1
|
Begeman IJ, Guyer ME, Kang J. Cardiac enhancers: Gateway to the regulatory mechanisms of heart regeneration. Semin Cell Dev Biol 2025; 170:103610. [PMID: 40215762 PMCID: PMC12064385 DOI: 10.1016/j.semcdb.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
The adult mammalian heart has limited regenerative capacity. Cardiac injury, such as a myocardial infarction (MI), leads to permanent scarring and impaired heart function. In contrast, neonatal mice and zebrafish possess the ability to repair injured hearts. Cardiac regeneration is driven by profound transcriptional changes, which are controlled by gene regulatory elements, such as tissue regeneration enhancer elements (TREEs). Here, we review recent studies on cardiac injury/regeneration enhancers across species. We further explore regulatory mechanisms governing TREE activities and their associated binding regulators. We also discuss the potential of TREE engineering and how these enhancers can be utilized for heart repair. Decoding the regulatory logic of cardiac regeneration enhancers presents a promising avenue for understanding heart regeneration and advancing therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Megan E Guyer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Gonzalez-Smith L, Stevens C, Cao H, Wu Z, Rhie S. Methyl-Micro-C: simultaneous characterization of chromatin accessibility, interactions, and DNA methylation. NAR Genom Bioinform 2025; 7:lqaf060. [PMID: 40432792 PMCID: PMC12107429 DOI: 10.1093/nargab/lqaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/14/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Epigenomes, characterized by patterns of different signatures such as chromatin accessibility, chromatin interactions, and DNA methylation, vary across cell types and play a pivotal role in regulating gene expression. By mapping these signatures, the underlying mechanisms of development and diseases can be uncovered. However, many canonical epigenetic methods focus on mapping only one signature. Simultaneous measurement of epigenetic signatures from the same cell or tissue provides significant benefits for research, especially when resources are limited, and precise analysis is essential. Here, we report a technique called Methyl-Micro-C (MMC), which simultaneously profiles chromatin accessibility, chromatin interactions, and DNA methylation in the same sample. MMC enhances the resolution of chromatin interactions and the coverage of CpGs by combining MNase-mediated fragmentation with enzymatic conversion. This technique allows for the profiling of three-dimensional epigenomes, capturing consistent chromatin accessibility, chromatin interactions, and DNA methylation signals in an efficient manner. It is also relatively straightforward, allowing researchers to implement and apply it easily.
Collapse
Affiliation(s)
- Leonardo Gonzalez-Smith
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Claire Stevens
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Huan Cao
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Zexun Wu
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Suhn K Rhie
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
3
|
Zhan Y, Musella F, Alber F. MaxComp: Predicting single-cell chromatin compartments from 3D chromosome structures. PLoS Comput Biol 2025; 21:e1013114. [PMID: 40408515 DOI: 10.1371/journal.pcbi.1013114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
The genome is organized into distinct chromatin compartments with at least two main classes, a transcriptionally active A and an inactive B compartment, broadly corresponding to euchromatin and heterochromatin. Chromatin regions within the same compartment preferentially interact with each other over regions in the opposite compartment. A/B compartments are traditionally identified from ensemble Hi-C contact frequency matrices using principal component analysis of their covariance matrices. However, defining compartments at the single-cell level from sparse single-cell Hi-C data is challenging, especially since homologous copies are often not resolved. To address this, we present MaxComp, an unsupervised method, for inferring single-cell A/B compartments based on 3D geometric considerations in single-cell chromosome structures-derived either from multiplexed FISH-omics imaging or 3D structure models derived from Hi-C data. By representing each 3D chromosome structure as an undirected graph with edge-weights encoding structural information, MaxComp reformulates compartment prediction as a variant of the Max-cut problem, solved using semidefinite graph programming (SPD) to optimally partition the graph into two structural compartments. Our results show that the population average of MaxComp single-cell compartment annotations closely matches those derived from ensemble Hi-C principal component analysis, demonstrating that compartmentalization can be recovered from geometric principles alone, using only the 3D coordinates and nuclear microenvironment of chromatin regions. Our approach reveals widespread cell-to-cell variability in compartment organization, with substantial heterogeneity across genomic loci. When applied to multiplexed FISH imaging data, MaxComp also uncovers relationships between compartment annotations and transcriptional activity at the single-cell level. In summary, MaxComp offers a new framework for understanding chromatin compartmentalization in single cells, connecting 3D genome architecture, and transcriptional activity with the cell-to-cell variations of chromatin compartments.
Collapse
Affiliation(s)
- Yuxiang Zhan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Francesco Musella
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Frank Alber
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Sanath-Kumar R, Rahman A, Ren Z, Reynolds IP, Augusta L, Fuqua C, Weisberg AJ, Wang X. Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion. mBio 2025:e0104625. [PMID: 40391973 DOI: 10.1128/mbio.01046-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Multipartite bacterial genome organization can confer advantages, including coordinated gene regulation and faster genome replication, but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the C58 lab model, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria and identified two strains distinct from C58 with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed that both replication origins remained active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres were essential. Importantly, the site-specific recombinase XerCD is required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. IMPORTANCE Most bacterial genomes are monopartite with a single, circular chromosome. However, some species, like Agrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches, including pathogenesis or symbiosis. Multipartite genomes confer certain advantages; however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage of A. tumefaciens strain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two geographically separated environmental isolates of A. tumefaciens containing fused chromosomes with integration junctions different from the C58 fusion chromosome, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings reveal how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.
Collapse
Affiliation(s)
- Ram Sanath-Kumar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Arafat Rahman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ian P Reynolds
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Lauren Augusta
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Thakur R, Xu M, Sowards H, Yon J, Jessop L, Myers T, Zhang T, Chari R, Long E, Rehling T, Hennessey R, Funderburk K, Yin J, Machiela MJ, Johnson ME, Wells AD, Chesi A, Grant SFA, Iles MM, Landi MT, Law MH, Melanoma Meta-Analysis Consortium, Choi J, Brown KM. Mapping chromatin interactions at melanoma susceptibility loci uncovers distant cis-regulatory gene targets. Am J Hum Genet 2025:S0002-9297(25)00178-8. [PMID: 40409268 DOI: 10.1016/j.ajhg.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025] Open
Abstract
Genome-wide association studies (GWASs) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping chromatin interactions. We performed a melanoma GWAS region-focused capture-HiC assay in human primary melanocytes to identify physical interactions between fine-mapped risk variants and potential causal melanoma-susceptibility genes. Overall, chromatin-interaction data alone nominated potential causal genes for 61 of the 68 melanoma risk signals, identifying many candidates beyond those reported by previous studies. We further integrated these data with epigenomic (chromatin state, accessibility), gene expression (expression quantitative trait locus [eQTL]/transcriptome-wide association study [TWAS]), DNA methylation (methylation QTL [meQTL]/methylome-wide association study [MWAS]), and massively parallel reporter assay (MPRA) data generated from melanoma-relevant cell types to prioritize potentially cis-regulatory variants and their respective candidate gene targets. From the set of fine-mapped variants across these loci, we identified 140 prioritized credible causal variants linked to 195 candidate genes at 42 risk signals. In addition, we developed an integrative scoring system to facilitate candidate gene prioritization, integrating melanocyte and melanoma datasets. Notably, at several GWAS risk signals, we observed long-range chromatin connections (500 kb to >1 Mb) with distant candidate target genes. We validated several such cis-regulatory interactions using CRISPR inhibition, providing evidence for known cancer driver genes MDM4 and CBL, as well as the SRY-box transcription factor SOX4, as likely melanoma risk genes.
