1
|
Ghani MU, Zhao G, Pei D, Ma T, Zhao Y, Qu X, Cui H. Inter-species dynamics of non-coding RNAs: Impact on host immunomodulation and pathogen survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105318. [PMID: 39809336 DOI: 10.1016/j.dci.2025.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Non-coding RNAs (ncRNAs) are composed of nucleotides that do not encode proteins but instead serve as guides. It interacts with amino acids at precise genomic sites, influencing chromatin structure and gene expression. These ncRNAs contribute to numerous inter-species dynamics, including those within the vector-host-pathogen triad. Vector-associated ncRNAs are released into hosts to combat the host immune system and sustain arthropod viability. Conversely, hosts may utilize specific ncRNAs as part of their defences to counteract pathogen-carrying vectors. Moreover, pathogens transmitted through vectors' saliva into hosts carry ncRNAs that enhances their virulence. While recent investigations have primarily focused on vector-associated ncRNAs in animal hosts, only a few have explored the functions of pathogen-associated ncRNAs and their role in initiating infections. Our review delves into the historical prospects of ncRNAs, mechanisms by which pathogen-derived ncRNAs influence host-pathogen interactions, regulate gene expression, and evade host defences. Ultimately, it underscores the importance ncRNAs mediated regulatory network in vector-host-pathogen dynamics, offering new strategies to combat vector-borne diseases and enhance public health outcomes.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Dakun Pei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Tao Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yuhan Zhao
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaoxuan Qu
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
He K, Chanfreau GF. Detection of Nuclear RNA Decay Intermediates Using a Modified Oxford Nanopore RNA Sequencing Strategy. Methods Mol Biol 2025; 2863:339-358. [PMID: 39535719 DOI: 10.1007/978-1-0716-4176-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The nuclear RNA exosome complex is crucial for noncoding RNA processing and RNA quality control in the nucleus. Identifying substrates and intermediates of RNA decay pathways, such as those mediated by the exosome complex using Oxford Nanopore sequencing can be difficult in part because a simple method to detect them has been lacking and also because some of these RNAs lack abundant poly(A) tails which are required for Oxford Nanopore-based sequencing. Here we describe an Oxford nanopore-based approach which can be used to identify long reads corresponding to precursors and products of nuclear exosome processing. We are able to observe accumulation of unprocessed snoRNAs, cleavage products of the yeast nuclear RNase III endonuclease Rnt1p when the nuclear exosome component Rrp6p is inactivated.
Collapse
Affiliation(s)
- Kevin He
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Vieira JGP, Duarte GT, Barrera-Rojas CH, Matiolli CC, Viana AJC, Campos RDA, Canesin LED, Vicentini R, Nogueira FTS, Vincentz M. Regulation of abscisic acid receptor mRNA stability: Involvement of microRNA5628 in PYL6 transcript decay. PLANT PHYSIOLOGY 2024; 197:kiae663. [PMID: 39707902 DOI: 10.1093/plphys/kiae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression. Conversely, ABA induces expression of Type 2C PROTEIN PHOSPHATASES (PP2C) genes, which negatively regulate the ABA signaling pathway. This regulatory feedback scheme is likely important for modulating ABA signaling. Here, we provide insight into the mechanisms underlying the ABA-induced repression of PYR/PYL/RCAR expression in Arabidopsis (Arabidopsis thaliana). ABA time course analyses revealed strong and sustained repression of PYR/PYL/RCARs, suggesting that receptor gene regulation is an important step in resetting the ABA signaling pathway. Cordycepin-induced transcription inhibition showed that PYL1/4/5/6 mRNA destabilization is involved in the ABA-induced repression of these genes. Furthermore, genetic evidence indicated that decapping may play a role in PYL4/5/6 mRNA decay. We also provide evidence that the Arabidopsis-specific microRNA5628 (miR5628), which is transiently induced by the ABA core signaling pathway, guides PYL6 transcript cleavage in response to ABA. After cleavage, the resulting 5'- and 3'-cleaved fragments of PYL6 mRNA may be degraded by the XRN4 exoribonuclease. miR5628 is an evolutionary novelty that may enhance PYL6 mRNA degradation, along with decapping and XRN4 activity. Thus, regulating the stability of PYR/PYL/RCAR transcripts maintains ABA signaling homeostasis.
Collapse
Affiliation(s)
- João G P Vieira
- Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
| | - Gustavo T Duarte
- Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Carlos H Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, 13418-900 Piracicaba, Sao Paulo, Brazil
| | - Cleverson C Matiolli
- Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
| | - Américo J C Viana
- Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
| | - Raphael de A Campos
- Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
| | - Lucas E D Canesin
- Genomics for Climate Change Research Group, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
| | - Renato Vicentini
- Systems Biology Laboratory, Department of Plant Genetics and Breeding, University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, 13418-900 Piracicaba, Sao Paulo, Brazil
| | - Michel Vincentz
- Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Dar SA, Malla S, Martinek V, Payea MJ, Lee CTY, Martin J, Khandeshi AJ, Martindale JL, Belair C, Maragkakis M. Full-length direct RNA sequencing uncovers stress granule-dependent RNA decay upon cellular stress. eLife 2024; 13:RP96284. [PMID: 39699162 DOI: 10.7554/elife.96284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Matthew John Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Christopher Tai-Yi Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Aditya Jignesh Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| |
Collapse
|
5
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
6
|
Kozlova A, Pateev I, Shepelkova G, Vasileva O, Zakharova N, Yeremeev V, Ivanov R, Reshetnikov V. A Cap-Optimized mRNA Encoding Multiepitope Antigen ESAT6 Induces Robust Cellular and Humoral Immune Responses Against Mycobacterium tuberculosis. Vaccines (Basel) 2024; 12:1267. [PMID: 39591170 PMCID: PMC11599153 DOI: 10.3390/vaccines12111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives. Tuberculosis is a deadly bacterial disease and the second most common cause of death from monoinfectious diseases worldwide. Comprehensive measures taken by health authorities in various countries in recent decades have saved tens of millions of lives, but the number of new cases of this infection has been steadily increasing in the last few years and already exceeds 10 million new cases annually. The development of new vaccines against tuberculosis is a priority area in the prevention of new cases of the disease. mRNA vaccines have already shown high efficacy against COVID-19 and other viral infections and can currently be considered a promising field of antituberculosis vaccination. In our previous study, we assessed the immunogenicity and protective activity of several types of antituberculosis mRNA vaccines with different 5' untranslated regions, but the efficacy of these vaccines was either comparable with or lower than that of BCG. Methods. Here, we conducted a comprehensive experiment to investigate the effects of cotranscriptional capping conditions and of cap structure on the magnitude of the mRNAs' translation in HEK293T and DC2.4 cells. The most effective cap version was used to create an antituberculosis mRNA vaccine called mEpitope-ESAT6. Results and Conclusions. We compared immunogenicity and protective activity between mEpitope-ESAT6 and BCG and found that the vaccine with the new cap type is more immunogenic than BCG. Nonetheless, the increased immunogenicity did not enhance vaccine-induced protection. Thus, the incorporation of different cap analogs into mRNA allows to modulate the efficacy of mRNA vaccines.
