1
|
Xu Z, Qiao S, Wang Z, Peng C, Hou Y, Liu B, Cao G, Wang T. PMA1-containing extracellular vesicles of Candida albicans triggers immune responses and colitis progression. Gut Microbes 2025; 17:2455508. [PMID: 39886799 PMCID: PMC11792855 DOI: 10.1080/19490976.2025.2455508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Candida albicans (C. albicans) exhibits aberrant changes in patients with colitis, and it has been reported to dominate the colonic mucosal immune response. Here, we found that PMA1 expression was significantly increased in C. albicans from patients with IBD compared to that in healthy controls. A Crispr-Cas9-based fungal strain editing system was then used to knock out PMA1 expression in C. albicans. Compared to WT-C.a, ΔPMA1-C.a could not aggravate colitis. Proteomic analysis showed that PMA1 was transported by extracellular vesicles (EVs) of C. albicans. PMA1-containing EVs aggravated colitis, modulated the migration of cDC2 from the lamina propria to mesenteric lymph nodes, and induced TH17 cell differentiation. Moreover, the adaptor protein CARD9 was critical in PMA1-containing EV-induced colitis, and CARD9-deficient DCs did not induce TH17 cell differentiation or IL-17A production. Mechanically, CARD9 combines with the glycolytic protein GAPDH (aa2-146 domain) through its CARD region. CARD9 deficiency led to decreased enzyme activity of GAPDH and decreased glycolysis of DCs. These findings indicate that PMA1 is a potential virulence factor responsible for the pathogenesis of C. albicans colitis.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Shuping Qiao
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Zelin Wang
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Chen Peng
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Guochun Cao
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Kim J, Harris KD, Kim IK, Shemesh S, Messer PW, Greenbaum G. Incorporating ecology into gene drive modelling. Ecol Lett 2023; 26 Suppl 1:S62-S80. [PMID: 37840022 DOI: 10.1111/ele.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Shahar Shemesh
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Cheng T, Xu C, Shao J. Updated immunomodulatory roles of gut flora and microRNAs in inflammatory bowel diseases. Clin Exp Med 2023; 23:1015-1031. [PMID: 36385416 PMCID: PMC9668223 DOI: 10.1007/s10238-022-00935-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease is a heterogeneous intestinal inflammatory disorder, including ulcerative colitis (UC) and Crohn's disease (CD). Existing studies have shown that the pathogenesis of IBD is closely related to the host's genetic susceptibility, intestinal flora disturbance and mucosal immune abnormalities, etc. It is generally believed that there are complicated interactions between host immunity and intestinal microflora/microRNAs during the occurrence and progression of IBD. Intestinal flora is mainly composed of bacteria, fungi, viruses and helminths. These commensals are highly implicated in the maintenance of intestinal microenvironment homeostasis alone or in combination. MiRNA is an endogenous non-coding small RNA with a length of 20 to 22 nucleotides, which can perform a variety of biological functions by silencing or activating target genes through complementary pairing bonds. A large quantity of miRNAs are involved in intestinal inflammation, mucosal barrier integrity, autophagy, vesicle transportation and other small RNA alterations in IBD circumstance. In this review, the immunomodulatory roles of gut flora and microRNAs are updated in the occurrence and progression of IBD. Meanwhile, the gut flora and microRNA targeted therapeutic strategies as well as other immunomodulatory approaches including TNF-α monoclonal antibodies are also emphasized in the treatment of IBD.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Zhang K, Sun IG, Liao B, Yang Y, Ma H, Jiang A, Chen S, Guo Q, Ren B. Streptococcus mutans sigX-inducing peptide inhibits the virulence of Candida albicans and oral candidiasis through the Ras1-cAMP-Efg1 pathway. Int J Antimicrob Agents 2023; 62:106855. [PMID: 37211262 DOI: 10.1016/j.ijantimicag.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Oral candidiasis is the most common fungal infectious disease in the human oral cavity, and Candida albicans is the major pathogenic agent. Increasing drug resistance and the lack of new types of antifungals greatly increase the challenges for treating fungal infections. Targeting hyphal transition provides a promising strategy to inhibit the virulence of C. albicans and overcome drug resistance. This study aimed to investigate the effects and mechanisms of sigX-inducing peptide (XIP), a quorum-sensing signal peptide secreted by Streptococcus mutans, on C. albicans hyphal development and biofilm formation in vitro and oropharyngeal candidiasis in vivo. XIP significantly inhibited C. albicans yeast-to-hypha transition and biofilm formation in a dose-dependent manner from 0.01 to 0.1 µM. XIP significantly downregulated expression of genes from the Ras1-cAMP-Efg1 pathway (RAS1, CYR1, TPK2, EFG1 and UME6), a key pathway to regulate C. albicans hyphal development. Importantly, XIP reduced the levels of key molecules cAMP and ATP from this pathway, while the addition of exogenous cAMP and overexpression of RAS1 restored the hyphal development inhibited by XIP. XIP also lost its hyphal inhibitory effects on ras1Δ/Δ and efg1Δ/Δ strains. These results further confirmed that XIP inhibited hyphal development through downregulation of the Ras1-cAMP-Efg1 pathway. A murine oropharyngeal candidiasis model was employed to evaluate the therapeutic effects of XIP on oral candidiasis. XIP effectively reduced the infected epithelial area, fungal burden, hyphal invasion and inflammatory infiltrates. These results revealed the antifungal effects of XIP, and highlighted that XIP can be a potential antifungal peptide against C. albicans infection.