Collapse
Affiliation(s)
- Rohit Thakur
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hayley Sowards
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joshuah Yon
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Timothy Myers
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Thomas Rehling
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rebecca Hennessey
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen Funderburk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew E Johnson
- Division of Human Genetics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Maria Teresa Landi
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew H Law
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Beckwith KS, Brunner A, Morero NR, Jungmann R, Ellenberg J. Nanoscale DNA tracing reveals the self-organization mechanism of mitotic chromosomes. Cell 2025; 188:2656-2669.e17. [PMID: 40132578 DOI: 10.1016/j.cell.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
How genomic DNA is folded during cell division to form the characteristic rod-shaped mitotic chromosomes essential for faithful genome inheritance is a long-standing open question in biology. Here, we use nanoscale DNA tracing in single dividing cells to directly visualize how the 3D fold of genomic DNA changes during mitosis at scales from single loops to entire chromosomes. Our structural analysis reveals a characteristic genome scaling minimum of 6-8 megabases in mitosis. Combined with data-driven modeling and molecular perturbations, we can show that very large and strongly overlapping loops formed by condensins are the fundamental structuring principle of mitotic chromosomes. These loops compact chromosomes locally and globally to the limit set by chromatin self-repulsion. The characteristic length, density, and increasingly overlapping structure of mitotic loops we observe in 3D fully explain how the rod-shaped mitotic chromosome structure emerges by self-organization during cell division.
Collapse
Affiliation(s)
- Kai Sandvold Beckwith
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Dept. Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Natalia Rosalia Morero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Science for Life Laboratory (SciLifeLab), Solna, Sweden; Karolinska Institutet, KTH Royal Technology College, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Park S, Merino-Urteaga R, Karwacki-Neisius V, Carrizo GE, Athreya A, Marin-Gonzalez A, Benning NA, Park J, Mitchener MM, Bhanu NV, Garcia BA, Zhang B, Muir TW, Pearce EL, Ha T. Native nucleosomes intrinsically encode genome organization principles. Nature 2025:10.1038/s41586-025-08971-7. [PMID: 40335690 DOI: 10.1038/s41586-025-08971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
The eukaryotic genome is packed into nucleosomes of 147 base pairs around a histone core and is organized into euchromatin and heterochromatin, corresponding to the A and B compartments, respectively1,2. Here we investigated whether individual nucleosomes contain sufficient information for 3D genomic organization into compartments, for example, in their biophysical properties. We purified native mononucleosomes to high monodispersity and used physiological concentrations of polyamines to determine their condensability. The chromosomal regions known to partition into A compartments have low condensability and those for B compartments have high condensability. Chromatin polymer simulations using condensability as the only input, without any trans factors, reproduced the A/B compartments. Condensability is also strongly anticorrelated with gene expression, particularly near the promoters and in a cell type-dependent manner. Therefore, mononucleosomes have biophysical properties associated with genes being on or off. Comparisons with genetic and epigenetic features indicate that nucleosome condensability is an emergent property, providing a natural axis on which to project the high-dimensional cellular chromatin state. Analysis using various condensing agents or histone modifications and mutations indicates that the genome organization principle encoded into nucleosomes is mostly electrostatic in nature. Polyamine depletion in mouse T cells, resulting from either knocking out or inhibiting ornithine decarboxylase, results in hyperpolarized condensability, indicating that when cells cannot rely on polyamines to translate the biophysical properties of nucleosomes to 3D genome organization, they accentuate condensability contrast, which may explain the dysfunction observed with polyamine deficiency3-5.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raquel Merino-Urteaga
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Violetta Karwacki-Neisius
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gustavo Ezequiel Carrizo
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Advait Athreya
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Alberto Marin-Gonzalez
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nils A Benning
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jonghan Park
- College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Bin Zhang
- Department of Chemistry, MIT, Cambridge, MA, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Erika L Pearce
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kim IV, Navarrete C, Grau-Bové X, Iglesias M, Elek A, Zolotarov G, Bykov NS, Montgomery SA, Ksiezopolska E, Cañas-Armenteros D, Soto-Angel JJ, Leys SP, Burkhardt P, Suga H, de Mendoza A, Marti-Renom MA, Sebé-Pedrós A. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 2025:10.1038/s41586-025-08960-w. [PMID: 40335694 DOI: 10.1038/s41586-025-08960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
In bilaterian animals, gene regulation is shaped by a combination of linear and spatial regulatory information. Regulatory elements along the genome are integrated into gene regulatory landscapes through chromatin compartmentalization1,2, insulation of neighbouring genomic regions3,4 and chromatin looping that brings together distal cis-regulatory sequences5. However, the evolution of these regulatory features is unknown because the three-dimensional genome architecture of most animal lineages remains unexplored6,7. To trace the evolutionary origins of animal genome regulation, here we characterized the physical organization of the genome in non-bilaterian animals (sponges, ctenophores, placozoans and cnidarians)8,9 and their closest unicellular relatives (ichthyosporeans, filastereans and choanoflagellates)10 by combining high-resolution chromosome conformation capture11,12 with epigenomic marks and gene expression data. Our comparative analysis showed that chromatin looping is a conserved feature of genome architecture in ctenophores, placozoans and cnidarians. These sequence-determined distal contacts involve both promoter-enhancer and promoter-promoter interactions. By contrast, chromatin loops are absent in the unicellular relatives of animals. Our findings indicate that spatial genome regulation emerged early in animal evolution. This evolutionary innovation introduced regulatory complexity, ultimately facilitating the diversification of animal developmental programmes and cell type repertoires.
Collapse
Affiliation(s)
- Iana V Kim
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain.
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Iglesias
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grygoriy Zolotarov
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hiroshi Suga
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Alex de Mendoza
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
9
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Spanos C, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. Science 2025; 388:eadq1709. [PMID: 40208986 PMCID: PMC12118822 DOI: 10.1126/science.adq1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 04/12/2025]
Abstract
We used Hi-C, imaging, proteomics, and polymer modeling to define rules of engagement for SMC (structural maintenance of chromosomes) complexes as cells refold interphase chromatin into rod-shaped mitotic chromosomes. First, condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. Second, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion as sisters separate. Studies of mitotic chromosomes formed by cohesin, condensin II, and condensin I alone or in combination lead to refined models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase, loops are extruded in vivo at ∼1 to 3 kilobases per second by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
10
|
Gjoni K, Gunsalus LM, Kuang S, McArthur E, Pittman M, Capra JA, Pollard KS. Comparing chromatin contact maps at scale: methods and insights. Nat Methods 2025; 22:824-833. [PMID: 40108448 PMCID: PMC11978506 DOI: 10.1038/s41592-025-02630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, methods often disagree, and no gold standard exists for comparing pairs of maps. Here, we evaluate 25 ways to compare contact maps using Micro-C and Hi-C data from two cell types and in silico-generated contact maps. We identify similarities and differences between the methods and quantify their robustness to common sources of biological and technical variation, including losses and gains of CTCF-binding sites, changes in contact intensity or patterns, and noise. We find that global comparison methods, such as mean squared error, are suitable for initial screening; however, biologically informed methods are necessary for identifying how maps diverge and for proposing specific functional hypotheses. We provide a reference guide, codebase, and thorough evaluation for rapidly comparing chromatin contact maps at scale to enable biological insights into 3D genome organization.
