1
|
Fan X, Li H. Integration of Single-Cell and Spatial Transcriptomic Data Reveals Spatial Architecture and Potential Biomarkers in Alzheimer's Disease. Mol Neurobiol 2025; 62:5395-5412. [PMID: 39543008 DOI: 10.1007/s12035-024-04617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the gradual loss of neurons and the accumulation of amyloid plaques and neurofibrillary tangles. Despite advancements in the understanding of AD's pathophysiology, the cellular organization and interactions in the prefrontal cortex (PFC) remain elusive. Eight single-cell RNA sequencing (scRNA-seq) datasets from both normal controls and individuals with AD were harmonized. Stringent preprocessing protocols were implemented to uphold dataset integrity. Unsupervised clustering and annotation revealed 22 distinct cell clusters corresponding to 19 unique cell types. The spatial architecture of the PFC region was constructed using the CARD tool. Further analyses encompassed trajectory examination of Oligodendrocyte subtypes, evaluation of regulon activity scores, and spot clustering within white matter regions (WM). Differential expression analysis and functional enrichment assays unveiled molecular signatures linked to AD progression and were validated using microarray data sourced from neurodegenerative disorder patients. Our investigation employs scRNA-seq and spatial transcriptomics to uncover the cellular atlas and spatial architecture of the human PFC in AD. Moreover, our results indicate that Oligodendrocytes are more prevalent in AD patients, showcasing diverse subtypes and spatial organization within WM regions. Each subtype appears to be associated with distinct biological processes and transcriptional regulators, shedding light on their involvement in AD pathology. Notably, the Oligodendrocyte_C6 subtype is linked to neurological damage in AD patients, characterized by heightened expression of genes involved in cell-cell connections, cell membrane stability, and myelination. Additionally, 12 target genes regulated by NFIA were identified, which are upregulated in AD patients and associated with disease progression. Elevated PLXDC2 expression in peripheral blood was also identified, suggesting its potential as a non-invasive biomarker for early AD detection. Our study provides novel insights into the role of Oligodendrocytes in AD and highlights the potential of PLXDC2 as a blood biomarker for non-invasive diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Xing Fan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, PR, China
| | - Huamei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, PR, China.
| |
Collapse
|
2
|
Ma YN, Xia Y, Karako K, Song P, Tang W, Hu X. Decoding Alzheimer's Disease: Single-Cell Sequencing Uncovers Brain Cell Heterogeneity and Pathogenesis. Mol Neurobiol 2025:10.1007/s12035-025-04997-0. [PMID: 40304967 DOI: 10.1007/s12035-025-04997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive cognitive decline and diverse neuropathological features. Recent advances in single-cell sequencing technologies have provided unprecedented insights into the cellular and molecular heterogeneity of the AD brain. This review systematically summarizes the applications of single-cell transcriptomic and epigenomic approaches in AD research, with a focus on the characterization of cell type- and subtype-specific transcriptomic alterations. This review highlights key discoveries related to selectively vulnerable neuronal and glial subpopulations, as well as transcriptional dysregulation associated with genetic risk loci such as APOE and TREM2. This review also discusses how the integration of single-cell RNA sequencing (scRNA-seq), assays for transposase-accessible chromatin using sequencing (ATAC-seq), and spatial transcriptomics elucidates disease trajectories and cellular communication networks across pathological stages. These insights not only enhance the understanding of the pathogenesis of AD but also pave the way for precision medicine through the identification of novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
- Integrated Neuroscience Center, Geriatric Hospital of Hainan, Haikou, 571100, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- Division of Global Health & Medicine, National Center for Global Health and Medicine, Tokyo, Japan.
- National College of Nursing, Tokyo, Japan.
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Global Health & Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
- Integrated Neuroscience Center, Geriatric Hospital of Hainan, Haikou, 571100, China.
| |
Collapse
|
3
|
İlgün A, Çakır T. Functional Specificity of Astrocyte Subtypes in Alzheimer's Disease: Decoding Disease Mechanisms Through Network-based Analysis of Integrated Single-Nuclei Multi-Omic Data. Mol Neurobiol 2025:10.1007/s12035-025-04965-8. [PMID: 40301248 DOI: 10.1007/s12035-025-04965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Recent studies have revealed incontrovertible roles of astrocytes in the pathology of AD. Considering the conflicting behaviours of astrocytes in AD brain, they have been proposed to have subtypes. In this study, astrocytes from two publicly available single-nuclei transcriptome datasets were integrated to provide in-depth characterization of astrocyte subtypes in AD. Differentially expressed genes within each astrocyte subtype were analyzed by mapping them onto a human protein-protein interaction network to discover subnetworks with biologically relevant genes. Integrating single-nuclei datasets and using network-based analysis approach led to higher sensitivity in capturing AD-related genes compared to traditional approaches. One of the identified subtypes was highly representative of neurotoxic reactive astrocytes in AD. The results show that A1 reactive astrocytes could have an enhancing role for the amyloid beta and neurofibrillary tangle accumulation through MAPK10, MAPT, and TMED10, which were all found to be differentially expressed in this subtype during AD in our analysis. Moreover, single-nuclei ATAC-Seq data from the same tissue was re-analyzed to evaluate astrocyte subtypes at multi-omic level. It was found that astrocyte subtypes underwent epigenetic reprogramming during AD. Potential transcription factors were also identified for the regulation of the genes that exhibited alterations in both promoter accessibility and gene expression in AD. Comparative analysis of single-nuclei RNA-Seq and ATAC-Seq datasets showed that PTN gene, which was reported to be important for AD pathology, is likely regulated by ATF3 transcription factor in subtype-specific manner in astrocytes.
Collapse
Affiliation(s)
- Atılay İlgün
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
4
|
Zhou P, Chao Q, Li C, Wang N, Guo S, Wang P, Ge P, Li C, Guo R, Yang N, Lu Z, Tang Z, Zhang Q, Fu T, Xiao Q, Zhu H. Microglia-targeting nanosystems that cooperatively deliver Chinese herbal ingredients alleviate behavioral and cognitive deficits in Alzheimer's disease model mice. J Nanobiotechnology 2025; 23:313. [PMID: 40275381 PMCID: PMC12020378 DOI: 10.1186/s12951-025-03385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
The effective treatment of Alzheimer's disease (AD) is challenging because of its complex and controversial pathological mechanisms. Moreover, multiple barriers, such as the blood-brain barrier (BBB), reduce drug delivery efficiency. Microglia-related neuroinflammation has recently attracted increasing attention as a possible cause of AD and has become a novel therapeutic target. Therefore, overcoming the BBB and targeted delivery of anti-inflammatory agents to microglia seem to be effective practical strategies for treating AD. A large proportion of natural active extracts possess exceptional immunomodulating capabilities. In this study, the cooperative delivery of berberine (Ber) and palmatine (Pal) by transferrin-decorated extracellular vesicles (Tf-hEVs-Ber/Pal), which can cross the BBB and precisely target microglia, was performed. This nanosystem effectively cleared amyloid β-protein (Aβ) aggregates, significantly regulated the neuroinflammatory environment both in vitro and in vivo and markedly altered the behavior and improved the cognitive and learning abilities of AD model mice. The efficacy of a microglia-targeting combined therapeutic approach for AD was demonstrated, which broadens the potential application of Chinese herbal ingredients.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Quan Chao
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Li
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ningjing Wang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siqi Guo
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pingping Wang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pingyuan Ge
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Caihong Li
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Guo
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianyun Yang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhangdi Lu
- Polymer Science and Materials Chemistry, Exponent Ltd, Hong Kong, 999077, China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources, Shannxi University of Chinese Medicine, Xianyang, 712038, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qichun Zhang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingming Fu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingqing Xiao
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huaxu Zhu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Wei S, Li C, Li W, Yuan F, Kong J, Su X, Huang P, Guo H, Xu J, Sun H. Glial changes and gene expression in Alzheimer's disease from snRNA-Seq and spatial transcriptomics. J Alzheimers Dis 2025:13872877251330320. [PMID: 40267277 DOI: 10.1177/13872877251330320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BackgroundAlzheimer's disease (AD) is characterized by cortical atrophy, glutamatergic neuron loss, and cognitive decline. However, large-scale quantitative assessments of cellular changes during AD pathology remain scarce.ObjectiveThis study aims to integrate single-nuclei sequencing data from the Seattle Alzheimer's Disease Cortical Atlas (SEA-AD) with spatial transcriptomics to quantify cellular changes in the prefrontal cortex and temporal gyrus, regions vulnerable to AD neuropathological changes (ADNC).MethodsWe mapped differentially expressed genes (DEGs) and analyzed their interactions with pathological factors such as APOE expression and Lewy bodies. Cellular proportions were assessed, focusing on neurons, glial cells, and immune cells.ResultsRORB-expressing L4-like neurons, though vulnerable to ADNC, exhibited stable cell numbers throughout disease progression. In contrast, astrocytes displayed increased reactivity, with upregulated cytokine signaling and oxidative stress responses, suggesting a role in neuroinflammation. A reduction in synaptic maintenance pathways indicated a decline in astrocytic support functions. Microglia showed heightened immune surveillance and phagocytic activity, indicating their role in maintaining cortical homeostasis.ConclusionsThe study underscores the critical roles of glial cells, particularly astrocytes and microglia, in AD progression. These findings contribute to a better understanding of cellular dynamics and may inform therapeutic strategies targeting glial cell function in AD.