Collapse
Affiliation(s)
- Alena Kozlova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia; (A.K.); (I.P.); (O.V.); (N.Z.); (R.I.)
| | - Ildus Pateev
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia; (A.K.); (I.P.); (O.V.); (N.Z.); (R.I.)
| | - Galina Shepelkova
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (G.S.); (V.Y.)
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia; (A.K.); (I.P.); (O.V.); (N.Z.); (R.I.)
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia; (A.K.); (I.P.); (O.V.); (N.Z.); (R.I.)
| | - Vladimir Yeremeev
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (G.S.); (V.Y.)
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia; (A.K.); (I.P.); (O.V.); (N.Z.); (R.I.)
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia; (A.K.); (I.P.); (O.V.); (N.Z.); (R.I.)
| |
Collapse
|
7
|
Chen TW, Liao HW, Noble M, Siao JY, Cheng YH, Chiang WC, Lo YT, Chang CT. Human DCP1 is crucial for mRNA decapping and possesses paralog-specific gene regulating functions. eLife 2024; 13:RP94811. [PMID: 39485278 PMCID: PMC11530239 DOI: 10.7554/elife.94811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Michelle Noble
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Jing-Yi Siao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu-Hsuan Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi-Tzu Lo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
8
|
Yuan P, Cai Q, Hu Z. Arabidopsis DEAD-box RNA helicase 12 is required for salt tolerance during seed germination. Biochem Biophys Res Commun 2024; 725:150228. [PMID: 38936167 DOI: 10.1016/j.bbrc.2024.150228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
The DEAD-box family is the largest family of RNA helicases (RHs), playing crucial roles in RNA metabolism and plant stress resistance. In this study, we report that an RNA helicase, RH12, positively regulates plant salt tolerance, as rh12 knockout mutants exhibit heightened sensitivity to salt stress. Further analysis indicates that RH12 is involved in the abscisic acid (ABA) response, as rh12 knockout mutants show increased sensitivity to ABA. Examination of reactive oxygen species (ROS) revealed that RH12 helps inhibit ROS accumulation under salt stress during seed germination. Additionally, RH12 accelerates the degradation of specific germination-related transcripts. In conclusion, our results demonstrate that RH12 plays multiple roles in the salt stress response in Arabidopsis.
Collapse
Affiliation(s)
- Penglai Yuan
- College of Life Sciences, Nanjing Agricultural University, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, China.
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Weber R, Chang CT. Human DDX6 regulates translation and decay of inefficiently translated mRNAs. eLife 2024; 13:RP92426. [PMID: 38989862 PMCID: PMC11239181 DOI: 10.7554/elife.92426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.
Collapse
Affiliation(s)
- Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute for Regenerative Medicine (IREM), University of ZurichZurichSwitzerland
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| |
Collapse
|
10
|
Fansler MM, Mitschka S, Mayr C. Quantifying 3'UTR length from scRNA-seq data reveals changes independent of gene expression. Nat Commun 2024; 15:4050. [PMID: 38744866 PMCID: PMC11094166 DOI: 10.1038/s41467-024-48254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Although more than half of all genes generate transcripts that differ in 3'UTR length, current analysis pipelines only quantify the amount but not the length of mRNA transcripts. 3'UTR length is determined by 3' end cleavage sites (CS). We map CS in more than 200 primary human and mouse cell types and increase CS annotations relative to the GENCODE database by 40%. Approximately half of all CS are used in few cell types, revealing that most genes only have one or two major 3' ends. We incorporate the CS annotations into a computational pipeline, called scUTRquant, for rapid, accurate, and simultaneous quantification of gene and 3'UTR isoform expression from single-cell RNA sequencing (scRNA-seq) data. When applying scUTRquant to data from 474 cell types and 2134 perturbations, we discover extensive 3'UTR length changes across cell types that are as widespread and coordinately regulated as gene expression changes but affect mostly different genes. Our data indicate that mRNA abundance and mRNA length are two largely independent axes of gene regulation that together determine the amount and spatial organization of protein synthesis.
Collapse
Affiliation(s)
- Mervin M Fansler
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
12
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Xue X, Zhang C, Li X, Wang J, Zhang H, Feng Y, Xu N, Li H, Tan C, Jiang Y, Tan Y. mRNA PROTACs: engineering PROTACs for high-efficiency targeted protein degradation. MedComm (Beijing) 2024; 5:e478. [PMID: 38374873 PMCID: PMC10876204 DOI: 10.1002/mco2.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are essential bifunctional molecules that target proteins of interest (POIs) for degradation by cellular ubiquitination machinery. Despite significant progress made in understanding PROTACs' functions, their therapeutic potential remains largely untapped. As a result of the success of highly flexible, scalable, and low-cost mRNA therapies, as well as the advantages of the first generation of peptide PROTACs (p-PROTACs), we present for the first time an engineering mRNA PROTACs (m-PROTACs) strategy. This design combines von Hippel-Lindau (VHL) recruiting peptide encoding mRNA and POI-binding peptide encoding mRNA to form m-PROTAC and promote cellular POI degradation. We then performed proof-of-concept experiments using two m-PROTACs targeting two cancer-related proteins, estrogen receptor alpha and B-cell lymphoma-extra large protein. Our results demonstrated that m-PROTACs could successfully degrade the POIs in different cell lines and more effectively inhibit cell proliferation than the traditional p-PROTACs. Moreover, the in vivo experiment demonstrated that m-PROTAC led to significant tumor regression in the 4T1 mouse xenograft model. This finding highlights the enormous potential of m-PROTAC as a promising approach for targeted protein degradation therapy.
