extracting the contents of individual cells using glass nanopipette-based single-cell extraction and successfully identified and monitored the conformational changes of the LOV2 protein from single-cell extracts using SiN x nanopores. Our results reveal significant differences between proteins measured directly from single cells and those obtained from purified samples. This work demonstrates the potential of solid-state nanopores as a powerful tool for single-cell, single-molecule protein analysis, opening avenues for investigating protein dynamics and interactions at the cellular level.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jia Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Ke-Le Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
3
|
Zhou X, Gao H, Xiang L, Liu H, Zhou X. Developments of the mDZ-RhoBAST Probe for Super-Resolution Imaging of FTO Demethylation in Live Cells. J Am Chem Soc 2025; 147:15732-15739. [PMID: 40295165 DOI: 10.1021/jacs.5c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Single-molecule localization microscopy (SMLM) provides precise, high-resolution visualization of target biomolecules in cellular imaging. Fluorescent light-up aptamers (FLAPs) offer a versatile approach for labeling RNA of interest in live cells by binding to fluorogens through adaptive recognition. Several FLAPs can generate blinking fluorescent signals in conjunction with fluorogens, enabling single-molecule imaging of RNA in living cells. An example of this is RhoBAST, which has been successfully used for single-molecule imaging of RNA due to its fast exchange kinetics with fluorogens. However, single-molecule imaging of RNA activities regulated by proteins in living cells presents a greater challenge. Here, we introduce mDZ-RhoBAST, a nucleic acid probe, to visualize the demethylation process by fat mass and obesity-associated protein (FTO) in living cells. This probe combines the 6mA-modified DNAzyme with the RhoBAST FLAP, activated by FTO, restoring the DNAzyme's cleavage activity and releasing RhoBAST to bind the target fluorogen. Our approach achieved super-resolution imaging of the demethylation process of endogenous FTO, providing real-time insights into its demethylation processes in vivo.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huihui Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Limin Xiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Lucas MC, Keßler T, Scharf F, Steinke-Lange V, Klink B, Laner A, Holinski-Feder E. A series of reviews in familial cancer: genetic cancer risk in context variants of uncertain significance in MMR genes: which procedures should be followed? Fam Cancer 2025; 24:42. [PMID: 40317406 DOI: 10.1007/s10689-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Interpreting variants of uncertain significance (VUS) in mismatch repair (MMR) genes remains a major challenge in managing Lynch syndrome and other hereditary cancer syndromes. This review outlines recommended VUS classification procedures, encompassing foundational and specialized methodologies tailored for MMR genes by expert organizations, including InSiGHT and ClinGen's Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Key approaches include: (1) functional data, encompassing direct assays measuring MMR proficiency such as in vitro MMR assays, deep mutational scanning, and MMR cell-based assays, as well as techniques like methylation-tolerant assays, proteomic-based approaches, and RNA sequencing, all of which provide critical functional evidence supporting variant pathogenicity; (2) computational data/tools, including in silico meta-predictors and models, which contribute to robust VUS classification when integrated with experimental evidence; and (3) enhanced variant detection to identify the actual causal variant through whole-genome sequencing and long-read sequencing to detect pathogenic variants missed by traditional methods. These strategies improve diagnostic precision, support clinical decision-making for Lynch syndrome, and establish a flexible framework that can be applied to other OMIM-listed genes.
Collapse
Affiliation(s)
- Morghan C Lucas
- MGZ- Medical Genetics Center, Munich, Germany.
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany.
| | | | | | - Verena Steinke-Lange
- MGZ- Medical Genetics Center, Munich, Germany
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| | - Barbara Klink
- MGZ- Medical Genetics Center, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| | | | - Elke Holinski-Feder
- MGZ- Medical Genetics Center, Munich, Germany
- Medizinische Klinik und Poliklinik IV- Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- Genturis European Reference Network (ERN) Genetic Tumor Risk (GENTURIS), Nijmegen, Netherlands
| |
Collapse
|
5
|
Kelleher NL. The Proteoform Program of Life: Deciphering Evolution at the Protein Level. J Proteome Res 2025; 24:2205-2206. [PMID: 39964079 DOI: 10.1021/acs.jproteome.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
6
|
Sur P, Upadhyaya A, Varma M, Maiti PK. Orientation dependence of current blockade in single amino acid translocation through a graphene nanopore. NANOSCALE 2025; 17:11016-11027. [PMID: 40213903 DOI: 10.1039/d4nr04630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
After the successful commercialization of DNA sequencing using biological nanopores, the next frontier for nanopore technology is protein sequencing, a significantly more complex task. Molecules passing through the solid-state nanopores produce current blockades that correlate linearly with their volume in the simplest model. As thinner membranes provide better volume sensitivity, 2D materials such as graphene and MoS2 membranes have been explored. Molecular dynamics studies have primarily focused on the translocation of the homogeneous polypeptide chains through 2D membranes. In this study, we investigated the translocation of 20 single amino acids through the monolayer and bilayer graphene nanopores using the all-atom molecular dynamics. These studies were motivated by the fact that single amino acids, as fundamental units of peptide chains, provide a simpler model for understanding pore-molecule interactions during translocations by eliminating the neighbour effects found in chains. Herein, it is shown that the correlation between the ionic current blockade and the volume of single amino acids is strongly affected by their orientation at the pore, especially when the molecule is static at the pore. We explained this phenomenon by the fact that with increasing vdW volume, the amino acid in a particular orientation has a longer projection along the perpendicular direction of the pore plane. We demonstrated distinctive current and force signals for different amino-acid translocations. We observed that some of the smaller amino acids with low molecular volume produced disproportionately high current blockades in a particular orientation due to their lower structural fluctuations during translocation. We investigated how the dipole moment (of the translocating amino acids) and its alignment with the electric field in the pores were linked with our observations.
Collapse
Affiliation(s)
- Pranjal Sur
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Anurag Upadhyaya
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Manoj Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Anteghini M, Gualdi F, Oliva B. How did we get there? AI applications to biological networks and sequences. Comput Biol Med 2025; 190:110064. [PMID: 40184941 DOI: 10.1016/j.compbiomed.2025.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The rapidly advancing field of artificial intelligence (AI) has transformed numerous scientific domains, including biology, where a vast and complex volume of data is available for analysis. This paper provides a comprehensive overview of the current state of AI-driven methodologies in genomics, proteomics, and systems biology. We discuss how machine learning algorithms, particularly deep learning models, have enhanced the accuracy and efficiency of embedding sequences, motif discovery, and the prediction of gene expression and protein structure. Additionally, we explore the integration of AI in the embedding and analysis of biological networks, including protein-protein interaction networks and multi-layered networks. By leveraging large-scale biological data, AI techniques have enabled unprecedented insights into complex biological processes and disease mechanisms. This work underlines the potential of applying AI to complex biological data, highlighting current applications and suggesting directions for future research to further explore AI in this rapidly evolving field.