Collapse
Affiliation(s)
- Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Laura M Gunsalus
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Evonne McArthur
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Maureen Pittman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - John A Capra
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Oliveira RJ, Oliveira Junior AB, Contessoto VG, Onuchic JN. The synergy between compartmentalization and motorization in chromatin architecture. J Chem Phys 2025; 162:114116. [PMID: 40105139 DOI: 10.1063/5.0239634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
High-resolution techniques capable of manipulating from single molecules to millions of cells are combined with three-dimensional modeling followed by simulation to comprehend the specific aspects of chromosomes. From the theoretical perspective, the energy landscape theory from protein folding inspired the development of the minimal chromatin model (MiChroM). In this work, two biologically relevant MiChroM energy terms were minimized under different conditions, revealing a competition between loci compartmentalization and motor-driven activity mechanisms in chromatin folding. Enhancing the motor activity energy baseline increased the lengthwise compaction and reduced the polymer entanglement. Concomitantly, decreasing compartmentalization-related interactions reduced the overall polymer collapse, although compartmentalization given by the microphase separation remained almost intact. For multiple chromosome simulations, increased motorization intensified the territory formation of the different chains and reduced compartmentalization strength lowered the probability of contact formation of different loci between multiple chains, approximating to the experimental inter-contacts of the human chromosomes. These findings have direct implications for experimental data-driven chromosome modeling, specially those involving multiple chromosomes. The interplay between phase-separation and territory formation mechanisms should be properly implemented in order to recover the genome architecture and dynamics, features that might play critical roles in regulating nuclear functions.
Collapse
Affiliation(s)
- Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | | | - Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77030, USA
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
- Department of Biosciences, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
13
|
Buka K, Parteka-Tojek Z, Agarwal A, Denkiewicz M, Korsak S, Chiliński M, Banecki KH, Plewczynski D. Improved cohesin HiChIP protocol and bioinformatic analysis for robust detection of chromatin loops and stripes. Commun Biol 2025; 8:437. [PMID: 40082674 PMCID: PMC11906747 DOI: 10.1038/s42003-025-07847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Chromosome Conformation Capture (3 C) methods, including Hi-C (a high-throughput variation of 3 C), detect pairwise interactions between DNA regions, enabling the reconstruction of chromatin architecture in the nucleus. HiChIP is a modification of the Hi-C experiment that includes a chromatin immunoprecipitation (ChIP) step, allowing genome-wide identification of chromatin contacts mediated by a protein of interest. In mammalian cells, cohesin protein complex is one of the major players in the establishment of chromatin loops. We present an improved cohesin HiChIP experimental protocol. Using comprehensive bioinformatic analysis, we show that a dual chromatin fixation method compared to the standard formaldehyde-only method, results in a substantially better signal-to-noise ratio, increased ChIP efficiency and improved detection of chromatin loops and architectural stripes. Additionally, we propose an automated pipeline called nf-HiChIP ( https://github.com/SFGLab/hichip-nf-pipeline ) for processing HiChIP samples starting from raw sequencing reads data and ending with a set of significant chromatin interactions (loops), which allows efficient and timely analysis of multiple samples in parallel, without requiring additional ChIP-seq experiments. Finally, using advanced approaches for biophysical modelling and stripe calling we generate accurate loop extrusion polymer models for a region of interest and provide a detailed picture of architectural stripes, respectively.
Collapse
Affiliation(s)
- Karolina Buka
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland.
| | - Zofia Parteka-Tojek
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Abhishek Agarwal
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
| | - Michał Denkiewicz
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Sevastianos Korsak
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Mateusz Chiliński
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof H Banecki
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Dariusz Plewczynski
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland.
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland.
| |
Collapse
|
14
|
Zheng Q, Liu Y, Guo M, Zhang X, Zhang Q, Yu XY, Lin Z. Discovery of therapeutic targets in cardiovascular diseases using high-throughput chromosome conformation capture (Hi-C). Front Genet 2025; 16:1515010. [PMID: 40182924 PMCID: PMC11966399 DOI: 10.3389/fgene.2025.1515010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Epigenetic changes have been associated with several cardiovascular diseases. In recent years, epigenetic inheritance based on spatial changes has gradually attracted attention. Alterations in three-dimensional chromatin structures have been shown to regulate gene expression and influence disease onset and progression. High-throughput Chromosome Conformation Capture (Hi-C) is a powerful method to detect spatial chromatin conformation changes. Since its development, Hi-C technology has been widely adopted for discovering novel therapeutic targets in cardiovascular research. In this review, we summarize key targets identified by Hi-C in cardiovascular diseases and discuss their potential implications for epigenetic therapy.
Collapse
Affiliation(s)
- Quan Zheng
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ying Liu
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Minghao Guo
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Xin Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qingbin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xi-Yong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongxiao Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Malinsky M, Talbi M, Zhou C, Maurer N, Sacco S, Shapiro B, Peichel CL, Seehausen O, Salzburger W, Weber JN, Bolnick DI, Green RE, Durbin R. Hi-reComb: constructing recombination maps from bulk gamete Hi-C sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641907. [PMID: 40161681 PMCID: PMC11952307 DOI: 10.1101/2025.03.06.641907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recombination is central to genetics and to evolution of sexually reproducing organisms. However, obtaining accurate estimates of recombination rates, and of how they vary along chromosomes, continues to be challenging. To advance our ability to estimate recombination rates, we present Hi-reComb, a new method and software for estimation of recombination maps from bulk gamete chromosome conformation capture sequencing (Hi-C). Simulations show that Hi-reComb produces robust, accurate recombination landscapes. With empirical data from sperm of five fish species we show the advantages of this approach, including joint assessment of recombination maps and large structural variants, map comparisons using bootstrap, and workflows with trio phasing vs. Hi-C phasing. With off-the-shelf library construction and a straightforward rapid workflow, our approach will facilitate routine recombination landscape estimation for a broad range of studies and model organisms in genetics and evolutionary biology. Hi-reComb is open-source and freely available at https://github.com/millanek/Hi-reComb.
Collapse
Affiliation(s)
- Milan Malinsky
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Marion Talbi
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nicholas Maurer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Samuel Sacco
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Jesse N. Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
16
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
17
|
Sanath-Kumar R, Rahman A, Ren Z, Reynolds IP, Augusta L, Fuqua C, Weisberg AJ, Wang X. Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639760. [PMID: 40060587 PMCID: PMC11888308 DOI: 10.1101/2025.02.23.639760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Multipartite bacterial genome organization can confer advantages including coordinated gene regulation and faster genome replication but is challenging to maintain. Agrobacterium tumefaciens lineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the lab model strain C58, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzed Agrobacterium natural isolates from the French Collection for Plant-Associated Bacteria (CFBP) and identified two strains with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed both replication origins remain active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres are essential. Importantly, the site-specific recombinases XerCD are required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. Importance Most bacterial genomes are monopartite with a single, circular chromosome. But some species, like Agrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches including pathogenesis or symbiosis. Multipartite genomes confer certain advantages, however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage of A. tumefaciens strain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two environmental isolates of A. tumefaciens containing fused chromosomes derived from a different route, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings help us better understand how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.
Collapse
|
18
|
Yamaura K, Takemata N, Kariya M, Osaka A, Ishino S, Yamauchi M, Tamura T, Hamachi I, Takada S, Ishino Y, Atomi H. Chromosomal domain formation by archaeal SMC, a roadblock protein, and DNA structure. Nat Commun 2025; 16:1312. [PMID: 39971902 PMCID: PMC11840125 DOI: 10.1038/s41467-025-56197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
In eukaryotes, structural maintenance of chromosomes (SMC) complexes form topologically associating domains (TADs) by extruding DNA loops and being stalled by roadblock proteins. It remains unclear whether a similar mechanism of domain formation exists in prokaryotes. Using high-resolution chromosome conformation capture sequencing, we show that an archaeal homolog of the bacterial Smc-ScpAB complex organizes the genome of Thermococcus kodakarensis into TAD-like domains. We find that TrmBL2, a nucleoid-associated protein that forms a stiff nucleoprotein filament, stalls the T. kodakarensis SMC complex and establishes a boundary at the site-specific recombination site dif. TrmBL2 stalls the SMC complex at tens of additional non-boundary loci with lower efficiency. Intriguingly, the stalling efficiency is correlated with structural properties of underlying DNA sequences. Our study illuminates a eukaryotic-like mechanism of domain formation in archaea and a role of intrinsic DNA structure in large-scale genome organization.