Collapse
Affiliation(s)
- Xiaoqi Xue
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Chen Zhang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Xiaolin Li
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Junqiao Wang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Haowei Zhang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Ying Feng
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Naihan Xu
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenChina
| | - Hongyan Li
- Shenzhen NeoCura Biotechnology Co., Ltd.ShenzhenChina
| | - Chunyan Tan
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Yuyang Jiang
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Ying Tan
- State Key Laboratory of Chemical OncogenomicsInstitute of Biopharmaceutical and Health EngineeringShenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| |
Collapse
|
14
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
15
|
Kershaw CJ, Nelson MG, Castelli LM, Jennings MD, Lui J, Talavera D, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Translation factor and RNA binding protein mRNA interactomes support broader RNA regulons for posttranscriptional control. J Biol Chem 2023; 299:105195. [PMID: 37633333 PMCID: PMC10562868 DOI: 10.1016/j.jbc.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Michael G Nelson
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Simon J Hubbard
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Park J, Kim M, Yi H, Baeg K, Choi Y, Lee YS, Lim J, Kim VN. Short poly(A) tails are protected from deadenylation by the LARP1-PABP complex. Nat Struct Mol Biol 2023; 30:330-338. [PMID: 36849640 DOI: 10.1038/s41594-023-00930-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/10/2023] [Indexed: 03/01/2023]
Abstract
Deadenylation generally constitutes the first and pivotal step in eukaryotic messenger RNA decay. Despite its importance in posttranscriptional regulations, the kinetics of deadenylation and its regulation remain largely unexplored. Here we identify La ribonucleoprotein 1, translational regulator (LARP1) as a general decelerator of deadenylation, which acts mainly in the 30-60-nucleotide (nt) poly(A) length window. We measured the steady-state and pulse-chased distribution of poly(A)-tail length, and found that deadenylation slows down in the 30-60-nt range. LARP1 associates preferentially with short tails and its depletion results in accelerated deadenylation specifically in the 30-60-nt range. Consistently, LARP1 knockdown leads to a global reduction of messenger RNA abundance. LARP1 interferes with the CCR4-NOT-mediated deadenylation in vitro by forming a ternary complex with poly(A)-binding protein (PABP) and poly(A). Together, our work reveals a dynamic nature of deadenylation kinetics and a role of LARP1 as a poly(A) length-specific barricade that creates a threshold for deadenylation.
Collapse
Affiliation(s)
- Joha Park
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Myeonghwan Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Stanford University School of Medicine, Stanford, CA, USA
| | - Kyungmin Baeg
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
| | - Yongkuk Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Yale School of Medicine, New Haven, CT, USA
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
18
|
Oude Blenke E, Örnskov E, Schöneich C, Nilsson GA, Volkin DB, Mastrobattista E, Almarsson Ö, Crommelin DJA. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. J Pharm Sci 2023; 112:386-403. [PMID: 36351479 PMCID: PMC9637289 DOI: 10.1016/j.xphs.2022.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The remarkable impact of mRNA vaccines on mitigating disease and improving public health has been amply demonstrated during the COVID-19 pandemic. Many new mRNA-based vaccine and therapeutic candidates are in development, yet the current reality of their stability limitations requires their frozen storage. Numerous challenges remain to improve formulated mRNA stability and enable refrigerator storage, and this review provides an update on developments to tackle this multi-faceted stability challenge. We describe the chemistry underlying mRNA degradation during storage and highlight how lipid nanoparticle (LNP) formulations are a double-edged sword: while LNPs protect mRNA against enzymatic degradation, interactions with and between LNP excipients introduce additional risks for mRNA degradation. We also discuss strategies to improve mRNA stability both as a drug substance (DS) and a drug product (DP) including the (1) design of the mRNA molecule (nucleotide selection, primary and secondary structures), (2) physical state of the mRNA-LNP complexes, (3) formulation composition and purity of the components, and (4) DS and DP manufacturing processes. Finally, we summarize analytical control strategies to monitor and assure the stability of mRNA-based candidates, and advocate for an integrated analytical and formulation development approach to further improve their storage, transport, and in-use stability profiles.
Collapse
Affiliation(s)
- Erik Oude Blenke
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - Eivor Örnskov
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States.
| | - Gunilla A Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - David B Volkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States; Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047 United States.
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands.
| | - Örn Almarsson
- AfiRx LLC, Chestnut Hill, MA 02467 United States; Visiting Fellow, UNSW RNA Institute and the School of Chemistry, UNSW, Sydney, Australia.
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands.
