1
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
2
|
Ma Z, Zhang J, Zou S, Huang K, Li W, Elhousseini Hilal M, Zhu M, Fu Y, Khoo BL. Smart Vascular Grafts with Integrated Flow Biosensors for Hemodynamic Real-Time Monitoring and Vascular Healthcare. ACS NANO 2025; 19:7661-7676. [PMID: 39818734 DOI: 10.1021/acsnano.4c09980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Real-time monitoring of hemodynamics is crucial for diagnosing disorders within implanted vascular grafts and facilitating timely treatment. Integrating vascular grafts with advanced flexible electronics offers a promising approach to developing smart vascular grafts (SVGs) capable of continuous hemodynamic monitoring. However, most existing SVG devices encounter significant challenges in practical applications, particularly regarding biomechanical compatibility and the effective evaluation of vascular status. Here, we present a state-of-the-art SVG device seamlessly integrated with flow biosensors constructed by encapsulating patterned porous graphene within biocompatible polymers. The innovative use of porous graphene imparts the SVG with exceptional mechanical sensing performance, featuring a low strain detection limit of 0.0034% and dynamic stability exceeding 32,400 cycles, thus enabling precise hemodynamic perception. This high sensitivity allows the SVG to accurately diagnose vascular disorders, such as blockage degree and position, by collecting hemodynamic data from an artificial artery model. In vitro thrombi (blood clot) diagnostics, treatment simulation experiments, and in vivo tests using a rabbit model strongly validate the SVG's outstanding and reliable performance in vascular healthcare. We have also developed a stand-alone and wireless system, demonstrating its capability for remote monitoring and managing vascular health. Our pioneering SVG system showcases great potential in vascular healthcare for precise hemodynamic monitoring of disorders, timely diagnostics, and even drug screening.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- College of Basic Medicine, Hebei University, 342 Yuhua West Road, Lianchi District, Baoding, Hebei Province 071000, China
| | - Shangjie Zou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Ke Huang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Wei Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Mohamed Elhousseini Hilal
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Mingze Zhu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Building 19W, Hong Kong Science Park, Hong Kong 999077, China
- City University of Hong Kong Futian─Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Wälchli T, Bhatia KD, Guest W, Bisschop J, Olijnyk L, Kortman H, Constanthin PE, Nicholson P, Monnier PP, Kalyvas A, Winkler EA, Berhouma M, Krings T, Radovanovic I. Identification of a T2-hyperintense Perivascular Space in Brain Arteriovenous Malformations. In Vivo 2025; 39:280-291. [PMID: 39740916 PMCID: PMC11705134 DOI: 10.21873/invivo.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Brain arteriovenous malformations (AVMs) are vascular malformations characterized by dysmorphic, aberrant vasculature. During previous surgeries of compact nidus brain AVMs (representing the majority of cases), we have observed a "shiny" plane between nidal and perinidal AVM vessels and the surrounding grey and white matter and hypothesized that preoperative neuroimaging of brain AVMs may show a neuroradiological correlate of these intraoperative observations. PATIENTS AND METHODS We retrospectively reviewed and analyzed multiplanar and multisequence 3-Tesla magnetic resonance (3T MR) imaging in five consecutive brain AVMs with special attention on imaging characteristics of the brain-AVM interface, i.e., the perivascular and perinidal regions. RESULTS In all five patients, we identified T2-hypertinense perivascular perinidal spaces, which were predominantly observed around the AVM nidus and less prominently around the feeding arteries or draining veins. CONCLUSION The identification of T2-hypertinense perivascular spaces surrounding brain AVMs on neuroradiological imaging may provide insights into the anatomico-radiological relationships of brain AVMs and the surrounding grey and white matter parenchyma. These findings could have future implications for our understanding of brain AVM biology and may influence neurosurgical approaches to these lesions.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada;
