1
|
Guan G, Li Z, Ma Y, Ye P, Cao J, Wong MK, Ho VWS, Chan LY, Yan H, Tang C, Zhao Z. Cell lineage-resolved embryonic morphological map reveals signaling associated with cell fate and size asymmetry. Nat Commun 2025; 16:3700. [PMID: 40251161 PMCID: PMC12008310 DOI: 10.1038/s41467-025-58878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
How cells change shape is crucial for the development of tissues, organs and embryos. However, studying these shape changes in detail is challenging. Here we present a comprehensive real-time cellular map that covers over 95% of the cells formed during Caenorhabditis elegans embryogenesis, featuring nearly 400,000 3D cell regions. This map includes information on each cell's identity, lineage, fate, shape, volume, surface area, contact area, and gene expression profiles, all accessible through our user-friendly software and website. Our map allows for detailed analysis of key developmental processes, including dorsal intercalation, intestinal formation, and muscle assembly. We show how Notch and Wnt signaling pathways, along with mechanical forces from cell interactions, regulate cell fate decisions and size asymmetries. Our findings suggest that repeated Notch signaling drives size disparities in the large excretory cell, which functions like a kidney. This work sets the stage for in-depth studies of the mechanisms controlling cell fate differentiation and morphogenesis.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zelin Li
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianfeng Cao
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Physics, Peking University, Beijing, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Perez MF. CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans. Genetics 2025; 229:iyae189. [PMID: 39705007 PMCID: PMC11912867 DOI: 10.1093/genetics/iyae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
Transcription factors (TFs) play a pivotal role in orchestrating critical intricate patterns of gene regulation. Although gene expression is complex, differential expression of hundreds of genes is often due to regulation by just a handful of TFs. Despite extensive efforts to elucidate TF-target regulatory relationships in Caenorhabditis elegans, existing experimental datasets cover distinct subsets of TFs and leave data integration challenging. Here, I introduce CelEst, a unified gene regulatory network designed to estimate the activity of 487 distinct C. elegans TFs-∼58% of the total-from gene expression data. To integrate data from ChIP-seq, DNA-binding motifs, and eY1H screens, optimal processing of each data type was benchmarked against a set of TF perturbation RNA-seq experiments. Moreover, I showcase how leveraging TF motif conservation in target promoters across genomes of related species can distinguish highly informative interactions, a strategy which can be applied to many model organisms. Integrated analyses of data from commonly studied conditions including heat shock, bacterial infection, and sex differences validates CelEst's performance and highlights overlooked TFs that likely play major roles in coordinating the transcriptional response to these conditions. CelEst can infer TF activity on a standard laptop computer within minutes. Furthermore, an R Shiny app with a step-by-step guide is provided for the community to perform rapid analysis with minimal coding required. I anticipate that widespread adoption of CelEsT will significantly enhance the interpretive power of transcriptomic experiments, both present and retrospective, thereby advancing our understanding of gene regulation in C. elegans and beyond.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Parc Científic de Barcelona, C. Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
4
|
Huang J, Zhang L, Shao N, Zhang Y, Xu Y, Zhou Y, Zhang D, Zhang J, Lee HJ. Lipid Metabolic Heterogeneity during Early Embryogenesis Revealed by Hyper-3D Stimulated Raman Imaging. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:15-24. [PMID: 39886225 PMCID: PMC11775849 DOI: 10.1021/cbmi.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 02/01/2025]
Abstract
Studying embryogenesis is fundamental to understanding developmental biology and reproductive medicine. Its process requires precise spatiotemporal regulations in which lipid metabolism plays a crucial role. However, the spatial dynamics of lipid species at the subcellular level remains obscure due to technical limitations. To address this challenge, we developed a hyperspectral 3D imaging and analysis method based on stimulated Raman scattering microscopy (hyper-3D SRS) to quantitatively assess lipid profiles in individual embryos through submicrometer resolution (x-y), 3D optical sectioning (z), and chemical bond-selective (Ω) imaging. Using hyper-3D SRS, individual lipid droplets (LDs) in single cells were identified and quantified. Our findings revealed that the LD profiles within a single embryo are not uniform, even as early as the 2-cell stage. Notably, we also discovered a dynamic relationship between the LD size and unsaturation degree as embryos develop, indicating diverse lipid metabolism during early development. Furthermore, abnormal LDs were observed in oocytes of a progeria mouse model, suggesting that LDs could serve as a potential biomarker for assessing oocyte/embryo quality. Overall, our results highlight the potential of hyper-3D SRS as a noninvasive method for studying lipid content, composition, and subcellular distribution in embryos. This technique provides valuable insights into lipid metabolism during embryonic development and has the potential for clinical applications in evaluating oocyte/embryo quality.