| |
Collapse
|
19
|
Forbes Beadle L, Love JC, Shapovalova Y, Artemev A, Rattray M, Ashe HL. Combined modelling of mRNA decay dynamics and single-molecule imaging in the Drosophila embryo uncovers a role for P-bodies in 5' to 3' degradation. PLoS Biol 2023; 21:e3001956. [PMID: 36649329 PMCID: PMC9882958 DOI: 10.1371/journal.pbio.3001956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/27/2023] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Regulation of mRNA degradation is critical for a diverse array of cellular processes and developmental cell fate decisions. Many methods for determining mRNA half-lives rely on transcriptional inhibition or metabolic labelling. Here, we use a non-invasive method for estimating half-lives for hundreds of mRNAs in the early Drosophila embryo. This approach uses the intronic and exonic reads from a total RNA-seq time series and Gaussian process regression to model the dynamics of premature and mature mRNAs. We show how regulation of mRNA stability is used to establish a range of mature mRNA dynamics during embryogenesis, despite shared transcription profiles. Using single-molecule imaging, we provide evidence that, for the mRNAs tested, there is a correlation between short half-life and mRNA association with P-bodies. Moreover, we detect an enrichment of mRNA 3' ends in P-bodies in the early embryo, consistent with 5' to 3' degradation occurring in P-bodies for at least a subset of mRNAs. We discuss our findings in relation to recently published data suggesting that the primary function of P-bodies in other biological contexts is mRNA storage.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer C. Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Yuliya Shapovalova
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Artem Artemev
- Department of Computing, Imperial College London, London, United Kingdom
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (MR); (HLA)
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (MR); (HLA)
| |
Collapse
|
20
|
Lo Giudice C, Zambelli F, Chiara M, Pavesi G, Tangaro M, Picardi E, Pesole G. UTRdb 2.0: a comprehensive, expert curated catalog of eukaryotic mRNAs untranslated regions. Nucleic Acids Res 2022; 51:D337-D344. [PMID: 36399486 PMCID: PMC9825521 DOI: 10.1093/nar/gkac1016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The 5' and 3' untranslated regions of eukaryotic mRNAs (UTRs) play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization, and message stability. Since 1996, we have developed and maintained UTRdb, a specialized database of UTR sequences. Here we present UTRdb 2.0, a major update of UTRdb featuring an extensive collection of eukaryotic 5' and 3' UTR sequences, including over 26 million entries from over 6 million genes and 573 species, enriched with a curated set of functional annotations. Annotations include CAGE tags and polyA signals to label the completeness of 5' and 3'UTRs, respectively. In addition, uORFs and IRES are annotated in 5'UTRs as well as experimentally validated miRNA targets in 3'UTRs. Further annotations include evolutionarily conserved blocks, Rfam motifs, ADAR-mediated RNA editing events, and m6A modifications. A web interface allowing a flexible selection and retrieval of specific subsets of UTRs, selected according to a combination of criteria, has been implemented which also provides comprehensive download facilities. UTRdb 2.0 is accessible at http://utrdb.cloud.ba.infn.it/utrdb/.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, 70126 Bari, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy,Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, 20133 Milan, Italy,Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, 20133 Milan, Italy,Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, 70126 Bari, Italy,Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- To whom correspondence should be addressed. Tel: +39 0805443588;
| |
Collapse
|
21
|
Overbeck JH, Stelzig D, Fuchs AL, Wurm JP, Sprangers R. Observation of conformational changes that underlie the catalytic cycle of Xrn2. Nat Chem Biol 2022; 18:1152-1160. [PMID: 36008487 PMCID: PMC9512700 DOI: 10.1038/s41589-022-01111-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
Nuclear magnetic resonance (NMR) methods that quantitatively probe motions on molecular and atomic levels have propelled the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we studied the structure and dynamics of the essential 100-kDa eukaryotic 5'→3' exoribonuclease Xrn2. A combination of complementary fluorine and methyl-TROSY NMR spectroscopy reveals that the apo enzyme is highly dynamic around the catalytic center. These observed dynamics are in agreement with a transition of the enzyme from the ground state into a catalytically competent state. We show that the conformational equilibrium in Xrn2 shifts substantially toward the active state in the presence of substrate and magnesium. Finally, our data reveal that the dynamics in Xrn2 correlate with the RNA degradation rate, as a mutation that attenuates motions also affects catalytic activity. In that light, our results stress the importance of studies that go beyond static structural information.
Collapse
Affiliation(s)
- Jan H Overbeck
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - David Stelzig
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Anna-Lisa Fuchs
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
- Department of Informatics, TU Munich, Garching, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
22
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Splicing inactivation generates hybrid mRNA-snoRNA transcripts targeted by cytoplasmic RNA decay. Proc Natl Acad Sci U S A 2022; 119:e2202473119. [PMID: 35878033 PMCID: PMC9351541 DOI: 10.1073/pnas.2202473119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many small nucleolar RNAs (snoRNA)s are processed from introns of host genes, but the importance of splicing for proper biogenesis and the fate of the snoRNAs is not well understood. Here, we show that inactivation of splicing factors or mutation of splicing signals leads to the accumulation of partially processed hybrid messenger RNA-snoRNA (hmsnoRNA) transcripts. hmsnoRNAs are processed to the mature 3' ends of the snoRNAs by the nuclear exosome and bound by small nucleolar ribonucleoproteins. hmsnoRNAs are unaffected by translation-coupled RNA quality-control pathways, but they are degraded by the major cytoplasmic exonuclease Xrn1p, due to their messenger RNA (mRNA)-like 5' extensions. These results show that completion of splicing is required to promote complete and accurate processing of intron-encoded snoRNAs and that splicing defects lead to degradation of hybrid mRNA-snoRNA species by cytoplasmic decay, underscoring the importance of splicing for the biogenesis of intron-encoded snoRNAs.
Collapse
|
24
|
Fritz SE, Ranganathan S, Wang CD, Hogg JR. An alternative UPF1 isoform drives conditional remodeling of nonsense-mediated mRNA decay. EMBO J 2022; 41:e108898. [PMID: 35403729 PMCID: PMC9108617 DOI: 10.15252/embj.2021108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway monitors translation termination in order to degrade transcripts with premature stop codons and regulate thousands of human genes. Here, we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL , enables condition-dependent remodeling of NMD specificity. Previous studies indicate that the extension of a conserved regulatory loop in the UPF1LL helicase core confers a decreased propensity to dissociate from RNA upon ATP hydrolysis relative to UPF1SL , the major UPF1 isoform. Using biochemical and transcriptome-wide approaches, we find that UPF1LL can circumvent the protective RNA binding proteins PTBP1 and hnRNP L to preferentially bind and down-regulate transcripts with long 3'UTRs normally shielded from NMD. Unexpectedly, UPF1LL supports induction of NMD on new populations of substrate mRNAs in response to activation of the integrated stress response and impaired translation efficiency. Thus, while canonical NMD is abolished by moderate translational repression, UPF1LL activity is enhanced, offering the possibility to rapidly rewire NMD specificity in response to cellular stress.
Collapse
Affiliation(s)
- Sarah E Fritz
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Soumya Ranganathan
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Clara D Wang
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - J Robert Hogg
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
25
|
Peters JK, Tibble RW, Warminski M, Jemielity J, Gross JD. Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Structure 2022; 30:721-732.e4. [PMID: 35290794 PMCID: PMC9081138 DOI: 10.1016/j.str.2022.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 02/16/2022] [Indexed: 01/06/2023]
Abstract
Poxviruses encode decapping enzymes that remove the protective 5' cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5' mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.