Collapse
Affiliation(s)
- Kaiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ivy Guofang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yichun Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aiming Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
La Bella AA, Andersen MJ, Gervais NC, Molina JJ, Molesan A, Stuckey PV, Wensing L, Nobile CJ, Shapiro RS, Santiago-Tirado FH, Flores-Mireles AL. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. SCIENCE ADVANCES 2023; 9:eade7689. [PMID: 36867691 PMCID: PMC9984171 DOI: 10.1126/sciadv.ade7689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. Candida albicans is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established. Here, we show that the catheterized bladder environment induces Efg1- and fibrinogen (Fg)-dependent biofilm formation that results in CAUTI. In addition, we identify the adhesin Als1 as the critical fungal factor for C. albicans Fg-urine biofilm formation. Furthermore, we show that in the catheterized bladder, a dynamic and open system, both filamentation and attachment are required, but each by themselves are not sufficient for infection. Our study unveils the mechanisms required for fungal CAUTI establishment, which may aid in the development of future therapies to prevent these infections.
Collapse
Affiliation(s)
- Alyssa Ann La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Nicholas C. Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Alex Molesan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
6
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
7
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
8
|
Wensing L, Shapiro RS. Design and Generation of a CRISPR Interference System for Genetic Repression and Essential Gene Analysis in the Fungal Pathogen Candida albicans. Methods Mol Biol 2022; 2377:69-88. [PMID: 34709611 DOI: 10.1007/978-1-0716-1720-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Studying life-threatening fungal pathogens such as Candida albicans is of critical importance, yet progress can be hindered by challenges associated with manipulating these pathogens genetically. CRISPR-based technologies have significantly improved our ability to manipulate the genomes of countless organisms, including fungal pathogens such as C. albicans. CRISPR interference (CRISPRi) is a modified variation of CRISPR technology that enables the targeted genetic repression of specific genes of interest and can be used as a technique for studying essential genes. We recently developed tools to enable CRISPRi in C. albicans and the repression of essential genes in this fungus. Here, we describe a protocol for CRISPRi in C. albicans, including the design of the single-guide RNAs (sgRNAs) for targeting essential genes, the high-efficiency cloning of sgRNAs into C. albicans-optimized CRISPRi plasmids, transformation into fungal strains, and testing to monitor the repression capabilities of these constructs. Together, this protocol will illuminate efficient strategies for targeted genetic repression of essential genes in C. albicans using a novel CRISPRi platform.
Collapse
Affiliation(s)
- Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
9
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Razzaq I, Berg MD, Jiang Y, Genereaux J, Uthayakumar D, Kim GH, Agyare-Tabbi M, Halder V, Brandl CJ, Lajoie P, Shapiro RS. The SAGA and NuA4 component Tra1 regulates Candida albicans drug resistance and pathogenesis. Genetics 2021; 219:iyab131. [PMID: 34849885 PMCID: PMC8633099 DOI: 10.1093/genetics/iyab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase domain. In Saccharomyces cerevisiae, the assembly and function of SAGA and NuA4 are compromised by a Tra1 variant (Tra1Q3) with three arginine residues in the putative ATP-binding cleft changed to glutamine. Whole transcriptome analysis of the S. cerevisiae tra1Q3 strain highlights Tra1's role in global transcription, stress response, and cell wall integrity. As a result, tra1Q3 increases susceptibility to multiple stressors, including caspofungin. Moreover, the same tra1Q3 allele in the pathogenic yeast C. albicans causes similar phenotypes, suggesting that Tra1 broadly mediates the antifungal response across yeast species. Transcriptional profiling in C. albicans identified 68 genes that were differentially expressed when the tra1Q3 strain was treated with caspofungin, as compared to gene expression changes induced by either tra1Q3 or caspofungin alone. Included in this set were genes involved in cell wall maintenance, adhesion, and filamentous growth. Indeed, the tra1Q3 allele reduces filamentation and other pathogenesis traits in C. albicans. Thus, Tra1 emerges as a promising therapeutic target for fungal infections.
