1
|
Evtimov VJ, Nguyen NYN, Hammett MV, Pupovac A, Hudson PJ, Zhuang J, Lee JY, Kim S, Trounson AO, Boyd RL, Shu R. CRISPR-Cas9 knockout of DGKα/ζ improves the anti-tumor activities of TAG-72 CAR-T cells in ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200962. [PMID: 40207199 PMCID: PMC11981736 DOI: 10.1016/j.omton.2025.200962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
High recurrence and chemoresistance in solid tumors, like ovarian cancer, stress the need for new therapies. Chimeric antigen receptor (CAR)-T cells show promise but face challenges due to tumor heterogeneity and immune suppression in the tumor microenvironment (TME). Thus, novel approaches are needed to further enhance the efficacy of CAR-T cell therapies. In T cell therapies, inhibiting checkpoint molecules is crucial for overcoming exhaustion and boosting anti-tumor activity. Additionally, prioritizing safety by engineering cells to target markers absent on normal healthy cells reduces off-target risks. We targeted tumor-associated glycoprotein 72 (TAG-72), an oncofetal antigen highly expressed in adenocarcinomas like ovarian cancer, by engineering TAG-72 CAR-T cells and used CRISPR-Cas9 to knock out the T cell-inhibitory enzymes diacylglycerol kinase (DGK) α and ζ. DGKα/ζ knockout (KO) did not impact CAR-T cell viability or phenotype. These cells selectively killed TAG-72-expressing cancer cells in vitro and ablated established tumors in vivo for up to 100 days, whereas non-deleted control TAG-72 CAR-T cells showed tumor relapse around 40 days. These findings highlight the potential of CRISPR-induced DGKα/ζ KO to enhance CAR-T cell efficacy against solid tumors such as ovarian cancer, offering a promising avenue for improved cancer therapies.
Collapse
Affiliation(s)
- Vera J. Evtimov
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Nhu-Y N. Nguyen
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Maree V. Hammett
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Aleta Pupovac
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J. Hudson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Junli Zhuang
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | | | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Runzhe Shu
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
| |
Collapse
|
2
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
3
|
Vlasova KY, Kerr A, Pennock ND, Jozic A, Sahel DK, Gautam M, Murthy NTV, Roberts A, Ali MW, MacDonald KD, Walker JM, Luxenhofer R, Sahay G. Synthesis of ionizable lipopolymers using split-Ugi reaction for pulmonary delivery of various size RNAs and gene editing. Nat Commun 2025; 16:4021. [PMID: 40301362 DOI: 10.1038/s41467-025-59136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
We present an efficient method for synthesizing cationic poly(ethylene imine) derivatives using the multicomponent split-Ugi reaction to create a library of functional ionizable lipopolymers. Here we show 155 polymers, formulated into polyplexes, to establish structure-activity relationships essential for endosomal escape and transfection. A lead structure is identified, and lipopolymer-lipid hybrid nanoparticles are developed to deliver mRNA to lung endothelium and immune cells, including T cells, with low in vivo toxicity. These nanoparticles show significant improvements in mRNA delivery to the lung compared to in vivo-JetPEI® and demonstrate effective delivery of therapeutic mRNA(s) of various sizes. IL-12 mRNA-loaded nanoparticles delay Lewis Lung cancer progression, while human CFTR mRNA restores CFTR protein function in CFTR knockout mice. Additionally, we demonstrate in vivo CRISPR-Cas9 mRNA delivery, achieving gene editing in lung tissue and successful PD-1 knockout in T cells in mice. These results highlight the platform's potential for systemic gene therapy delivery.
Collapse
Affiliation(s)
- K Yu Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - A Kerr
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - N D Pennock
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - A Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - D K Sahel
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - M Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - N T V Murthy
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - A Roberts
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - M W Ali
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - K D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - J M Walker
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental, and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - R Luxenhofer
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland.
| | - G Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA.
- Center for Innovative Drug Delivery and Imaging, College of Pharmacy, Oregon State University & Oregon Health & Sciences University, Portland, OR, USA.
| |
Collapse
|
4
|
Stewart CM, Siegler EL, Kenderian SS. The road ahead for chimeric antigen receptor T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf047. [PMID: 40209174 DOI: 10.1093/jimmun/vkaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/25/2025] [Indexed: 04/12/2025]
Abstract
Chimeric antigen receptor T (CART) cell therapy is an innovative form of immunotherapy that has shown remarkable and long-term responses in patients with B-cell malignancies. Over the years, the field has made significant progress in our understanding of the successes and challenges associated with CART cell therapy. In this review, we provide an overview of the current state of CART cell therapy in the clinic. We detail current challenges including patient access, CART-associated toxicity, tumor heterogeneity, CART cell trafficking, the tumor microenvironment, and different CART cell fates. With each challenge, we review lessons learned, potential solutions and outline areas for future development. Finally, we discuss how the field of engineered cell therapy is moving into the treatment of solid tumors and other diseases beyond cancer.