Collapse
Affiliation(s)
- Jie Huang
- Zhejiang
Polytechnic Institute, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhang
- Liangzhu
Laboratory, Zhejiang University, Hangzhou 311121, China
- Center
for Stem Cell and Regenerative Medicine, Department of Basic Medical
Sciences, and Bone Marrow Transplantation Center of the First Affiliated
Hospital, Zhejiang University School of
Medicine, Hangzhou 310058, China
| | - Ninghui Shao
- College
of Biomedical Engineering & Instrument Science, Key Laboratory
for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yongqing Zhang
- Interdisciplinary
Centre for Quantum Information, Zhejiang Province Key Laboratory of
Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yuyan Xu
- Liangzhu
Laboratory, Zhejiang University, Hangzhou 311121, China
- Center
for Stem Cell and Regenerative Medicine, Department of Basic Medical
Sciences, and Bone Marrow Transplantation Center of the First Affiliated
Hospital, Zhejiang University School of
Medicine, Hangzhou 310058, China
| | - Yihui Zhou
- College
of Biomedical Engineering & Instrument Science, Key Laboratory
for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Delong Zhang
- Interdisciplinary
Centre for Quantum Information, Zhejiang Province Key Laboratory of
Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
- MOE
Frontier
Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Jin Zhang
- Liangzhu
Laboratory, Zhejiang University, Hangzhou 311121, China
- Center
for Stem Cell and Regenerative Medicine, Department of Basic Medical
Sciences, and Bone Marrow Transplantation Center of the First Affiliated
Hospital, Zhejiang University School of
Medicine, Hangzhou 310058, China
- Center
of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Hyeon Jeong Lee
- Zhejiang
Polytechnic Institute, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- College
of Biomedical Engineering & Instrument Science, Key Laboratory
for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
- MOE
Frontier
Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Baccas M, Ganesan V, Leung A, Pineiro LR, McKillop AN, Liu J. SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. PLoS Genet 2025; 21:e1011361. [PMID: 39836649 PMCID: PMC11785321 DOI: 10.1371/journal.pgen.1011361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/31/2025] [Accepted: 11/05/2024] [Indexed: 01/23/2025] Open
Abstract
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.
Collapse
Affiliation(s)
- Marissa Baccas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vanathi Ganesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amy Leung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Lucas R. Pineiro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Alexandra N. McKillop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships. Genome Res 2024; 34:2319-2334. [PMID: 39438113 PMCID: PMC11694743 DOI: 10.1101/gr.279037.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here, we present the culmination of the efforts of the modENCODE (model organism Encyclopedia of DNA Elements) and modERN (model organism Encyclopedia of Regulatory Networks) consortia to systematically assay TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). These data sets comprise 605 TFs identifying 3.6 M sites in the fly and 356 TFs identifying 0.9 M sites in the worm, and represent the majority of the regulatory space in each genome. We demonstrate that TFs associate with chromatin in clusters termed "metapeaks," that larger metapeaks have characteristics of high-occupancy target (HOT) regions, and that the importance of consensus sequence motifs bound by TFs depends on metapeak size and complexity. Combining ChIP-seq data with single-cell RNA-seq data in a machine-learning model identifies TFs with a prominent role in promoting target gene expression in specific cell types, even differentiating between parent-daughter cells during embryogenesis. These data are a rich resource for the community that should fuel and guide future investigations into TF function. To facilitate data accessibility and utility, all strains expressing green fluorescent protein (GFP)-tagged TFs are available at the stock centers for each organism. The chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center, GEO, and through a direct interface that provides rapid access to processed data sets and summary analyses, as well as widgets to probe the cell-type-specific TF-target relationships.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Alec Victorsen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bridget C Lear
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martha Wall
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA;
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA;
| |
Collapse
|
7
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Waliman M, Johnson RL, Natesan G, Peinado NA, Tan S, Santella A, Hong RL, Shah PK. Automated cell lineage reconstruction using label-free 4D microscopy. Genetics 2024; 228:iyae135. [PMID: 39139100 PMCID: PMC11457935 DOI: 10.1093/genetics/iyae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Patterns of lineal descent play a critical role in the development of metazoan embryos. In eutelic organisms that generate a fixed number of somatic cells, invariance in the topology of their cell lineage provides a powerful opportunity to interrogate developmental events with empirical repeatability across individuals. Studies of embryonic development using the nematode Caenorhabditis elegans have been drivers of discovery. These studies have depended heavily on high-throughput lineage tracing enabled by 4D fluorescence microscopy and robust computer vision pipelines. For a range of applications, computer-aided yet manual lineage tracing using 4D label-free microscopy remains an essential tool. Deep learning approaches to cell detection and tracking in fluorescence microscopy have advanced significantly in recent years, yet solutions for automating cell detection and tracking in 3D label-free imaging of dense tissues and embryos remain inaccessible. Here, we describe embGAN, a deep learning pipeline that addresses the challenge of automated cell detection and tracking in label-free 3D time-lapse imaging. embGAN requires no manual data annotation for training, learns robust detections that exhibits a high degree of scale invariance, and generalizes well to images acquired in multiple labs on multiple instruments. We characterize embGAN's performance using lineage tracing in the C. elegans embryo as a benchmark. embGAN achieves near-state-of-the-art performance in cell detection and tracking, enabling high-throughput studies of cell lineage without the need for fluorescent reporters or transgenics.
Collapse
Affiliation(s)
- Matthew Waliman
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan L Johnson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neil A Peinado
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiqin Tan
- Department of Computational and Systems Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony Santella
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ray L Hong
- Department of Biology, California State University, Northridge, Northridge, CA 91325, USA
| | - Pavak K Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Kiontke KC, Herrera RA, Mason DA, Woronik A, Vernooy S, Patel Y, Fitch DHA. Tissue-specific RNA-seq defines genes governing male tail tip morphogenesis in C. elegans. Development 2024; 151:dev202787. [PMID: 39253748 PMCID: PMC11449441 DOI: 10.1242/dev.202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the DM-domain transcription factor DMD-3. To find genes regulated by DMD-3, we performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males versus dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the unfolded protein response pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are co-regulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.