Collapse
Affiliation(s)
- Kodai Yamaura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Naomichi Takemata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Masashi Kariya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ayami Osaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Cell Biology Center, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Zhan Y, Yildirim A, Boninsegna L, Alber F. Unveiling the role of chromosome structure morphology on gene function through chromosome conformation analysis. Genome Biol 2025; 26:30. [PMID: 39948644 PMCID: PMC11827233 DOI: 10.1186/s13059-024-03472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/30/2024] [Indexed: 02/16/2025] Open
Abstract
Single-cell chromosome conformations vary significantly among individual cells. We introduce a two-step dimensionality reduction method for density-based, unsupervised clustering of single-cell 3D chromosome structures from simulations or multiplexed 3D-FISH imaging. Our method clusters up to half of all structures into 5-12 prevalent conformational states per chromosome. These states are distinguished by subdivisions into chromosome territory domains, whose boundary locations influence subnuclear positions and speckle associations of certain genes and establish long-range structural variations of more than 10 Mb. Territory domain boundaries are found at few sequence locations, shared among cell types and often situated at syntenic breakpoints.
Collapse
Affiliation(s)
- Yuxiang Zhan
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Asli Yildirim
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lorenzo Boninsegna
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Frank Alber
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
Yudishter, Shams R, Dash KK. Polysaccharide nanoparticles as building blocks for food processing applications: A comprehensive review. Food Sci Biotechnol 2025; 34:527-546. [PMID: 39958179 PMCID: PMC11822165 DOI: 10.1007/s10068-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
Polysaccharides are renewable biomacromolecules obtained from natural sources like plants, bacteria, and algae, and are utilized for production of nanomaterials. Chitosan, cellulose, starch, alginate, hyaluronic acid, dextran, pectin, and glycosaminoglycans are examples of polysaccharides often utilized in production of nanomaterials. Chitosan nanoparticles are utilized in administration of drugs, wound healing, and a wide range of biomedical applications. Nanocellulose, a cellulose derivative, is utilized in nanocomposites, drug delivery systems, and as reinforcing agent in a variety of materials. In food sector, starch nanoparticles are employed to encapsulate and regulate the release of beneficial substances. Polysaccharide nanoparticles are highly suitable for food packaging due to their biocompatibility, surface activity, and controlled release capabilities. Based on this, the article provides an overview of the usage of polysaccharides in the development of nanomaterials. The chemical, technical, and functional features of polysaccharides, as well as prospective sources and applications are discussed in this article.
Collapse
Affiliation(s)
- Yudishter
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| |
Collapse
|
21
|
Bendl J, Fullard JF, Girdhar K, Dong P, Kosoy R, Zeng B, Hoffman GE, Roussos P. Chromatin accessibility provides a window into the genetic etiology of human brain disease. Trends Genet 2025:S0168-9525(25)00001-0. [PMID: 39855972 DOI: 10.1016/j.tig.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Neuropsychiatric and neurodegenerative diseases have a significant genetic component. Risk variants often affect the noncoding genome, altering cis-regulatory elements (CREs) and chromatin structure, ultimately impacting gene expression. Chromatin accessibility profiling methods, especially assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), have been used to pinpoint disease-associated SNPs and link them to affected genes and cell types in the brain. The integration of single-cell technologies with genome-wide association studies (GWAS) and transcriptomic data has further advanced our understanding of cell-specific chromatin dynamics. This review discusses recent findings regarding the role played by chromatin accessibility in brain disease, highlighting the need for high-quality data and rigorous computational tools. Future directions include spatial chromatin studies and CRISPR-based functional validation to bridge genetic discovery and clinical applications, paving the way for targeted gene-regulatory therapies.
Collapse
Affiliation(s)
- Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Biao Zeng
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
22
|
Wu H, Wang M, Zheng Y, Xie XS. Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics. Cell Discov 2025; 11:8. [PMID: 39837831 PMCID: PMC11751028 DOI: 10.1038/s41421-025-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts. Our results show that genes with significant structural changes are enriched in pathways related to metabolic process and morphology change in neurons, and innate immune response in glial cells, highlighting the role of 3D genome organization in physiological brain aging. Furthermore, our multi-omics joint assay, dscHi-C-multiome, enables precise cell type identification in the adult mouse brain and uncovers the intricate relationship between genome architecture and gene expression. Collectively, we developed the sensitive, high-throughput dscHi-C and its multi-omics derivative, dscHi-C-multiome, demonstrating their potential for large-scale cell atlas studies in development and disease.
Collapse
Affiliation(s)
- Honggui Wu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maoxu Wang
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yinghui Zheng
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
23
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
24
|
Zhang H, Tian L, Ma Y, Xu J, Bai T, Wang Q, Liu X, Guo L. Not only the top: Type I topoisomerases function in multiple tissues and organs development in plants. J Adv Res 2024:S2090-1232(24)00588-5. [PMID: 39662729 DOI: 10.1016/j.jare.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND DNA topoisomerases (TOPs) are essential components in a diverse range of biological processes including DNA replication, transcription and genome integrity. Although the functions and mechanisms of TOPs, particularly type I TOP (TOP1s), have been extensively studied in bacteria, yeast and animals, researches on these proteins in plants have only recently commenced. AIM OF REVIEW In this review, the function and mechanism studies of TOP1s in plants and the structural biology of plant TOP1 are presented, providing readers with a comprehensive understanding of the current research status of this essential enzyme.The future research directions for exploring the working mechanism of plant TOP1s are also discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Over the past decade, it has been discovered TOP1s play a vital role in multiphasic processes of plant development, such as maintaining meristem activity, gametogenesis, flowering time, gravitropic response and so on. Plant TOP1s affects gene transcription by modulating chromatin status, including chromatin accessibility, DNA/RNA structure, and nucleosome positioning. However, the function and mechanism of this vital enzyme is poorly summarized although it has been systematically summarized in other species. This review summarized the research progresses of plant TOP1s according to the diverse functions and working mechanism in different tissues.