Collapse
Affiliation(s)
- Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Matuszek Z, Brown BL, Yrigollen CM, Keiser MS, Davidson BL. Current trends in gene therapy to treat inherited disorders of the brain. Mol Ther 2025:S1525-0016(25)00266-7. [PMID: 40181540 DOI: 10.1016/j.ymthe.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Gene therapy development, re-engineering, and application to patients hold promise to revolutionize medicine, including therapies for disorders of the brain. Advances in delivery modalities, expression regulation, and improving safety profiles are of critical importance. Additionally, each inherited disorder has its own unique characteristics as to regions and cell types impacted and the temporal dynamics of that impact that are essential for the design of therapeutic design strategies. Here, we review the current state of the art in gene therapies for inherited brain disorders, summarizing key considerations for vector delivery, gene addition, gene silencing, gene editing, and epigenetic editing. We provide examples from animal models, human cell lines, and, where possible, clinical trials. This review also highlights the various tools available to researchers for basic research questions and discusses our views on the current limitations in the field.
Collapse
Affiliation(s)
- Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brandon L Brown
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn M Yrigollen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Tian R, Tian X, Yang M, Song Y, Zhao T, Zhong C, Zhu W, Zhou P, Han Z, Hu Z. Systematic high-throughput evaluation reveals FrCas9's superior specificity and efficiency for therapeutic genome editing. SCIENCE ADVANCES 2025; 11:eadu7334. [PMID: 40138428 PMCID: PMC11939069 DOI: 10.1126/sciadv.adu7334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
CRISPR-Cas9 systems have revolutionized genome editing, but the off-target effects of Cas9 limit its use in clinical applications. Here, we systematically evaluate FrCas9, a variant from Faecalibaculum rodentium, for cell and gene therapy (CGT) applications and compare its performance to SpCas9 and OpenCRISPR-1. OpenCRISPR-1 is a CRISPR system synthesized de novo using large language models (LLMs) but has not yet undergone systematic characterization. Using AID-seq, Amplicon sequencing, and GUIDE-seq, we assessed the on-target activity and off-target profiles of these systems across multiple genomic loci. FrCas9 demonstrated higher on-target efficiency and substantially fewer off-target effects than SpCas9 and OpenCRISPR-1. Furthermore, TREX2 fusion with FrCas9 reduced large deletions and translocations, enhancing genomic stability. Through screening of 1903 sgRNAs targeting 21 CGT-relevant genes using sequential AID-seq, Amplicon sequencing, and GUIDE-seq analysis, we identified optimal sgRNAs for each gene. Our high-throughput screening platform highlights FrCas9, particularly in its TREX2-fused form, as a highly specific and efficient tool for precise therapeutic genome editing.
Collapse
Affiliation(s)
- Rui Tian
- Generulor Company Bio-X Lab, Zhuhai 519000, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Meiying Yang
- Department of Gynecology, Guilin People’s Hospital, Guilin 541000, China
| | - Yuping Song
- Department of Dermatology, Wuhan Donghu Hospital, Wuhan 430074, Hubei, China
| | | | | | - Wei Zhu
- Generulor Company Bio-X Lab, Zhuhai 519000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Hsieh HJ, Urak R, Clark MC, Kwak LW, Forman SJ, Wang X. Capivasertib enhances chimeric antigen receptor T cell activity in preclinical models of B cell lymphoma. Mol Ther Methods Clin Dev 2025; 33:101421. [PMID: 40008088 PMCID: PMC11850743 DOI: 10.1016/j.omtm.2025.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling is involved in the growth of normal and cancer cells and is crucial for T cell activation. Previously, we have shown that AKT Inhibitor VIII, a selective AKT-1/2 inhibitor, during chimeric antigen receptor (CAR) T cell manufacturing, improves CAR T cell function in preclinical models. Although AKT Inhibitor VIII could enhance CAR T cell function, AKT Inhibitor VIII is not a clinical-grade compound. However, pan-AKT inhibitors have been applied against cancers with PIK3CA/AKT/PTEN alterations in clinical trials. We evaluated ex vivo and in vivo strategies of enhancing CAR T cell therapeutic effect using the pan-AKT inhibitor capivasertib. We found that ex vivo 0.25 μM capivasertib treatment during the period of T cell stimulation during manufacture enhanced the antitumor activity of CAR T cells in B cell lymphoma mouse models. Mechanistically, capivasertib changed gene and protein expression patterns related to the functions of memory and effector CAR T cells. Furthermore, in vivo combination therapy of capivasertib and CD19-specific CAR T cells led to improved early response to and persistence of functional CAR T cells in mice bearing PTEN-deficient lymphoma cells compared to CAR T cells alone. Capivasertib exerts a similar function to AKT Inhibitor VIII in modulating CAR T cells, and combining CAR T cell therapy with capivasertib both ex vivo and in vivo offers the potential to improve patient outcomes. Since PTEN deficiency is common in cancer and is the main mechanism for capivasertib function, combination therapy may provide an alternative solution for the challenges of CAR T cell therapy.