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zürich, and Division of Neurosurgery, University and University Hospital Zürich, Zürich, Switzerland
- Division of Neurosurgery, University Hospital Zürich, Zürich, Switzerland
| | - Kartik Dev Bhatia
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Department of Medical Imaging (K.D.B.), Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Will Guest
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zürich, and Division of Neurosurgery, University and University Hospital Zürich, Zürich, Switzerland
- Division of Neurosurgery, University Hospital Zürich, Zürich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Leonardo Olijnyk
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Hans Kortman
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Department of Radiology, Section Interventional Radiology, Elisabeth Tweesteden Ziekenhuis, Tilburg, the Netherlands
| | - Paul E Constanthin
- Department of Neurosurgery, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Patrick Nicholson
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neuroradiology, Beaumont Hospital, Dublin, Ireland
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aristotelis Kalyvas
- Attikon Hospital, Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, U.S.A
- Weill Institute for Neurosciences, University of California, San Francisco, CA, U.S.A
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, U.S.A
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon, Bourgogne, France
| | - Timo Krings
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Lahey Hospital and Medical Center, TH Chan School of Medicine, University of Massachusetts, Boston, MA, U.S.A
| | - Ivan Radovanovic
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada;
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Guo B, Chen Y, Lin J, Huang B, Bai X, Guo C, Gao B, Gong Q, Bai X. Self-supervised learning for accurately modelling hierarchical evolutionary patterns of cerebrovasculature. Nat Commun 2024; 15:9235. [PMID: 39455566 PMCID: PMC11511858 DOI: 10.1038/s41467-024-53550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebrovascular abnormalities are critical indicators of stroke and neurodegenerative diseases like Alzheimer's disease (AD). Understanding the normal evolution of brain vessels is essential for detecting early deviations and enabling timely interventions. Here, for the first time, we proposed a pipeline exploring the joint evolution of cortical volumes (CVs) and arterial volumes (AVs) in a large cohort of 2841 individuals. Using advanced deep learning for vessel segmentation, we built normative models of CVs and AVs across spatially hierarchical brain regions. We found that while AVs generally decline with age, distinct trends appear in regions like the circle of Willis. Comparing healthy individuals with those affected by AD or stroke, we identified significant reductions in both CVs and AVs, wherein patients with AD showing the most severe impact. Our findings reveal gender-specific effects and provide critical insights into how these conditions alter brain structure, potentially guiding future clinical assessments and interventions.
Collapse
Affiliation(s)
- Bin Guo
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
- Image Processing Center, Beihang University, Beijing, China
| | - Ying Chen
- Image Processing Center, Beihang University, Beijing, China
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jinping Lin
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Bin Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiangzhuo Bai
- Zhongxiang Hospital of Traditional Chinese Medicine, Hubei, China
| | | | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Qiyong Gong
- Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Xiangzhi Bai
- Image Processing Center, Beihang University, Beijing, China.
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China.
- Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
5
|
Goossens E, Deblock L, Caboor L, Eynden DVD, Josipovic I, Isaacura PR, Maksimova E, Van Impe M, Bonnin A, Segers P, Cornillie P, Boone MN, Van Driessche I, De Spiegelaere W, De Roo J, Sips P, De Buysser K. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. SMALL METHODS 2024; 8:e2301499. [PMID: 38200600 DOI: 10.1002/smtd.202301499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even μ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.