Collapse
Affiliation(s)
- Songren Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Chenyang Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Fumiao Yuan
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Kong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Su
- Women and Children Medical Research Center, Affiliated Foshan Women and Children Hospital, Foshan, China
| | - Peng Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Women and Children Medical Research Center, Affiliated Foshan Women and Children Hospital, Foshan, China
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Ravasia K, Hirsch-Reinshagen V. Selective cellular and regional vulnerability in frontotemporal lobar degeneration: a scoping review. FREE NEUROPATHOLOGY 2025; 6:11. [PMID: 40207209 PMCID: PMC11980436 DOI: 10.17879/freeneuropathology-2025-5812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
The three main types of frontotemporal lobar degeneration (FTLD) are characterized by the accumulation of abnormal proteins, namely tau, TDP-43 and FUS. The distribution of these proteins within different human brain regions is well known, as is the range of morphological variability of the cellular inclusions they form. Compared to the extensive knowledge that exists about distinct protein aggregates in FTLD, surprisingly little is known about the specific cell (sub)types that these inclusions affect. Even less is known about disease-specific abnormalities other than protein inclusions in affected and unaffected areas. These are non-trivial knowledge gaps. First, knowing which cell subtypes are vulnerable or resilient to the development of pathological protein inclusions is crucial to understand the cellular disease mechanisms. Second, mounting evidence suggests that non-cell autonomous mechanisms may play important roles in neurodegenerative conditions. For example, astrocytic tau pathology is associated with synaptic loss in corticobasal degeneration but not in progressive supranuclear palsy. Furthermore, changes that are more difficult and time-consuming to quantify, for example loss of a specific neuronal subtype that does not develop pathological inclusions, remain virtually unexplored and their relevance for disease progression are unknown. This scoping review is an attempt to collate all histological evidence from human studies that address the question of cell-specific vulnerability in the most common FTLD subtypes. By taking a systematic approach including various brain cell types such as neurons and their subtypes as well as astrocytes, microglia and oligodendrocytes and the entire central nervous system with its affected and unaffected regions, this review summarizes the current status in the field and highlights important knowledge gaps.
Collapse
Affiliation(s)
- Kashif Ravasia
- School of Medicine, University of British Columbia,
Vancouver, Canada
| | - Veronica Hirsch-Reinshagen
- Division of Neuropathology, Vancouver General Hospital
and University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Acosta Ingram D, Turkes E, Kim TY, Vo S, Sweeney N, Bonte MA, Rutherford R, Julian DL, Pan M, Marsh J, Argouarch AR, Wu M, Scharre DW, Bell EH, Honig LS, Vonsattel JP, Serrano GE, Beach TG, Karch CM, Kao AW, Hester ME, Han X, Fu H. GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau. Nat Commun 2025; 16:3312. [PMID: 40204713 PMCID: PMC11982250 DOI: 10.1038/s41467-025-58585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD.
Collapse
Affiliation(s)
- Diana Acosta Ingram
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Emir Turkes
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheeny Vo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas Sweeney
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marie-Amandine Bonte
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Argouarch
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Erica H Bell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aimee W Kao
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Chadarevian JP, Davtyan H, Chadarevian AL, Nguyen J, Capocchi JK, Le L, Escobar A, Chadarevian T, Mansour K, Deynega E, Mgerian M, Tu C, Kiani Shabestari S, Carlen-Jones W, Eskandari-Sedighi G, Hasselmann J, Spitale RC, Blurton-Jones M. Harnessing human iPSC-microglia for CNS-wide delivery of disease-modifying proteins. Cell Stem Cell 2025:S1934-5909(25)00099-2. [PMID: 40233761 DOI: 10.1016/j.stem.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
Widespread delivery of therapeutic proteins to the brain remains challenging. To determine whether human induced pluripotent stem cell (iPSC)-microglia (iMG) could enable brain-wide and pathology-responsive delivery of therapeutic cargo, we utilized CRISPR gene editing to engineer iMG to express the Aβ-degrading enzyme neprilysin under control of the plaque-responsive promoter, CD9. To further determine whether increased engraftment enhances efficacy, we utilized a CSF1R-inhibitor resistance approach. Interestingly, both localized and brain-wide engraftment in Alzheimer's disease (AD) mice reduced multiple biochemical measures of pathology. However, within the plaque-dense subiculum, reductions in plaque load, dystrophic neurites, and astrogliosis and preservation of neuronal density were only achieved following widespread microglial engraftment. Lastly, we examined chimeric models of breast cancer brain metastases and demyelination, demonstrating that iMG adopt diverse transcriptional responses to differing neuropathologies, which could be harnessed to enable widespread and pathology-responsive delivery of therapeutics to the CNS.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Alina L Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jasmine Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Lauren Le
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Talar Chadarevian
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Kimiya Mansour
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Ekaterina Deynega
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Mgerian
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - William Carlen-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Ghazaleh Eskandari-Sedighi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Sivanantharajah L, Mudher A, Shepherd D. Examining the vulnerability of adult neuron subtypes to tau-mediated toxicity in Drosophila. Transl Psychiatry 2025; 15:127. [PMID: 40188067 PMCID: PMC11972385 DOI: 10.1038/s41398-025-03342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Selective vulnerability of nerve cells is a feature of neurodegenerative disease. To date, animal models have been limited to examining pathogenic protein expression in broad or heterogeneous neuronal populations. Consequently, noted pathological hallmarks represent an average of disease phenotypes over multiple neuron types, rather than exact measures of individual responses. Here we targeted gene expression to small, precisely defined and homogenous neuronal populations in the Drosophila melanogaster central nervous system (CNS), allowing dissection of selective vulnerability of single types of neurons with single-neuron resolution. Using cellular degeneration as a readout for vulnerability, we found while all neurons were affected by tau some neuron types were more affected (vulnerable) than others (resilient). The tau-mediated pathogenic effects fell on a spectrum, demonstrating that neurons in the fly CNS are differentially vulnerable to tau pathology. Mechanistically, total tau levels did not correlate with vulnerability; rather, the best correlatives of degeneration were significant age-dependent increases in phospho-tau levels in the same neuron type, and tau mislocalisation into dendrites. Lastly, we found that tau phosphorylation in vulnerable neuron types correlated with downstream vesicular and mitochondrial trafficking defects. However, all vulnerable neuron types did not show the same pattern, suggesting multiple paths to degeneration. Beyond highlighting the heterogeneity of neuronal responses to tau in determining vulnerability, this work provides a new, high-resolution, tractable model for studying the age-dependent effects of tau, or any pathogenic protein, on postmitotic neurons with sub-cellular resolution.
Collapse
Affiliation(s)
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - David Shepherd
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Wang P, Han L, Wang L, Tao Q, Guo Z, Luo T, He Y, Xu Z, Yu J, Liu Y, Wu Z, Xu B, Jin B, Wei Y, Yang Y, Cheng M, Jiang Y, Tian C, Zheng H, Fan Z, Jiang P, Gao Y, Wu J, Wang S, Sun B, Fang Z, Lei J, Luo B, Wen H, Peng G, Tang Y, Yang T, Chen J, Zhuang Z, Su X, Pan C, Zhu K, Shen Y, Liu S, Bao A, Yao J, Wang J, Xu X, Li XM, Liu L, Duan S, Zhang J. Molecular pathways and diagnosis in spatially resolved Alzheimer's hippocampal atlas. Neuron 2025:S0896-6273(25)00174-6. [PMID: 40168986 DOI: 10.1016/j.neuron.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
We employed Stereo-seq combined with single-nucleus RNA sequencing (snRNA-seq) to investigate the gene expression and cell composition changes in human hippocampus with or without Alzheimer's disease (AD). The transcriptomic map, with single-cell precision, unveiled AD-associated alterations with spatial specificity, which include the following: (1) elevated synapse pruning gene expression in the fimbria of AD, with disrupted microglia-astrocyte communication likely leading to disorganized synaptic structure; (2) a globally increased energy generation in the cornu ammonis (CA) region, with varying degrees across its subregions; (3) a significant reduction in the number of CA1 neurons in AD, while CA4 neurons remained largely unaffected, potentially due to gene alterations in CA4 conferring resilience to AD; and (4) aggravated amyloid-beta (Aβ) plaques in CA1 and stratum lucidum, radiatum, and moleculare (SLRM), and integration of Stereo-seq map with Aβ staining revealed a sequential enrichment of microglia and astrocytes around Aβ plaques. Finally, reduced brain-derived extracellular vesicles carrying cholecystokinin (CCK) and peripheral myelin protein 2 (PMP2) in AD plasma highlighted their diagnostic potential for clinical applications.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Lei Han
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Lifang Wang
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Quyuan Tao
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Ting Luo
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Youzhe He
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Jiayi Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Yuyang Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Bin Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Bufan Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Wei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongqin Fan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Peiran Jiang
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Yue Gao
- BGI Research, Hangzhou 310030, China
| | - Juanli Wu
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | | | - Bing Sun
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Zheng Fang
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Junjie Lei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen 518120, China
| | | | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Catherine Pan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Keqing Zhu
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China
| | | | - Aimin Bao
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | | | - Jian Wang
- BGI Research, Shenzhen 518083, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310002, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310002, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.