Collapse
Affiliation(s)
- Jessica K Peters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan W Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Powell P, Bhardwaj U, Goss D. Eukaryotic initiation factor 4F promotes a reorientation of eukaryotic initiation factor 3 binding on the 5' and the 3' UTRs of barley yellow dwarf virus mRNA. Nucleic Acids Res 2022; 50:4988-4999. [PMID: 35446425 PMCID: PMC9122605 DOI: 10.1093/nar/gkac284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
Abstract
Viral mRNAs that lack a 5′ m7GTP cap and a 3′ poly-A tail rely on structural elements in their untranslated regions (UTRs) to form unique RNA-protein complexes that regulate viral translation. Recent studies of the barley yellow dwarf virus (BYDV) have revealed eukaryotic initiation factor 3 (eIF3) plays a significant role in facilitating communication between its 5′ and 3′ UTRs by binding both UTRs simultaneously. This report uses in vitro translation assays, fluorescence anisotropy binding assays, and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting to identify secondary structures that are selectively interacting with eIF3. SHAPE data also show that eIF3 alters its interaction with BYDV structures when another factor crucial for BYDV translation, eIF4F, is introduced by the 3′ BYDV translational enhancer (BTE). The observed BTE and eIF4F-induced shift of eIF3 position on the 5’ UTR and the translational effects of altering eIF3-binding structures (SLC and SLII) support a new model for BYDV translation initiation that requires the reorientation of eIF3 on BYDV UTRs. This eIF3 function in BYDV translation initiation is both reminiscent of and distinct from eIF3–RNA interactions found in other non-canonically translating mRNAs (e.g. HCV). This characterization of a new role in translation initiation expands the known functionality of eIF3 and may be broadly applicable to other non-canonically translating mRNAs.
Collapse
Affiliation(s)
- Paul Powell
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Usha Bhardwaj
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA
| | - Dixie Goss
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
27
|
Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, Yamagata A, Yabuki Y, Kobayashi K, Shirouzu M, Inagaki T, Huang THM, Musi N, Topisirovic I, Larsson O, Morita M. Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab 2022; 34:564-580.e8. [PMID: 35385705 PMCID: PMC9386786 DOI: 10.1016/j.cmet.2022.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genki Minegishi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yukako Yabuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical Pharmacy, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-shi, Gunma 371-8512, Japan
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; San Antonio Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, Division of Experimental Medicine and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
30
|
Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J Clin Invest 2022; 132:e156211. [PMID: 35289317 PMCID: PMC8920340 DOI: 10.1172/jci156211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Kajjo S, Sharma S, Chen S, Brothers WR, Cott M, Hasaj B, Jovanovic P, Larsson O, Fabian MR. PABP prevents the untimely decay of select mRNA populations in human cells. EMBO J 2022; 41:e108650. [PMID: 35156721 PMCID: PMC8922270 DOI: 10.15252/embj.2021108650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells. Remarkably, our transcriptome-wide analysis only detects marginal mRNA translation changes in PABP-depleted cells. In contrast, rapidly depleting PABP alters mRNA abundance and stability, albeit non-uniformly. Otherwise stable transcripts, including those encoding proteins with constitutive functions, are destabilized in PABP-depleted cells. In contrast, many unstable mRNAs, including those encoding proteins with regulatory functions, decay at similar rates in presence or absence of PABP. Moreover, PABP depletion-induced cell death can partially be suppressed by disrupting the mRNA decapping and 5'-3' decay machinery. Finally, we provide evidence that the LSM1-7 complex promotes decay of "stable" mRNAs in PABP-depleted cells. Taken together, these findings suggest that PABP plays an important role in preventing the untimely decay of select mRNA populations.
Collapse
Affiliation(s)
- Sam Kajjo
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Sahil Sharma
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Shan Chen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - William R Brothers
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Megan Cott
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Benedeta Hasaj
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Suzuki T, Hoshina M, Nishijima S, Hoshina N, Kikuguchi C, Tomohiro T, Fukao A, Fujiwara T, Yamamoto T. Regulation of CCR4-NOT complex deadenylase activity and cellular responses by MK2-dependent phosphorylation of CNOT2. RNA Biol 2022; 19:234-246. [PMID: 35129087 PMCID: PMC8820811 DOI: 10.1080/15476286.2021.2021676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
CCR4-NOT complex-mediated mRNA deadenylation serves critical functions in multiple biological processes, yet how this activity is regulated is not fully understood. Here, we show that osmotic stress induces MAPKAPK-2 (MK2)-mediated phosphorylation of CNOT2. Programmed cell death is greatly enhanced by osmotic stress in CNOT2-depleted cells, indicating that CNOT2 is responsible for stress resistance of cells. Although wild-type (WT) and non-phosphorylatable CNOT2 mutants reverse this sensitivity, a phosphomimetic form of CNOT2, in which serine at the phosphorylation site is replaced with glutamate, does not have this function. We also show that mRNAs have elongated poly(A) tails in CNOT2-depleted cells and that introduction of CNOT2 WT or a non-phosphorylatable mutant, but not phosphomimetic CNOT2, renders their poly(A) tail lengths comparable to those in control HeLa cells. Consistent with this, the CCR4-NOT complex containing phosphomimetic CNOT2 exhibits less deadenylase activity than that containing CNOT2 WT. These data suggest that CCR4-NOT complex deadenylase activity is regulated by post-translational modification, yielding dynamic control of mRNA deadenylation.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Miyuki Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Naosuke Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chisato Kikuguchi
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Takumi Tomohiro
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | | | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
34
|
Krzyszton M, Kufel J. Analysis of mRNA-derived siRNAs in mutants of mRNA maturation and surveillance pathways in Arabidopsis thaliana. Sci Rep 2022; 12:1474. [PMID: 35087200 PMCID: PMC8795450 DOI: 10.1038/s41598-022-05574-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Defects in RNA maturation and RNA decay factors may generate substrates for the RNA interference machinery. This phenomenon was observed in plants where mutations in some RNA-related factors lead to the production of RNA-quality control small interfering RNAs and several mutants show enhanced silencing of reporter transgenes. To assess the potential of RNAi activation on endogenous transcripts, we sequenced small RNAs from a set of Arabidopsis thaliana mutants with defects in various RNA metabolism pathways. We observed a global production of siRNAs caused by inefficient pre-mRNA cleavage and polyadenylation leading to read-through transcription into downstream antisense genes. In addition, in the lsm1a lsm1b double mutant, we identified NIA1, SMXL5, and several miRNA-targeted mRNAs as producing siRNAs, a group of transcripts suggested being especially sensitive to deficiencies in RNA metabolism. However, in most cases, RNA metabolism perturbations do not lead to the widespread production of siRNA derived from mRNA molecules. This observation is contrary to multiple studies based on reporter transgenes and suggests that only a very high accumulation of defective mRNA species caused by specific mutations or substantial RNA processing defects trigger RNAi pathways.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
35
|
Snider DB, Arthur GK, Falduto GH, Olivera A, Ehrhardt-Humbert LC, Smith E, Smith C, Metcalfe DD, Cruse G. Targeting KIT by frameshifting mRNA transcripts as a therapeutic strategy for aggressive mast cell neoplasms. Mol Ther 2022; 30:295-310. [PMID: 34371183 PMCID: PMC8753370 DOI: 10.1016/j.ymthe.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
Activating mutations in c-KIT are associated with the mast cell (MC) clonal disorders cutaneous mastocytosis and systemic mastocytosis and its variants, including aggressive systemic mastocytosis, MC leukemia, and MC sarcoma. Currently, therapies inhibiting KIT signaling are a leading strategy to treat MC proliferative disorders. However, these approaches may have off-target effects, and in some patients, complete remission or improved survival time cannot be achieved. These limitations led us to develop an approach using chemically stable exon skipping oligonucleotides (ESOs) that induce exon skipping of precursor (pre-)mRNA to alter gene splicing and introduce a frameshift into mature KIT mRNA transcripts. The result of this alternate approach results in marked downregulation of KIT expression, diminished KIT signaling, inhibition of MC proliferation, and rapid induction of apoptosis in neoplastic HMC-1.2 MCs. We demonstrate that in vivo administration of KIT targeting ESOs significantly inhibits tumor growth and systemic organ infiltration using both an allograft mastocytosis model and a humanized xenograft MC tumor model. We propose that our innovative approach, which employs well-tolerated, chemically stable oligonucleotides to target KIT expression through unconventional pathways, has potential as a KIT-targeted therapeutic alone, or in combination with agents that target KIT signaling, in the treatment of KIT-associated malignancies.