Collapse
Affiliation(s)
- Eline Goossens
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Loren Deblock
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lisa Caboor
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Dietger Van den Eynden
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Iván Josipovic
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | - Pablo Reyes Isaacura
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
- Centre for Polymer Material Technologies, Ghent University, Ghent, 9052, Belgium
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| | - Elizaveta Maksimova
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Matthias Van Impe
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Matthieu N Boone
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | | | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | | |
Collapse
|
6
|
Nomura S, Terada SI, Ebina T, Uemura M, Masamizu Y, Ohki K, Matsuzaki M. ARViS: a bleed-free multi-site automated injection robot for accurate, fast, and dense delivery of virus to mouse and marmoset cerebral cortex. Nat Commun 2024; 15:7633. [PMID: 39256380 PMCID: PMC11387507 DOI: 10.1038/s41467-024-51986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Genetically encoded fluorescent sensors continue to be developed and improved. If they could be expressed across multiple cortical areas in non-human primates, it would be possible to measure a variety of spatiotemporal dynamics of primate-specific cortical activity. Here, we develop an Automated Robotic Virus injection System (ARViS) for broad expression of a biosensor. ARViS consists of two technologies: image recognition of vasculature structures on the cortical surface to determine multiple injection sites without hitting them, and robotic control of micropipette insertion perpendicular to the cortical surface with 50 μm precision. In mouse cortex, ARViS sequentially injected virus solution into 100 sites over a duration of 100 min with a bleeding probability of only 0.1% per site. Furthermore, ARViS successfully achieved 266-site injections over the frontoparietal cortex of a female common marmoset. We demonstrate one-photon and two-photon calcium imaging in the marmoset frontoparietal cortex, illustrating the effective expression of biosensors delivered by ARViS.
Collapse
Affiliation(s)
- Shinnosuke Nomura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masato Uemura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshito Masamizu
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyoto, 610-0394, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Wang Y, Yang C, Wang J, Wei M, Xu Q, Wang Z, Tu T, Fan Y, Song Z, Duan W, Chen C, Zhang H, Ma Y. A Novel Rat Model of Venous Hypertensive Myelopathy Produced by Arteriovenous Bypass Plus Venous Stenosis. Neurosurgery 2024; 95:709-721. [PMID: 38619238 PMCID: PMC11302946 DOI: 10.1227/neu.0000000000002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Venous hypertensive myelopathy (VHM), mainly induced by the spinal dural arteriovenous fistula, is a congestive spinal cord injury that currently has no appropriate animal model available in preclinical research. METHODS Sprague Dawley rats (280-320 g) were used. The rats were divided into 3 groups: (1) Group 1, which underwent renal artery-dorsal spinal venous bypass (AVB group); (2) Group 2, which underwent renal artery-dorsal spinal venous bypass and drainage vein stenosis (AVB/VS group); and (3) Control group, with T13 dorsal vein ligation. The success of the model was assessed using Doppler ultrasound and 7.0-T magnetic resonance imaging. Transmission electron microscopy, histochemistry, proteomics, and western blot analysis were used to evaluate ultrastructural, pathological, and molecular features in the spinal cord and cerebrospinal fluid (CSF). RESULTS The success rate of the arteriovenous bypass was 100% at 5 days and 83% at 2 weeks. The locomotor assessment showed decreased lower extremity strength in the AVB/VS group ( P = .0067), whereas unremarkable changes were found in the AVB and Control groups. Histochemical staining suggested a 2-fold expansion of the dorsal spinal vein in the AVB/VS group, which was lower than that in the AVB group ( P < .05); however, the former displayed greater myelin and neuronal damage ( P < .05) and slight dilatation of the central canal ( P > .05). Proteomics analysis revealed that the complement and coagulation cascade pathways were upregulated in the CSF of AVB/VS rats, whereas the C3 level was elevated both in the CSF and bilateral spinal cord. Furthermore, overexpression of C3, ITGB2, and CD9 in the spinal cord was confirmed by immunoblotting. CONCLUSION These findings suggest that the AVB/VS model can effectively mimic the clinical and molecular characteristics of VHM. Furthermore, they suggest that impaired deep intramedullary venous drainage is the key reason for the VHM.