| |
Collapse
|
11
|
Kahn OI, Dominguez SL, Glock C, Hayne M, Vito S, Sengupta Ghosh A, Adrian M, Burgess BL, Meilandt WJ, Friedman BA, Hoogenraad CC. Secreted neurofilament light chain after neuronal damage induces myeloid cell activation and neuroinflammation. Cell Rep 2025; 44:115382. [PMID: 40056413 DOI: 10.1016/j.celrep.2025.115382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Neurofilament light chain (NfL) is a neuron-specific cytoskeletal protein that provides structural support for axons and is released into the extracellular space following neuronal injury. While NfL has been extensively studied as a disease biomarker, the underlying release mechanisms and role in neurodegeneration remain poorly understood. Here, we find that neurons secrete low baseline levels of NfL, while neuronal damage triggers calpain-driven proteolysis and release of fragmented NfL. Secreted NfL activates microglial cells, which can be blocked with anti-NfL antibodies. We utilize in vivo single-cell RNA sequencing to profile brain cells after injection of recombinant NfL into the mouse hippocampus and find robust macrophage and microglial responses. Consistently, NfL knockout mice ameliorate microgliosis and delay symptom onset in the SOD1 mouse model of amyotrophic lateral sclerosis (ALS). Our results show that released NfL can activate myeloid cells in the brain and is, thus, a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Caspar Glock
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Margaret Hayne
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steve Vito
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Braydon L Burgess
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
12
|
Li S, Jiao F, Li X, Xu Z, Hu T, Liang X, Wu J, Wang J, Zuo C, Tang Y. Plasma GFAP and NfL associate with cerebral glucose metabolism in putative brain-first and body-first Parkinson's disease subtypes. NPJ Parkinsons Dis 2025; 11:54. [PMID: 40121206 PMCID: PMC11929867 DOI: 10.1038/s41531-025-00898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
The recently proposed body-first and brain-first subtypes are classified based on the initial localization of α-synuclein inclusions. This study investigated plasma biomarkers and cerebral glucose metabolism characteristics in putative brain-first and body-first subtypes in PD subjects. PD patients without possible RBD (PDpRBD-) (n = 58) and with possible RBD symptoms discovered before motor symptoms (PDpRBD+) (n = 43) were recruited. Single-molecule array (SimoA) was used for measuring plasma biomarkers, including glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), Tau and phosphorylated-tau 181 (pTau-181). All participants underwent 18F-fluorodeoxyglucose (FDG) PET scans. Compared to PDpRBD- patients, PDpRBD+ patients exhibited significantly increased plasma GFAP levels and reduced 18F-FDG uptake in cortical regions. Notably, plasma GFAP and NfL levels correlated with cerebral glucose metabolism in PDpRBD- patients. Our study identified the association between plasma GFAP and NfL levels and cerebral glucose metabolism in PDpRBD- patients. Further large-scale longitudinal studies are required.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyang Jiao
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuyuan Li
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiheng Xu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyu Hu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yilin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Li Z, Martens YA, Ren Y, Jin Y, Sekiya H, Doss SV, Kouri N, Castanedes-Casey M, Christensen TA, Miller Nevalainen LB, Takegami N, Chen K, Liu CC, Soto-Beasley A, Boon BDC, Labuzan SA, Ikezu TC, Chen Y, Bartkowiak AD, Xhafkollari G, Wetmore AM, Bennett DA, Reichard RR, Petersen RC, Kanekiyo T, Ross OA, Murray ME, Dickson DW, Bu G, Zhao N. APOE genotype determines cell-type-specific pathological landscape of Alzheimer's disease. Neuron 2025:S0896-6273(25)00135-7. [PMID: 40112813 DOI: 10.1016/j.neuron.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
The apolipoprotein E (APOE) gene is the strongest genetic risk modifier for Alzheimer's disease (AD), with the APOE4 allele increasing risk and APOE2 decreasing it compared with the common APOE3 allele. Using single-nucleus RNA sequencing of the temporal cortex from APOE2 carriers, APOE3 homozygotes, and APOE4 carriers, we found that AD-associated transcriptomic changes were highly APOE genotype dependent. Comparing AD with controls, APOE2 carriers showed upregulated synaptic and myelination-related pathways, preserving synapses and myelination at the protein level. Conversely, these pathways were downregulated in APOE3 homozygotes, resulting in reduced synaptic and myelination proteins. In APOE4 carriers, excitatory neurons displayed reduced synaptic pathways similar to APOE3, but oligodendrocytes showed upregulated myelination pathways like APOE2. However, their synaptic and myelination protein levels remained unchanged or increased. APOE4 carriers also showed increased pro-inflammatory signatures in microglia but reduced responses to amyloid-β pathology. These findings reveal APOE genotype-specific molecular alterations in AD across cell types.
Collapse
Affiliation(s)
- Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yunjung Jin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | - Nanaka Takegami
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Baayla D C Boon
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sydney A Labuzan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tadafumi C Ikezu
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Allison M Wetmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
14
|
Li E, Benitez C, Boggess SC, Koontz M, Rose IVL, Martinez D, Dräger N, Teter OM, Samelson AJ, Pierce N, Ullian EM, Kampmann M. CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions. Neuron 2025; 113:701-718.e8. [PMID: 39814010 PMCID: PMC11886924 DOI: 10.1016/j.neuron.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease. However, these approaches do not establish molecular mechanism. To facilitate the scalable interrogation of causal molecular mechanisms in brain cell types, we developed a 3D co-culture system of induced pluripotent stem cell (iPSC)-derived neurons and glia, termed iAssembloids. Using iAssembloids, we ask how glial and neuronal cells interact to control neuronal death and survival. Our CRISPRi-based screens identified that GSK3β inhibits the protective NRF2-mediated oxidative stress response elicited by high neuronal activity. We then investigate the role of APOE-ε4, a risk variant for Alzheimer's disease, on neuronal survival. We find that APOE-ε4-expressing astrocytes may promote neuronal hyperactivity as compared with APOE-ε3-expressing astrocytes. This platform allows for the unbiased identification of mechanisms of neuron-glia cell interactions.
Collapse
Affiliation(s)
- Emmy Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Camila Benitez
- TETRAD Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven C Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Koontz
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Delsy Martinez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nina Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Na'im Pierce
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; FirstGen Internship, Emerson Collective, Palo Alto, CA, USA; University of California, Berkeley, Berkeley, CA, USA
| | - Erik M Ullian
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Wang Y, Wang X, Wang L, Zheng L, An X, Zheng C. Attenuated task-responsive representations of hippocampal place cells induced by amyloid-beta accumulation. Behav Brain Res 2025; 480:115384. [PMID: 39644999 DOI: 10.1016/j.bbr.2024.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is a typical neurodegenerative disease featuring deficits in spatial memory, which relies on spatial representations by hippocampal place cells. Place cells exhibit task-responsive representation to support memory encoding and retrieval processes. Yet, it remains unclear how this task-responsive spatial representation was interrupted under AD pathologies. Here, we employed a delayed match-to-place spatial memory task with associative and predictive memory processes, during which we electrophysiologically recorded hippocampal place cells with multi-tetrode hyperdrives in rats with i.c.v. amyloid/saline injection. We found that the directional selectivity of place cells coding was maintained in the Amyloid group. The firing stability was higher during predictive memory than during associative memory in both groups. However, the spatial specificity was decreased in the Amyloid group during both associative and predictive memory. Importantly, the place cells in the Amyloid group exhibited attenuated task-responsive representations, i.e. lack of spatial over-representations towards the goal zone and a higher representation of the rest zone, especially during the predictive memory stage. These results raise a hypothesis that the disrupted task-responsive representations of place cells could be an underlying mechanism of spatial memory deficits induced by amyloid proteins.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xueling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Li Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
16
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
17
|
Rajput M, Malik IA, Methi A, Cortés Silva JA, Fey D, Wirths O, Fischer A, Wilting J, von Arnim CAF. Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing. Brain Behav Immun 2025; 125:226-239. [PMID: 39730092 DOI: 10.1016/j.bbi.2024.12.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated. Therefore, the current investigation focuses on developing a suitable model to explore the effects of obese-ageing. It also aims to determine whether obesity affects cognitive abilities in an age-dependent manner, and to identify a potential biomarker(s) for cognitive decline. Cognitive tests were carried out on 6-months and 1-year-old melanocortin-4 receptor (Mc4r)-deficient-obese and lean (wildtype) mice. Additionally, brains and sera were harvested for molecular, histological and serological analyses from 6, 12, and 24-months-old mice. Finally, RT-PCR was carried out after hippocampal mRNA sequencing. The cognitive tests revealed that 1-year-old obese mice have cognitive impairment along with underlying neurodegenerative changes, such as enlarged lateral ventricles. Serum neurofilament light chain (sNfL) levels were also elevated. Lipid accumulation and neuroinflammation were apparent besides, a compromised blood-brain barrier (BBB) indicated by altered junction protein gene expression. Differentially-expressed genes associated with cognitive decline were identified by mRNA sequencing of hippocampi. One such gene, Secreted Phosphoprotein 1 (Spp1) had markedly increased expression in cognitively-impaired obese mice. Our findings present an obese-aged mouse model of cognitive decline with neuroinflammation, reduced BBB-integrity and predisposing neurodegenerative changes. Obese-ageing accelerates the progression of cognitive impairment. Furthermore, Spp1 appears to be a potential biomarker for early diagnosis of neuropathological disorders.
Collapse
Affiliation(s)
- Mansi Rajput
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Ihtzaz Ahmed Malik
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Aditi Methi
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Jonathan Alexis Cortés Silva
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Dorothea Fey
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Oliver Wirths
- Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany.
| | - André Fischer
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical Center Goettingen, Kreuzbergring 36, D-37075 Goettingen, Germany.
| | - Christine A F von Arnim
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
18
|
Miller JA, Travaglini KJ, Luquez T, Hostetler RE, Oster A, Daniel S, Tasic B, Menon V. Annotation Comparison Explorer (ACE): connecting brain cell types across studies of health and Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637559. [PMID: 39990500 PMCID: PMC11844562 DOI: 10.1101/2025.02.11.637559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Single-cell multiomic technologies have allowed unprecedented access to gene profiles of individual cells across species and organ systems, including >1000 papers focused on brain cell types alone. The Allen Institute has created foundational atlases characterizing mammalian brain cell types in the adult mouse brain and the neocortex of aged humans with and without Alzheimer's disease (AD). With so many public cell type classifications (or 'taxonomies') available and many groups choosing to define their own, linking cell types and associated knowledge between studies remains a major challenge. Here, we introduce Annotation Comparison Explorer (ACE), a web application for comparing cell type assignments and other cell-based annotations (e.g., donor demographics, anatomic locations, batch variables, and quality control metrics). ACE allows filtering of cells and includes an interactive set of tools for comparing two or more taxonomy annotations alongside collected knowledge (e.g., increased abundance in disease conditions, cell type aliases, or other information about a specific cell type). We present three primary use cases for ACE. First, we demonstrate how a user can assign cell type labels from the Seattle Alzheimer's Disease Brain Cell Atlas (SEA-AD) taxonomy to cells from their own study and compare these cell type mappings to existing cell type assignments and cell metadata. Second, we extend this approach to ten published human AD studies which we previously reprocessed through a common data analysis pipeline. This allowed us to compare brain taxonomies across otherwise incomparable studies and identify congruent cell type abundance changes in AD, including a decrease in abundance of subsets of somatostatin interneurons. Finally, ACE includes translation tables between different mouse and human brain cell type taxonomies publicly accessible on Allen Brain Map, from initial studies in individual neocortical areas to more recent studies spanning the whole brain. ACE can be freely and publicly accessed as a web application (https://sea-ad.shinyapps.io/ACEapp/) and on GitHub (github.com/AllenInstitute/ACE).