Collapse
Affiliation(s)
- Douglas B. Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Greer K. Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Guido H. Falduto
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren C. Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Emmaline Smith
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Cierra Smith
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA,Corresponding author: Glenn Cruse, PhD, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Biomedical Partnership Center, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
36
|
Kwak Y, Kwak H. Genome-Wide Identification of Polyadenylation Dynamics with TED-Seq. Methods Mol Biol 2022; 2404:281-298. [PMID: 34694615 DOI: 10.1007/978-1-0716-1851-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyadenylation and deadenylation of mRNA are major RNA modifications associated with nucleus-to-cytoplasm translocation, mRNA stability, translation efficiency, and mRNA decay pathways. Our current knowledge of polyadenylation and deadenylation has been expanded due to recent advances in transcriptome-wide poly(A) tail length assays. Whereas these methods measure poly(A) length by quantifying the adenine (A) base stretch at the 3' end of mRNA, we developed a more cost-efficient technique that does not rely on A-base counting, called tail-end-displacement sequencing (TED-seq). Through sequencing highly size-selected 3' RNA fragments including the poly(A) tail pieces, TED-seq provides accurate measure of transcriptome-wide poly(A)-tail lengths in high resolution, economically suitable for larger scale analysis under various biologically transitional contexts.
Collapse
Affiliation(s)
- Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Graduate Field of Genetics, Genomics, and Developmental Biology, Cornell University, Ithaca, NY, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
37
|
Review of Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010057. [PMID: 35054450 PMCID: PMC8780073 DOI: 10.3390/life12010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causing pathogen of the unprecedented global Coronavirus Disease 19 (COVID-19) pandemic. Upon infection, the virus manipulates host cellular machinery and ribosomes to synthesize its own proteins for successful replication and to facilitate further infection. SARS-CoV-2 executes a multi-faceted hijacking of the host mRNA translation and cellular protein synthesis. Viral nonstructural proteins (NSPs) interact with a range of different ribosomal states and interfere with mRNA translation. Concurrent mutations on NSPs and spike proteins contribute to the epidemiological success of variants of concern (VOCs). The interactions between ribosomes and SARS-CoV-2 represent attractive targets for the development of antiviral therapeutics and vaccines. Recently approved COVID-19 mRNA vaccines also utilize the cellular machinery, to produce antigens and trigger immune responses. The design features of the mRNA vaccines are critical to efficient mRNA translation in ribosomes, and are directly related to the vaccine's efficacy, safety, and immunogenicity. This review describes recent knowledge of how the SARS-CoV-2 virus' genomic characteristics interfere with ribosomal function and mRNA translation. In addition, we discuss the current learning of the design features of mRNA vaccines and their impacts on translational activity in ribosomes. The understanding of ribosomal interactions with the virus and mRNA vaccines offers the foundation for antiviral therapeutic discovery and continuous mRNA vaccine optimization to lower the dose, to increase durability and/or to reduce adverse effects.
Collapse
|
38
|
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2021; 10:50. [PMID: 35052730 PMCID: PMC8773365 DOI: 10.3390/biomedicines10010050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle "from design to production" of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell's genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evdokia Mandala
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine K Markopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
39
|
Phillips CN, Schowe S, Langeberg CJ, Siddique N, Chapman EG, Resendiz MJE. Processing of RNA Containing 8-Oxo-7,8-Dihydroguanosine (8-oxoG) by the Exoribonuclease Xrn-1. Front Mol Biosci 2021; 8:780315. [PMID: 34869601 PMCID: PMC8634602 DOI: 10.3389/fmolb.2021.780315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding how oxidatively damaged RNA is handled intracellularly is of relevance due to the link between oxidized RNA and the progression/development of some diseases as well as aging. Among the ribonucleases responsible for the decay of modified (chemically or naturally) RNA is the exonuclease Xrn-1, a processive enzyme that catalyzes the hydrolysis of 5′-phosphorylated RNA in a 5′→3′ direction. We set out to explore the reactivity of this exonuclease towards oligonucleotides (ONs, 20-nt to 30-nt long) of RNA containing 8-oxo-7,8-dihydroguanosine (8-oxoG), obtained via solid-phase synthesis. The results show that Xrn-1 stalled at sites containing 8-oxoG, evidenced by the presence of a slower moving band (via electrophoretic analyses) than that observed for the canonical analogue. The observed fragment(s) were characterized via PAGE and MALDI-TOF to confirm that the oligonucleotide fragment(s) contained a 5′-phosphorylated 8-oxoG. Furthermore, the yields for this stalling varied from app. 5–30% with 8-oxoG located at different positions and in different sequences. To gain a better understanding of the decreased nuclease efficiency, we probed: 1) H-bonding and spatial constraints; 2) anti-syn conformational changes; 3) concentration of divalent cation; and 4) secondary structure. This was carried out by introducing methylated or brominated purines (m1G, m6,6A, or 8-BrG), probing varying [Mg2+], and using circular dichroism (CD) to explore the formation of structured RNA. It was determined that spatial constraints imposed by conformational changes around the glycosidic bond may be partially responsible for stalling, however, the results do not fully explain some of the observed higher stalling yields. We hypothesize that altered π-π stacking along with induced H-bonding interactions between 8-oxoG and residues within the binding site may also play a role in the decreased Xrn-1 efficiency. Overall, these observations suggest that other factors, yet to be discovered/established, are likely to contribute to the decay of oxidized RNA. In addition, Xrn-1 degraded RNA containing m1G, and stalled mildly at sites where it encountered m6,6A, or 8-BrG, which is of particular interest given that the former two are naturally occurring modifications.