Collapse
Affiliation(s)
- Karin C. Kiontke
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | - D. Adam Mason
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| | - Stephanie Vernooy
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
| | - Yash Patel
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - David H. A. Fitch
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
11
|
Baccas M, Ganesan V, Leung A, Pineiro L, McKillop AN, Liu J. SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602042. [PMID: 39005444 PMCID: PMC11245110 DOI: 10.1101/2024.07.04.602042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.
Collapse
Affiliation(s)
- Marissa Baccas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Vanathi Ganesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Amy Leung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Lucas Pineiro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Guan G, Chen Y, Wang H, Ouyang Q, Tang C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. MEMBRANES 2024; 14:137. [PMID: 38921504 PMCID: PMC11205511 DOI: 10.3390/membranes14060137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells).
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
| | - Yixuan Chen
- School of Physics, Peking University, Beijing 100871, China;
| | - Hongli Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Xu W, Liu J, Qi H, Si R, Zhao Z, Tao Z, Bai Y, Hu S, Sun X, Cong Y, Zhang H, Fan D, Xiao L, Wang Y, Li Y, Du Z. A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis. Nat Commun 2024; 15:2783. [PMID: 38555276 PMCID: PMC10981687 DOI: 10.1038/s41467-024-47055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.
Collapse
Affiliation(s)
- Weina Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruolin Si
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiju Tao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuchuan Bai
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoye Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Fan D, Cong Y, Liu J, Zhang H, Du Z. Spatiotemporal analysis of mRNA-protein relationships enhances transcriptome-based developmental inference. Cell Rep 2024; 43:113928. [PMID: 38461413 DOI: 10.1016/j.celrep.2024.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Elucidating the complex relationships between mRNA and protein expression at high spatiotemporal resolution is critical for unraveling multilevel gene regulation and enhancing mRNA-based developmental analyses. In this study, we conduct a single-cell analysis of mRNA and protein expression of transcription factors throughout C. elegans embryogenesis. Initially, cellular co-presence of mRNA and protein is low, increasing to a medium-high level (73%) upon factoring in delayed protein synthesis and long-term protein persistence. These factors substantially affect mRNA-protein concordance, leading to potential inaccuracies in mRNA-reliant gene detection and specificity characterization. Building on the learned relationship, we infer protein presence from mRNA expression and demonstrate its utility in identifying tissue-specific genes and elucidating relationships between genes and cells. This approach facilitates identifying the role of sptf-1/SP7 in neuronal lineage development. Collectively, this study provides insights into gene expression dynamics during rapid embryogenesis and approaches for improving the efficacy of transcriptome-based developmental analyses.
Collapse
Affiliation(s)
- Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haoye Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Cole AG, Hashimshony T, Du Z, Yanai I. Gene regulatory patterning codes in early cell fate specification of the C. elegans embryo. eLife 2024; 12:RP87099. [PMID: 38284404 PMCID: PMC10945703 DOI: 10.7554/elife.87099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Pattern formation originates during embryogenesis by a series of symmetry-breaking steps throughout an expanding cell lineage. In Drosophila, classic work has shown that segmentation in the embryo is established by morphogens within a syncytium, and the subsequent action of the gap, pair-rule, and segment polarity genes. This classic model however does not translate directly to species that lack a syncytium - such as Caenorhabditis elegans - where cell fate is specified by cell-autonomous cell lineage programs and their inter-signaling. Previous single-cell RNA-Seq studies in C. elegans have analyzed cells from a mixed suspension of cells from many embryos to study late differentiation stages, or individual early stage embryos to study early gene expression in the embryo. To study the intermediate stages of early and late gastrulation (28- to 102-cells stages) missed by these approaches, here we determine the transcriptomes of the 1- to 102-cell stage to identify 119 embryonic cell states during cell fate specification, including 'equivalence-group' cell identities. We find that gene expression programs are modular according to the sub-cell lineages, each establishing a set of stripes by combinations of transcription factor gene expression across the anterior-posterior axis. In particular, expression of the homeodomain genes establishes a comprehensive lineage-specific positioning system throughout the embryo beginning at the 28-cell stage. Moreover, we find that genes that segment the entire embryo in Drosophila have orthologs in C. elegans that exhibit sub-lineage-specific expression. These results suggest that the C. elegans embryo is patterned by a juxtaposition of distinct lineage-specific gene regulatory programs each with a unique encoding of cell location and fate. This use of homologous gene regulatory patterning codes suggests a deep homology of cell fate specification programs across diverse modes of development.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Molecular Evolution and Development, University of ViennaViennaAustria
- University of ViennaViennaAustria
| | - Tamar Hashimshony
- Department of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Itai Yanai
- Institute for Computational Medicine, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
16
|
Waliman M, Johnson RL, Natesan G, Tan S, Santella A, Hong RL, Shah PK. Automated Cell Lineage Reconstruction using Label-Free 4D Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576449. [PMID: 38328064 PMCID: PMC10849476 DOI: 10.1101/2024.01.20.576449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Here we describe embGAN, a deep learning pipeline that addresses the challenge of automated cell detection and tracking in label-free 3D time lapse imaging. embGAN requires no manual data annotation for training, learns robust detections that exhibits a high degree of scale invariance and generalizes well to images acquired in multiple labs on multiple instruments.