Collapse
|
19
|
Yang S, Chen B, Zhang J, Zhou X, Jiang Y, Tong W, Chen J, Luo N. Single-cell sequencing reveals that AK5 inhibits apoptosis in AD oligodendrocytes by regulating the AMPK signaling pathway. Mol Biol Rep 2025; 52:213. [PMID: 39921763 PMCID: PMC11807073 DOI: 10.1007/s11033-025-10311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Neuroinflammation and abnormal energy metabolism have been shown to significantly contribute to the progression of Alzheimer's disease (AD). Adenylate kinase 5 (AK5), an enzyme predominantly expressed in the brain regulates ATP metabolism, has an unclear role in energy metabolism and neuroinflammation in AD. METHODS The AD datasets were derived from the GEO public database to analyze the expression levels of AK5 in AD and normal samples and to assess the relationship between AK5 expression and the clinical characteristics of AD patients. Functional enrichment analysis was employed to investigate the effects of changes in AK5 expression on energy metabolism and immunoinflammation in AD, as well as the underlying mechanisms. Moreover, the influence of AK5 expression variations on oligodendrocyte development was assessed, and the predicted outcomes were validated through cellular experiments. RESULTS Bioinformatic analysis revealed that AK5 was lowly expressed in AD olfactory lobe tissues, accompanied by increased immunoinflammation and apoptosis. Increased expression of AK5 was associated with the activation of AMPK signaling, enhanced oxidative phosphorylation, and overall stimulation of energy metabolism. In oligodendrocytes treated with Aβ1-42, overexpression of AK5 resulted in elevated levels of P-AMPK, SIRT1, and BCL-2 proteins, while reducing the levels of BAX, CASPASE-3, and NF-κB proteins. This modulation activated AMPK signaling, thereby inhibiting neuroinflammation and apoptosis. In contrast, low levels of AK5 expression during early differentiation triggered inflammatory responses and increased apoptosis in oligodendrocytes. CONCLUSION AK5 inhibits AD oligodendrocyte apoptosis by activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shiyun Yang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Bolun Chen
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiatong Zhang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinmei Zhou
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuanjing Jiang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
20
|
Torok J, Maia PD, Anand C, Raj A. Searching for the cellular underpinnings of the selective vulnerability to tauopathic insults in Alzheimer's disease. Commun Biol 2025; 8:195. [PMID: 39920421 PMCID: PMC11806020 DOI: 10.1038/s42003-025-07575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion. However, the cellular underpinnings of regional vulnerability are poorly understood, in part because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical cells in the mouse, and then used these maps to identify general principles of cell-type-based selective vulnerability in PS19 mouse models. We found that hippocampal glutamatergic neurons as a whole were significantly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. We also identified oligodendrocytes as the single-most strongly negatively associated cell type. Further, cell-type distributions were more predictive of end-time-point tau pathology than AD-risk-gene expression. Using gene ontology analysis, we found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have elucidated cell-type correlates of tau deposition across mouse models of tauopathy, advancing our understanding of selective cellular vulnerability at a whole-brain level.
Collapse
Affiliation(s)
- Justin Torok
- University of CAlifornia, San Francisco, Department of Radiology, San Francisco, CA, 94143, USA
| | - Pedro D Maia
- University of Texas at Arlington, Department of Mathematics, Arlington, TX, 76019, USA
| | - Chaitali Anand
- University of CAlifornia, San Francisco, Institute for Neurodegenerative Diseases, San Francisco, CA, 94143, USA
| | - Ashish Raj
- University of CAlifornia, San Francisco, Department of Radiology, San Francisco, CA, 94143, USA.
| |
Collapse
|
21
|
Rodriguez-Rodriguez P, Wang W, Tsagkogianni C, Feng I, Morello-Megias A, Jain K, Alanko V, Kahvecioglu HA, Mohammadi E, Li X, Flajolet M, Sandebring-Matton A, Maioli S, Vidal N, Milosevic A, Roussarie JP. Cell-type specific profiling of human entorhinal cortex at the onset of Alzheimer's disease neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630881. [PMID: 39803521 PMCID: PMC11722323 DOI: 10.1101/2024.12.31.630881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Neurons located in layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that curb the disease before symptom onset. Here we performed cell-type specific profiling of human EC at the onset of AD neuropathology. We identify an early response to amyloid pathology by microglia and oligodendrocytes. Importantly, we provide the first insight into neuronal alterations that coincide with incipient tau pathology: the signaling pathway for Reelin, recently shown to be a major AD resilience gene is dysregulated in ECII neurons, while the secreted synaptic organizer molecules NPTX2 and CBLN4, emerging AD biomarkers, are downregulated in surrounding neurons. By uncovering the complex multicellular landscape of EC at these early AD stages, this study paves the way for detailed characterization of the mechanisms governing NFT formation and opens long-needed novel therapeutic avenues.
Collapse
Affiliation(s)
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University. New York, NY, USA
| | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Irena Feng
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Ana Morello-Megias
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Kaahini Jain
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Vilma Alanko
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | | | - Elyas Mohammadi
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | | | - Anna Sandebring-Matton
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Noemi Vidal
- Pathology department. Biobank HUB-ICO-IDIBELL, University Hospital of Bellvitge. Barcelona, Spain
| | - Ana Milosevic
- Laboratory of Developmental Genetics, The Rockefeller University. New York, NY, USA
| | | |
Collapse
|
22
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assessed the reproducibility of differentially expressed genes (DEGs) in previously published Alzheimer's (AD), Parkinson's (PD), Schizophrenia (SCZ), and COVID-19 scRNA-seq studies. While transcriptional scores from DEGs of individual PD and COVID-19 datasets had moderate predictive power for case-control status of other datasets (AUC=0.77 and 0.75), genes from individual AD and SCZ datasets had poor predictive power (AUC=0.68 and 0.55). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets, and found DEGs with improved predictive power (AUC=0.88, 0.91, 0.78, and 0.62). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate BCAT1 as down-regulated in AD mouse oligodendrocytes. Lastly, we evaluate factors influencing reproducibility of individual studies as a prospective guide for experimental design.
Collapse
|
23
|
Nabizadeh F. Local molecular and connectomic contributions of tau-related neurodegeneration. GeroScience 2025; 47:227-246. [PMID: 39343862 PMCID: PMC11872831 DOI: 10.1007/s11357-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is known to be mostly driven by tau neurofibrillary tangles. However, both tau and neurodegeneration exhibit variability in their distribution across the brain and among individuals, and the relationship between tau and neurodegeneration might be influenced by several factors. I aimed to map local molecular and connectivity characteristics that affect the association between tau pathology and neurodegeneration. The current study was conducted on the cross-sectional tau-PET and longitudinal T1-weighted MRI scan data of 186 participants from the ADNI dataset including 71 cognitively unimpaired (CU) and 115 mild cognitive impairment (MCI) individuals. Furthermore, the normative molecular profile of a region was defined using neurotransmitter receptor densities, gene expression, T1w/T2w ratio (myelination), FDG-PET (glycolytic index, glucose metabolism, and oxygen metabolism), and synaptic density. I found that the excitatory-inhibitory (E:I) ratio, myelination, synaptic density, glycolytic index, and functional connectivity are linked with deviation in the relationship between tau and neurodegeneration. Furthermore, there was spatial similarity between tau pathology and glycolytic index, synaptic density, and functional connectivity across brain regions. The current study demonstrates that the regional susceptibility to tau-related neurodegeneration is associated with specific molecular and connectomic characteristics of the affected neural systems. I found that the molecular and connectivity architecture of the human brain is linked to the different effects of tau pathology on downstream neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
24
|
Taddei RN, E Duff K. Synapse vulnerability and resilience underlying Alzheimer's disease. EBioMedicine 2025; 112:105557. [PMID: 39891995 PMCID: PMC11833146 DOI: 10.1016/j.ebiom.2025.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025] Open
Abstract
Synapse preservation is key for healthy cognitive ageing, and synapse loss represents a critical anatomical basis of cognitive dysfunction in Alzheimer's disease (AD), predicting dementia onset, severity, and progression. Synapse loss is viewed as a primary pathologic event, preceding neuronal loss and brain atrophy in AD. Synapses may, therefore, represent one of the earliest and clinically most meaningful targets of the neuropathologic processes driving AD dementia. The synapse loss in AD is highly selective and targets particularly vulnerable synapses while leaving others, termed resilient, largely unaffected. Yet, the anatomic and molecular hallmarks of the vulnerable and resilient synapse populations and their association with AD neuropathologic changes (e.g. amyloid-β plaques and tau tangles) and memory dysfunction remain poorly understood. Characterising the selectively vulnerable and resilient synapses in AD may be key to understanding the mechanisms of cognitive preservation versus loss and enable the development of robust biomarkers and disease-modifying therapies for dementia.
Collapse
Affiliation(s)
- Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, USA; UK Dementia Research Institute at UCL, Institute of Neurology, University College London, UK.