Collapse
Affiliation(s)
- Cheyenne N Phillips
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Shawn Schowe
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Conner J Langeberg
- Department of Chemistry, University of Denver, Denver, CO, United States
| | - Namoos Siddique
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Erich G Chapman
- Department of Chemistry, University of Denver, Denver, CO, United States
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
40
|
Lin X, Fonseca MAS, Breunig JJ, Corona RI, Lawrenson K. In vivo discovery of RNA proximal proteins via proximity-dependent biotinylation. RNA Biol 2021; 18:2203-2217. [PMID: 34006179 PMCID: PMC8648264 DOI: 10.1080/15476286.2021.1917215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
RNA molecules function as messenger RNAs (mRNAs) that encode proteins and noncoding transcripts that serve as adaptor molecules, structural components, and regulators of genome organization and gene expression. Their function and regulation are largely mediated by RNA binding proteins (RBPs). Here we present RNA proximity labelling (RPL), an RNA-centric method comprising the endonuclease-deficient Type VI CRISPR-Cas protein dCas13b fused to engineered ascorbate peroxidase APEX2. RPL discovers target RNA proximal proteins in vivo via proximity-based biotinylation. RPL applied to U1 identified proteins involved in both U1 canonical and noncanonical functions. Profiling of poly(A) tail proximal proteins uncovered expected categories of RBPs and provided additional evidence for 5'-3' proximity and unexplored subcellular localizations of poly(A)+ RNA. Our results suggest that RPL allows rapid identification of target RNA binding proteins in native cellular contexts, and is expected to pave the way for discovery of novel RNA-protein interactions important for health and disease.
Collapse
Affiliation(s)
- Xianzhi Lin
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcos A. S. Fonseca
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J. Breunig
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosario I. Corona
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
41
|
Nakanishi H. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells. Life (Basel) 2021; 11:life11111192. [PMID: 34833067 PMCID: PMC8621430 DOI: 10.3390/life11111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic mRNAs, which are produced by in vitro transcription, have been recently attracting attention because they can express any transgenes without the risk of insertional mutagenesis. Although current synthetic mRNA medicine is not designed for spatiotemporal or cell-selective regulation, many preclinical studies have developed the systems for the translational regulation of synthetic mRNAs. Such translational regulation systems will cope with high efficacy and low adverse effects by producing the appropriate amount of therapeutic proteins, depending on the context. Protein-based regulation is one of the most promising approaches for the translational regulation of synthetic mRNAs. As synthetic mRNAs can encode not only output proteins but also regulator proteins, all components of protein-based regulation systems can be delivered as synthetic mRNAs. In addition, in the protein-based regulation systems, the output protein can be utilized as the input for the subsequent regulation to construct multi-layered gene circuits, which enable complex and sophisticated regulation. In this review, I introduce what types of proteins have been used for translational regulation, how to combine them, and how to design effective gene circuits.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
42
|
Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20:817-838. [PMID: 34433919 PMCID: PMC8386155 DOI: 10.1038/s41573-021-00283-5] [Citation(s) in RCA: 738] [Impact Index Per Article: 184.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Over the past several decades, messenger RNA (mRNA) vaccines have progressed from a scepticism-inducing idea to clinical reality. In 2020, the COVID-19 pandemic catalysed the most rapid vaccine development in history, with mRNA vaccines at the forefront of those efforts. Although it is now clear that mRNA vaccines can rapidly and safely protect patients from infectious disease, additional research is required to optimize mRNA design, intracellular delivery and applications beyond SARS-CoV-2 prophylaxis. In this Review, we describe the technologies that underlie mRNA vaccines, with an emphasis on lipid nanoparticles and other non-viral delivery vehicles. We also overview the pipeline of mRNA vaccines against various infectious disease pathogens and discuss key questions for the future application of this breakthrough vaccine platform.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
What defines the maternal transcriptome? Biochem Soc Trans 2021; 49:2051-2062. [PMID: 34415300 PMCID: PMC8589422 DOI: 10.1042/bst20201125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.
Collapse
|
44
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Chen Y, Khazina E, Izaurralde E, Weichenrieder O. Crystal structure and functional properties of the human CCR4-CAF1 deadenylase complex. Nucleic Acids Res 2021; 49:6489-6510. [PMID: 34038562 PMCID: PMC8216464 DOI: 10.1093/nar/gkab414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
The CCR4 and CAF1 deadenylases physically interact to form the CCR4-CAF1 complex and function as the catalytic core of the larger CCR4-NOT complex. Together, they are responsible for the eventual removal of the 3′-poly(A) tail from essentially all cellular mRNAs and consequently play a central role in the posttranscriptional regulation of gene expression. The individual properties of CCR4 and CAF1, however, and their respective contributions in different organisms and cellular environments are incompletely understood. Here, we determined the crystal structure of a human CCR4-CAF1 complex and characterized its enzymatic and substrate recognition properties. The structure reveals specific molecular details affecting RNA binding and hydrolysis, and confirms the CCR4 nuclease domain to be tethered flexibly with a considerable distance between both enzyme active sites. CCR4 and CAF1 sense nucleotide identity on both sides of the 3′-terminal phosphate, efficiently differentiating between single and consecutive non-A residues. In comparison to CCR4, CAF1 emerges as a surprisingly tunable enzyme, highly sensitive to pH, magnesium and zinc ions, and possibly allowing distinct reaction geometries. Our results support a picture of CAF1 as a primordial deadenylase, which gets assisted by CCR4 for better efficiency and by the assembled NOT proteins for selective mRNA targeting and regulation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
46
|
Tibble RW, Depaix A, Kowalska J, Jemielity J, Gross JD. Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. Nat Chem Biol 2021; 17:615-623. [PMID: 33767388 PMCID: PMC8476181 DOI: 10.1038/s41589-021-00774-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.