Collapse
Affiliation(s)
- Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lirong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Tianyu Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Qian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| |
Collapse
|
25
|
Thakur R, Xu M, Sowards H, Yon J, Jessop L, Myers T, Zhang T, Chari R, Long E, Rehling T, Hennessey R, Funderburk K, Yin J, Machiela MJ, Johnson ME, Wells AD, Chesi A, Grant SF, Iles MM, Landi MT, Law MH, Melanoma Meta-Analysis Consortium, Choi J, Brown KM. Mapping chromatin interactions at melanoma susceptibility loci and cell-type specific dataset integration uncovers distant gene targets of cis-regulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.14.24317204. [PMID: 39802764 PMCID: PMC11722502 DOI: 10.1101/2024.11.14.24317204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Genome-wide association studies (GWAS) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping cell-type specific chromatin interactions. We performed a melanoma GWAS region-focused capture-HiC assay in human primary melanocytes to identify physical interactions between fine-mapped risk variants and potential causal melanoma susceptibility genes. Overall, chromatin interaction data alone nominated potential causal genes for 61 of the 68 melanoma risk signals, identifying many candidates beyond those reported by previous studies. We further integrated these data with cell-type specific epigenomic (chromatin state, accessibility), gene expression (eQTL/TWAS), DNA methylation (meQTL/MWAS), and massively parallel reporter assay (MPRA) data to prioritize potentially cis-regulatory variants and their respective candidate gene targets. From the set of fine-mapped variants across these loci, we identified 140 prioritized candidate causal variants linked to 195 candidate genes at 42 risk signals. In addition, we developed an integrative scoring system to facilitate candidate gene prioritization, integrating melanocyte and melanoma datasets. Notably, at several GWAS risk signals we observed long-range chromatin connections (500 kb to >1 Mb) with distant candidate target genes. We validated several such cis-regulatory interactions using CRISPR inhibition, providing evidence for known cancer driver genes MDM4 and CBL, as well as the SRY-box transcription factor SOX4, as likely melanoma risk genes.
Collapse
Affiliation(s)
- Rohit Thakur
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hayley Sowards
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joshuah Yon
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Timothy Myers
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Thomas Rehling
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rebecca Hennessey
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen Funderburk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell J. Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew E. Johnson
- Division of Human Genetics, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark M. Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Maria Teresa Landi
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew H. Law
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, University fo Queensland, Brisbane, QLD, Australia
| | | | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
26
|
Zhang R, Sun J, Liu S, Ding J, Xiang M. Multiscale 3D genome rewiring during PTF1A-mediated somatic cell reprogramming into neural stem cells. Commun Biol 2024; 7:1505. [PMID: 39537822 PMCID: PMC11561290 DOI: 10.1038/s42003-024-07230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The genome is intricately folded into chromatin compartments, topologically associating domains (TADs) and loops unique to each cell type. How this higher-order genome organization regulates cell fate transition remains elusive. Here we show how a single non-neural progenitor transcription factor, PTF1A, reorchestrates the 3D genome during fibroblast transdifferentiation into neural stem cells (NSCs). Multiomics analyses integrating Hi-C data, PTF1A and CTCF DNA-binding profiles, H3K27ac modification, and gene expression, demonstrate that PTF1A binds to subTAD boundaries subsequently associated with elevated CTCF binding and enhanced boundary insulation, and reorganizes chromatin loops, leading to gene expression changes that drive transdifferentiation into NSCs. Moreover, PTF1A activates enhancers and super-enhancers near low-insulation boundaries and modulates H3K27ac deposition, promoting cell fate transitions. Together, our data implicate an involvement of 3D genome in transcriptional and cell fate alterations, and highlight an essential role for PTF1A in gene expression control and multiscale 3D genome remodeling during cell reprogramming.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Junjun Ding
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Zhu Y, Lee H, White S, Weimer AK, Monte E, Horning A, Nevins SA, Esplin ED, Paul K, Krieger G, Shipony Z, Chiu R, Laquindanum R, Karathanos TV, Chua MWY, Mills M, Ladabaum U, Longacre T, Shen J, Jaimovich A, Lipson D, Kundaje A, Greenleaf WJ, Curtis C, Ford JM, Snyder MP. Global loss of promoter-enhancer connectivity and rebalancing of gene expression during early colorectal cancer carcinogenesis. NATURE CANCER 2024; 5:1697-1712. [PMID: 39478119 PMCID: PMC11584406 DOI: 10.1038/s43018-024-00823-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 11/24/2024]
Abstract
Although three-dimensional (3D) genome architecture is crucial for gene regulation, its role in disease remains elusive. We traced the evolution and malignant transformation of colorectal cancer (CRC) by generating high-resolution chromatin conformation maps of 33 colon samples spanning different stages of early neoplastic growth in persons with familial adenomatous polyposis (FAP). Our analysis revealed a substantial progressive loss of genome-wide cis-regulatory connectivity at early malignancy stages, correlating with nonlinear gene regulation effects. Genes with high promoter-enhancer (P-E) connectivity in unaffected mucosa were not linked to elevated baseline expression but tended to be upregulated in advanced stages. Inhibiting highly connected promoters preferentially represses gene expression in CRC cells compared to normal colonic epithelial cells. Our results suggest a two-phase model whereby neoplastic transformation reduces P-E connectivity from a redundant state to a rate-limiting one for transcriptional levels, highlighting the intricate interplay between 3D genome architecture and gene regulation during early CRC progression.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Hayan Lee
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Shannon White
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Aaron Horning
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kristina Paul
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Roxanne Chiu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Melissa W Y Chua
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Meredith Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Teri Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Anshul Kundaje
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
4D Nucleome Consortium, Dekker J, Oksuz BA, Zhang Y, Wang Y, Minsk MK, Kuang S, Yang L, Gibcus JH, Krietenstein N, Rando OJ, Xu J, Janssens DH, Henikoff S, Kukalev A, Willemin A, Winick-Ng W, Kempfer R, Pombo A, Yu M, Kumar P, Zhang L, Belmont AS, Sasaki T, van Schaik T, Brueckner L, Peric-Hupkes D, van Steensel B, Wang P, Chai H, Kim M, Ruan Y, Zhang R, Quinodoz SA, Bhat P, Guttman M, Zhao W, Chien S, Liu Y, Venev SV, Plewczynski D, Azcarate II, Szabó D, Thieme CJ, Szczepińska T, Chiliński M, Sengupta K, Conte M, Esposito A, Abraham A, Zhang R, Wang Y, Wen X, Wu Q, Yang Y, Liu J, Boninsegna L, Yildirim A, Zhan Y, Chiariello AM, Bianco S, Lee L, Hu M, Li Y, Barnett RJ, Cook AL, Emerson DJ, Marchal C, Zhao P, Park P, Alver BH, Schroeder A, Navelkar R, Bakker C, Ronchetti W, Ehmsen S, Veit A, Gehlenborg N, Wang T, Li D, Wang X, Nicodemi M, Ren B, Zhong S, Phillips-Cremins JE, Gilbert DM, Pollard KS, Alber F, Ma J, Noble WS, Yue F. An integrated view of the structure and function of the human 4D nucleome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613111. [PMID: 39484446 PMCID: PMC11526861 DOI: 10.1101/2024.09.17.613111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The dynamic three-dimensional (3D) organization of the human genome (the "4D Nucleome") is closely linked to genome function. Here, we integrate a wide variety of genomic data generated by the 4D Nucleome Project to provide a detailed view of human 3D genome organization in widely used embryonic stem cells (H1-hESCs) and immortalized fibroblasts (HFFc6). We provide extensive benchmarking of 3D genome mapping assays and integrate these diverse datasets to annotate spatial genomic features across scales. The data reveal a rich complexity of chromatin domains and their sub-nuclear positions, and over one hundred thousand structural loops and promoter-enhancer interactions. We developed 3D models of population-based and individual cell-to-cell variation in genome structure, establishing connections between chromosome folding, nuclear organization, chromatin looping, gene transcription, and DNA replication. We demonstrate the use of computational methods to predict genome folding from DNA sequence, uncovering potential effects of genetic variants on genome structure and function. Together, this comprehensive analysis contributes insights into human genome organization and enhances our understanding of connections between the regulation of genome function and 3D genome organization in general.