Collapse
Affiliation(s)
- Yinqing Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (China-INI), Beijing, China
| | - Chengbin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiachen Wang
- The First Clinical Medical College, Capital Medical University, Beijing, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, China
| | - Zhanjing Wang
- Center for Medical Experiments and Testing, Capital Medical University, Beijing, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zihao Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (China-INI), Beijing, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
High-resolution atlas of the developing, adult and diseased human brain vasculature. Nature 2024:10.1038/d41586-024-02284-x. [PMID: 38992264 DOI: 10.1038/d41586-024-02284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
|
10
|
Orellana F, Grassi A, Hlushchuk R, Wahl P, Nuss KM, Neels A, Zaffagnini S, Parrilli A. Revealing the complexity of meniscus microvasculature through 3D visualization and analysis. Sci Rep 2024; 14:10875. [PMID: 38740845 DOI: 10.1038/s41598-024-61497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Three-dimensional information is essential for a proper understanding of the healing potential of the menisci and their overall role in the knee joint. However, to date, the study of meniscal vascularity has relied primarily on two-dimensional imaging techniques. Here we present a method to elucidate the intricate 3D meniscal vascular network, revealing its spatial arrangement, connectivity and density. A polymerizing contrast agent was injected into the femoral artery of human cadaver legs, and the meniscal microvasculature was examined using micro-computed tomography at different levels of detail and resolution. The 3D vascular network was quantitatively assessed in a zone-base analysis using parameters such as diameter, length, tortuosity, and branching patterns. The results of this study revealed distinct vascular patterns within the meniscus, with the highest vascular volume found in the outer perimeniscal zone. Variations in vascular parameters were found between the different circumferential and radial meniscal zones. Moreover, through state-of-the-art 3D visualization using micro-CT, this study highlighted the importance of spatial resolution in accurately characterizing the vascular network. These findings, both from this study and from future research using this technique, improve our understanding of microvascular distribution, which may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Federica Orellana
- Center for X-Ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Fribourg, 1700, Fribourg, Switzerland
| | - Alberto Grassi
- IRCCS-Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
| | - Ruslan Hlushchuk
- Faculty of Medicine, University of Bern, 3012, Bern, Switzerland
| | - Peter Wahl
- Faculty of Medicine, University of Bern, 3012, Bern, Switzerland
- Cantonal Hospital Winterthur, 8401, Winterthur, Switzerland
| | - Katja M Nuss
- Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Fribourg, 1700, Fribourg, Switzerland
| | | | - Annapaola Parrilli
- Center for X-Ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
11
|
Hagemann N, Qi Y, Mohamud Yusuf A, Li A, Squire A, Tertel T, Giebel B, Ludewig P, Spangenberg P, Chen J, Mosig A, Gunzer M, Hermann DM. Microvascular Network Remodeling in the Ischemic Mouse Brain Defined by Light Sheet Microscopy. Arterioscler Thromb Vasc Biol 2024; 44:915-929. [PMID: 38357819 DOI: 10.1161/atvbaha.123.320339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.
Collapse
Affiliation(s)
- Nina Hagemann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - Yachao Qi
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - Ayan Mohamud Yusuf
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - AnRan Li
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging and Imaging Center Essen, University Hospital Essen, University of Duisburg-Essen, Germany (A.S., P.S., M.G.)
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Germany (T.T., B.G.)
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Germany (T.T., B.G.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (P.L.)
| | - Philippa Spangenberg
- Institute for Experimental Immunology and Imaging and Imaging Center Essen, University Hospital Essen, University of Duisburg-Essen, Germany (A.S., P.S., M.G.)
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.C., M.G.)
| | - Axel Mosig
- Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University Bochum, Germany (A.M.)
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging and Imaging Center Essen, University Hospital Essen, University of Duisburg-Essen, Germany (A.S., P.S., M.G.)
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.C., M.G.)
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Germany (N.H., Y.Q., A.M.Y., A.L., D.M.H.)