Collapse
Affiliation(s)
- Marco Anteghini
- BioFolD Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy; Visual and Data-Centric Computing, Zuse Institut Berlin, Berlin, Germany.
| | - Francesco Gualdi
- Structural Bioinformatics Lab, Universitat Pompeu Fabra, Barcelona, Spain; Istituto dalle Molle di Studi sull'Intelligenza Artificiale, USI/SUPSI (Università Svizzera Italiana/Scuola Universitaria Professionale Svizzera Italiana) Lugano, Switzerland.
| | - Baldo Oliva
- Structural Bioinformatics Lab, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
8
|
Davies JP, Ingunza A, Peña B, Ochoa M, Franchi LM, Gil AI, Ogden KM, Howard LM, Grijalva CG, Plate L, Lanata CF. Proteomics as a complementary approach to measure norovirus infection in clinical samples. Virology 2025; 606:110502. [PMID: 40121988 DOI: 10.1016/j.virol.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Norovirus (NoV) is a leading cause of global acute gastroenteritis, particularly in young children, with no current licensed vaccine. Epidemiological studies have shown that asymptomatic cases are common, and infected patients may test positive for prolonged periods; however, the impact of these phenomena on transmission and public health measures remains unclear. A major limiting factor is our ability to measure infection, which is constrained to real-time reverse transcription polymerase chain reaction or antibody-based assays, both of which are susceptible to loss of detection by rapid NoV evolution. This review highlights the potential for proteomics to overcome current technical limitations and advance basic science discovery and clinical research. Importantly, proteomics-based protein detection can span NoV, host, and microbiome proteins and could help identify host or microbiome factors that correlate with disease outcome. Further developing proteomics tools to complement existing diagnostic technologies will improve our ability to assess NoV pathogenesis and transmission, as well as therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Bia Peña
- Instituto de Investigación Nutricional, Lima, Peru
| | - Mayra Ochoa
- Instituto de Investigación Nutricional, Lima, Peru
| | | | - Ana I Gil
- Instituto de Investigación Nutricional, Lima, Peru
| | - Kristen M Ogden
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Leigh M Howard
- Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Lars Plate
- Vanderbilt University, Nashville, TN, United States; Vanderbilt University Medical Center, Nashville, TN, United States.
| | | |
Collapse
|
9
|
Iarossi M, Verma NC, Bhattacharya I, Meller A. The Emergence of Nanofluidics for Single-Biomolecule Manipulation and Sensing. Anal Chem 2025; 97:8641-8653. [PMID: 40244645 PMCID: PMC12044595 DOI: 10.1021/acs.analchem.4c06684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/16/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Driven by recent advancements in nanofabrication techniques, single-molecule sensing and manipulations in nanofluidic devices are rapidly evolving. These sophisticated biosensors have already had significant impacts on basic research as well as on applications in molecular diagnostics. The nanoscale dimensions of these devices introduce new physical phenomena by confining the biomolecules in at least one dimension, creating effects such as biopolymer linearization, stretching, and separation by mass that are utilized to enhance the biomolecule sensing resolutions. At the same time, the suppressed diffusional motion allows for better single-molecule SNR (signal-to-noise ratio) sensing over time. In particular, nanofluidic devices based on nanochannels have been established as promising technologies for the linearization of ultralong genomic DNA molecules and for optical genome mapping, opening a window to directly observe and infer genome organization. More recently, nanochannels have shown promising capabilities for single-molecule protein sizing, separation, and identification. Consequently, this technology is attracting remarkable interest for applications in single-molecule proteomics. In this review, we discuss the recent advancements of nanochannel-based technologies, focusing on their applications for single-molecule sensing and the characterization of a wide range of biomolecules.
Collapse
Affiliation(s)
- Marzia Iarossi
- Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel
| | | | - Ivy Bhattacharya
- Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel
| |
Collapse
|
10
|
Drachman N, Vietorisz J, Winchester AJ, Vest R, Cooksey GA, Pookpanratana S, Stein D. Photolysis of the peptide bond at 193 and 222 nm. J Chem Phys 2025; 162:165104. [PMID: 40277086 PMCID: PMC12033046 DOI: 10.1063/5.0257551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Ultraviolet (UV) light is a well-established tool for fragmenting peptides in vacuum. This study investigates the fragmentation of peptides using 193 and 222 nm light in aqueous solution. Changes in the absorption spectra of solutions of the model dipeptide glycylglycine are monitored using a combination of real-time in situ transmission measurements and UV-Vis spectroscopy to report peptide bond scission following UV irradiation. Irradiation by a broadband ultraviolet light source flattens the absorbance peak centered near 193 nm, indicating cleavage of peptide bonds. Irradiation with low-intensity, monochromatic 193 and 222 nm light enabled measurements of the single-photon quantum yield of peptide bond scission, found to be (1.50 ± 0.12)% at 193 nm and (0.16 ± 0.03)% at 222 nm. These findings indicate that peptides may be fragmented in solution prior to emission into a mass spectrometer for new types of single-molecule analyses. The susceptibility of peptide bonds to ultraviolet radiation also suggests limited lifetimes for peptides on the early Earth's surface, which are relevant to theories of the origins-of-life, and suggests a role for protein damage in explanations of the germicidal effect of 222 nm light exposure.
Collapse
Affiliation(s)
| | - Jacob Vietorisz
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Andrew J. Winchester
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Robert Vest
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gregory A. Cooksey
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sujitra Pookpanratana
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Derek Stein
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
11
|
Kang X, Yu M, Xu Y, Cao Z, Balme S, Ma T. Nanochannel functionalization using POFs: Progress and prospects. Adv Colloid Interface Sci 2025; 342:103533. [PMID: 40318384 DOI: 10.1016/j.cis.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Biomimetic nanochannels, inspired by natural ion channels found in living organisms, are synthetic systems designed to replicate the highly selective and efficient ion/molecule transport processes essential for various biological functions. These artificial channels mimic the structural and functional properties of their biological counterparts, offering precise control over ion and molecular transport. Porous organic framework materials (POFs), including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have emerged as promising materials for functionalizing nanochannels due to their unique structures and exceptional properties. This functionalization strategy not only enhances the performance of synthetic nanochannels but also broadens their application potential across various fields. This review comprehensively examines the recent progress in the preparation and application of POFs stereoscopic-functionalized solid nanochannels. Special emphasis is placed on their practical applications, including proton conduction, ion-selective membranes, photo-responsive materials, sensing and detection, chiral separation, and catalysis. Finally, the future development prospects and challenges in this research area are discussed, highlighting opportunities for advancing the design and application of biomimetic nanochannels.
Collapse
Affiliation(s)
- Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingyi Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
12
|
Deol H, Raeisbahrami A, Ngo PHT, Swaminathan J, Papoulas O, Marcotte EM, Anslyn EV. After 75 Years, an Alternative to Edman Degradation: A Mechanistic and Efficiency Study of a Base-Induced Method for N-Terminal Peptide Sequencing. J Am Chem Soc 2025; 147:13973-13982. [PMID: 40226999 DOI: 10.1021/jacs.5c03385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The sequencing of peptides via N-terminal amino acid removal is a classic reaction termed Edman degradation. This method involves repeated treatment of the N-terminal amino group of a peptide with phenyl isothiocyanate (PITC), followed by treatment with trifluoroacetic acid. Spurred by the need for an alternative non-acid-based chemistry for next-generation protein sequencing technologies, we developed a base-induced N-terminal degradation method. Several N-terminal derivatization reagents carrying supernucleophiles were tested. After rounds of iterative designs, compound DR3, with a N-hydroxysuccinimide as a leaving group and hydrazinecarboxamide as the supernucleophile, demonstrated the highest yield for the peptide derivatization step and the most efficient elimination of the N-terminal amino acid in just 1% of a hydroxide salt. The method successfully removed all 20 amino acids at the N-terminus in high yield. The technique demonstrates compatibility with oligonucleic acids, which differs from Edman degradation due to their inherent sensitivity to acidic environments. To demonstrate the practical application of our approach, we sequenced amino acids sequentially from a peptide, effectively determining the sequence of an unknown peptide. Notably, our methodology was successfully applied to mixtures of peptides derived from protein samples, where a significant fraction of the peptides derivatized with DR3 underwent elimination of their N-terminal amino acid upon addition of base. Overall, although our method does not outperform Edman degradation in efficiency, it serves as a valuable alternative in cases where base-induced cleavage is advantageous, particularly for preserving acid-sensitive functionalities.