Collapse
Affiliation(s)
- Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
11
|
Alqahtani FM, Handy ST, Sutton CL, Farone MB. Combining Genome-Wide Gene Expression Analysis (RNA-seq) and a Gene Editing Platform (CRISPR-Cas9) to Uncover the Selectively Pro-oxidant Activity of Aurone Compounds Against Candida albicans. Front Microbiol 2021; 12:708267. [PMID: 34335543 PMCID: PMC8319688 DOI: 10.3389/fmicb.2021.708267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is the major fungal cause of healthcare-associated bloodstream infections worldwide with a 40% mortality rate. The scarcity of antifungal treatments due to the eukaryotic origin of fungal cells has challenged the development of selectively antifungal drugs. In an attempt to identify novel antifungal agents, aurones SH1009 and SH9051, as synthetically bioactive compounds, have been recently documented as anti-Candida agents. Since the molecular mechanisms behind the inhibitory activities of these aurones in C. albicans are unclear, this study aimed to determine the comprehensive cellular processes affected by these aurones and their molecular targets. Genome-wide transcriptional analysis of SH1009- and SH9051-treated C. albicans revealed uniquely repressed expression in different metabolic pathways, particularly trehalose and sulfur amino acid metabolic processes for SH1009 and SH9051, respectively. In contrast, the most commonly enriched process for both aurones was the up-regulation of RNA processing and ribosomal cleavages as an indicator of high oxidative stress, suggesting that a common aspect in the chemical structure of both aurones led to pro-oxidative properties. Additionally, uniquely induced responses (iron ion homeostasis for SH1009 and arginine biosynthesis for SH9051) garnered attention on key roles for the aurone functional groups. Deletion of the transcription factor for the trehalose biosynthesis pathway, Tye7p, resulted in an SH1009-resistant mutant, which also exhibited low trehalose content, validating the primary molecular target of SH1009. Aurone SH9051 uniquely simulated an exogenous supply of methionine or cysteine, leading to sulfur amino acid catabolism as evidenced by quantifying an overproduction of sulfite. Phenyl aurone, the common structure of aurones, contributed proportionally in the pro-oxidative activity through ferric ion reduction effects leading to high ROS levels. Our results determined selective and novel molecular mechanisms for aurone SH1009 and also elucidated the diverse cellular effects of different aurones based on functional groups.
Collapse
Affiliation(s)
- Fatmah M Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Scott T Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Caleb L Sutton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Mary B Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
12
|
Kim GH, Rosiana S, Kirienko NV, Shapiro RS. A Simple Nematode Infection Model for Studying Candida albicans Pathogenesis. ACTA ACUST UNITED AC 2021; 59:e114. [PMID: 32975912 DOI: 10.1002/cpmc.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen and a model organism to study fungal pathogenesis. It exists as a harmless commensal organism and member of the healthy human microbiome, but can cause life-threatening mucosal and systemic infections. A model host to study C. albicans infection and pathogenesis is the nematode Caenorhabditis elegans. C. elegans is frequently used as a model host to study microbial-host interactions because it can be infected by many human pathogens and there are also close morphological resemblances between the intestinal cells of C. elegans and mammals, where C. albicans infections can occur. This article outlines a detailed methodology for exploiting C. elegans as a host to study C. albicans infection, including a C. elegans egg preparation protocol and an agar-based C. elegans killing protocol to monitor fungal virulence. These protocols can additionally be used to study C. albicans genetic mutants in order to further our understanding of the genes involved in pathogenesis and virulence in C. albicans and the mechanisms of host-microbe interactions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of Caenorhabditis elegans eggs Support Protocol 1: Freezing and recovering Caenorhabditis elegans Support Protocol 2: Making superfood agar and OP50 plates Basic Protocol 2: Caenorhabditis elegans/Candida albicans agar killing assay Support Protocol 3: Constructing a worm pick.