Collapse
Affiliation(s)
- Hui-Ju Hsieh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Mary C. Clark
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Larry W. Kwak
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Tulsian K, Thakker D, Vyas VK. Overcoming chimeric antigen receptor-T (CAR-T) resistance with checkpoint inhibitors: Existing methods, challenges, clinical success, and future prospects : A comprehensive review. Int J Biol Macromol 2025; 306:141364. [PMID: 39988153 DOI: 10.1016/j.ijbiomac.2025.141364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade is, as of today, the most successful form of cancer immunotherapy, with more than 43 % of cancer patients in the US eligible to receive it; however, only up to 12.5 % of patients respond to it. Similarly, adoptive cell therapy using bioengineered chimeric antigen receptorT (CAR-T) cells and T-cell receptor (TCR) cells has provided excellent responses against liquid tumours, but both forms of immunotherapy have encountered challenges within a tumour microenvironment that is both lacking in tumour-specific T-cells and is strongly immunosuppressive toward externally administered CAR-T and TCR cells. This review focuses on understanding approved checkpoint blockade and adoptive cell therapy at both biological and clinical levels before delving into how and why their combination holds significant promise in overcoming their individual shortcomings. The advent of next-generation checkpoint inhibitors has further strengthened the immune checkpoint field, and a special section explores how these inhibitors can address existing hurdles in combining checkpoint blockade with adoptive cell therapy and homing in on our cancer target for long-term immunity.
Collapse
Affiliation(s)
- Kartik Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Dhinal Thakker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
9
|
Sun Y, Maggs L, Panda A, Wright SJ, Cicerchia AM, Jenney A, Perricone MD, Mills CE, Cattaneo G, Ventin M, Chen F, Rasmussen MQ, Miranda A, Revach OY, Fang J, Fu A, Bowling PJ, Sharova T, Lawless A, Sorger PK, Bardeesy N, Wang X, Flaherty KT, Boland GM, Mehta A, Sade-Feldman M, Ferrone CR, Jenkins RW. TBK1 Targeting Is Identified as a Therapeutic Strategy to Enhance CAR T-Cell Efficacy Using Patient-Derived Organotypic Tumor Spheroids. Cancer Immunol Res 2025; 13:210-228. [PMID: 39785827 PMCID: PMC11790382 DOI: 10.1158/2326-6066.cir-23-1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/11/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.CAR-T) using 3D microfluidic cultures of patient-derived organotypic tumor spheroids (PDOTS) and then confirmed the activity of B7-H3.CAR T cells in PDOTS. Although B7-H3 expression in PDOTS was associated with B7-H3.CAR-T sensitivity, mechanistic studies revealed dynamic upregulation of co-inhibitory receptors on CAR T-cells following target cell encounter that led to CAR T-cell dysfunction and limited efficacy against B7-H3-expressing tumors. PD-1 blockade restored CAR T-cell activity in monotypic and organotypic tumor spheroids with improved tumor control and upregulation of effector cytokines. Given the emerging role of TANK-binding kinase 1 (TBK1) as an immune evasion gene, we examined the effect of TBK1 inhibition on CAR T-cell efficacy. Similar to PD-1 blockade, TBK1 inhibition restored CAR T-cell activity in monotypic and organotypic tumor spheroids, prevented CAR T-cell dysfunction, and enhanced CAR T-cell proliferation. Inhibition or deletion of TBK1 also enhanced the sensitivity of cancer cells to immune-mediated killing. Taken together, our results demonstrate the feasibility and utility of ex vivo profiling of CAR T cells using PDOTS and suggest that targeting TBK1 could be used to enhance CAR T-cell efficacy by overcoming tumor-intrinsic and -extrinsic resistance mechanisms.