| |
Collapse
|
12
|
Niedowicz DM, Gollihue JL, Weekman EM, Phe P, Wilcock DM, Norris CM, Nelson PT. Using digital pathology to analyze the murine cerebrovasculature. J Cereb Blood Flow Metab 2024; 44:595-610. [PMID: 37988134 PMCID: PMC10981399 DOI: 10.1177/0271678x231216142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Research on the cerebrovasculature may provide insights into brain health and disease. Immunohistochemical staining is one way to visualize blood vessels, and digital pathology has the potential to revolutionize the measurement of blood vessel parameters. These tools provide opportunities for translational mouse model research. However, mouse brain tissue presents a formidable set of technical challenges, including potentially high background staining and cross-reactivity of endogenous IgG. Formalin-fixed paraffin-embedded (FFPE) and fixed frozen sections, both of which are widely used, may require different methods. In this study, we optimized blood vessel staining in mouse brain tissue, testing both FFPE and frozen fixed sections. A panel of immunohistochemical blood vessel markers were tested (including CD31, CD34, collagen IV, DP71, and VWF), to evaluate their suitability for digital pathological analysis. Collagen IV provided the best immunostaining results in both FFPE and frozen fixed murine brain sections, with highly-specific staining of large and small blood vessels and low background staining. Subsequent analysis of collagen IV-stained sections showed region and sex-specific differences in vessel density and vessel wall thickness. We conclude that digital pathology provides a useful tool for relatively unbiased analysis of the murine cerebrovasculature, provided proper protein markers are used.
Collapse
Affiliation(s)
- Dana M Niedowicz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Jenna L Gollihue
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Erica M Weekman
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Panhavuth Phe
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher M Norris
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Kendall JJ, Ledoux C, Marques FC, Boaretti D, Schulte FA, Morgan EF, Müller R. An in silico micro-multiphysics agent-based approach for simulating bone regeneration in a mouse femur defect model. Front Bioeng Biotechnol 2023; 11:1289127. [PMID: 38164405 PMCID: PMC10757951 DOI: 10.3389/fbioe.2023.1289127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Bone defects represent a challenging clinical problem as they can lead to non-union. In silico models are well suited to study bone regeneration under varying conditions by linking both cellular and systems scales. This paper presents an in silico micro-multiphysics agent-based (micro-MPA) model for bone regeneration following an osteotomy. The model includes vasculature, bone, and immune cells, as well as their interaction with the local environment. The model was calibrated by time-lapsed micro-computed tomography data of femoral osteotomies in C57Bl/6J mice, and the differences between predicted bone volume fractions and the longitudinal in vivo measurements were quantitatively evaluated using root mean square error (RMSE). The model performed well in simulating bone regeneration across the osteotomy gap, with no difference (5.5% RMSE, p = 0.68) between the in silico and in vivo groups for the 5-week healing period - from the inflammatory phase to the remodelling phase - in the volume spanning the osteotomy gap. Overall, the proposed micro-MPA model was able to simulate the influence of the local mechanical environment on bone regeneration, and both this environment and cytokine concentrations were found to be key factors in promoting bone regeneration. Further, the validated model matched clinical observations that larger gap sizes correlate with worse healing outcomes and ultimately simulated non-union. This model could help design and guide future experimental studies in bone repair, by identifying which are the most critical in vivo experiments to perform.
Collapse
Affiliation(s)
- Jack J. Kendall
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Elise F. Morgan
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
15
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Polikarpov M, Vila-Comamala J, Wang Z, Pereira A, van Gogh S, Gasser C, Jefimovs K, Romano L, Varga Z, Lång K, Schmeltz M, Tessarini S, Rawlik M, Jermann E, Lewis S, Yun W, Stampanoni M. Towards virtual histology with X-ray grating interferometry. Sci Rep 2023; 13:9049. [PMID: 37270642 DOI: 10.1038/s41598-023-35854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 μm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology.
Collapse
Affiliation(s)
- M Polikarpov
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| | - J Vila-Comamala
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Z Wang
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
- Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, 100080, China
| | - A Pereira
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - S van Gogh
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - C Gasser
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - K Jefimovs
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - L Romano
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Z Varga
- Department of Pathology and Molecular Pathology, University Hospital Zürich, 8091, Zurich, Switzerland
| | - K Lång
- Department of Diagnostic Radiology, Translational Medicine, Lund University, Lund, Sweden
- Unilabs Mammography Unit, Skåne University Hospital, Malmö, Sweden
| | - M Schmeltz
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - S Tessarini
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - M Rawlik
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | | | - S Lewis
- Sigray Inc., Concord, CA, 94520, USA
| | - W Yun
- Sigray Inc., Concord, CA, 94520, USA
| | - M Stampanoni
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
17
|
Li B, Yabluchanskiy A, Tarantini S, Allu SR, Şencan-Eğilmez I, Leng J, Alfadhel MAH, Porter JE, Fu B, Ran C, Erdener SE, Boas DA, Vinogradov SA, Sonntag WE, Csiszar A, Ungvari Z, Sakadžić S. Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter. GeroScience 2023; 45:1491-1510. [PMID: 36792820 PMCID: PMC10400746 DOI: 10.1007/s11357-023-00735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 μm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.