Collapse
Affiliation(s)
- Matthew Waliman
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California, United States of America
| | - Ryan L Johnson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United State of America
| | - Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United State of America
| | - Shiqin Tan
- Department of Computational and Systems Biology, University of California, Los Angeles, California, United States of America
| | - Anthony Santella
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ray L Hong
- Department of Biology, California State University, Northridge, California, United States of America
| | - Pavak K Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United State of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 954 Drosophila and C. elegans transcription factors reveal tissue specific regulatory relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576242. [PMID: 38293065 PMCID: PMC10827215 DOI: 10.1101/2024.01.18.576242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Alec Victorsen
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Bridget C. Lear
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martha Wall
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Susan E. Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
18
|
Peng F, Nordgren CE, Murray JI. A spatiotemporally resolved atlas of mRNA decay in the C. elegans embryo reveals differential regulation of mRNA stability across stages and cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575757. [PMID: 38293118 PMCID: PMC10827189 DOI: 10.1101/2024.01.15.575757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
During embryonic development, cells undergo dynamic changes in gene expression that are required for appropriate cell fate specification. Although both transcription and mRNA degradation contribute to gene expression dynamics, patterns of mRNA decay are less well-understood. Here we directly measured spatiotemporally resolved mRNA decay rates transcriptome-wide throughout C. elegans embryogenesis by transcription inhibition followed by bulk and single-cell RNA-sequencing. This allowed us to calculate mRNA half-lives within specific cell types and developmental stages and identify differentially regulated mRNA decay throughout embryonic development. We identified transcript features that are correlated with mRNA stability and found that mRNA decay rates are associated with distinct peaks in gene expression over time. Moreover, we provide evidence that, on average, mRNA is more stable in the germline compared to in the soma and in later embryonic stages compared to in earlier stages. This work suggests that differential mRNA decay across cell states and time helps to shape developmental gene expression, and it provides a valuable resource for studies of mRNA turnover regulatory mechanisms.
Collapse
Affiliation(s)
- Felicia Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Kiontke K, Herrera RA, Mason DA, Woronik A, Vernooy S, Patel Y, Fitch DHA. Tissue-specific RNA-seq defines genes governing male tail tip morphogenesis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575210. [PMID: 38260477 PMCID: PMC10802606 DOI: 10.1101/2024.01.12.575210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the transcription factor DMD-3. To find genes regulated by DMD-3, We performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males vs. dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the UPR (unfolded protein response) pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are coregulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.
Collapse
Affiliation(s)
- Karin Kiontke
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | | | - D Adam Mason
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825
| | - Stephanie Vernooy
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211
| | - Yash Patel
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | - David H A Fitch
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| |
Collapse
|
20
|
Li Y, Chen S, Liu W, Zhao D, Gao Y, Hu S, Liu H, Li Y, Qu L, Liu X. A full-body transcription factor expression atlas with completely resolved cell identities in C. elegans. Nat Commun 2024; 15:358. [PMID: 38195740 PMCID: PMC10776613 DOI: 10.1038/s41467-023-42677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024] Open
Abstract
Invariant cell lineage in C. elegans enables spatiotemporal resolution of transcriptional regulatory mechanisms controlling the fate of each cell. Here, we develop RAPCAT (Robust-point-matching- And Piecewise-affine-based Cell Annotation Tool) to automate cell identity assignment in three-dimensional image stacks of L1 larvae and profile reporter expression of 620 transcription factors in every cell. Transcription factor profile-based clustering analysis defines 80 cell types distinct from conventional phenotypic cell types and identifies three general phenotypic modalities related to these classifications. First, transcription factors are broadly downregulated in quiescent stage Hermaphrodite Specific Neurons, suggesting stage- and cell type-specific variation in transcriptome size. Second, transcription factor expression is more closely associated with morphology than other phenotypic modalities in different pre- and post-differentiation developmental stages. Finally, embryonic cell lineages can be associated with specific transcription factor expression patterns and functions that persist throughout postembryonic life. This study presents a comprehensive transcription factor atlas for investigation of intra-cell type heterogeneity.