Collapse
Affiliation(s)
- Harnimarta Deol
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ava Raeisbahrami
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Zhou J, Gao C, Ding Y, Nie Z, Xu M, Fu P, He B, Wang S, Xia XH, Wang K. Multidimensional Investigations of Single Molecule Unfolding of Bovine Serum Albumin Using Plasmonic Nanopores. NANO LETTERS 2025; 25:6325-6331. [PMID: 40179073 DOI: 10.1021/acs.nanolett.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Direct detection of proteins, especially their conformation and configuration information, at the single molecule level, is challenging in various biotechnological fields. Plasmonic nanopores have raised attention as multidimensional biosensors with single molecule (SM) sensitivity. Here, we employ a gold plasmonic nanopore to monitor the unfolding of SM bovine serum albumin (BSA). The gradual collapse of the BSA structure induced by high bias voltages is demonstrated through an increase in the fraction current blockade. Surface-enhanced Raman scattering (SERS) spectra provide structural evidence for protein unfolding, while the optical force is verified as an additional factor contributing to BSA deformation. The effect of the optical force on the dwell time of BSA in a nanopore is also investigated. The present study reveals that plasmonic nanopores offer multidimensional observations on the structure and conformation of SM proteins, which will drive further innovations in protein detection and analysis.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Cai Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanru Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Peiwen Fu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shukui Wang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Ratinho L, Meyer N, Greive S, Cressiot B, Pelta J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat Commun 2025; 16:3211. [PMID: 40180898 PMCID: PMC11968944 DOI: 10.1038/s41467-025-58509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
The global population's aging and growth will likely result in an increase in chronic aging-related diseases. Early diagnosis could improve the medical care and quality of life. Many diseases are linked to misfolding or conformational changes in biomarker peptides and proteins, which affect their function and binding properties. Current clinical methods struggle to detect and quantify these changes. Therefore, there is a need for sensitive conformational sensors that can detect low-concentration analytes in biofluids. Nanopore electrical detection has shown potential in sensing subtle protein and peptide conformation changes. This technique can detect single molecules label-free while distinguishing shape or physicochemical property changes. Its proven sensitivity makes nanopore sensing technology promising for ultra-sensitive, personalized point-of-care devices. We focus on the capability of nanopore sensing for detecting and quantifying conformational modifications and enantiomers in biomarker proteins and peptides and discuss this technology as a solution to future societal health challenges.
Collapse
Affiliation(s)
- Laura Ratinho
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | - Nathan Meyer
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | | | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
15
|
Shen Y, Ding M. Discrimination and Translocation of Charged Proteinogenic Amino Acids through a Single-Walled Carbon Nanotube. J Phys Chem B 2025; 129:3502-3513. [PMID: 40130469 DOI: 10.1021/acs.jpcb.4c08692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nanopore sensing relies on associating the measured current signals with specific features of the target molecules. The diversity of amino acids presents significant challenges in detecting and sequencing peptides and proteins. The hollow and uniform tubular structure of single-walled carbon nanotubes (SWCNTs) makes them ideal candidates for nanopore sensors. Here, we demonstrate by molecular dynamics simulations the discrimination and translocation of charged proteinogenic amino acids through the nanopore sensor formed by inserting a SWCNT into lipid bilayers. Moreover, our analysis suggests that the current blockade is influenced not only by excluded atomic volume but also by noncovalent interactions between amino acids and SWCNT during similar helical translocation. The presence of noncovalent interactions enhances the understanding of current differences in nanopore translocation of molecules with similar excluded atomic volume. This finding provides new perspectives and applications for the optimal design of SWCNT nanopore sensors.
Collapse
Affiliation(s)
- Yingjun Shen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Yang Y, Long X, Dai J, Liu X, Zheng D, Cao J, Hu Y. Interpretable Identification of Single-Molecule Charge Transport via Fusion Attention-Based Deep Learning. J Phys Chem Lett 2025; 16:3165-3176. [PMID: 40111072 DOI: 10.1021/acs.jpclett.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Interpretability is fundamental in the precise identification of single-molecule charge transport, and its absence in deep learning models is currently the major barrier to the usage of such powerful algorithms in the field. Here, we have pioneered a novel identification method employing fusion attention-based deep learning technologies. Central to our approach is the innovative neural network architecture, SingleFACNN, which integrates convolutional neural networks with a fusion of multihead self-attention and spatial attention mechanisms. Our findings demonstrate that SingleFACNN accurately classifies the three-type and four-type STM-BJ data sets, leveraging the convolutional layers' robust feature extraction and the attention layers' capacity to capture long-range interactions. Through comprehensive gradient-weighted class activation mapping and ablation studies, we identified and analyzed the critical features impacting classification outcomes with remarkable accuracy, thus enhancing the interpretability of our deep learning model. Furthermore, SingleFACNN's application was extended to mixed samples with varying proportions, achieving commendable prediction performance at low computational cost. Our study underscores the potential of SingleFACNN in advancing the interpretability and credibility of deep learning applications in single-molecule charge transport, opening new avenues for single-molecule detection in complex systems.
Collapse
Affiliation(s)
- Yanyi Yang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| | - Xia Long
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaqing Dai
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| | - Xiaochi Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| | - Duokai Zheng
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| | - Juexian Cao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| | - Yong Hu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
17
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
18
|
Mereuta L, Cimpanu A, Park J, Park Y, Luchian T. Vectorial Discrimination of Small Molecules with a Macrocycle Adaptor-Protein Nanopore System and Nanocavity-Dependent, pH Gradient-Controlled Analyte Kinetics. Anal Chem 2025; 97:5225-5233. [PMID: 40019291 PMCID: PMC11912126 DOI: 10.1021/acs.analchem.4c06801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Owing to their intrinsic qualities, protein nanopores became game-changers in the realm of analyte sensing, as they offer an inexpensive and label-free method for sophisticated recognition at the single-molecule level. Here, we exploit the complexation capability of nonfunctionalized γ-cyclodextrin (γ-CD), coupled with its propensity to get reversibly captured inside a wild-type α-hemolysin nanopore (α-HL), and achieve a hybrid construct endowing specific sensing of selected, 5 bases-long oligonucleotides. We find that the molecular discrimination capability of the system has a vectorial-like sensitivity and is influenced by the sidedness and geometry of γ-CD. We showcase that asymmetrical pH changes across the γ-CD-α-HL hybrid and the ensuing electro-osmotic flow offer a simple yet powerful method to control γ-CD capture and residence time inside the nanopore, highlighting the capability of programmable sensing of spatially separated analytes. Unexpectedly, the electro-osmotic flow ensued via pH changes exerted a negligible effect on host (γ-CD)-guest (analyte) interactions, suggesting the complexity arising from a combination of hydrodynamic effects in a restricted environment and electrostatics screening in hydrophobic nanoconfinement. We present evidence that the asymmetric, low pH-mediated, electro-osmotic stabilization of a γ-CD molecule inside α-HL enables probing of β-lactam antibiotic azlocillin encapsulation inside γ-CD under distinct ionization states.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Jonggwan Park
- Department
of Bioinformatics, Kongju National University, 32588 Kongju, Republic of Korea
| | - Yoonkyung Park
- Department
of Biomedical Science and Research Center for Proteinaceous Materials
(RCPM), Chosun University, 61452 Gwangju, Republic of Korea
| | - Tudor Luchian
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
19
|
Zhang Z, Wu G, Wang K, Si W. Slowing Down Peptide Translocation through MoSi 2N 4 Nanopores for Protein Sequencing. J Phys Chem B 2025; 129:2471-2481. [PMID: 39999343 DOI: 10.1021/acs.jpcb.4c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Precise identification and quantification of amino acids are crucial for numerous biological applications. A significant challenge in the development of high-throughput, cost-effective nanopore protein sequencing technology is the rapid translocation of protein through the nanopore, which hinders accurate sequencing. In this study, we explore the potential of nanopore constructed from a novel two-dimensional (2D) material MoSi2N4 in decelerating the velocity of protein translocation using molecular dynamics simulations. The translocation velocity of the peptide through the MoSi2N4 nanopore can be reduced by nearly an order of magnitude compared to the MoS2 nanopore. Systematic analysis reveals that this reduction is due to stronger interaction between the peptide and MoSi2N4 membrane surface, particularly for aromatic residues, as they contain aromatic rings composed of relatively nonpolar C-C and C-H bonds. By adjusting the proportion of aromatic residues in peptides, further control over peptide translocation velocity can be achieved. Additionally, the system validates the feasibility of using an appropriate nanopore diameter for protein sequencing. The theoretical investigations presented herein suggest a potential method for manipulating protein translocation kinetics, promising more effective and economical advancements in nanopore protein sequencing technology.