Collapse
Affiliation(s)
- Yi Sun
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke Maggs
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Angelina M. Cicerchia
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Jenney
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Matthew D. Perricone
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Caitlin E. Mills
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Ventin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Q. Rasmussen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alex Miranda
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Or-Yam Revach
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacy Fang
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amina Fu
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter J. Bowling
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatyana Sharova
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleigha Lawless
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston MA, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith T. Flaherty
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M. Boland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnav Mehta
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moshe Sade-Feldman
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cristina R. Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Russell W. Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
- lead contact
| |
Collapse
|
10
|
Liao S, Li X, Lu Y, Luo K. Nanomedicine in Immunotherapy for Non-Small Cell Lung Cancer: Applications and Perspectives. SMALL METHODS 2025:e2401783. [PMID: 39871783 DOI: 10.1002/smtd.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Non-small cell lung cancer (NSCLC) has a strikingly high incidence rate globally. Although immunotherapy brings a great breakthrough in its clinical treatment of NSCLC, significant challenges still need to be overcome. The development of novel multi-functional nanomedicines in the realm of tumor immunotherapy offers promising opportunities for NSCLC patients, as nanomedicines exhibit significant advantages, including specific targeting of tumor cells, improved drug bioavailability, reduced systemic toxicity, and overcoming of immune resistance. In this review, the core features and current clinical status of strategies for NSCLC immunotherapy including immune checkpoint blockade, antibody-drug conjugates, cell engagers, adoptive cells, and cancer vaccines, are surveyed. Particular emphasis is placed on the recent development of nanomedicines that boost these strategies. Nanomedicine can provide novel perspectives for NSCLC immunotherapy.
Collapse
Affiliation(s)
- Shuangsi Liao
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
11
|
Zhong L, Li B, Zhang S, Li Q, Xiao G. Computational Identification of Migrating T cells in Spatial Transcriptomics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619870. [PMID: 39484480 PMCID: PMC11526994 DOI: 10.1101/2024.10.23.619870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
T cells are the central players in antitumor immunity, and effective tumor killing depends on their ability to infiltrate into the tumor microenvironment (TME) while maintaining normal cytotoxicity. However, late-stage tumors develop immunosuppressive mechanisms that impede T cell movement and induce exhaustion. Investigating T cell migration in human tumors in vivo could provide novel insights into tumor immune escape, although it remains a challenging task. In this study, we developed ReMiTT, a computational method that leverages spatial transcriptomics data to track T cell migration patterns within tumor tissue. Applying ReMiTT to multiple tumor samples, we identified potential migration trails. On these trails, chemokines that promote T-cell trafficking display an increasing trend. Additionally, we identified key genes and pathways enriched on these migration trails, including those involved in cytoskeleton rearrangement, leukocyte chemotaxis, cell adhesion, leukocyte migration, and extracellular matrix (ECM) remodeling. Furthermore, we characterized the phenotypes of T cells along these trails, showing that the migrating T cells are highly proliferative. Our findings introduce a novel approach for studying T cell migration and interactions within the tumor microenvironment (TME), offering valuable insights into tumor-immune dynamics.
Collapse
|
12
|
Li YR, Zhou K, Lee D, Zhu Y, Halladay T, Yu J, Zhou Y, Lyu Z, Fang Y, Chen Y, Semaan S, Yang L. Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. Nat Protoc 2025:10.1038/s41596-024-01077-w. [PMID: 39825143 DOI: 10.1038/s41596-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 01/20/2025]
Abstract
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (AlloNKT) cells and their CAR-armed derivatives (AlloCAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate AlloCAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of AlloCAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature AlloCAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sasha Semaan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Mandavkar AA, Padakanti SSN, Gupta S, Akram S, Jaffar N, Chauhan J, Allu LR, Saini P, Nasrallah J, Omar MA, Mugibel MA, Syed S, Ravindran KO, Dwivedi A, Dhingra GS, Dhingra A, Kakadiya J, Kotaich J, Beniwal SS. Emerging therapies in Multiple Myeloma: Leveraging immune checkpoint inhibitors for improved outcomes. Hum Antibodies 2025:10932607241301699. [PMID: 39973812 DOI: 10.1177/10932607241301699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND: Multiple Myeloma is a hematological malignancy characterized by the proliferation of clonal plasma cells and associated with severe clinical manifestations. Despite advancements in diagnosis and management, Multiple Myeloma remains incurable, necessitating further research into more effective therapies. AIM: The primary objective of this review is to provide an informative and critical summary of the Multiple Myeloma microenvironment, and emerging revolutionary therapeutic approaches with potential combination therapy to improve the quality of life for Multiple Myeloma patients. EMERGING APPROACHES: Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs), have shown improvements in immune response against Multiple Myeloma. ICIs target inhibitory pathways such as PD-1/PD-L1 and CTLA-4, potentially overcoming tumor-induced immunosuppression. Combination therapies integrate ICIs with proteasome inhibitors, immunomodulators, and monoclonal antibodies to enhance the anti-tumor immune response. Additionally, Chimeric Antigen Receptor T-cell (CAR-T) therapy has demonstrated effectiveness against Multiple Myeloma, particularly when coupled with ICIs to decrease resistance and relapse. CHALLENGES: Although the efficacy of ICIs in treating Multiple Myeloma has been hindered by the complexity of the tumor microenvironment and immune evasion mechanisms, this challenge has led to the exploration of combination therapies. Potential side effects are still a big challenge for newly recognized ICIs and combination treatment. FUTURE DIRECTIONS: Investigations of new immune checkpoints and the development of targeted therapies against these markers are in progress, creating possibilities for more personalized and effective treatment strategies. Continuous research and robust clinical trials are needed to comprehend the complex dynamics of the Multiple Myeloma microenvironment to develop revolutionary therapeutic targets.