Collapse
Affiliation(s)
- Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Siyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Intelligent Perception Lab, Hanwang Technology Co., Ltd, Beijing, 100193, China
| | - Di Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 300381, China
| | - Yimeng Gao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hanyu Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuanyuan Li
- Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, 230039, China
| | - Lei Qu
- Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, 230039, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
21
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. On the origins of developmental robustness: modeling buffering mechanisms against cell-level noise. Development 2023; 150:dev201911. [PMID: 38032004 DOI: 10.1242/dev.201911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
During development, cells are subject to stochastic fluctuations in their positions (i.e. cell-level noise) that can potentially lead to morphological noise (i.e. stochastic differences between morphologies that are expected to be equal, e.g. the right and left sides of bilateral organisms). In this study, we explore new and existing hypotheses on buffering mechanisms against cell-level noise. Many of these hypotheses focus on how the boundaries between territories of gene expression remain regular and well defined, despite cell-level noise and division. We study these hypotheses and how irregular territory boundaries lead to morphological noise. To determine the consistency of the different hypotheses, we use a general computational model of development: EmbryoMaker. EmbryoMaker can implement arbitrary gene networks regulating basic cell behaviors (contraction, adhesion, etc.), signaling and tissue biomechanics. We found that buffering mechanisms based on the orientation of cell divisions cannot lead to regular boundaries but that other buffering mechanisms can (homotypic adhesion, planar contraction, non-dividing boundaries, constant signaling and majority rule hypotheses). We also explore the effects of the shape and size of the territories on morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centre de Recerca Matemàtica (CRM), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
22
|
Chen S, Su X, Zhu J, Xiao L, Cong Y, Yang L, Du Z, Huang X. Metabolic plasticity sustains the robustness of Caenorhabditis elegans embryogenesis. EMBO Rep 2023; 24:e57440. [PMID: 37885348 PMCID: PMC10702823 DOI: 10.15252/embr.202357440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinglin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Leilei Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Tianjian Laboratory of Advanced Biomedical SciencesZhengzhouChina
| |
Collapse
|
23
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Natesan G, Hamilton T, Deeds EJ, Shah PK. Novel metrics reveal new structure and unappreciated heterogeneity in Caenorhabditis elegans development. PLoS Comput Biol 2023; 19:e1011733. [PMID: 38113280 PMCID: PMC10763962 DOI: 10.1371/journal.pcbi.1011733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
High throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions. Most attempts to analyze this type of data, however, discard much of the information content contained within lineage trees. In this work we introduce a generalized metric, which we term the branch edit distance, that allows us to compare any two embryos based on phenotypic measurements in individual cells. This approach aligns those phenotypic measurements to the underlying lineage tree, providing a flexible and intuitive framework for quantitative comparisons between, for instance, Wild-Type (WT) and mutant developmental programs. We apply this novel metric to data on cell-cycle timing from over 1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed surprising heterogeneity within this data set, including subtle batch effects in WT embryos and dramatic variability in RNAi-induced developmental phenotypes, all of which had been missed in previous analyses. Further investigation of these results suggests a novel, quantitative link between pathways that govern cell fate decisions and pathways that pattern cell cycle timing in the early embryo. Our work demonstrates that the branch edit distance we propose, and similar metrics like it, have the potential to revolutionize our quantitative understanding of organismal phenotype.
Collapse
Affiliation(s)
- Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
| | - Timothy Hamilton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| | - Pavak K. Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| |
Collapse
|
25
|
Medwig-Kinney TN, Kinney BA, Martinez MAQ, Yee C, Sirota SS, Mullarkey AA, Somineni N, Hippler J, Zhang W, Shen K, Hammell C, Pani AM, Matus DQ. Dynamic compartmentalization of the pro-invasive transcription factor NHR-67 reveals a role for Groucho in regulating a proliferative-invasive cellular switch in C. elegans. eLife 2023; 12:RP84355. [PMID: 38038410 PMCID: PMC10691804 DOI: 10.7554/elife.84355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
A growing body of evidence suggests that cell division and basement membrane invasion are mutually exclusive cellular behaviors. How cells switch between proliferative and invasive states is not well understood. Here, we investigated this dichotomy in vivo by examining two cell types in the developing Caenorhabditis elegans somatic gonad that derive from equipotent progenitors, but exhibit distinct cell behaviors: the post-mitotic, invasive anchor cell and the neighboring proliferative, non-invasive ventral uterine (VU) cells. We show that the fates of these cells post-specification are more plastic than previously appreciated and that levels of NHR-67 are important for discriminating between invasive and proliferative behavior. Transcription of NHR-67 is downregulated following post-translational degradation of its direct upstream regulator, HLH-2 (E/Daughterless) in VU cells. In the nuclei of VU cells, residual NHR-67 protein is compartmentalized into discrete punctae that are dynamic over the cell cycle and exhibit liquid-like properties. By screening for proteins that colocalize with NHR-67 punctae, we identified new regulators of uterine cell fate maintenance: homologs of the transcriptional co-repressor Groucho (UNC-37 and LSY-22), as well as the TCF/LEF homolog POP-1. We propose a model in which the association of NHR-67 with the Groucho/TCF complex suppresses the default invasive state in non-invasive cells, which complements transcriptional regulation to add robustness to the proliferative-invasive cellular switch in vivo.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Brian A Kinney
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Michael AQ Martinez
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford UniversityStanfordUnited States
| | - Sydney S Sirota
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Angelina A Mullarkey
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Neha Somineni
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Justin Hippler
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
- Science and Technology Research Program, Smithtown High School EastSt. JamesUnited States
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Ariel M Pani
- Departments of Biology and Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
26
|
KIM S, KAMARULZAMAN L, TANIGUCHI Y. Recent methodological advances towards single-cell proteomics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:306-327. [PMID: 37673661 PMCID: PMC10749393 DOI: 10.2183/pjab.99.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
Studying the central dogma at the single-cell level has gained increasing attention to reveal hidden cell lineages and functions that cannot be studied using traditional bulk analyses. Nonetheless, most single-cell studies exploiting genomic and transcriptomic levels fail to address information on proteins that are central to many important biological processes. Single-cell proteomics enables understanding of the functional status of individual cells and is particularly crucial when the specimen is composed of heterogeneous entities of cells. With the growing importance of this field, significant methodological advancements have emerged recently. These include miniaturized and automated sample preparation, multi-omics analyses, and combined analyses of multiple techniques such as mass spectrometry and microscopy. Moreover, artificial intelligence and single-molecule detection technologies have advanced throughput and improved sensitivity limitations, respectively, over conventional methods. In this review, we summarize cutting-edge methodologies for single-cell proteomics and relevant emerging technologies that have been reported in the last 5 years, and provide an outlook on this research field.