Collapse
Affiliation(s)
- Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaijia Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| |
Collapse
|
20
|
Ye Z, Sabatier P, van der Hoeven L, Lechner MY, Phlairaharn T, Guzman UH, Liu Z, Huang H, Huang M, Li X, Hartlmayr D, Izaguirre F, Seth A, Joshi HJ, Rodin S, Grinnemo KH, Hørning OB, Bekker-Jensen DB, Bache N, Olsen JV. Enhanced sensitivity and scalability with a Chip-Tip workflow enables deep single-cell proteomics. Nat Methods 2025; 22:499-509. [PMID: 39820750 PMCID: PMC11903336 DOI: 10.1038/s41592-024-02558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
Single-cell proteomics (SCP) promises to revolutionize biomedicine by providing an unparalleled view of the proteome in individual cells. Here, we present a high-sensitivity SCP workflow named Chip-Tip, identifying >5,000 proteins in individual HeLa cells. It also facilitated direct detection of post-translational modifications in single cells, making the need for specific post-translational modification-enrichment unnecessary. Our study demonstrates the feasibility of processing up to 120 label-free SCP samples per day. An optimized tissue dissociation buffer enabled effective single-cell disaggregation of drug-treated cancer cell spheroids, refining overall SCP analysis. Analyzing nondirected human-induced pluripotent stem cell differentiation, we consistently quantified stem cell markers OCT4 and SOX2 in human-induced pluripotent stem cells and lineage markers such as GATA4 (endoderm), HAND1 (mesoderm) and MAP2 (ectoderm) in different embryoid body cells. Our workflow sets a benchmark in SCP for sensitivity and throughput, with broad applications in basic biology and biomedicine for identification of cell type-specific markers and therapeutic targets.
Collapse
Affiliation(s)
- Zilu Ye
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Pierre Sabatier
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Cardio-Thoracic Translational Medicine Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Leander van der Hoeven
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Maico Y Lechner
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Teeradon Phlairaharn
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zhen Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Haoran Huang
- Thermo Fisher Scientific (China) Co. Ltd, Shanghai, China
| | - Min Huang
- Thermo Fisher Scientific (China) Co. Ltd, Shanghai, China
| | - Xiangjun Li
- Thermo Fisher Scientific (China) Co. Ltd, Shanghai, China
| | | | | | | | - Hiren J Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Rodin
- Cardio-Thoracic Translational Medicine Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Cardio-Thoracic Translational Medicine Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Deshpande AS, Lin A, O'Bryon I, Aufrecht JA, Merkley ED. Emerging protein sequencing technologies: proteomics without mass spectrometry? Expert Rev Proteomics 2025; 22:89-106. [PMID: 40105028 DOI: 10.1080/14789450.2025.2476979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been a leading method for proteomics for 30 years. Advantages provided by LC-MS/MS are offset by significant disadvantages, including cost. Recently, several non-mass spectrometric methods have emerged, but little information is available about their capacity to analyze the complex mixtures routine for mass spectrometry. AREAS COVERED We review recent non-mass-spectrometric methods for sequencing proteins and peptides, including those using nanopores, sequencing by degradation, reverse translation, and short-epitope mapping, with comments on bioinformatics challenges, fundamental limitations, and areas where new technologies will be more or less competitive with LC-MS/MS. In addition to conventional literature searches, instrument vendor websites, patents, webinars, and preprints were also consulted to give a more up-to-date picture. EXPERT OPINION Many new technologies are promising. However, demonstrations that they outperform mass spectrometry in terms of peptides and proteins identified have not yet been published, and astute observers note important disadvantages, especially relating to the dynamic range of single-molecule measurements of complex mixtures. Still, even if the performance of emerging methods proves inferior to LC-MS/MS, their low cost could create a different kind of revolution: a dramatic increase in the number of biology laboratories engaging in new forms of proteomics research.
Collapse
Affiliation(s)
- A S Deshpande
- Biogeochemical Transformations Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - A Lin
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - I O'Bryon
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - J A Aufrecht
- Biogeochemical Transformations Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - E D Merkley
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
22
|
De Ferrari F, Raja SN, Herland A, Niklaus F, Stemme G. Sub-5 nm Silicon Nanopore Sensors: Scalable Fabrication via Self-Limiting Metal-Assisted Chemical Etching. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9047-9058. [PMID: 39882662 PMCID: PMC11826499 DOI: 10.1021/acsami.4c19750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate. This effect reveals distinctive etching dynamics in ultrathin Si nanomembranes, enabling precise control over nanopore dimensions. The resulting nanopore sensor, suspended over self-aligned spheroidal oxide undercuts with diameters of just a few hundred nanometers, exhibited low electrical noise and high stability due to encapsulation within dielectric layers. In DNA translocation experiments, our nanopore platform could distinguish folded and unfolded DNA conformations and maintained stable baseline conductance for up to 6 h, demonstrating both sensitivity and robustness. Our scalable nanopore fabrication method is compatible with wafer-level and batch processing and holds promise for advancing biomolecular sensing and analysis.