| | - Karen E Duff
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, UK
| |
Collapse
|
25
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Martins-Ferreira R, Calafell-Segura J, Leal B, Rodríguez-Ubreva J, Martínez-Saez E, Mereu E, Pinho E Costa P, Laguna A, Ballestar E. The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions. Nat Commun 2025; 16:739. [PMID: 39820004 PMCID: PMC11739505 DOI: 10.1038/s41467-025-56124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Dysregulated microglia activation, leading to neuroinflammation, is crucial in neurodegenerative disease development and progression. We constructed an atlas of human brain immune cells by integrating nineteen single-nucleus RNA-seq and single-cell RNA-seq datasets from multiple neurodegenerative conditions, comprising 241 samples from patients with Alzheimer's disease, autism spectrum disorder, epilepsy, multiple sclerosis, Lewy body diseases, COVID-19, and healthy controls. The integrated Human Microglia Atlas (HuMicA) included 90,716 nuclei/cells and revealed nine populations distributed across all conditions. We identified four subtypes of disease-associated microglia and disease-inflammatory macrophages, recently described in mice, and shown here to be prevalent in human tissue. The high versatility of microglia is evident through changes in subset distribution across various pathologies, suggesting their contribution in shaping pathological phenotypes. A GPNMB-high subpopulation was expanded in AD and MS. In situ hybridization corroborated this increase in AD, opening the question on the relevance of this population in other pathologies.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Bárbara Leal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Elena Martínez-Saez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabetta Mereu
- Cellular Systems Genomics Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Paulo Pinho E Costa
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-055, Porto, Portugal
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), Cerdanyola del Vallès, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
27
|
Castanho I, Yeganeh PN, Boix CA, Morgan SL, Mathys H, Prokopenko D, White B, Soto LM, Pegoraro G, Shah S, Ploumakis A, Kalavros N, Bennett DA, Lange C, Kim DY, Bertram L, Tsai LH, Kellis M, Tanzi RE, Hide W. Molecular hallmarks of excitatory and inhibitory neuronal resilience and resistance to Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632801. [PMID: 39868232 PMCID: PMC11761133 DOI: 10.1101/2025.01.13.632801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals. Methods We analyzed data from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP), including bulk (n=631) and multi-regional single nucleus (n=48) RNA sequencing. Subjects were categorized into AD, resilient, and control based on β-amyloid and tau pathology, and cognitive status. We identified and prioritized protected cell populations using whole genome sequencing-derived genetic variants, transcriptomic profiling, and cellular composition distribution. Results Transcriptomic results, supported by GWAS-derived polygenic risk scores, place cognitive resilience as an intermediate state in the AD continuum. Tissue-level analysis revealed 43 genes enriched in nucleic acid metabolism and signaling that were differentially expressed between AD and resilience. Only GFAP (upregulated) and KLF4 (downregulated) showed differential expression in resilience compared to controls. Cellular resilience involved reorganization of protein folding and degradation pathways, with downregulation of Hsp90 and selective upregulation of Hsp40, Hsp70, and Hsp110 families in excitatory neurons. Excitatory neuronal subpopulations in the entorhinal cortex (ATP8B1+ and MEF2Chigh) exhibited unique resilience signaling through neurotrophin (modulated by LINGO1) and angiopoietin (ANGPT2/TEK) pathways. We identified MEF2C, ATP8B1, and RELN as key markers of resilient excitatory neuronal populations, characterized by selective vulnerability in AD. Protective rare variant enrichment highlighted vulnerable populations, including somatostatin (SST) inhibitory interneurons, validated through immunofluorescence showing co-expression of rare variant associated RBFOX1 and KIF26B in SST+ neurons in the dorsolateral prefrontal cortex. The maintenance of excitatory-inhibitory balance emerges as a key characteristic of resilience. Conclusions We identified molecular and cellular hallmarks of cognitive resilience, an intermediate state in the AD continuum. Resilience mechanisms include preservation of neuronal function, maintenance of excitatory/inhibitory balance, and activation of protective signaling pathways. Specific excitatory neuronal populations appear to play a central role in mediating cognitive resilience, while a subset of vulnerable SST interneurons likely provide compensation against AD-associated dysregulation. This study offers a framework to leverage natural protective mechanisms to mitigate neurodegeneration and preserve cognition in AD.
Collapse
Affiliation(s)
- Isabel Castanho
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pourya Naderi Yeganeh
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carles A. Boix
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah L. Morgan
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hansruedi Mathys
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Dmitry Prokopenko
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bartholomew White
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Larisa M. Soto
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Giulia Pegoraro
- Harvard Medical School, Boston, MA, USA
- Medical School, University of Exeter, Exeter EX2 5DW, UK
| | | | - Athanasios Ploumakis
- Harvard Medical School, Boston, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nikolas Kalavros
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, 02115, Boston, MA, USA
| | - Doo Yeon Kim
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rudolph E. Tanzi
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Winston Hide
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
28
|
Wang M, Zhang H, Liang J, Huang J, Wu T, Chen N. Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00026-8. [PMID: 39793962 DOI: 10.1016/j.jare.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca2+) signaling pathway in the progression of AD, indicating a complex interplay between Ca2+ dysregulation and various pathological processes. AIM OF REVIEW This review aims to consolidate the current understanding of the role of Ca2+ signaling dysregulation in AD, thus emphasizing its central role amidst various pathological hypotheses. We aim to evaluate the potential of the Ca2+ signaling hypothesis to unify existing theories of AD pathogenesis and explore its implications for developing innovative therapeutic strategies through targeting Ca2+ dysregulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal concepts. First, the indispensable role of Ca2+ homeostasis in neuronal function and its disruption in AD. Second, the interaction between Ca2+ signaling dysfunction and established AD hypotheses posited that Ca2+ dysregulation is a unifying pathway. Third, the dual role of Ca2+ in neurodegeneration and neuroprotection, highlighting the nuanced effects of Ca2+ levels on AD pathology.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
29
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Michal Jazwinski S, Zhou X, Wang X, Zhang K, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease. Nat Commun 2025; 16:482. [PMID: 39779708 PMCID: PMC11711495 DOI: 10.1038/s41467-024-54715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions. Notably, we identified genes highly upregulated in stressed neurons and nearby glial cells, where AD diminished stress-response interactions that promote Aβ clearance. Further, cell-type-specific co-expression analysis highlighted three neuronal modules linked to neuroprotection, protein dephosphorylation, and Aβ regulation, with all modules downregulated as AD progresses. We identified ZNF460 as a transcription factor regulating these modules, offering a potential therapeutic target. In summary, this spatial transcriptome atlas provides valuable insight into AD's molecular mechanisms.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA, 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, College of Integrated Health Sciences, University at Albany, Albany, NY, 12222, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA.
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
30
|
Goyzueta-Mamani LD, Pagliara Lage D, Barazorda-Ccahuana HL, Paco-Chipana M, Candia-Puma MA, Davila-Del-Carpio G, Galdino AS, Machado-de-Avila RA, Cordeiro Giunchetti R, D’Antonio EL, Ferraz Coelho EA, Chávez-Fumagalli MA. Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy. Molecules 2025; 30:173. [PMID: 39795229 PMCID: PMC11722285 DOI: 10.3390/molecules30010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. amazonensis, L. braziliensis, and L. infantum, comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species. Against L. amazonensis, malvidin's IC50 values were 197.71 ± 17.20 µM (stationary amastigotes) and 258.07 ± 17 µM (axenic amastigotes), compared to echioidinin's 272.99 ± 29.90 μM and 335.96 ± 19.35 μM. AmpB was more potent, with IC50 values of 0.06 ± 0.01 µM and 0.10 ± 0.03 µM. Malvidin exhibited lower cytotoxicity (CC50: 2920.31 ± 80.29 µM) than AmpB (1.06 ± 0.12 µM) and a favorable selectivity index. It reduced infection rates by 35.75% in L. amazonensis-infected macrophages. The in silico analysis revealed strong binding between malvidin and Leishmania arginase, with the residues HIS139 and PRO258 playing key roles. Gene expression analysis indicated malvidin's modulation of oxidative stress and DNA repair pathways, involving genes like GLO1 and APEX1. These findings suggest malvidin's potential as a safe, natural antileishmanial compound, warranting further in vivo studies to confirm its therapeutic efficacy and pharmacokinetics in animal models.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial (INCT-BI), Distrito Federal, Brasilia 70070-010, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador 40110-160, Brazil
| | - Edward L. D’Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA;
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| |
Collapse
|
31
|
Ranganathan R, Li S, Sapozhnikov G, Wang S, Song YQ. Lower expression of BIN1's neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241296018. [PMID: 40034505 PMCID: PMC11864243 DOI: 10.1177/25424823241296018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025] Open
Abstract
Background Neurons in Alzheimer's disease (AD) experience elevated DNA damage, with DNA repair sites enriched at enhancer regions of genes essential for neuronal survival. Excitatory neurons in the cortical superficial layers expressing CUX2 and RORB (Cux2+/Rorb+), are selectively vulnerable in AD, but their relationship to single nucleotide polymorphisms (SNPs) in AD genome-wide association studies (GWAS) is unclear. Objective This study aimed to identify and characterize functional AD-GWAS SNPs using single-nucleus RNA sequencing data, focusing on selectively vulnerable neurons and DNA repair hotspots. Methods Filters were applied to identify candidate SNPs based on overlap with repair hotspots, RNA expression, transcription factor binding, AD association, and epigenetic significance. In vitro assays and analyses of large datasets from bulk RNA-seq (n = 1894), proteomics (n = 400), and single-nucleus RNA-seq (n = 424, 1.6 M cells) were conducted. Results BIN1 SNP, rs78710909, met multiple criteria - located in an AD-GWAS locus, repair hotspot, and promoter region. rs78710909C exhibits 1.52× higher AD risk and 5.4× differential transcription factor binding. In vitro, rs78710909C shows greater enhancer activity and weaker p53 but stronger E2F1 binding. BIN1's neuronal isoform is neuroprotective, but its AD expression is lower (p < 0.01). Moreover, only in AD and Cux2+/Rorb + neurons, rs78710909C is associated with a lower average BIN1 neuronal isoform ratio (p < 0.01). The genes upregulated in neurons with lower neuronal isoform ratio were associated with the hallmarks of AD pathology. Conclusions In a disease-relevant mechanism, the BIN1 SNP rs78710909C is associated with a lower ratio of BIN1's neuronal isoform which increases the vulnerability of specific excitatory neurons in AD patients.
Collapse
Affiliation(s)
- Rajesh Ranganathan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siwen Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Georgy Sapozhnikov
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shoutang Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Xu J, Song W, Xu Z, Danziger MM, Karavani E, Zang C, Chen X, Li Y, Paz IMR, Gohel D, Su C, Zhou Y, Hou Y, Shimoni Y, Pieper AA, Hu J, Wang F, Rosen‐Zvi M, Leverenz JB, Cummings J, Cheng F. Single-microglia transcriptomic transition network-based prediction and real-world patient data validation identifies ketorolac as a repurposable drug for Alzheimer's disease. Alzheimers Dement 2025; 21:e14373. [PMID: 39641322 PMCID: PMC11782846 DOI: 10.1002/alz.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION High microglial heterogeneities hinder the development of microglia-targeted treatment for Alzheimer's disease (AD). METHODS We integrated 0.7 million single-nuclei RNA-sequencing transcriptomes from human brains using a variational autoencoder. We predicted AD-relevant microglial subtype-specific transition networks for disease-associated microglia (DAM), tau microglia, and neuroinflammation-like microglia (NIM). We prioritized drugs by specifically targeting microglia-specific transition networks and validated drugs using two independent real-world patient databases. RESULTS We identified putative AD molecular drivers (e.g., SYK, CTSB, and INPP5D) in transition networks of DAM and NIM. Via specifically targeting NIM, we identified that usage of ketorolac was associated with reduced AD incidence in both MarketScan (hazard ratio [HR] = 0.89) and INSIGHT (HR = 0.83) Clinical Research Network databases, mechanistically supported by ketorolac-treated transcriptomic data from AD patient induced pluripotent stem cell-derived microglia. DISCUSSION This study offers insights into the pathobiology of AD-relevant microglial subtypes and identifies ketorolac as a potential anti-inflammatory treatment for AD. HIGHLIGHTS An integrative analysis of ≈ 0.7 million single-nuclei RNA-sequencing transcriptomes from human brains identified Alzheimer's disease (AD)-relevant microglia subtypes. Network-based analysis identified putative molecular drivers (e.g., SYK, CTSB, INPP5D) of transition networks between disease-associated microglia (DAM) and neuroinflammation-like microglia (NIM). Via network-based prediction and population-based validation, we identified that usage of ketorolac (a US Food and Drug Administration-approved anti-inflammatory medicine) was associated with reduced AD incidence in two independent patient databases. Mechanistic observation showed that ketorolac treatment downregulated the Type-I interferon signaling in patient induced pluripotent stem cell-derived microglia, mechanistically supporting its protective effects in real-world patient databases.