Collapse
Affiliation(s)
- Sooyeon KIM
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Latiefa KAMARULZAMAN
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuichi TANIGUCHI
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Sivaramakrishnan P, Watkins C, Murray JI. Transcript accumulation rates in the early Caenorhabditis elegans embryo. SCIENCE ADVANCES 2023; 9:eadi1270. [PMID: 37611097 PMCID: PMC10446496 DOI: 10.1126/sciadv.adi1270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dynamic transcriptional changes are widespread in rapidly dividing developing embryos when cell fate decisions are made quickly. The Caenorhabditis elegans embryo overcomes these constraints partly through the rapid production of high levels of transcription factor mRNAs. Transcript accumulation rates for some developmental genes are known at single-cell resolution, but genome-scale measurements are lacking. We estimate zygotic mRNA accumulation rates from single-cell RNA sequencing data calibrated with single-molecule transcript imaging. Rapid transcription is common in the early C. elegans embryo with rates highest soon after zygotic transcription begins. High-rate genes are enriched for recently duplicated cell-fate regulators and share common genomic features. We identify core promoter elements associated with high rate and measure their contributions for two early endomesodermal genes, ceh-51 and sdz-31. Individual motifs modestly affect accumulation rates, suggesting multifactorial control. These results are a step toward estimating absolute transcription kinetics and understanding how transcript dosage drives developmental decisions.
Collapse
Affiliation(s)
- Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Cameron Watkins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
28
|
Affiliation(s)
- Xinyang Li
- Department of Automation, Tsinghua University, Beijing, China
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Natesan G, Hamilton T, Deeds EJ, Shah PK. Novel metrics reveal new structure and unappreciated heterogeneity in C. elegans development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540617. [PMID: 37292606 PMCID: PMC10245744 DOI: 10.1101/2023.05.12.540617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions. Most attempts to analyze this type of data, however, discard much of the information content contained within lineage trees. In this work we introduce a generalized metric, which we term the branch distance, that allows us to compare any two embryos based on phenotypic measurements in individual cells. This approach aligns those phenotypic measurements to the underlying lineage tree, providing a flexible and intuitive framework for quantitative comparisons between, for instance, Wild-Type (WT) and mutant developmental programs. We apply this novel metric to data on cell-cycle timing from over 1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed surprising heterogeneity within this data set, including subtle batch effects in WT embryos and dramatic variability in RNAi-induced developmental phenotypes, all of which had been missed in previous analyses. Further investigation of these results suggests a novel, quantitative link between pathways that govern cell fate decisions and pathways that pattern cell cycle timing in the early embryo. Our work demonstrates that the branch distance we propose, and similar metrics like it, have the potential to revolutionize our quantitative understanding of organismal phenotype.
Collapse
Affiliation(s)
- Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
| | - Timothy Hamilton
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| | - Pavak K. Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
30
|
Masoudi N, Schnabel R, Yemini E, Leyva-Díaz E, Hobert O. Cell-specific effects of the sole C. elegans Daughterless/E protein homolog, HLH-2, on nervous system development. Development 2023; 150:286219. [PMID: 36595352 PMCID: PMC10108603 DOI: 10.1242/dev.201366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Abstract
Are there common mechanisms of neurogenesis used throughout an entire nervous system? We explored to what extent canonical proneural class I/II bHLH complexes are responsible for neurogenesis throughout the entire Caenorhabditis elegans nervous system. Distinct, lineage-specific proneural class II bHLH factors are generally thought to operate via interaction with a common, class I bHLH subunit, encoded by Daughterless in flies, the E proteins in vertebrates and HLH-2 in C. elegans. To eliminate function of all proneuronal class I/II bHLH complexes, we therefore genetically removed maternal and zygotic hlh-2 gene activity. We observed broad effects on neurogenesis, but still detected normal neurogenesis in many distinct neuron-producing lineages of the central and peripheral nervous system. Moreover, we found that hlh-2 selectively affects some aspects of neuron differentiation while leaving others unaffected. Although our studies confirm the function of proneuronal class I/II bHLH complexes in many different lineages throughout a nervous system, we conclude that their function is not universal, but rather restricted by lineage, cell type and components of differentiation programs affected.