Collapse
Affiliation(s)
- Fabio De Ferrari
- Division
of Micro and Nanosystems, KTH Royal Institute
of Technology, Malvinas väg 10, Stockholm 100 44, Sweden
| | - Shyamprasad N. Raja
- Division
of Micro and Nanosystems, KTH Royal Institute
of Technology, Malvinas väg 10, Stockholm 100 44, Sweden
| | - Anna Herland
- Division
of Nanobiotechnology, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna 171 65, Sweden
- AIMES
- Center for Integrated Medical and Engineering Science, Department
of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Frank Niklaus
- Division
of Micro and Nanosystems, KTH Royal Institute
of Technology, Malvinas väg 10, Stockholm 100 44, Sweden
| | - Göran Stemme
- Division
of Micro and Nanosystems, KTH Royal Institute
of Technology, Malvinas väg 10, Stockholm 100 44, Sweden
| |
Collapse
|
23
|
Skinner KA, Fisher TD, Lee A, Su T, Forte E, Sanchez A, Caldwell MA, Kelleher NL. Next-Generation Protein Sequencing and individual ion mass spectrometry enable complementary analysis of interleukin-6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637157. [PMID: 39975277 PMCID: PMC11839055 DOI: 10.1101/2025.02.07.637157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The vast complexity of the proteome currently overwhelms any single analytical technology in capturing the full spectrum of proteoform diversity. In this study, we evaluated the complementarity of two cutting-edge proteomic technologies-single-molecule protein sequencing and individual ion mass spectrometry-for analyzing recombinant human IL-6 (rhIL-6) at the amino acid, peptide, and intact proteoform levels. For single-molecule protein sequencing, we employ the recently released Platinum® instrument. Next-Generation Protein Sequencing™ (NGPS™) on Platinum utilizes cycles of N-terminal amino acid recognizer binding and aminopeptidase cleavage to enable parallelized sequencing of single peptide molecules. We found that NGPS produces single amino acid coverage of multiple key regions of IL-6, including two peptides within helices A and C which harbor residues that reportedly impact IL-6 function. For top-down proteoform evaluation, we use individual ion mass spectrometry (I2MS), a highly parallelized orbitrap-based charge detection MS platform. Single ion detection of gas-phase fragmentation products (I2MS2) gives significant sequence coverage in key regions in IL-6, including two regions within helices B and D that are involved in IL-6 signaling. Together, these complementary technologies deliver a combined 52% sequence coverage, offering a more complete view of IL-6 structural and functional diversity than either technology alone. This study highlights the synergy of complementary protein detection methods to more comprehensively cover protein segments relevant to biological interactions.
Collapse
Affiliation(s)
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Andrew Lee
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Taojunfeng Su
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, United States
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Michael A. Caldwell
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Vural O, Jololian L. Machine learning approaches for predicting protein-ligand binding sites from sequence data. FRONTIERS IN BIOINFORMATICS 2025; 5:1520382. [PMID: 39963299 PMCID: PMC11830693 DOI: 10.3389/fbinf.2025.1520382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Proteins, composed of amino acids, are crucial for a wide range of biological functions. Proteins have various interaction sites, one of which is the protein-ligand binding site, essential for molecular interactions and biochemical reactions. These sites enable proteins to bind with other molecules, facilitating key biological functions. Accurate prediction of these binding sites is pivotal in computational drug discovery, helping to identify therapeutic targets and facilitate treatment development. Machine learning has made significant contributions to this field by improving the prediction of protein-ligand interactions. This paper reviews studies that use machine learning to predict protein-ligand binding sites from sequence data, focusing on recent advancements. The review examines various embedding methods and machine learning architectures, addressing current challenges and the ongoing debates in the field. Additionally, research gaps in the existing literature are highlighted, and potential future directions for advancing the field are discussed. This study provides a thorough overview of sequence-based approaches for predicting protein-ligand binding sites, offering insights into the current state of research and future possibilities.
Collapse
Affiliation(s)
- Orhun Vural
- Department of Electrical and Computer Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
25
|
Amorim RG, Lima FCDA, Leão de Souza FA, Scopel WL, Prasongkit J, Scheicher RH. Detection and distinction of amino acids and post-translational modifications with gold nanojunctions. NANOSCALE 2025; 17:2498-2505. [PMID: 39831599 DOI: 10.1039/d4nr03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Amino acids are fundamental building blocks of proteins, playing critical roles in medical diagnostics, environmental monitoring, and biomarker identification. The development of nanoscale electronic sensors capable of single-amino-acid recognition has gained significant attention due to their potential for label-free, real-time detection. In this study, we investigate the electronic transport properties of amino acids in two gold-based nanodevices with distinct architectures: a gold nanojunction and a gold-capacitor system. Using density functional theory (DFT) in combination with nonequilibrium Green's function (NEGF) calculations, we explore the sensing mechanism and conductance variations induced by different amino acids, including select phosphorylated variants. Each device was assigned a reference amino acid, F (M), for a capacitor (nanojunction) to differentiate its conductance from other molecules. Our results reveal distinct conductance that enables amino acid classification based on their electronic signatures, demonstrating that molecular discrimination is primarily governed by conductance variations as a function of the binding energy differences. The nanojunction exhibited remarkable differentiation for the amino acids S, pS, Y, and pY, rendering it especially proficient in distinguishing between structurally analogous molecules. These findings highlight the strong potential of gold-based nanodevices for precise amino acid detection, paving the way for advancements in biosensing technologies, molecular diagnostics, and biomedical applications.
Collapse
Affiliation(s)
- Rodrigo G Amorim
- Departamento de Física, ICEx, Universidade Federal Fluminense - UFF, Volta Redonda, RJ, Brazil.
| | - Filipe C D A Lima
- Federal Institute of Education, Science and Techonology of São Paulo, Matão, SP, Brazil
| | | | - Wanderlã L Scopel
- Departamento de Física, Universidade Federal do Espirito Santo-UFES, Vitória, ES, Brazil.
| | - Jariyanee Prasongkit
- Division of Physics, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand.
| | - Ralph H Scheicher
- Division of Materials Theory, Department of Physics and Astronomy, Uppsala University, Sweden.
| |
Collapse
|
26
|
Ikonomova SP, Yan B, Sun Z, Lyon RB, Zatopek KM, Marino JP, Kelman Z. Engineering GID4 for use as an N-terminal proline binder via directed evolution. Biotechnol Bioeng 2025; 122:179-188. [PMID: 39450770 DOI: 10.1002/bit.28868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Nucleic acid sequencing technologies have gone through extraordinary advancements in the past several decades, significantly increasing throughput while reducing cost. To create similar advancement in proteomics, numerous approaches are being investigated to advance protein sequencing. One of the promising approaches uses N-terminal amino acid binders (NAABs), also referred to as recognizers, that selectively can identify amino acids at the N-terminus of a peptide. However, there are only a few engineered NAABs currently available that bind to specific amino acids and meet the requirements of a biotechnology reagent. Therefore, additional NAABs need to be identified and engineered to enable confident identification and, ultimately, de novo protein sequencing. To fill this gap, a human protein GID4 was engineered to create a NAAB for N-terminal proline (Nt-Pro). While native GID4 binds Nt-Pro, its binding is weak (µmol/L) and greatly influenced by the identity of residues following the Nt-Pro. Through directed evolution, yeast-surface display, and fluorescence-activated cell sorting, we identified sequence variants of GID4 with increased binding response to Nt-Pro. Moreover, variants with an A252V mutation showed a reduced influence from residues in the second and third positions of the target peptide when binding to Nt-Pro. The workflow outlined here is shown to be a viable strategy for engineering NAABs, even when starting from native Nt-binding proteins whose binding is strongly impacted by the identity of residues following Nt-amino acid.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | - Bo Yan
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Zhiyi Sun
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Rachel B Lyon
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | | | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland, USA
| |
Collapse
|
27
|
Hong F. Programmable DNA Reactions for Advanced Fluorescence Microscopy in Bioimaging. SMALL METHODS 2024:e2401279. [PMID: 39679773 DOI: 10.1002/smtd.202401279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Biological organisms are composed of billions of molecules organized across various length scales. Direct visualization of these biomolecules in situ enables the retrieval of vast molecular information, including their location, species, and quantities, which is essential for understanding biological processes. The programmability of DNA interactions has made DNA-based reactions a major driving force in extending the limits of fluorescence microscopy, allowing for the study of biological complexity at different scales. This review article provides an overview of recent technological advancements in DNA-based fluorescence microscopy, highlighting how these innovations have expanded the technique's capabilities in terms of target multiplexity, signal amplification, super-resolution, and mechanical properties. These advanced DNA-based fluorescence microscopy techniques have been widely used to uncover new biological insights at the molecular level.