Collapse
Affiliation(s)
- Baoqiang Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Biophotonics Research Center, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ji Leng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Mohammed Ali H Alfadhel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jason E Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sefik Evren Erdener
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary.
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
18
|
Qiu B, Zhao Z, Wang N, Feng Z, Chen XJ, Chen W, Sun W, Ge WP, Wang Y. A systematic observation of vasodynamics from different segments along the cerebral vasculature in the penumbra zone of awake mice following cerebral ischemia and recanalization. J Cereb Blood Flow Metab 2023; 43:665-679. [PMID: 36524693 PMCID: PMC10108196 DOI: 10.1177/0271678x221146128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Different segments of the cerebral vascular network may react distinctly to brain ischemia and recanalization. However, there are limited systematic observations of these vascular responses in mice under a physiological state following ischemic stroke. Herein, we aimed to investigate the vasodynamics among several segments along the cerebral vessels in awake mice following cerebral ischemia/recanalization via two-photon imaging. Plasma in the blood vessels were labelled with fluorescein isothiocyanate dextran. Smooth muscle cells and pericytes were labelled via a genetic mouse line (PDGFRβ-tdTomato). We observed a no-reflow phenomenon in downstream microcirculation, and the vasodynamics of different segments of larger cerebral vessels varied in the penumbra area following cerebral ischemia-reperfusion. Despite obtaining reperfusion from the middle cerebral artery, there were significant constrictions of the downstream blood vessels in the ischemic penumbra zone. Interestingly, we observed an extensive constriction of the capillaries 3 hours following recanalization, both at the site covered by pericyte soma and by the pericyte process alone. In addition, we did not observe a significant positive correlation between the changed capillary diameter and pericyte coverage along the capillary. Taken together, abnormal constrictions and vasodynamics of cerebral large and small vessels may directly contribute to microcirculation failure following recanalization in ischemic stroke.
Collapse
Affiliation(s)
- Baoshan Qiu
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Zichen Zhao
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Nan Wang
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
| | - Ziyan Feng
- Chinese Institute for Brain Research,
Beijing, China
| | - Xing-jun Chen
- Chinese Institute for Brain Research,
Beijing, China
- Academy for Advanced Interdisciplinary
Studies (AAIS), Peking University, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research,
Beijing, China
- School of Basic Medical Sciences, Capital
Medical University, Beijing, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research,
Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan
Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research,
Beijing, China
- China National Clinical Research Centre for
Neurological Diseases, Beijing, China
- Advanced Innovation Centre for Human Brain
Protection, Capital Medical University, Beijing, China
- National Centre for Neurological Diseases,
Beijing, China
| |
Collapse
|
19
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
20
|
Xian RP, Walsh CL, Verleden SE, Wagner WL, Bellier A, Marussi S, Ackermann M, Jonigk DD, Jacob J, Lee PD, Tafforeau P. A multiscale X-ray phase-contrast tomography dataset of a whole human left lung. Sci Data 2022; 9:264. [PMID: 35654864 PMCID: PMC9163096 DOI: 10.1038/s41597-022-01353-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Technological advancements in X-ray imaging using bright and coherent synchrotron sources now allows the decoupling of sample size and resolution while maintaining high sensitivity to the microstructures of soft, partially dehydrated tissues. The continuous developments in multiscale X-ray imaging resulted in hierarchical phase-contrast tomography, a comprehensive approach to address the challenge of organ-scale (up to tens of centimeters) soft tissue imaging with resolution and sensitivity down to the cellular level. Using this technique, we imaged ex vivo an entire human left lung at an isotropic voxel size of 25.08 μm along with local zooms down to 6.05-6.5 μm and 2.45-2.5 μm in voxel size. The high tissue contrast offered by the fourth-generation synchrotron source at the European Synchrotron Radiation Facility reveals the complex multiscale anatomical constitution of the human lung from the macroscopic (centimeter) down to the microscopic (micrometer) scale. The dataset provides comprehensive organ-scale 3D information of the secondary pulmonary lobules and delineates the microstructure of lung nodules with unprecedented detail.