Collapse
Affiliation(s)
- Jielin Xu
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Wenqiang Song
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Zhenxing Xu
- Department of Population Health SciencesWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
- Institute of Artificial Intelligence for Digital HealthWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
| | - Michael M. Danziger
- AI for Accelerated Healthcare and Life Sciences DiscoveryIBM Research‐IsraelHaifaIsrael
| | - Ehud Karavani
- AI for Accelerated Healthcare and Life Sciences DiscoveryIBM Research‐IsraelHaifaIsrael
| | - Chengxi Zang
- Department of Population Health SciencesWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
- Institute of Artificial Intelligence for Digital HealthWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
| | - Xin Chen
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Yichen Li
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Isabela M Rivera Paz
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Dhruv Gohel
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Chang Su
- Department of Population Health SciencesWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
- Institute of Artificial Intelligence for Digital HealthWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
| | - Yadi Zhou
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Yuan Hou
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Yishai Shimoni
- AI for Accelerated Healthcare and Life Sciences DiscoveryIBM Research‐IsraelHaifaIsrael
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Geriatric PsychiatryGRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular MedicineSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurosciencesCase Western Reserve UniversitySchool of MedicineClevelandOhioUSA
| | - Jianying Hu
- IBM T.J. Watson Research CenterYorktown HeightsNew YorkUSA
| | - Fei Wang
- Department of Population Health SciencesWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
- Institute of Artificial Intelligence for Digital HealthWeill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
| | - Michal Rosen‐Zvi
- AI for Accelerated Healthcare and Life Sciences DiscoveryIBM Research‐IsraelHaifaIsrael
| | - James B. Leverenz
- Lou Ruvo Center for Brain HealthNeurological InstituteCleveland ClinicClevelandOhioUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome CenterLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine InstituteLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
33
|
Navarro E, Esteras N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants (Basel) 2024; 13:1502. [PMID: 39765831 PMCID: PMC11673142 DOI: 10.3390/antiox13121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of cellular defence mechanisms, essential for maintaining the brain's health. Nrf2 supports mitochondrial function and protects against oxidative damage, which is vital for meeting the brain's substantial energy and antioxidant demands. Furthermore, Nrf2 modulates glial inflammatory responses, playing a pivotal role in preventing neuroinflammation. This review explores these multifaceted functions of Nrf2 within the central nervous system, focusing on its activity across various brain cell types, including neurons, astrocytes, microglia, and oligodendrocytes. Due to the brain's vulnerability to oxidative stress and metabolic challenges, Nrf2 is emerging as a key therapeutic target to enhance resilience against oxidative stress, inflammation, mitochondrial dysfunction, and demyelination, which are central to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Navarro
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Noemí Esteras
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
34
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Kandoi S, Walker RH, Nirenberg MJ, Frucht SJ, Riboldi GM, Zhang B, Pereira AC, Crary JF. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. Acta Neuropathol 2024; 148:80. [PMID: 39648200 PMCID: PMC11625691 DOI: 10.1007/s00401-024-02823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures, and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing (snRNA-seq) and analyzed 50,708 high quality nuclei targeting the diencephalon, including the subthalamic nucleus and adjacent structures, from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type-specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was activated in multiple vulnerable cell types and validated in independent snRNA-seq and bulk RNA-seq datasets. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
Affiliation(s)
- Kristen Whitney
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Won-Min Song
- Mount Sinai Center for Transformative Disease Modeling, Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Abhijeet Sharma
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Diana K Dangoor
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Margaret M Krassner
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hadley W Ressler
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas D Christie
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shrishtee Kandoi
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - Melissa J Nirenberg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Bin Zhang
- Mount Sinai Center for Transformative Disease Modeling, Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ana C Pereira
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| | - John F Crary
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
35
|
Liu CS, Park C, Ngo T, Saikumar J, Palmer CR, Shahnaee A, Romanow WJ, Chun J. RNA Isoform Diversity in Human Neurodegenerative Diseases. eNeuro 2024; 11:ENEURO.0296-24.2024. [PMID: 39658200 PMCID: PMC11693435 DOI: 10.1523/eneuro.0296-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Single-nucleus RNA-sequencing (snRNA-seq) has revealed new levels of cellular organization and diversity within the human brain. However, full-length mRNA isoforms are not resolved in typical snRNA-seq analyses using short-read sequencing that cannot capture full-length transcripts. Here we combine standard 10x Genomics short-read snRNA-seq with targeted PacBio long-read snRNA-seq to examine isoforms of genes associated with neurological diseases at the single-cell level from prefrontal cortex samples of diseased and nondiseased human brain, assessing over 165,000 cells. Samples from 25 postmortem donors with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), or Parkinson's disease (PD), along with age-matched controls, were compared. Analysis of the short-read libraries identified shared and distinct gene expression changes across the diseases. The same libraries were then assayed using enrichment probes to target 50 disease-related genes followed by long-read PacBio sequencing, enabling linkage between cell type and isoform expression. Vast mRNA isoform diversity was observed in all 50 targeted genes, even those that were not differentially expressed in the short-read data. We also developed an informatics method for detection of isoform structural differences in novel isoforms versus the reference annotation. These data expand available single-cell datasets of the human prefrontal cortical transcriptome with combined short- and long-read sequencing across AD, DLB, and PD, revealing increased mRNA isoform diversity that may contribute to disease features and could potentially represent therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Christine S Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Chris Park
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tony Ngo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Janani Saikumar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Carter R Palmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Anis Shahnaee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - William J Romanow
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| |
Collapse
|
36
|
Serrano-Pozo A, Li H, Li Z, Muñoz-Castro C, Jaisa-Aad M, Healey MA, Welikovitch LA, Jayakumar R, Bryant AG, Noori A, Connors TR, Hu M, Zhao K, Liao F, Lin G, Pastika T, Tamm J, Abdourahman A, Kwon T, Bennett RE, Woodbury ME, Wachter A, Talanian RV, Biber K, Karran EH, Hyman BT, Das S. Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer's disease. Nat Neurosci 2024; 27:2384-2400. [PMID: 39528672 PMCID: PMC11614739 DOI: 10.1038/s41593-024-01791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
Astrocytes are crucial to brain homeostasis, yet their changes along the spatiotemporal progression of Alzheimer's disease (AD) neuropathology remain unexplored. Here we performed single-nucleus RNA sequencing of 628,943 astrocytes from five brain regions representing the stereotypical progression of AD pathology across 32 donors spanning the entire normal aging to severe AD continuum. We mapped out several unique astrocyte subclusters that exhibited varying responses to neuropathology across the AD-vulnerable neural network (spatial axis) or AD pathology stage (temporal axis). The proportion of homeostatic, intermediate and reactive astrocytes changed only along the spatial axis, whereas two other subclusters changed along the temporal axis. One of these, a trophic factor-rich subcluster, declined along pathology stages, whereas the other increased in the late stage but returned to baseline levels in the end stage, suggesting an exhausted response with chronic exposure to neuropathology. Our study underscores the complex dynamics of astrocytic responses in AD.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Huan Li
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhaozhi Li
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Clara Muñoz-Castro
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Methasit Jaisa-Aad
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Molly A Healey
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Lindsay A Welikovitch
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Annie G Bryant
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Ayush Noori
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Theresa R Connors
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Miwei Hu
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Karen Zhao
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Fan Liao
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Gen Lin
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Ludwigshafen, Germany
| | | | - Joseph Tamm
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | | | - Taekyung Kwon
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Rachel E Bennett
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Ludwigshafen, Germany
| | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | - Eric H Karran
- AbbVie, Cambridge Research Center, Cambridge, MA, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Chongtham A, Sharma A, Nath B, Murtha K, Gorbachev K, Ramakrishnan A, Schmidt EF, Shen L, Pereira AC. Common and divergent pathways in early stages of glutamate and tau-mediated toxicities in neurodegeneration. Exp Neurol 2024; 382:114967. [PMID: 39326823 DOI: 10.1016/j.expneurol.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
It has been shown that excitotoxicity and tau-mediated toxicities are major contributing factors to neuronal death in Alzheimer's disease (AD). The excitatory amino acid transporter 2 (EAAT2 or GLT-1), the major glutamate transporter in the brain that regulates glutamate levels synaptically and extrasynaptically, has been shown to be deficient in AD brains, leading to excitotoxicity and subsequent cell death. Similarly, buildup of neurofibrillary tangles, which consist of hyperphosphorylated tau protein, correlates with cognitive decline and neuronal atrophy in AD. However, common genes and pathways that are critical in the aforementioned toxicities have not been well elucidated. To investigate the impact of glutamate dyshomeostasis and tau accumulation on translational profiles of affected hippocampal neurons, we used mouse models of excitotoxicity and tau-mediated toxicities (GLT-1-/- and P301S, respectively) in conjunction with BAC-TRAP technology. Our data show that GLT-1 deficiency in CA3 pyramidal neurons leads to translational signatures characterized by dysregulation of pathways associated with synaptic plasticity and neuronal survival, while the P301S mutation induces changes in endocytic pathways and mitochondrial dysfunction. Finally, the commonly dysregulated pathways include impaired ion homeostasis and metabolic pathways. These common pathways may shed light on potential therapeutic targets for ameliorating glutamate and tau-mediated toxicities in AD.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Abhijeet Sharma
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Banshi Nath
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kaitlin Murtha
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kirill Gorbachev
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Eric F Schmidt
- The Rockefeller University, Laboratory of Molecular Biology, New York, NY 10065, United States of America
| | - Li Shen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
38
|
Miyoshi E, Morabito S, Henningfield CM, Das S, Rahimzadeh N, Shabestari SK, Michael N, Emerson N, Reese F, Shi Z, Cao Z, Srinivasan SS, Scarfone VM, Arreola MA, Lu J, Wright S, Silva J, Leavy K, Lott IT, Doran E, Yong WH, Shahin S, Perez-Rosendahl M, Head E, Green KN, Swarup V. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's disease. Nat Genet 2024; 56:2704-2717. [PMID: 39578645 PMCID: PMC11631771 DOI: 10.1038/s41588-024-01961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with its molecular etiology still unclear. Here we present a spatial transcriptomic (ST) and single-nucleus transcriptomic survey of late-onset sporadic AD and AD in Down syndrome (DSAD). Studying DSAD provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. We identified transcriptomic changes that may underlie cortical layer-preferential pathology accumulation. Spatial co-expression network analyses revealed transient and regionally restricted disease processes, including a glial inflammatory program dysregulated in upper cortical layers and implicated in AD genetic risk and amyloid-associated processes. Cell-cell communication analysis further contextualized this gene program in dysregulated signaling networks. Finally, we generated ST data from an amyloid AD mouse model to identify cross-species amyloid-proximal transcriptomic changes with conformational context.