Collapse
Affiliation(s)
- Fan Hong
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
28
|
De Jonghe J, Opzoomer JW, Vilas-Zornoza A, Nilges BS, Crane P, Vicari M, Lee H, Lara-Astiaso D, Gross T, Morf J, Schneider K, Cudini J, Ramos-Mucci L, Mooijman D, Tiklová K, Salas SM, Langseth CM, Kashikar ND, Schapiro D, Lundeberg J, Nilsson M, Shalek AK, Cribbs AP, Taylor-King JP. scTrends: A living review of commercial single-cell and spatial 'omic technologies. CELL GENOMICS 2024; 4:100723. [PMID: 39667347 PMCID: PMC11701258 DOI: 10.1016/j.xgen.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Understanding the rapidly evolving landscape of single-cell and spatial omic technologies is crucial for advancing biomedical research and drug development. We provide a living review of both mature and emerging commercial platforms, highlighting key methodologies and trends shaping the field. This review spans from foundational single-cell technologies such as microfluidics and plate-based methods to newer approaches like combinatorial indexing; on the spatial side, we consider next-generation sequencing and imaging-based spatial transcriptomics. Finally, we highlight emerging methodologies that may fundamentally expand the scope for data generation within pharmaceutical research, creating opportunities to discover and validate novel drug mechanisms. Overall, this review serves as a critical resource for navigating the commercialization and application of single-cell and spatial omic technologies in pharmaceutical and academic research.
Collapse
Affiliation(s)
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, UK; Relation Therapeutics, London, UK
| | | | | | | | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Hower Lee
- spatialist AB, Stockholm, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - David Lara-Astiaso
- Department of Hematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jörg Morf
- Skyhawk Therapeutics, Basel, Switzerland
| | | | | | | | | | - Katarína Tiklová
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Sergio Marco Salas
- spatialist AB, Stockholm, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Christoffer Mattsson Langseth
- spatialist AB, Stockholm, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | | | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Alex K Shalek
- Relation Therapeutics, London, UK; Institute for Medical Engineering and Science, Department of Chemistry and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Adam P Cribbs
- Caeruleus Genomics, Oxford, UK; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, UK.
| | | |
Collapse
|
29
|
Choi MH, Joo C. A major step forward toward high-resolution nanopore sequencing of full-length proteins. Mol Cell 2024; 84:4264-4266. [PMID: 39577401 DOI: 10.1016/j.molcel.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
In a recent publication in Nature, Motone et al.1 report the development of a protein sequencing method using nanopores that enables the reading of long protein strands. This method allows for multi-pass re-reading and can detect single amino acid substitutions as well as post-translational modifications (PTMs).
Collapse
Affiliation(s)
- Moon Hyeok Choi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Lee S, Nouraein S, Kwon JJ, Huang Z, Wojick JA, Xia B, Corder G, Szablowski JO. Engineered serum markers for non-invasive monitoring of gene expression in the brain. Nat Biotechnol 2024; 42:1717-1725. [PMID: 38200117 PMCID: PMC11233427 DOI: 10.1038/s41587-023-02087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Measurement of gene expression in the brain requires invasive analysis of brain tissue or non-invasive methods that are limited by low sensitivity. Here we introduce a method for non-invasive, multiplexed, site-specific monitoring of endogenous gene or transgene expression in the brain through engineered reporters called released markers of activity (RMAs). RMAs consist of an easily detectable reporter and a receptor-binding domain that enables transcytosis across the brain endothelium. RMAs are expressed in the brain but exit into the blood, where they can be easily measured. We show that expressing RMAs at a single mouse brain site representing approximately 1% of the brain volume provides up to a 100,000-fold signal increase over the baseline. Expression of RMAs in tens to hundreds of neurons is sufficient for their reliable detection. We demonstrate that chemogenetic activation of cells expressing Fos-responsive RMA increases serum RMA levels >6-fold compared to non-activated controls. RMAs provide a non-invasive method for repeatable, multiplexed monitoring of gene expression in the intact animal brain.
Collapse
Affiliation(s)
- Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - James J Kwon
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Zhimin Huang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Jessica A Wojick
- Department of Psychiatry and Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Gregory Corder
- Department of Psychiatry and Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerzy O Szablowski
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Applied Physics Program, Rice University, Houston, TX, USA.
| |
Collapse
|
31
|
Chun C, Byun JM, Cha M, Lee H, Choi B, Kim H, Hong S, Lee Y, Park H, Koh Y, Yoon TY. Profiling protein-protein interactions to predict the efficacy of B-cell-lymphoma-2-homology-3 mimetics for acute myeloid leukaemia. Nat Biomed Eng 2024; 8:1379-1395. [PMID: 39025942 PMCID: PMC11584402 DOI: 10.1038/s41551-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
Collapse
Affiliation(s)
- Changju Chun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minkwon Cha
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hongwon Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Byungsan Choi
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hyunwoo Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Saem Hong
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Yunseo Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hayoung Park
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea.
| |
Collapse
|
32
|
Monitoring gene expression in the brain with a blood test. Nat Biotechnol 2024; 42:1656-1657. [PMID: 38200120 DOI: 10.1038/s41587-023-02088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
33
|
Yang Y, Li Y, Tang L, Li J. Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges. PRECISION CHEMISTRY 2024; 2:518-538. [PMID: 39483271 PMCID: PMC11523000 DOI: 10.1021/prechem.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.
Collapse
Affiliation(s)
- Yuxin Yang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Yueqi Li
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| | - Longhua Tang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Jinghong Li
- Department
of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of
Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing
Institute of Life Science and Technology, Beijing 102206, China
- New
Cornerstone Science Institute, Beijing 102206, China
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Wang L, Jin B. Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease. BIOLOGY 2024; 13:783. [PMID: 39452092 PMCID: PMC11504358 DOI: 10.3390/biology13100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
By directly measuring multiple molecular features in hundreds to millions of single cells, single-cell techniques allow for comprehensive characterization of the diversity of cells in the heart. These single-cell transcriptome and multi-omic studies are transforming our understanding of heart development and disease. Compared with single-dimensional inspections, the combination of transcriptomes with spatial dimensions and other omics can provide a comprehensive understanding of single-cell functions, microenvironment, dynamic processes, and their interrelationships. In this review, we will introduce the latest advances in cardiac health and disease at single-cell resolution; single-cell detection methods that can be used for transcriptome, genome, epigenome, and proteome analysis; single-cell multi-omics; as well as their future application prospects.
Collapse
Affiliation(s)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
35
|
Drachman N, Lepoitevin M, Szapary H, Wiener B, Maulbetsch W, Stein D. Nanopore ion sources deliver individual ions of amino acids and peptides directly into high vacuum. Nat Commun 2024; 15:7709. [PMID: 39231934 PMCID: PMC11375035 DOI: 10.1038/s41467-024-51455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Electrospray ionization is widely used to generate vapor phase ions for analysis by mass spectrometry in proteomics research. However, only a small fraction of the analyte enters the mass spectrometer due to losses that are fundamentally linked to the use of a background gas to stimulate the generation of ions from electrosprayed droplets. Here we report a nanopore ion source that delivers ions directly into high vacuum from aqueous solutions. The ion source comprises a pulled quartz pipette with a sub-100 nm opening. Ions escape an electrified meniscus by ion evaporation and travel along collisionless trajectories to the ion detector. We measure mass spectra of 16 different amino acid ions, post-translationally modified variants of glutathione, and the peptide angiotensin II, showing that these analytes can be emitted as desolvated ions. The emitted current is composed of ions rather than charged droplets, and more than 90% of the current can be recovered in a distant collector.