Collapse
Affiliation(s)
- Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Halder V, McDonnell B, Uthayakumar D, Usher J, Shapiro RS. Genetic interaction analysis in microbial pathogens: unravelling networks of pathogenesis, antimicrobial susceptibility and host interactions. FEMS Microbiol Rev 2021; 45:fuaa055. [PMID: 33145589 DOI: 10.1093/femsre/fuaa055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic interaction (GI) analysis is a powerful genetic strategy that analyzes the fitness and phenotypes of single- and double-gene mutant cells in order to dissect the epistatic interactions between genes, categorize genes into biological pathways, and characterize genes of unknown function. GI analysis has been extensively employed in model organisms for foundational, systems-level assessment of the epistatic interactions between genes. More recently, GI analysis has been applied to microbial pathogens and has been instrumental for the study of clinically important infectious organisms. Here, we review recent advances in systems-level GI analysis of diverse microbial pathogens, including bacterial and fungal species. We focus on important applications of GI analysis across pathogens, including GI analysis as a means to decipher complex genetic networks regulating microbial virulence, antimicrobial drug resistance and host-pathogen dynamics, and GI analysis as an approach to uncover novel targets for combination antimicrobial therapeutics. Together, this review bridges our understanding of GI analysis and complex genetic networks, with applications to diverse microbial pathogens, to further our understanding of virulence, the use of antimicrobial therapeutics and host-pathogen interactions. .
Collapse
Affiliation(s)
- Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Brianna McDonnell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
14
|
Recent Advances in Genome Editing Tools in Medical Mycology Research. J Fungi (Basel) 2021; 7:jof7040257. [PMID: 33808382 PMCID: PMC8067129 DOI: 10.3390/jof7040257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Manipulating fungal genomes is an important tool to understand the function of target genes, pathobiology of fungal infections, virulence potential, and pathogenicity of medically important fungi, and to develop novel diagnostics and therapeutic targets. Here, we provide an overview of recent advances in genetic manipulation techniques used in the field of medical mycology. Fungi use several strategies to cope with stress and adapt themselves against environmental effectors. For instance, mutations in the 14 alpha-demethylase gene may result in azole resistance in Aspergillusfumigatus strains and shield them against fungicide's effects. Over the past few decades, several genome editing methods have been introduced for genetic manipulations in pathogenic fungi. Application of restriction enzymes to target and cut a double-stranded DNA in a pre-defined sequence was the first technique used for cloning in Aspergillus and Candida. Genome editing technologies, including zinc-finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), have been also used to engineer a double-stranded DNA molecule. As a result, TALENs were considered more practical to identify single nucleotide polymorphisms. Recently, Class 2 type II Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 technology has emerged as a more useful tool for genome manipulation in fungal research.
Collapse
|
15
|
Rosiana S, Zhang L, Kim GH, Revtovich AV, Uthayakumar D, Sukumaran A, Geddes-McAlister J, Kirienko NV, Shapiro RS. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans. Genetics 2021; 217:iyab003. [PMID: 33724419 PMCID: PMC8045720 DOI: 10.1093/genetics/iyab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.
Collapse
Affiliation(s)
- Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
16
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
17
|
Abstract
Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.
Collapse
Affiliation(s)
- Florent Morio
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 –IICiMed, Nantes, France
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
18
|
Zhang L, Zhang H, Liu Y, Zhou J, Shen W, Liu L, Li Q, Chen X. A CRISPR-Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis. Biotechnol Bioeng 2019; 117:531-542. [PMID: 31654413 DOI: 10.1002/bit.27207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic manipulation is among the most important tools for synthetic biology; however, modifying multiple genes is extremely time-consuming and can sometimes be impossible when dealing with gene families. Here, we present a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system for use in the diploid yeast Candida tropicalis that is vastly superior to traditional techniques. This system enables the rapid and reliable introduction of multiple genetic deletions or mutations, as well as a stable expression using an integrated CRISPR-Cas9 cassette or a transient CRISPR-Cas9 cassette, together with a short donor DNA. We further show that the system can be used to promote the in vivo assembly of multiple DNA fragments and their stable integration into a target locus (or loci) in C. tropicalis. Based on this system, we present a platform for the biosynthesis of β-carotene and its derivatives. These results enable the practical application of C. tropicalis and the application of the system to other organisms.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haibing Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yufei Liu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liming Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Qiao YM, Yu RL, Zhu P. Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites. RSC Adv 2019; 9:35124-35134. [PMID: 35530690 PMCID: PMC9074735 DOI: 10.1039/c9ra06908a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
The revolutionary discovery of penicillin only marks the start of our exploration for valuable fungal natural products. Advanced genome sequencing technologies have translated the fungal genome into a huge reservoir of "recipes" - biosynthetic gene clusters (BGCs) - for biosynthesis. Studying complex fungal genetics demands specific gene manipulation strategies. This review summarizes the current progress in efficient gene targeting in fungal cells and heterologous expression systems for expressing fungal BGCs of fungal secondary metabolites.