Collapse
Affiliation(s)
- Ryan W Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Cvekl A, Eliscovich C. Crystallin gene expression: Insights from studies of transcriptional bursting. Exp Eye Res 2021; 207:108564. [PMID: 33894228 DOI: 10.1016/j.exer.2021.108564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/26/2023]
Abstract
Cellular differentiation is marked by temporally and spatially regulated gene expression. The ocular lens is one of the most powerful mammalian model system since it is composed from only two cell subtypes, called lens epithelial and fiber cells. Lens epithelial cells differentiate into fiber cells through a series of spatially and temporally orchestrated processes, including massive production of crystallins, cellular elongation and the coordinated degradation of nuclei and other organelles. Studies of transcriptional and posttranscriptional gene regulatory mechanisms in lens provide a wide range of opportunities to understand global molecular mechanisms of gene expression as steady-state levels of crystallin mRNAs reach very high levels comparable to globin genes in erythrocytes. Importantly, dysregulation of crystallin gene expression results in lens structural abnormalities and cataracts. The mRNA life cycle is comprised of multiple stages, including transcription, splicing, nuclear export into cytoplasm, stabilization, localization, translation and ultimate decay. In recent years, development of modern mRNA detection methods with single molecule and single cell resolution enabled transformative studies to visualize the mRNA life cycle to generate novel insights into the sequential regulatory mechanisms of gene expression during embryogenesis. This review is focused on recent major advancements in studies of transcriptional bursting in differentiating lens fiber cells, analysis of nascent mRNA expression from bi-directional promoters, transient nuclear accumulation of specific mRNAs, condensation of chromatin prior lens fiber cell denucleation, and outlines future studies to probe the interactions of individual mRNAs with specific RNA-binding proteins (RBPs) in the cytoplasm and regulation of translation and mRNA decay.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and VIsual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Carolina Eliscovich
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
48
|
Luo Y, Schofield JA, Na Z, Hann T, Simon MD, Slavoff SA. Discovery of cellular substrates of human RNA-decapping enzyme DCP2 using a stapled bicyclic peptide inhibitor. Cell Chem Biol 2021; 28:463-474.e7. [PMID: 33357462 PMCID: PMC8052284 DOI: 10.1016/j.chembiol.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 01/23/2023]
Abstract
DCP2 is an RNA-decapping enzyme that controls the stability of human RNAs that encode factors functioning in transcription and the immune response. While >1,800 human DCP2 substrates have been identified, compensatory expression changes secondary to genetic ablation of DCP2 have complicated a complete mapping of its regulome. Cell-permeable, selective chemical inhibitors of DCP2 could provide a powerful tool to study DCP2 specificity. Here, we report phage display selection of CP21, a bicyclic peptide ligand to DCP2. CP21 has high affinity and selectivity for DCP2 and inhibits DCP2 decapping activity toward selected RNA substrates in human cells. CP21 increases formation of P-bodies, liquid condensates enriched in intermediates of RNA decay, in a manner that resembles the deletion or mutation of DCP2. We used CP21 to identify 76 previously unreported DCP2 substrates. This work demonstrates that DCP2 inhibition can complement genetic approaches to study RNA decay.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jeremy A Schofield
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Tanja Hann
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06520, USA
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
49
|
Akiyama T, Suzuki T, Yamamoto T. RNA decay machinery safeguards immune cell development and immunological responses. Trends Immunol 2021; 42:447-460. [PMID: 33858774 DOI: 10.1016/j.it.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
mRNA decay systems control mRNA abundance by counterbalancing transcription. Several recent studies show that mRNA decay pathways are crucial to conventional T and B cell development in vertebrates, in addition to suppressing autoimmunity and excessive inflammatory responses. Selective mRNA degradation triggered by the CCR4-NOT deadenylase complex appears to be required in lymphocyte development, cell quiescence, V(D)J (variable-diversity-joining) recombination, and prevention of inappropriate apoptosis in mice. Moreover, a recent study suggests that mRNA decay may be involved in preventing human hyperinflammatory disease. These findings imply that mRNA decay pathways in humans and mice do not simply maintain mRNA homeostatic turnover but can also precisely regulate immune development and immunological responses by selectively targeting mRNAs.
Collapse
Affiliation(s)
- Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| | - Toru Suzuki
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
50
|
Yang J, Han YH, Im J, Seo SW. Synthetic protein quality control to enhance full-length translation in bacteria. Nat Chem Biol 2021; 17:421-427. [PMID: 33542534 DOI: 10.1038/s41589-021-00736-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Coupled transcription and translation processes in bacteria cause indiscriminate translation of intact and truncated messenger RNAs, inevitably generating nonfunctional polypeptides. Here, we devised a synthetic protein quality control (ProQC) system that enables translation only when both ends of mRNAs are present and followed by circularization based on sequence-specific RNA-RNA hybridization. We demonstrate that the ProQC system dramatically improved the fraction of full-length proteins among all synthesized polypeptides by selectively translating intact mRNA and reducing abortive translation. As a result, full-length protein synthesis increased up to 2.5-fold without changing the transcription or translation efficiency. Furthermore, we applied the ProQC system for 3-hydroxypropionic acid, violacein and lycopene production by ensuring full-length expression of enzymes in biosynthetic pathways, resulting in 1.6- to 2.3-fold greater biochemical production. We believe that our ProQC system can be universally applied to improve not only the quality of recombinant protein production but also efficiencies of metabolic pathways.
Collapse
Affiliation(s)
- Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea.,Institute of Chemical Processes, Seoul National University, Seoul, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Jongwon Im
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea. .,Institute of Chemical Processes, Seoul National University, Seoul, Korea. .,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea. .,Bio-MAX Institute, Seoul National University, Seoul, Korea. .,Institute of Engineering Research, Seoul National University, Seoul, Korea.
| |
Collapse
|