Collapse
Affiliation(s)
| | | | - Hannah Szapary
- Physics Department, Brown University, Providence, RI, USA
| | | | | | - Derek Stein
- Physics Department, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
36
|
Wu Y, Chang Y, Sun Y, Wang Y, Li K, Lu Z, Liu Q, Wang F, Wei L. A multi-AS-PCR-coupled CRISPR/Cas12a assay for the detection of ten single-base mutations. Anal Chim Acta 2024; 1320:343027. [PMID: 39142774 DOI: 10.1016/j.aca.2024.343027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Single-nucleotide polymorphism (SNP) detection is critical for diagnosing diseases, and the development of rapid and accurate diagnostic tools is essential for treatment and prevention. Allele-specific polymerase chain reaction (AS-PCR) is widely used for detecting SNPs with multiplexing capabilities, while CRISPR-based technologies provide high sensitivity and specificity in targeting mutation sites through specific guide RNAs (gRNAs). In this study, we have integrated the high sensitivity and specificity of CRISPR technology with the multiplexing capabilities of AS-PCR, achieving the simultaneous detection of ten single-base mutations. As for Multi-AS-PCR, our research identified that competitive inhibition of primers targeting the same loci, coupled with divergent amplification efficiencies of these primers, could result in diminished amplification efficiency. Consequently, we adjusted and optimized primer combinations and ratios to enhance the amplification efficacy of Multi-AS-PCR. Finally, we successfully developed a novel nested Multi-AS-PCR-Cas12a method for multiplex SNPs detection. To evaluate the clinical utility of this method in a real-world setting, we applied it to diagnose rifampicin-resistant tuberculosis (TB). The limit of detection (LoD) for the nested Multi-AS-PCR-Cas12a was 102 aM, achieving sensitivity, specificity, positive predictive value, and negative predictive value of 100 %, 93.33 %, 90.00 %, and 100 %, respectively, compared to sequencing. In summary, by employing an innovative design that incorporates a universal reverse primer alongside ten distinct forward allele-specific primers, the nested Multi-AS-PCR-Cas12a technique facilitates the parallel detection of ten rpoB gene SNPs. This method also holds broad potential for the detection of drug-resistant gene mutations in infectious diseases and tumors, as well as for the screening of specific genetic disorders.
Collapse
Affiliation(s)
- Yaozhou Wu
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yanbin Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yingying Sun
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Yulin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Zhangping Lu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Qianqian Liu
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| | - Lianhua Wei
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| |
Collapse
|
37
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
38
|
Aksimentiev A. Thread, read, rewind, repeat: towards using nanopores for protein sequencing. Nature 2024; 633:533-534. [PMID: 39261683 DOI: 10.1038/d41586-024-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
39
|
Motone K, Kontogiorgos-Heintz D, Wee J, Kurihara K, Yang S, Roote G, Fox OE, Fang Y, Queen M, Tolhurst M, Cardozo N, Jain M, Nivala J. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 2024; 633:662-669. [PMID: 39261738 PMCID: PMC11410661 DOI: 10.1038/s41586-024-07935-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal1,2. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore3,4, we provide single-molecule evidence that ClpX translocates substrates in two-residue steps. This mechanism achieves sensitivity to single amino acids on synthetic protein strands hundreds of amino acids in length, enabling the sequencing of combinations of single-amino-acid substitutions and the mapping of post-translational modifications, such as phosphorylation. To enhance classification accuracy further, we demonstrate the ability to reread individual protein molecules multiple times, and we explore the potential for highly accurate protein barcode sequencing. Furthermore, we develop a biophysical model that can simulate raw nanopore signals a priori on the basis of residue volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine full-length, folded protein domains for complete end-to-end analysis. These results provide proof of concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | - Jasmine Wee
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kyoko Kurihara
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Sangbeom Yang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Gwendolin Roote
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Oren E Fox
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Yishu Fang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Melissa Queen
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Mattias Tolhurst
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Jeff Nivala
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Charron M, Roelen Z, Wadhwa D, Tabard-Cossa V. Improved Conductance Blockage Modeling of Cylindrical Nanopores, from 2D to Thick Membranes. NANO LETTERS 2024; 24:10527-10533. [PMID: 39146027 DOI: 10.1021/acs.nanolett.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The ionic current blockage from a nanopore sensor is a fundamental metric for characterizing its dimensions and identifying molecules translocating through it. Yet, most analytical models predicting the conductance of a nanopore in both open and obstructed states remain inaccurate. Here, using an oblate spheroidal coordinate framework to study the electrical response of nanopore access regions, we reveal that the widely used model from Kowalczyk et al. significantly overestimates access region contributions when blocked by a cylindrical object, like DNA. To address this, we present an improved analytical model for the obstructed access resistance, which we establish as highly accurate through finite-element simulations, especially for ultrathin membranes and long narrow channels. Equipped with an improved nanopore conductance model, this work provides tools for more accurate calculation of the pore size and for the expected blockade from DNA, of high practical value for many biosensing applications.
Collapse
Affiliation(s)
- Martin Charron
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Zachary Roelen
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Deekshant Wadhwa
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Vincent Tabard-Cossa
- 150 Louis-Pasteur Private, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
41
|
Tan Y, Li M, Zhou B, Zhong B, Zheng L, Tan P, Zhou Z, Yu H, Fan G, Hong L. Simple, Efficient, and Scalable Structure-Aware Adapter Boosts Protein Language Models. J Chem Inf Model 2024; 64:6338-6349. [PMID: 39110130 DOI: 10.1021/acs.jcim.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fine-tuning pretrained protein language models (PLMs) has emerged as a prominent strategy for enhancing downstream prediction tasks, often outperforming traditional supervised learning approaches. As a widely applied powerful technique in natural language processing, employing parameter-efficient fine-tuning techniques could potentially enhance the performance of PLMs. However, the direct transfer to life science tasks is nontrivial due to the different training strategies and data forms. To address this gap, we introduce SES-Adapter, a simple, efficient, and scalable adapter method for enhancing the representation learning of PLMs. SES-Adapter incorporates PLM embeddings with structural sequence embeddings to create structure-aware representations. We show that the proposed method is compatible with different PLM architectures and across diverse tasks. Extensive evaluations are conducted on 2 types of folding structures with notable quality differences, 9 state-of-the-art baselines, and 9 benchmark data sets across distinct downstream tasks. Results show that compared to vanilla PLMs, SES-Adapter improves downstream task performance by a maximum of 11% and an average of 3%, with significantly accelerated convergence speed by a maximum of 1034% and an average of 362%, the training efficiency is also improved by approximately 2 times. Moreover, positive optimization is observed even with low-quality predicted structures. The source code for SES-Adapter is available at https://github.com/tyang816/SES-Adapter.