Collapse
Affiliation(s)
- Yun-Ming Qiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Rui-Lin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| |
Collapse
|
20
|
Yan Y, Finnigan GC. Analysis of CRISPR gene drive design in budding yeast. Access Microbiol 2019; 1:e000059. [PMID: 32974560 PMCID: PMC7472540 DOI: 10.1099/acmi.0.000059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Control of biological populations remains a critical goal to address the challenges facing ecosystems and agriculture and those posed by human disease, including pests, parasites, pathogens and invasive species. A particular architecture of the CRISPR/Cas biotechnology – a gene drive – has the potential to modify or eliminate populations on a massive scale. Super-Mendelian inheritance has now been demonstrated in both fungi and metazoans, including disease vectors such as mosquitoes. Studies in yeast and fly model systems have developed a number of molecular safeguards to increase biosafety and control over drive systems in vivo, including titration of nuclease activity, anti-CRISPR-dependent inhibition and use of non-native DNA target sites. We have developed a CRISPR/Cas9 gene drive in Saccharomyces cerevisiae that allows for the safe and rapid examination of alternative drive designs and control mechanisms. In this study, we tested whether non-homologous end-joining (NHEJ) had occurred within diploid cells displaying a loss of the target allele following drive activation and did not detect any instances of NHEJ within multiple sampled populations. We also demonstrated successful multiplexing using two additional non-native target sequences. Furthermore, we extended our analysis of ‘resistant’ clones that still harboured both the drive and target selection markers following expression of Streptococcus pyogenes Cas9; de novo mutation or NHEJ-based repair could not explain the majority of these heterozygous clones. Finally, we developed a second-generation gene drive in yeast with a guide RNA cassette integrated within the drive locus with a near 100 % success rate; resistant clones in this system could also be reactivated during a second round of Cas9 induction.
Collapse
Affiliation(s)
- Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Abstract
Morphological changes are critical for the virulence of a range of plant and human fungal pathogens.
Candida albicans is a major human fungal pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular,
C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding
C. albicans hyphal growth has broad implications for cell biological and medical research.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| |
Collapse
|
22
|
Wensing L, Sharma J, Uthayakumar D, Proteau Y, Chavez A, Shapiro RS. A CRISPR Interference Platform for Efficient Genetic Repression in Candida albicans. mSphere 2019; 4:e00002-19. [PMID: 30760609 PMCID: PMC6374589 DOI: 10.1128/msphere.00002-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal pathogens are emerging as an important cause of human disease, and Candida albicans is among the most common causative agents of fungal infections. Studying this fungal pathogen is of the utmost importance and necessitates the development of molecular technologies to perform comprehensive genetic and functional genomic analysis. Here, we designed and developed a novel clustered regularly interspaced short palindromic repeat interference (CRISPRi) system for targeted genetic repression in C. albicans We engineered a nuclease-dead Cas9 (dCas9) construct that, paired with a guide RNA targeted to the promoter of an endogenous gene, is capable of targeting that gene for transcriptional repression. We further optimized a favorable promoter locus to achieve repression and demonstrated that fusion of dCas9 to an Mxi1 repressor domain was able to further enhance transcriptional repression. Finally, we demonstrated the application of this CRISPRi system through genetic repression of the essential molecular chaperone HSP90 This is the first demonstration of a functional CRISPRi repression system in C. albicans, and this valuable technology will enable many future applications in this critical fungal pathogen.IMPORTANCE Fungal pathogens are an increasingly important cause of human disease and mortality, and Candida albicans is among the most common causes of fungal disease. Studying this important fungal pathogen requires a comprehensive genetic toolkit to establish how different genetic factors play roles in the biology and virulence of this pathogen. Here, we developed a CRISPR-based genetic regulation platform to achieve targeted repression of C. albicans genes. This CRISPR interference (CRISPRi) technology exploits a nuclease-dead Cas9 protein (dCas9) fused to transcriptional repressors. The dCas9 fusion proteins pair with a guide RNA to target genetic promoter regions and to repress expression from these genes. We demonstrated the functionality of this system for repression in C. albicans and show that we can apply this technology to repress essential genes. Taking the results together, this work presents a new technology for efficient genetic repression in C. albicans, with important applications for genetic analysis in this fungal pathogen.
Collapse
Affiliation(s)
- Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Yannic Proteau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|