Collapse
Affiliation(s)
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Betul Akgol Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Ye Wang
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Miriam K. Minsk
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Krietenstein
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | - Derek H. Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Warren Winick-Ng
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Miao Yu
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, La Jolla, CA, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pradeep Kumar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, the Netherlands
| | - Laura Brueckner
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, the Netherlands
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | - Haoxi Chai
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| | - Minji Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijun Ruan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Sofia A. Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shu Chien
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yuan Liu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Ibai Irastorza Azcarate
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Christoph J. Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Teresa Szczepińska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Mattia Conte
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Andrea Esposito
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Alex Abraham
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Ruochi Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Yuchuan Wang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Qiuyang Wu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yang Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lorenzo Boninsegna
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Asli Yildirim
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Yuxiang Zhan
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea Maria Chiariello
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Simona Bianco
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yun Li
- Department of Biostatistics, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - R. Jordan Barnett
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley L. Cook
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J. Emerson
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Peiyao Zhao
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Peter Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Burak H. Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Andrew Schroeder
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Rahi Navelkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Clara Bakker
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - William Ronchetti
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Shannon Ehmsen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Alexander Veit
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Nils Gehlenborg
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Mario Nicodemi
- Department of Physics, University of Naples “Federico II”, Naples, Italy; INFN, Naples, Italy
| | - Bing Ren
- University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, La Jolla, CA, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jennifer E. Phillips-Cremins
- Department of Genetics, Department of Bioengineering, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Frank Alber
- Department of Microbiology, Immunology, and Molecular Genetics; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
29
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
30
|
Solovei I, Mirny L. Spandrels of the cell nucleus. Curr Opin Cell Biol 2024; 90:102421. [PMID: 39180905 DOI: 10.1016/j.ceb.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
S.J. Gould and R. Lewontin in their famous "Spandrels paper" (1979) argued that many anatomical elements arise in evolution not due to their "current utility" but rather due to other "reasons for origin", such as other developmental processes, physical constraints and mechanical forces. Here, in the same spirit, we argue that a variety of molecular processes, physical constraints, and mechanical forces, alone or together, generate structures that are detectable in the cell nucleus, yet these structures themselves may not carry any specific function, being a mere reflection of processes that produced them.
Collapse
Affiliation(s)
- Irina Solovei
- Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Xu B, Gao X, Li X, Li F, Zhang Z. Crosslinking intensity modulates the reliability and sensitivity of chromatin conformation detection at different structural levels. Commun Biol 2024; 7:1216. [PMID: 39349577 PMCID: PMC11442689 DOI: 10.1038/s42003-024-06904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Formaldehyde (FA) is a chemical that facilitates crosslinking between DNA and proteins. It is widely used in various biochemical assays, such as chromosome conformation capture (3C) and Chromatin Immunoprecipitation (ChIP). While the concentration and temperature of FA treatment are recognized as crucial factors in crosslinking, their quantitative effects have largely remained unexplored. In this study, we employed 3C as a model system to systematically assess the impacts of these two factors on crosslinking. Our findings indicate that the strength of crosslinking significantly influences chromatin conformation detection at nearly all known structural levels. Specifically, a delicate balance between sensitivity and reliability is required when detecting higher-level structures, such as chromosome compartments. Conversely, intense crosslinking is preferred when targeting lower-level structures, such as topologically associated domains (TADs) or chromatin loops. Based on our data, we propose a conceptual molecular thermal motion model to elucidate the roles of these two factors in restricting FA crosslinking. Our results not only shed light on the previously overlooked confounding factor in FA crosslinking but also highlight the need for caution in new technology developments that rely on FA crosslinking.
Collapse
Affiliation(s)
- Bingxiang Xu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Xiaomeng Gao
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhihua Zhang
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Di Pierno F, Dekker J, Nicodemi M. Polymer Physics Models Reveal Structural Folding Features of Single-Molecule Gene Chromatin Conformations. Int J Mol Sci 2024; 25:10215. [PMID: 39337699 PMCID: PMC11432541 DOI: 10.3390/ijms251810215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2 Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
33
|
Schooley A, Venev SV, Aksenova V, Navarrete E, Dasso M, Dekker J. Interphase chromosome conformation is specified by distinct folding programs inherited via mitotic chromosomes or through the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613305. [PMID: 39345587 PMCID: PMC11429855 DOI: 10.1101/2024.09.16.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Identity-specific interphase chromosome conformation must be re-established each time a cell divides. To understand how interphase folding is inherited, we developed an experimental approach that physically segregates mediators of G1 folding that are intrinsic to mitotic chromosomes from cytoplasmic factors. Proteins essential for nuclear transport, RanGAP1 and Nup93, were degraded in pro-metaphase arrested DLD-1 cells to prevent the establishment of nucleo-cytoplasmic transport during mitotic exit and isolate the decondensing mitotic chromatin of G1 daughter cells from the cytoplasm. Using this approach, we discover a transient folding intermediate entirely driven by chromosome-intrinsic factors. In addition to conventional compartmental segregation, this chromosome-intrinsic folding program leads to prominent genome-scale microcompartmentalization of mitotically bookmarked and cell type-specific cis-regulatory elements. This microcompartment conformation is formed during telophase and subsequently modulated by a second folding program driven by factors inherited through the cytoplasm in G1. This nuclear import-dependent folding program includes cohesin and factors involved in transcription and RNA processing. The combined and inter-dependent action of chromosome-intrinsic and cytoplasmic inherited folding programs determines the interphase chromatin conformation as cells exit mitosis.
Collapse
Affiliation(s)
- Allana Schooley
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Emily Navarrete
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| |
Collapse
|
34
|
Šimková H, Câmara AS, Mascher M. Hi-C techniques: from genome assemblies to transcription regulation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5357-5365. [PMID: 38430521 DOI: 10.1093/jxb/erae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/04/2024]
Abstract
The invention of chromosome conformation capture (3C) techniques, in particular the key method Hi-C providing genome-wide information about chromatin contacts, revolutionized the way we study the three-dimensional organization of the nuclear genome and how it affects transcription, replication, and DNA repair. Because the frequency of chromatin contacts between pairs of genomic segments predictably relates to the distance in the linear genome, the information obtained by Hi-C has also proved useful for scaffolding genomic sequences. Here, we review recent improvements in experimental procedures of Hi-C and its various derivatives, such as Micro-C, HiChIP, and Capture Hi-C. We assess the advantages and limitations of the techniques, and present examples of their use in recent plant studies. We also report on progress in the development of computational tools used in assembling genome sequences.
Collapse
Affiliation(s)
- Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, CZ-779 00 Olomouc, Czech Republic
| | - Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, D-06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
35
|
Dumont A, Mendiboure N, Savocco J, Anani L, Moreau P, Thierry A, Modolo L, Jost D, Piazza A. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol Cell 2024; 84:3237-3253.e6. [PMID: 39178861 DOI: 10.1016/j.molcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Collapse
Affiliation(s)
- Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicolas Mendiboure
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Loqmen Anani
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Pierrick Moreau
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Agnès Thierry
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Laurent Modolo
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
36
|
Sexton C, Victor Paul S, Barth D, Han M. Genome wide clustering on integrated chromatin states and Micro-C contacts reveals chromatin interaction signatures. NAR Genom Bioinform 2024; 6:lqae136. [PMID: 39363891 PMCID: PMC11447530 DOI: 10.1093/nargab/lqae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
We can now analyze 3D physical interactions of chromatin regions with chromatin conformation capture technologies, in addition to the 1D chromatin state annotations, but methods to integrate this information are lacking. We propose a method to integrate the chromatin state of interacting regions into a vector representation through the contact-weighted sum of chromatin states. Unsupervised clustering on integrated chromatin states and Micro-C contacts reveals common patterns of chromatin interaction signatures. This provides an integrated view of the complex dynamics of concurrent change occurring in chromatin state and in chromatin interaction, adding another layer of annotation beyond chromatin state or Hi-C contact separately.