Collapse
Affiliation(s)
- Emily Miyoshi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Jackie Lu
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Sierra Wright
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Kelsey Leavy
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Ira T Lott
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - William H Yong
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Saba Shahin
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
39
|
Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, et alGabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, Close JL, Miller JA, Hodge RD, Larson EB, Grabowski TJ, Hawrylycz M, Keene CD, Lein ES. Integrated multimodal cell atlas of Alzheimer's disease. Nat Neurosci 2024; 27:2366-2383. [PMID: 39402379 PMCID: PMC11614693 DOI: 10.1038/s41593-024-01774-5] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies.
Collapse
Affiliation(s)
- Mariano I Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Victoria M Rachleff
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeanelle Ariza
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anamika Agrawal
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Omar Kana
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - John Campos
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madison Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lisa M Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Khawand
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Mitchell D Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gonzalo Mena
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Kelly P Meyers
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Mark Montine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Paul A Olsen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Maiya Pacleb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Aimee M Schantz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tracy Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Angela M Wilson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ming Xiao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Nicole M Gatto
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Grabowski
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
40
|
Li M, Flack N, Larsen PA. Multifaceted Role of Specialized Neuropeptide-Intensive Neurons on the Selective Vulnerability to Alzheimer's Disease in the Human Brain. Biomolecules 2024; 14:1518. [PMID: 39766225 PMCID: PMC11673071 DOI: 10.3390/biom14121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Regarding Alzheimer's disease (AD), specific neuronal populations and brain regions exhibit selective vulnerability. Understanding the basis of this selective neuronal and regional vulnerability is essential to elucidate the molecular mechanisms underlying AD pathology. However, progress in this area is currently hindered by the incomplete understanding of the intricate functional and spatial diversity of neuronal subtypes in the human brain. Previous studies have demonstrated that neuronal subpopulations with high neuropeptide (NP) co-expression are disproportionately absent in the entorhinal cortex of AD brains at the single-cell level, and there is a significant decline in hippocampal NP expression in naturally aging human brains. Given the role of NPs in neuroprotection and the maintenance of microenvironments, we hypothesize that neurons expressing higher levels of NPs (HNP neurons) possess unique functional characteristics that predispose them to cellular abnormalities, which can manifest as degeneration in AD with aging. To test this hypothesis, multiscale and spatiotemporal transcriptome data from ~1900 human brain samples were analyzed using publicly available datasets. The results indicate that HNP neurons experienced greater metabolic burden and were more prone to protein misfolding. The observed decrease in neuronal abundance during stages associated with a higher risk of AD, coupled with the age-related decline in the expression of AD-associated neuropeptides (ADNPs), provides temporal evidence supporting the role of NPs in the progression of AD. Additionally, the localization of ADNP-producing HNP neurons in AD-associated brain regions provides neuroanatomical support for the concept that cellular/neuronal composition is a key factor in regional AD vulnerability. This study offers novel insights into the molecular and cellular basis of selective neuronal and regional vulnerability to AD in human brains.
Collapse
Affiliation(s)
- Manci Li
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Nicole Flack
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
41
|
Li E, Benitez C, Boggess SC, Koontz M, Rose IV, Martinez D, Draeger N, Teter OM, Samelson AJ, Pierce N, Ullian EM, Kampmann M. CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.26.538498. [PMID: 37163077 PMCID: PMC10168378 DOI: 10.1101/2023.04.26.538498] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The sheer complexity of the brain has complicated our ability to understand the cellular and molecular mechanisms underlying its function in health and disease. Genome-wide association studies have uncovered genetic variants associated with specific neurological phenotypes and diseases. In addition, single-cell transcriptomics have provided molecular descriptions of specific brain cell types and the changes they undergo during disease. Although these approaches provide a giant leap forward towards understanding how genetic variation can lead to functional changes in the brain, they do not establish molecular mechanisms. To address this need, we developed a 3D co-culture system termed iAssembloids (induced multi-lineage assembloids) that enables the rapid generation of homogenous neuron-glia spheroids. We characterize these iAssembloids with immunohistochemistry and single-cell transcriptomics and combine them with large-scale CRISPRi-based screens. In our first application, we ask how glial and neuronal cells interact to control neuronal death and survival. Our CRISPRi-based screens identified that GSK3β inhibits the protective NRF2-mediated oxidative stress response in the presence of reactive oxygen species elicited by high neuronal activity, which was not previously found in 2D monoculture neuron screens. We also apply the platform to investigate the role of APOE- ε4, a risk variant for Alzheimer's Disease, in its effect on neuronal survival. We find that APOE- ε4-expressing astrocytes may promote more neuronal activity as compared to APOE- ε3-expressing astrocytes. This platform expands the toolbox for the unbiased identification of mechanisms of cell-cell interactions in brain health and disease.
Collapse
Affiliation(s)
- Emmy Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Camila Benitez
- TETRAD Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven C. Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Koontz
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Indigo V.L. Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Delsy Martinez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nina Draeger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Olivia M. Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Avi J. Samelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Na’im Pierce
- FirstGen Internship, Emerson Collective, USA; University of California, Berkeley, Berkeley, CA, USA
| | - Erik M. Ullian
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Slota JA, Lamoureux L, Frost KL, Sajesh BV, Booth SA. Single-cell transcriptomics unveils molecular signatures of neuronal vulnerability in a mouse model of prion disease that overlap with Alzheimer's disease. Nat Commun 2024; 15:10174. [PMID: 39580485 PMCID: PMC11585576 DOI: 10.1038/s41467-024-54579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Understanding why certain neurons are more sensitive to dysfunction and death caused by misfolded proteins could provide therapeutically relevant insights into neurodegenerative disorders. Here, we harnessed single-cell transcriptomics to examine live neurons isolated from prion-infected female mice, aiming to identify and characterize prion-vulnerable neuronal subsets. Our analysis revealed distinct transcriptional responses across neuronal subsets, with a consistent pathway-level depletion of synaptic gene expression in damage-vulnerable neurons. By scoring neuronal damage based on the magnitude of depleted synaptic gene expression, we identified a diverse spectrum of prion-vulnerable glutamatergic, GABAergic, and medium spiny neurons. Comparison between prion-vulnerable and resistant neurons highlighted baseline gene expression differences that could influence neuronal vulnerability. For instance, the neuroprotective cold-shock protein Rbm3 exhibited higher baseline gene expression in prion-resistant neurons and was robustly upregulated across diverse neuronal classes upon prion infection. We also identified vulnerability-correlated transcripts that overlapped between prion and Alzheimer's disease. Our findings not only demonstrate the potential of single-cell transcriptomics to identify damage-vulnerable neurons, but also provide molecular insights into neuronal vulnerability and highlight commonalties across neurodegenerative disorders.
Collapse
Affiliation(s)
- Jessy A Slota
- Mycobacteriology, Vector-Borne and Prion Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lise Lamoureux
- Mycobacteriology, Vector-Borne and Prion Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kathy L Frost
- Mycobacteriology, Vector-Borne and Prion Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Babu V Sajesh
- Mycobacteriology, Vector-Borne and Prion Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stephanie A Booth
- Mycobacteriology, Vector-Borne and Prion Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
43
|
Shao Y, Gao Q, Wang L, Li D, Nixon AB, Chan C, Li QJ, Xie J. B-Lightning: using bait genes for marker gene hunting in single-cell data with complex heterogeneity. Brief Bioinform 2024; 26:bbaf033. [PMID: 39927857 PMCID: PMC11808808 DOI: 10.1093/bib/bbaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
In single-cell studies, cells can be characterized with multiple sources of heterogeneity (SOH) such as cell type, developmental stage, cell cycle phase, activation state, and so on. In some studies, many nuisance SOH are of no interest, but may confound the identification of the SOH of interest, and thus affect the accurate annotate the corresponding cell subpopulations. In this paper, we develop B-Lightning, a novel and robust method designed to identify marker genes and cell subpopulations corresponding to an SOH (e.g. cell activation status), isolating it from other SOH (e.g. cell type, cell cycle phase). B-Lightning uses an iterative approach to enrich a small set of trustworthy marker genes to more reliable marker genes and boost the signals of the SOH of interest. Multiple numerical and experimental studies showed that B-Lightning outperforms existing methods in terms of sensitivity and robustness in identifying marker genes. Moreover, it increases the power to differentiate cell subpopulations of interest from other heterogeneous cohorts. B-Lightning successfully identified new senescence markers in ciliated cells from human idiopathic pulmonary fibrosis lung tissues, new T-cell memory and effector markers in the context of SARS-COV-2 infections, and their synchronized patterns that were previously neglected, new AD markers that can better differentiate AD severity, and new dendritic cell functioning markers with differential transcriptomics profiles across breast cancer subtypes. This paper highlights B-Lightning's potential as a powerful tool for single-cell data analysis, particularly in complex data sets where SOH of interest are entangled with numerous nuisance factors.