Collapse
Affiliation(s)
- R Patrick Xian
- Department of Mechanical Engineering, University College London, London, UK.
| | - Claire L Walsh
- Department of Mechanical Engineering, University College London, London, UK
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - Alexandre Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - Sebastian Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - Joseph Jacob
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
21
|
Lee JY, Mack AF, Shiozawa T, Longo R, Tromba G, Scheffler K, Hagberg GE. Microvascular imaging of the unstained human superior colliculus using synchrotron-radiation phase-contrast microtomography. Sci Rep 2022; 12:9238. [PMID: 35655082 PMCID: PMC9163179 DOI: 10.1038/s41598-022-13282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Characterizing the microvasculature of the human brain is critical to advance understanding of brain vascular function. Most methods rely on tissue staining and microscopy in two-dimensions, which pose several challenges to visualize the three-dimensional structure of microvessels. In this study, we used an edge-based segmentation method to extract the 3D vasculature from synchrotron radiation phase-contrast microtomography (PC-μCT) of two unstained, paraffin-embedded midbrain region of the human brain stem. Vascular structures identified in PC-μCT were validated with histology of the same specimen. Using the Deriche-Canny edge detector that was sensitive to the boundary between tissue and vascular space, we could segment the vessels independent of signal variations in PC-μCT images. From the segmented volumetric vasculature, we calculated vessel diameter, vessel length and volume fraction of the vasculature in the superior colliculi. From high resolution images, we found the most frequent vessel diameter to be between 8.6-10.2 µm. Our findings are consistent with the known anatomy showing two types of vessels with distinctive morphology: peripheral collicular vessels and central collicular vessels. The proposed method opens up new possibilities for vascular research of the central nervous system using synchrotron radiation PC-μCT of unstained human tissue.
Collapse
Affiliation(s)
- Ju Young Lee
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- Graduate Training Centre of Neuroscience, Eberhard Karl's University of Tübingen, Tübingen, Germany.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Renata Longo
- University of Trieste, Trieste, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Trieste, Italy
| | | | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Gisela E Hagberg
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Wälchli T, Farnhammer F, Fish JE. MicroRNA-Based Regulation of Embryonic Endothelial Cell Heterogeneity at Single-Cell Resolution. Arterioscler Thromb Vasc Biol 2022; 42:343-347. [PMID: 35196110 DOI: 10.1161/atvbaha.122.317400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada (T.W., F.F.).,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada (T.W., F.F.).,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Switzerland (T.W., F.F.).,Division of Neurosurgery, University Hospital Zurich, Switzerland (T.W., F.F.)
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada (T.W., F.F.).,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada (T.W., F.F.).,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Switzerland (T.W., F.F.).,Division of Neurosurgery, University Hospital Zurich, Switzerland (T.W., F.F.).,Department of Physiology, Faculty of Medicine (F.F.), University of Toronto, Ontario, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine (J.E.F.), University of Toronto, Ontario, Canada.,Toronto General Hospital Research Institute (J.E.F.), University Health Network, Ontario, Canada.,Peter Munk Cardiac Centre (J.E.F.), University Health Network, Ontario, Canada
| |
Collapse
|
23
|
Otte E, Vlachos A, Asplund M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell Tissue Res 2022; 387:461-477. [PMID: 35029757 PMCID: PMC8975777 DOI: 10.1007/s00441-021-03567-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their ‘seamless’ long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood–brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?
Collapse
|