Collapse
Affiliation(s)
- Corinne E Sexton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Sylvia Victor Paul
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Dylan Barth
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
37
|
Lainscsek X, Taher L. ENT3C: an entropy-based similarity measure for Hi-C and micro-C derived contact matrices. NAR Genom Bioinform 2024; 6:lqae076. [PMID: 38962256 PMCID: PMC11217677 DOI: 10.1093/nargab/lqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Hi-C and micro-C sequencing have shed light on the profound importance of 3D genome organization in cellular function by probing 3D contact frequencies across the linear genome. The resulting contact matrices are extremely sparse and susceptible to technical- and sequence-based biases, making their comparison challenging. The development of reliable, robust and efficient methods for quantifying similarity between contact matrices is crucial for investigating variations in the 3D genome organization in different cell types or under different conditions, as well as evaluating experimental reproducibility. We present a novel method, ENT3C, which measures the change in pattern complexity in the vicinity of contact matrix diagonals to quantify their similarity. ENT3C provides a robust, user-friendly Hi-C or micro-C contact matrix similarity metric and a characteristic entropy signal that can be used to gain detailed biological insights into 3D genome organization.
Collapse
Affiliation(s)
- Xenia Lainscsek
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| |
Collapse
|
38
|
Pokharel D, Shaik A, Gali H, Ling C, Bellani MA, Seidman MM. A bifunctional antibody conjugate marks the location of DNA binding proteins on deproteinized DNA fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.609705. [PMID: 39257800 PMCID: PMC11383660 DOI: 10.1101/2024.08.29.609705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Immunofluorescent foci of DNA Damage Response (DDR) proteins serve as surrogates for DNA damage and are frequently interpreted as denoting specific lesions. For example, Double Strand Breaks (DSBs) are potent inducers of the DDR, whose best-known factor is the phosphorylated histone variant H2AX (γ-H2AX). The association with DSBs is so well established that the reverse interpretation that γ-H2AX invariably implies DSBs is routine. However, this conclusion is inferential and has been challenged. The resolution of this question has been hampered by the lack of methods for distinguishing the location of DDR proteins relative to DSBs caused by sequence indifferent agents. Here, we describe an approach for marking the location of DDR factors in relation to DSBs on DNA fibers. We synthesized a two-arm "Y" conjugate containing biotin and trimethylpsoralen (TMP) coupled to a secondary antibody. After exposure to a DNA breaker, permeabilized mammalian cells were incubated with a primary antibody against the DDR factor followed by binding of the secondary antibody in the conjugate to the primary antibody. Exposure to longwave UV light covalently linked the psoralen to the DNA. DNA fibers were spread, and the immunofluorescence of the biotin tag denoted the location of the target protein. Abstract Figure
Collapse
|
39
|
Kuang S, Pollard KS. Exploring the roles of RNAs in chromatin architecture using deep learning. Nat Commun 2024; 15:6373. [PMID: 39075082 PMCID: PMC11286850 DOI: 10.1038/s41467-024-50573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Recent studies have highlighted the impact of both transcription and transcripts on 3D genome organization, particularly its dynamics. Here, we propose a deep learning framework, called AkitaR, that leverages both genome sequences and genome-wide RNA-DNA interactions to investigate the roles of chromatin-associated RNAs (caRNAs) on genome folding in HFFc6 cells. In order to disentangle the cis- and trans-regulatory roles of caRNAs, we have compared models with nascent transcripts, trans-located caRNAs, open chromatin data, or DNA sequence alone. Both nascent transcripts and trans-located caRNAs improve the models' predictions, especially at cell-type-specific genomic regions. Analyses of feature importance scores reveal the contribution of caRNAs at TAD boundaries, chromatin loops and nuclear sub-structures such as nuclear speckles and nucleoli to the models' predictions. Furthermore, we identify non-coding RNAs (ncRNAs) known to regulate chromatin structures, such as MALAT1 and NEAT1, as well as several new RNAs, RNY5, RPPH1, POLG-DT and THBS1-IT1, that might modulate chromatin architecture through trans-interactions in HFFc6. Our modeling also suggests that transcripts from Alus and other repetitive elements may facilitate chromatin interactions through trans R-loop formation. Our findings provide insights and generate testable hypotheses about the roles of caRNAs in shaping chromatin organization.
Collapse
Affiliation(s)
- Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
40
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Pierno FD, Dekker J, Nicodemi M. Polymer physics models reveal structural folding features of single-molecule gene chromatin conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603769. [PMID: 39071404 PMCID: PMC11275793 DOI: 10.1101/2024.07.16.603769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in-silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in-situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
41
|
Huang Z, Cui W, Ratnayake I, Tawil R, Pfeifer GP. SMCHD1 maintains heterochromatin and genome compartments in human myoblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602392. [PMID: 39026812 PMCID: PMC11257445 DOI: 10.1101/2024.07.07.602392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Mammalian genomes are subdivided into euchromatic A compartments that contain mostly active chromatin, and inactive, heterochromatic B compartments. However, it is unknown how A and B genome compartments are established and maintained. Here we studied SMCHD1, an SMC-like protein in human male myoblasts. SMCHD1 colocalizes with Lamin B1 and the heterochromatin mark H3K9me3. Loss of SMCHD1 leads to extensive heterochromatin depletion at the nuclear lamina and acquisition of active chromatin states along all chromosomes. In absence of SMCHD1, long range intra-chromosomal and inter-chromosomal contacts between B compartments are lost while many new TADs and loops are formed. Inactivation of SMCHD1 promotes numerous B to A compartment transitions accompanied by activation of silenced genes. SMCHD1 functions as an anchor for heterochromatin domains ensuring that these domains are inaccessible to epigenome modification enzymes that typically operate in active chromatin. Therefore, A compartments are formed by default when not prevented by SMCHD1.
Collapse
|
42
|
An J, Brik Chaouche R, Pereyra-Bistraín LI, Zalzalé H, Wang Q, Huang Y, He X, Dias Lopes C, Antunez-Sanchez J, Bergounioux C, Boulogne C, Dupas C, Gillet C, Pérez-Pérez JM, Mathieu O, Bouché N, Fragkostefanakis S, Zhang Y, Zheng S, Crespi M, Mahfouz MM, Ariel F, Gutierrez-Marcos J, Raynaud C, Latrasse D, Benhamed M. An atlas of the tomato epigenome reveals that KRYPTONITE shapes TAD-like boundaries through the control of H3K9ac distribution. Proc Natl Acad Sci U S A 2024; 121:e2400737121. [PMID: 38968127 PMCID: PMC11252963 DOI: 10.1073/pnas.2400737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.