Collapse
Affiliation(s)
- Yiren Shao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Qi Gao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48104, United States
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, Unversity of Rochester Medical Center, Rochester, NY 14642, United States
| | - Andrew B Nixon
- Department of Medicine, Duke University, Durham, NC 27708, United States
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, United States
- Center for Human Systems Immunology, Duke University, Durham, NC 27708, United States
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, United States
- Center for Human Systems Immunology, Duke University, Durham, NC 27708, United States
- Department of Mathematics, Duke University, Durham, NC 27708, United States
| |
Collapse
|
44
|
Samelson AJ, Ariqat N, McKetney J, Rohanitazangi G, Bravo CP, Bose R, Travaglini KJ, Lam VL, Goodness D, Dixon G, Marzette E, Jin J, Tian R, Tse E, Abskharon R, Pan H, Carroll EC, Lawrence RE, Gestwicki JE, Eisenberg D, Kanaan NM, Southworth DR, Gross JD, Gan L, Swaney DL, Kampmann M. CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.16.545386. [PMID: 37398204 PMCID: PMC10312804 DOI: 10.1101/2023.06.16.545386] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aggregation of the protein tau defines tauopathies, which include Alzheimer's disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to tau aggregation and subsequent dysfunction and death, but the underlying mechanisms are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways, including UFMylation and GPI anchor synthesis. We discover that the E3 ubiquitin ligase CUL5SOCS4 is a potent modifier of tau levels in human neurons, ubiquitinates tau, and is a correlated with vulnerability to tauopathies in mouse and human. Disruption of mitochondrial function promotes proteasomal misprocessing of tau, which generates tau proteolytic fragments like those in disease and changes tau aggregation in vitro. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Nabeela Ariqat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Justin McKetney
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Gita Rohanitazangi
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Celeste Parra Bravo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rudra Bose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | | | - Victor L Lam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Darrin Goodness
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Gary Dixon
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emily Marzette
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA USA
| | - Henry Pan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Chemistry, San José State University, San José, CA, USA
| | - Rosalie E Lawrence
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - David Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA USA
- Howard Hughes Medical Institute UCLA, Los Angeles, CA, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Danielle L Swaney
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Cooper LN, Ansari MY, Capshaw G, Galazyuk A, Lauer AM, Moss CF, Sears KE, Stewart M, Teeling EC, Wilkinson GS, Wilson RC, Zwaka TP, Orman R. Bats as instructive animal models for studying longevity and aging. Ann N Y Acad Sci 2024; 1541:10-23. [PMID: 39365995 PMCID: PMC11580778 DOI: 10.1111/nyas.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Bats (order Chiroptera) are emerging as instructive animal models for aging studies. Unlike some common laboratory species, they meet a central criterion for aging studies: they live for a long time in the wild or in captivity, for 20, 30, and even >40 years. Healthy aging (i.e., healthspan) in bats has drawn attention to their potential to improve the lives of aging humans due to bat imperviousness to viral infections, apparent low rate of tumorigenesis, and unique ability to repair DNA. At the same time, bat longevity also permits the accumulation of age-associated systemic pathologies that can be examined in detail and manipulated, especially in captive animals. Research has uncovered additional and critical advantages of bats. In multiple ways, bats are better analogs to humans than are rodents. In this review, we highlight eight diverse areas of bat research with relevance to aging: genome sequencing, telomeres, and DNA repair; immunity and inflammation; hearing; menstruation and menopause; skeletal system and fragility; neurobiology and neurodegeneration; stem cells; and senescence and mortality. These examples demonstrate the broad relevance of the bat as an animal model and point to directions that are particularly important for human aging studies.
Collapse
Affiliation(s)
- Lisa Noelle Cooper
- Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Mohammad Y. Ansari
- Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Grace Capshaw
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Alex Galazyuk
- Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Amanda M. Lauer
- Department of Otolaryngology – HNSJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Cynthia F. Moss
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Mark Stewart
- Department of Physiology & PharmacologySUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Emma C. Teeling
- School of Biology and Environmental Science, Science Centre EastUniversity College DublinDublinIreland
| | - Gerald S. Wilkinson
- Department of BiologyUniversity of Maryland at College ParkCollege ParkMarylandUSA
| | | | - Thomas P. Zwaka
- Black Family Stem Cell Institute, Huffington Center for Cell‐based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Rena Orman
- Department of Physiology & PharmacologySUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| |
Collapse
|
46
|
Salas IH, Paumier A, Tao T, Derevyanko A, Switzler C, Burgado J, Movsesian M, Metanat S, Dawoodtabar T, Asbell Q, Fassihi A, Allen NJ. Astrocyte transcriptomic analysis identifies glypican 5 downregulation as a contributor to synaptic dysfunction in Alzheimer's disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621182. [PMID: 39554197 PMCID: PMC11565880 DOI: 10.1101/2024.10.30.621182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Synaptic dysfunction is an early feature in Alzheimer's disease (AD) and correlates with cognitive decline. Astrocytes are essential regulators of synapses, impacting synapse formation, maturation, elimination and function. To understand if synapse-supportive functions of astrocytes are altered in AD, we used astrocyte BacTRAP mice to generate a comprehensive dataset of hippocampal astrocyte transcriptional alterations in two mouse models of Alzheimer's pathology (APPswe/PS1dE9 and Tau P301S), characterizing sex and age-dependent changes. We found that astrocytes from both models downregulate genes important for synapse regulation and function such as the synapse-maturation factor Glypican 5. This transcriptional signature is shared with human post-mortem AD patients. Manipulating a key component of this signature by in vivo overexpression of Glypican 5 in astrocytes is sufficient to prevent early synaptic dysfunction and improve spatial learning in APPswe/PS1dE9 mice. These findings open new avenues to target astrocytic factors to mitigate AD synaptic dysfunction.
Collapse
|
47
|
Deng W, Citu C, Liu A, Zhao Z. Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level. Genome Res 2024; 34:1687-1699. [PMID: 39424325 PMCID: PMC11529867 DOI: 10.1101/gr.279363.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wankun Deng
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
48
|
Majerníková N, Marmolejo-Garza A, Salinas CS, Luu MDA, Zhang Y, Trombetta-Lima M, Tomin T, Birner-Gruenberger R, Lehtonen Š, Koistinaho J, Wolters JC, Ayton S, den Dunnen WFA, Dolga AM. The link between amyloid β and ferroptosis pathway in Alzheimer's disease progression. Cell Death Dis 2024; 15:782. [PMID: 39468028 PMCID: PMC11519607 DOI: 10.1038/s41419-024-07152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis. The existing link between ferroptosis and AD has been largely based on cell culture and animal studies, while evidence from human brain tissue is limited. Here we evaluate if Aβ is associated with ferroptosis pathways in post-mortem human brain tissue and whether ferroptosis inhibition could attenuate Aβ-related effects in human brain organoids. Performing positive pixel density scoring on immunohistochemically stained post-mortem Brodmann Area 17 sections revealed that the progression of AD pathology was accompanied by decreased expression of nuclear receptor co-activator 4 and glutathione peroxidase 4 in the grey matter. Differentiating between white and grey matter, allowed for a more precise understanding of the disease's impact on different brain regions. In addition, ferroptosis inhibition prevented Aβ pathology, decreased lipid peroxidation and restored iron storage in human AD iPSCs-derived brain cortical organoids at day 50 of differentiation. Differential gene expression analysis of RNAseq of AD organoids compared to isogenic controls indicated activation of the ferroptotic pathway. This was also supported by results from untargeted proteomic analysis revealing significant changes between AD and isogenic brain organoids. Determining the causality between the development of Aβ plaques and the deregulation of molecular pathways involved in ferroptosis is crucial for developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Naďa Majerníková
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research, Research School of Behavioural and Cognitive Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, Molecular Neurobiology Section, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Casandra Salinas Salinas
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Minh D A Luu
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott Ayton
- The Florey Neuroscience Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research, Research School of Behavioural and Cognitive Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands.
- Department of Pathology and Medical Biology, Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research, Research School of Behavioural and Cognitive Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Wood CA, Somasundaram P, Dundee JM, Rudy MA, Watkins TA, Jankowsky JL. Chemogenetic neuronal silencing decouples c-Jun activation from cell death in the temporal cortex. Eur J Neurosci 2024. [PMID: 39449079 DOI: 10.1111/ejn.16575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Initial symptoms of neurodegenerative diseases are often defined by the loss of the most vulnerable neural populations specific to each disorder. In the early stages of Alzheimer's disease, vulnerable circuits in the temporal lobe exhibit diminished activity prior to overt degeneration. It remains unclear whether these functional changes contribute to regional vulnerability or are simply a consequence of pathology. We previously found that entorhinal neurons in the temporal cortex undergo cell death following transient suppression of electrical activity, suggesting a causal role for activity disruption in neurodegeneration. Here we demonstrate that electrical arrest of this circuit stimulates the injury-response transcription factor c-Jun. Entorhinal silencing induces transcriptional changes consistent with c-Jun activation that share characteristics of gene signatures in other neuronal populations vulnerable to Alzheimer's disease. Despite its established role in the neuronal injury response, inhibiting c-Jun failed to ameliorate entorhinal degeneration following activity disruption. Finally, we present preliminary evidence of integrated stress response activity that may serve as an alternative hypothesis to what drives entorhinal degeneration after silencing. Our data demonstrate that c-Jun is activated in response to neuronal silencing in the entorhinal cortex but is decoupled from subsequent neurodegeneration.
Collapse
Affiliation(s)
- Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jacob M Dundee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa A Rudy
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Trent A Watkins
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Departments of Neurology and Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
50
|
Dai Z, Pang X, Chen N, Fan X, Liu W, Liu J, Chen Z, Fang S, Cai C, Fang J. Network Medicine Approach Unravels Endophenotype Signature in Alzheimer's Disease through Large-Scale Comparative Proteomics Analysis: Vascular Dysfunction as a Prime Example. J Chem Inf Model 2024; 64:7758-7771. [PMID: 39322987 DOI: 10.1021/acs.jcim.4c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuang Chen
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|