Collapse
Affiliation(s)
- Yang Tan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
| | - Mingchen Li
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
| | - Bingxin Zhou
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bozitao Zhong
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan 48104, United States
| | - Pan Tan
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhou
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiqun Yu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Hong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Seo JP, Trippett JS, Huang Z, Lee S, Nouraein S, Wang RZ, Szablowski JO. Acoustically targeted measurement of transgene expression in the brain. SCIENCE ADVANCES 2024; 10:eadj7686. [PMID: 39110811 PMCID: PMC11305388 DOI: 10.1126/sciadv.adj7686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Gene expression is a critical component of brain physiology, but monitoring this expression in the living brain represents a major challenge. Here, we introduce a new paradigm called recovery of markers through insonation (REMIS) for noninvasive measurement of gene expression in the brain with cell type, spatial, and temporal specificity. Our approach relies on engineered protein markers that are produced in neurons but exit into the brain's interstitium. When ultrasound is applied to targeted brain regions, it opens the blood-brain barrier and releases these markers into the bloodstream. Once in blood, the markers can be readily detected using biochemical techniques. REMIS can noninvasively confirm gene delivery and measure endogenous signaling in specific brain sites through a simple insonation and a subsequent blood test. REMIS is reliable and demonstrated consistent improvement in recovery of markers from the brain into the blood. Overall, this work establishes a noninvasive, spatially specific method of monitoring gene delivery and endogenous signaling in the brain.
Collapse
Affiliation(s)
- Joon Pyung Seo
- Applied Physics Program, Rice University, Houston, TX, USA
| | | | - Zhimin Huang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Shirin Nouraein
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Ryan Z. Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jerzy O. Szablowski
- Applied Physics Program, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| |
Collapse
|
43
|
Garg K, Futera Z, Wu X, Jeong Y, Chiu R, Pisharam VC, Ha TQ, Aragonès AC, van Wonderen JH, Butt JN, Blumberger J, Díez-Pérez I. Shallow conductance decay along the heme array of a single tetraheme protein wire. Chem Sci 2024; 15:12326-12335. [PMID: 39118640 PMCID: PMC11304805 DOI: 10.1039/d4sc01366b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Multiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed heme cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown. Here we study charge transport on individual small tetraheme cytochromes (STCs) containing a single TST heme array. Individual STCs are trapped in a controllable nanoscale tunnelling gap. By modulating the tunnelling gap separation, we are able to selectively probe four different electron pathways involving 1, 2, 3 and 4 heme cofactors, respectively, leading to the determination of the electron tunnelling decay constant along the TST heme motif. Conductance calculations of selected single-STC junctions are in excellent agreement with experiments and suggest a mechanism of electron tunnelling with shallow length decay constant through an individual STC. These results demonstrate that an individual TST motif supporting electron tunnelling might contribute to a tunnelling-assisted charge transport diffusion mechanism in larger TST associations.
Collapse
Affiliation(s)
- Kavita Garg
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House 7 Trinity Street London SE1 1DB UK
| | - Zdenek Futera
- Faculty of Science, University of South Bohemia Branisovska 1760 370 05 Ceske Budejovice Czech Republic
| | - Xiaojing Wu
- Department of Physics and Astronomy, Thomas Young Centre, University College London Gower Street London WC1E 6BT UK
| | - Yongchan Jeong
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House 7 Trinity Street London SE1 1DB UK
| | - Rachel Chiu
- School of Chemistry, School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Varun Chittari Pisharam
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House 7 Trinity Street London SE1 1DB UK
| | - Tracy Q Ha
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House 7 Trinity Street London SE1 1DB UK
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Institut de Química Teòrica i Computacional (IQTC) Marti i Franquès 1 08028 Barcelona Spain
| | - Jessica H van Wonderen
- School of Chemistry, School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Julea N Butt
- School of Chemistry, School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Jochen Blumberger
- Department of Physics and Astronomy, Thomas Young Centre, University College London Gower Street London WC1E 6BT UK
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
44
|
Zhan Y, Zhang Q, Wang W, Liang W, Wang C. Single-cell RNA sequencing in tuberculosis: Application and future perspectives. Chin Med J (Engl) 2024:00029330-990000000-01167. [PMID: 39111829 DOI: 10.1097/cm9.0000000000003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/17/2025] Open
Abstract
Tuberculosis (TB) has one of the highest mortality rates among infectious diseases worldwide. The immune response in the host after infection is proposed to contribute significantly to the progression of TB, but the specific mechanisms involved remain to be elucidated. Single-cell RNA sequencing (scRNA-seq) provides unbiased transcriptome sequencing of large quantities of individual cells, thereby defining biological comprehension of cellular heterogeneity and dynamic transcriptome state of cell populations in the field of immunology and is therefore increasingly applied to lung disease research. Here, we first briefly introduce the concept of scRNA-seq, followed by a summarization on the application of scRNA-seq to TB. Furthermore, we underscore the potential of scRNA-seq for clinical biomarker exploration, host-directed therapy, and precision therapy research in TB and discuss the bottlenecks that need to be overcome for the broad application of scRNA-seq to TB-related research.
Collapse
Affiliation(s)
- Yuejuan Zhan
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiran Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyang Wang
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyi Liang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
45
|
Electroosmotic flow across nanopores for single-molecule protein sequencing. Nat Biotechnol 2024; 42:1192-1193. [PMID: 37723269 DOI: 10.1038/s41587-023-01976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
|
46
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
47
|
Si W, Chen J, Zhang Z, Wu G, Zhao J, Sha J. Electroosmotic Sensing of Uncharged Peptides and Differentiating Their Phosphorylated States Using Nanopores. Chemphyschem 2024; 25:e202400281. [PMID: 38686913 DOI: 10.1002/cphc.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
48
|
Adams SK, Ducharme GE, Loveday EK. All the single cells: if you like it then you should put some virus on it. J Virol 2024; 98:e0127323. [PMID: 38904395 PMCID: PMC11324023 DOI: 10.1128/jvi.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Across a rich 70-year history, single-cell virology has revealed the impact of host and pathogen heterogeneity during virus infections. Recent technological innovations have enabled higher-resolution analyses of cellular and viral heterogeneity. Furthermore, single-cell analysis has revealed extreme phenotypes and provided additional insights into host-pathogen dynamics. Using a single-cell approach to explore fundamental virology questions, contemporary researchers have contributed to a revival of interest in single-cell virology with increased insights and enthusiasm.
Collapse
Affiliation(s)
- Sophia K. Adams
- Department of
Chemistry and Biochemistry, Montana State
University, Bozeman,
Montana, USA
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
| | - Grace E. Ducharme
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
- Department of Chemical
and Biological Engineering, Montana State
University, Bozeman,
Montana, USA
| | - Emma K. Loveday
- Center for Biofilm
Engineering, Montana State University,
Bozeman, Montana, USA
- Department of Chemical
and Biological Engineering, Montana State
University, Bozeman,
Montana, USA
| |
Collapse
|
49
|
Wang Y, Yu Z, Smith CS, Caneva S. Site-Specific Integration of Hexagonal Boron Nitride Quantum Emitters on 2D DNA Origami Nanopores. NANO LETTERS 2024; 24:8510-8517. [PMID: 38856705 PMCID: PMC11261624 DOI: 10.1021/acs.nanolett.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.
Collapse
Affiliation(s)
- Yabin Wang
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD, Delft, The Netherlands
- Delft
Center for Systems and Control, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Ze Yu
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD, Delft, The Netherlands
| | - Carlas S. Smith
- Delft
Center for Systems and Control, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Sabina Caneva
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD, Delft, The Netherlands
| |
Collapse
|
50
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|