Collapse
Affiliation(s)
- Jing An
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Rim Brik Chaouche
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Leonardo I. Pereyra-Bistraín
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
| | - Hugo Zalzalé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
| | - Qingyi Wang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Chloé Dias Lopes
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | | | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Claire Boulogne
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Cynthia Dupas
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Cynthia Gillet
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | | | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, Clermont-FerrandF-63000, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles78000, France
| | | | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, SantaFe 3000, Argentina
| | | | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
- Institut Universitaire de France, Orsay, Gif-sur-Yvette91190, France
| |
Collapse
|
43
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
44
|
Almansour F, Keikhosravi A, Pegoraro G, Misteli T. Allele-level visualization of transcription and chromatin by high-throughput imaging. Histochem Cell Biol 2024; 162:65-77. [PMID: 38724854 PMCID: PMC11227451 DOI: 10.1007/s00418-024-02289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
The spatial arrangement of the genome within the nucleus is a pivotal aspect of cellular organization and function with implications for gene expression and regulation. While all genome organization features, such as loops, domains, and radial positioning, are nonrandom, they are characterized by a high degree of single-cell variability. Imaging approaches are ideally suited to visualize, measure, and study single-cell heterogeneity in genome organization. Here, we describe two methods for the detection of DNA and RNA of individual gene alleles by fluorescence in situ hybridization (FISH) in a high-throughput format. We have optimized combined DNA/RNA FISH approaches either using simultaneous or sequential detection of DNA and nascent RNA. These optimized DNA and RNA FISH protocols were implemented in a 384-well plate format alongside automated image and data analysis and enable accurate detection of individual gene alleles and their gene expression status across a large cell population. We successfully visualized MYC and EGFR DNA and nascent RNA with allele-level resolution in multiple cell types, and we determined the radial position of active and inactive MYC and EGFR alleles. These optimized DNA/RNA detection approaches are versatile and sensitive tools for mapping of chromatin features and gene activity at the single-allele level and at high throughput.
Collapse
Affiliation(s)
- Faisal Almansour
- Cell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical School, Washington, DC, 20057, USA
| | - Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Pang QY, Chiu YC, Huang RYJ. Regulating epithelial-mesenchymal plasticity from 3D genome organization. Commun Biol 2024; 7:750. [PMID: 38902393 PMCID: PMC11190238 DOI: 10.1038/s42003-024-06441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process enabling polarized epithelial cells to acquire mesenchymal features implicated in development and carcinoma progression. As our understanding evolves, it is clear the reversible execution of EMT arises from complex epigenomic regulation involving histone modifications and 3-dimensional (3D) genome structural changes, leading to a cascade of transcriptional events. This review summarizes current knowledge on chromatin organization in EMT, with a focus on hierarchical structures of the 3D genome and chromatin accessibility changes.
Collapse
Affiliation(s)
- Qing You Pang
- Neuro-Oncology Research Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yi-Chia Chiu
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
46
|
He M, Li X, Xu B, Lu Y, Lai J, Ling Y, Liu H, An Z, Zhang W, Li F. Reprogramming of 3D genome structure underlying HSPC development in zebrafish. Stem Cell Res Ther 2024; 15:172. [PMID: 38886858 PMCID: PMC11184745 DOI: 10.1186/s13287-024-03798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Development of hematopoietic stem and progenitor cells (HSPC) is a multi-staged complex process that conserved between zebrafish and mammals. Understanding the mechanism underlying HSPC development is a holy grail of hematopoietic biology, which is helpful for HSPC clinical application. Chromatin conformation plays important roles in transcriptional regulation and cell fate decision; however, its dynamic and role in HSPC development is poorly investigated. METHODS We performed chromatin structure and multi-omics dissection across different stages of HSPC developmental trajectory in zebrafish for the first time, including Hi-C, RNA-seq, ATAC-seq, H3K4me3 and H3K27ac ChIP-seq. RESULTS The chromatin organization of zebrafish HSPC resemble mammalian cells with similar hierarchical structure. We revealed the multi-scale reorganization of chromatin structure and its influence on transcriptional regulation and transition of cell fate during HSPC development. Nascent HSPC is featured by loose conformation with obscure structure at all layers. Notably, PU.1 was identified as a potential factor mediating formation of promoter-involved loops and regulating gene expression of HSPC. CONCLUSIONS Our results provided a global view of chromatin structure dynamics associated with development of zebrafish HSPC and discovered key transcription factors involved in HSPC chromatin interactions, which will provide new insights into the epigenetic regulatory mechanisms underlying vertebrate HSPC fate decision.
Collapse
Affiliation(s)
- Min He
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bingxiang Xu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yinbo Lu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jingyi Lai
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yiming Ling
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Huakai Liu
- Vehicle Engineering, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Zhao Y, Yang M, Gong F, Pan Y, Hu M, Peng Q, Lu L, Lyu X, Sun K. Accelerating 3D genomics data analysis with Microcket. Commun Biol 2024; 7:675. [PMID: 38824179 PMCID: PMC11144199 DOI: 10.1038/s42003-024-06382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
The three-dimensional (3D) organization of genome is fundamental to cell biology. To explore 3D genome, emerging high-throughput approaches have produced billions of sequencing reads, which is challenging and time-consuming to analyze. Here we present Microcket, a package for mapping and extracting interacting pairs from 3D genomics data, including Hi-C, Micro-C, and derivant protocols. Microcket utilizes a unique read-stitch strategy that takes advantage of the long read cycles in modern DNA sequencers; benchmark evaluations reveal that Microcket runs much faster than the current tools along with improved mapping efficiency, and thus shows high potential in accelerating and enhancing the biological investigations into 3D genome. Microcket is freely available at https://github.com/hellosunking/Microcket .
Collapse
Affiliation(s)
- Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Chemical and Biological Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Fanglei Gong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghui Hu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaowen Lyu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
48
|
Le DJ, Hafner A, Gaddam S, Wang KC, Boettiger AN. Super-enhancer interactomes from single cells link clustering and transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593251. [PMID: 38766104 PMCID: PMC11100725 DOI: 10.1101/2024.05.08.593251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Regulation of gene expression hinges on the interplay between enhancers and promoters, traditionally explored through pairwise analyses. Recent advancements in mapping genome folding, like GAM, SPRITE, and multi-contact Hi-C, have uncovered multi-way interactions among super-enhancers (SEs), spanning megabases, yet have not measured their frequency in single cells or the relationship between clustering and transcription. To close this gap, here we used multiplexed imaging to map the 3D positions of 376 SEs across thousands of mammalian nuclei. Notably, our single-cell images reveal that while SE-SE contacts are rare, SEs often form looser associations we termed "communities". These communities, averaging 4-5 SEs, assemble cooperatively under the combined effects of genomic tethers, Pol2 clustering, and nuclear compartmentalization. Larger communities are associated with more frequent and larger transcriptional bursts. Our work provides insights about the SE interactome in single cells that challenge existing hypotheses on SE clustering in the context of transcriptional regulation.
Collapse
Affiliation(s)
- Derek J. Le
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- Cancer Biology Program, Stanford University, Stanford, CA, United States
- Department of Dermatology, Stanford University, Stanford, CA, United States
- These authors contributed equally
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- These authors contributed equally
| | - Sadhana Gaddam
- Department of Dermatology, Stanford University, Stanford, CA, United States
| | - Kevin C. Wang
- Department of Dermatology, Stanford University, Stanford, CA, United States
| | - Alistair N. Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- Lead contact
| |
Collapse
|
49
|
Gao R, Yang G, Wang M, Xiao J, Yi S, Huang Y, Guo Z, Kang Y, Fu Q, Wang M, Xu B, Shen S, Zhu Q, Liu M, Wang L, Cui X, Yi S, Kou X, Zhao Y, Gu L, Wang H, Gao S, Jiang C, Chen J. Defining a TFAP2C-centered transcription factor network during murine peri-implantation. Dev Cell 2024; 59:1146-1158.e6. [PMID: 38574734 DOI: 10.1016/j.devcel.2024.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.
Collapse
Affiliation(s)
- Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Guang Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jing Xiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhenxiang Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yunzhe Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianzheng Fu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shijun Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Meng Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanshan Yi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
50
|
Open2C, Abdennur N, Abraham S, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Oksuz BA, Venev SV, Xiao Y. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS Comput Biol 2024; 20:e1012067. [PMID: 38709825 PMCID: PMC11098495 DOI: 10.1371/journal.pcbi.1012067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/16/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sameer Abraham
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Betul A. Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|