Collapse
Affiliation(s)
- Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA.,University of Massachusetts, Department of Neurobiology, Worcester, MA 1605-2324, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
31
|
Widespread employment of conserved C. elegans homeobox genes in neuronal identity specification. PLoS Genet 2022; 18:e1010372. [PMID: 36178933 PMCID: PMC9524666 DOI: 10.1371/journal.pgen.1010372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
Collapse
|
32
|
Cros C, Hobert O. Caenorhabditis elegans sine oculis/SIX-type homeobox genes act as homeotic switches to define neuronal subtype identities. Proc Natl Acad Sci U S A 2022; 119:e2206817119. [PMID: 36067313 PMCID: PMC9478639 DOI: 10.1073/pnas.2206817119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
The classification of neurons into distinct types reveals hierarchical taxonomic relationships that reflect the extent of similarity between neuronal cell types. At the base of such taxonomies are neuronal cells that are very similar to one another but differ in a small number of reproducible and select features. How are very similar members of a neuron class that share many features instructed to diversify into distinct subclasses? We show here that the six very similar members of the Caenorhabditis elegans IL2 sensory neuron class, which are all specified by a homeobox terminal selector, unc-86/BRN3, differentiate into two subtly distinct subclasses, a dorsoventral subclass and a lateral subclass, by the toggle switch-like action of the sine oculis/SIX homeobox gene unc-39. unc-39 is expressed only in the lateral IL2 neurons, and loss of unc-39 leads to a homeotic transformation of the lateral into the dorsoventral class; conversely, ectopic unc-39 expression converts the dorsoventral subclass into the lateral subclass. Hence, a terminal selector homeobox gene controls both class- as well as subclass-specific features, while a subordinate homeobox gene determines the ability of the class-specific homeobox gene to activate subtype-specific target genes. We find a similar regulatory mechanism operating in a distinct class of six motor neurons. Our findings underscore the importance of homeobox genes in neuronal identity control and invite speculations about homeotic identity transformations as potential drivers of evolutionary novelty during cell-type evolution in the brain.
Collapse
Affiliation(s)
- Cyril Cros
- Department of Biological Sciences, Columbia University, New York, NY 10027
- HHMI, Columbia University, New York, NY 10027
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY 10027
- HHMI, Columbia University, New York, NY 10027
| |
Collapse
|
33
|
Rumley JD, Preston EA, Cook D, Peng FL, Zacharias AL, Wu L, Jileaeva I, Murray JI. pop-1/TCF, ref-2/ZIC and T-box factors regulate the development of anterior cells in the C. elegans embryo. Dev Biol 2022; 489:34-46. [PMID: 35660370 PMCID: PMC9378603 DOI: 10.1016/j.ydbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.
Collapse
Affiliation(s)
- Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elicia A Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan Cook
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felicia L Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda L Zacharias
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lucy Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilona Jileaeva
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Xiao L, Fan D, Qi H, Cong Y, Du Z. Defect-buffering cellular plasticity increases robustness of metazoan embryogenesis. Cell Syst 2022; 13:615-630.e9. [PMID: 35882226 DOI: 10.1016/j.cels.2022.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023]
Abstract
Developmental processes are intrinsically robust so as to preserve a normal-like state in response to genetic and environmental fluctuations. However, the robustness and potential phenotypic plasticity of individual developing cells under genetic perturbations remain to be systematically evaluated. Using large-scale gene perturbation, live imaging, lineage tracing, and single-cell phenomics, we quantified the phenotypic landscape of C. elegans embryogenesis in >2,000 embryos following individual knockdown of over 750 conserved genes. We observed that cellular genetic systems are not sufficiently robust to single-gene perturbations across all cells; rather, gene knockdowns frequently induced cellular defects. Dynamic phenotypic analyses revealed many cellular defects to be transient, with cells exhibiting phenotypic plasticity that serves to alleviate, correct, and accommodate the defects. Moreover, potential developmentally related cell modules may buffer the phenotypic effects of individual cell position changes. Our findings reveal non-negligible contributions of cellular plasticity and multicellularity as compensatory strategies to increase developmental robustness.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Niu B, Nguyen Bach T, Chen X, Raghunath Chandratre K, Isaac Murray J, Zhao Z, Zhang M. Computational modeling and analysis of the morphogenetic domain signaling networks regulating C. elegans embryogenesis. Comput Struct Biotechnol J 2022; 20:3653-3666. [PMID: 35891777 PMCID: PMC9289785 DOI: 10.1016/j.csbj.2022.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022] Open
Abstract
Caenorhabditis elegans, often referred to as the ‘roundworm’, provides a powerful model for studying cell autonomous and cell–cell interactions through the direct observation of embryonic development in vivo. By leveraging the precisely mapped cell lineage at single cell resolution, we are able to study at a systems level how early embryonic cells communicate across morphogenetic domains for the coordinated processes of gene expressions and collective cellular behaviors that regulate tissue morphogenesis. In this study, we developed a computational framework for the exploration of the morphogenetic domain cell signaling networks that may regulate C. elegans gastrulation and embryonic organogenesis. We demonstrated its utility by producing the following results, i) established a virtual reference model of developing C. elegans embryos through the spatiotemporal alignment of individual embryo cell nuclear imaging samples; ii) integrated the single cell spatiotemporal gene expression profile with the established virtual embryo model by data pooling; iii) trained a Machine Learning model (Random Forest Regression), which predicts accurately the spatial positions of the cells given their gene expression profiles for a given developmental time (e.g. total cell number of the embryo); iv) enabled virtual 4-dimensional tomographic graphical modeling of single cell data; v) inferred the biology signaling pathways that act in each of morphogenetic domains by meta-data analysis. It is intriguing that the morphogenetic domain cell signaling network seems to involve some crosstalk of multiple biology signaling pathways during the formation of tissue boundary pattern. Lastly, we developed the Software tool ‘Embryo aligner version 1.0’ and provided it as an Open Source program to the research community for virtual embryo modeling, and phenotype perturbation analyses (https://github.com/csniuben/embryo_aligner/wiki and https://bioinfo89.github.io/C.elegansEmbryonicOrganogenesisweb/).
Collapse
|
36
|
Murray JI, Preston E, Crawford JP, Rumley JD, Amom P, Anderson BD, Sivaramakrishnan P, Patel SD, Bennett BA, Lavon TD, Hsiao E, Peng F, Zacharias AL. The anterior Hox gene ceh-13 and elt-1/GATA activate the posterior Hox genes nob-1 and php-3 to specify posterior lineages in the C. elegans embryo. PLoS Genet 2022; 18:e1010187. [PMID: 35500030 PMCID: PMC9098060 DOI: 10.1371/journal.pgen.1010187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/12/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Hox transcription factors play a conserved role in specifying positional identity during animal development, with posterior Hox genes typically repressing the expression of more anterior Hox genes. Here, we dissect the regulation of the posterior Hox genes nob-1 and php-3 in the nematode C. elegans. We show that nob-1 and php-3 are co-expressed in gastrulation-stage embryos in cells that previously expressed the anterior Hox gene ceh-13. This expression is controlled by several partially redundant transcriptional enhancers. These enhancers act in a ceh-13-dependant manner, providing a striking example of an anterior Hox gene positively regulating a posterior Hox gene. Several other regulators also act positively through nob-1/php-3 enhancers, including elt-1/GATA, ceh-20/ceh-40/Pbx, unc-62/Meis, pop-1/TCF, ceh-36/Otx, and unc-30/Pitx. We identified defects in both cell position and cell division patterns in ceh-13 and nob-1;php-3 mutants, suggesting that these factors regulate lineage identity in addition to positional identity. Together, our results highlight the complexity and flexibility of Hox gene regulation and function and the ability of developmental transcription factors to regulate different targets in different stages of development.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeremy P. Crawford
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jonathan D. Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prativa Amom
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Breana D. Anderson
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shaili D. Patel
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barrington Alexander Bennett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Teddy D. Lavon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erin Hsiao
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Felicia Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amanda L. Zacharias
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
37
|
Wen Y, Xie D, Liu Z. Advances in protein analysis in single live cells: principle, instrumentation and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
39
|
Kuang X, Guan G, Wong MK, Chan LY, Zhao Z, Tang C, Zhang L. Computable early Caenorhabditis elegans embryo with a phase field model. PLoS Comput Biol 2022; 18:e1009755. [PMID: 35030161 PMCID: PMC8794267 DOI: 10.1371/journal.pcbi.1009755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/27/2022] [Accepted: 12/14/2021] [Indexed: 01/11/2023] Open
Abstract
Morphogenesis is a precise and robust dynamic process during metazoan embryogenesis, consisting of both cell proliferation and cell migration. Despite the fact that much is known about specific regulations at molecular level, how cell proliferation and migration together drive the morphogenesis at cellular and organismic levels is not well understood. Using Caenorhabditis elegans as the model animal, we present a phase field model to compute early embryonic morphogenesis within a confined eggshell. With physical information about cell division obtained from three-dimensional time-lapse cellular imaging experiments, the model can precisely reproduce the early morphogenesis process as seen in vivo, including time evolution of location and morphology of each cell. Furthermore, the model can be used to reveal key cell-cell attractions critical to the development of C. elegans embryo. Our work demonstrates how genetic programming and physical forces collaborate to drive morphogenesis and provides a predictive model to decipher the underlying mechanism. Embryonic development is a precise process involving cell division, cell-cell interaction, and cell migration. During the process, how each cell reaches its supposed location and be in contact with the right neighbors, and what roles genetic factors and physical forces play are important and fascinating questions. Using the worm Caenorhabditis elegans as a model system, we build a phase field model to simulate early morphogenesis. With a few physical inputs, the model can precisely reproduce the early morphological development of the worm. Such an accurate simulator can not only teach us how physical forces work together with genetic factors to shape up the complex process of development, but also make predictions, such as key cell-cell attractions critical in the process.
Collapse
Affiliation(s)
- Xiangyu Kuang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- School of Physics, Peking University, Beijing, China
- * E-mail: (CT); (LZ)
| | - Lei Zhang
- Center for Quantitative Biology, Peking University, Beijing, China
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
- * E-mail: (CT); (LZ)
| |
Collapse
|
40
|
Sousa E, Flames N. Transcriptional regulation of neuronal identity. Eur J Neurosci 2021; 55:645-660. [PMID: 34862697 PMCID: PMC9306894 DOI: 10.1111/ejn.15551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Neuronal diversity is an intrinsic feature of the nervous system. Transcription factors (TFs) are key regulators in the establishment of different neuronal identities; how are the actions of different TFs coordinated to orchestrate this diversity? Are there common features shared among the different neuron types of an organism or even among different animal groups? In this review, we provide a brief overview on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems. In the first part, we describe general concepts on neuronal identity and transcriptional regulation of gene expression. In the second part of the review, TFs are classified in different categories according to their key roles at specific steps along the protracted process of neuronal specification and differentiation. The same TF categories can be identified both in mammals and nematodes. Importantly, TFs are very pleiotropic: Depending on the neuron type or the time in development, the same TF can fulfil functions belonging to different categories. Finally, we describe the key role of transcriptional repression at all steps controlling neuronal diversity and propose that acquisition of neuronal identities could be considered a metastable process.
Collapse
Affiliation(s)
- Erick Sousa
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| |
Collapse
|
41
|
Makhlouf A, N Shahbazi M. The long and winding road of development: a coordinated song of transcription factors. Nat Methods 2021; 18:866-867. [PMID: 34312565 DOI: 10.1038/s41592-021-01219-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aly Makhlouf
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|