Collapse
Affiliation(s)
| | | | - Srajan Gupta
- SV Medical College, Tirupati, Andhra Pradesh, India
| | - Samiyah Akram
- Shadan Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Nida Jaffar
- Mid and South Essex NHS Foundation Trust, Southend University Hospital, Southend-on-Sea Essex, England
| | - Jugalkishor Chauhan
- Dr. N D Desai Faculty of Medical Science and Research, Nadiad, Gujarat, India
| | | | - Pulkit Saini
- Sri Devaraj URS Medical College, Kolar, Karnataka, India
| | - Jamil Nasrallah
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Muna Ali Mugibel
- College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | - Saif Syed
- Royal College of Surgeons, Dublin, Ireland
| | | | - Ayush Dwivedi
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Avleen Dhingra
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | | | - Jana Kotaich
- Faculty of Medical Sciences, Lebanese University, Lebanon
| | | |
Collapse
|
14
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial chimeric antigen receptor T cell and chemotherapies. Pharmacol Rev 2025; 77:100011. [PMID: 39952691 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for treatment of solid and brain tumors has been met with many challenges, including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across patients with cancer. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this because chemotherapeutics could augment CAR T cells for improved antitumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts toward achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics because these will be more easily translated to the clinic but also review nonapproved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Overall, this review highlights the promise of CAR T cell and chemotherapy combinations with a specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for patients with cancer. SIGNIFICANCE STATEMENT: Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts toward studying CAR T and chemotherapy combinatorial therapies and offer perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amber B Jones
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
16
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
17
|
Ursch LT, Müschen JS, Ritter J, Klermund J, Bernard BE, Kolb S, Warmuth L, Andrieux G, Miller G, Jiménez-Muñoz M, Theis FJ, Boerries M, Busch DH, Cathomen T, Schumann K. Modulation of TCR stimulation and pifithrin-α improve the genomic safety profile of CRISPR-engineered human T cells. Cell Rep Med 2024; 5:101846. [PMID: 39637860 PMCID: PMC11722128 DOI: 10.1016/j.xcrm.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-engineered chimeric antigen receptor (CAR) T cells are at the forefront of novel cancer treatments. However, several reports describe the occurrence of CRISPR-induced chromosomal aberrations. So far, measures to increase the genomic safety of T cell products focused mainly on the components of the CRISPR-Cas9 system and less on T cell-intrinsic features, such as their massive expansion after T cell receptor (TCR) stimulation. Here, we describe driving forces of indel formation in primary human T cells. Increased T cell activation and proliferation speed correlate with larger deletions. Editing of non-activated T cells reduces the risk of large deletions with the downside of reduced knockout efficiencies. Alternatively, the addition of the small-molecule pifithrin-α limits large deletions, chromosomal translocations, and aneuploidy in a p53-independent manner while maintaining the functionality of CRISPR-engineered T cells, including CAR T cells. Controlling T cell activation and pifithrin-α treatment are easily implementable strategies to improve the genomic integrity of CRISPR-engineered T cells.
Collapse
Affiliation(s)
- Laurenz T Ursch
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Jule S Müschen
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Julia Ritter
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Bettina E Bernard
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Saskia Kolb
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Linda Warmuth
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gregor Miller
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marina Jiménez-Muñoz
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; School of Computing, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Dirk H Busch
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; German Center for Infection Research, Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kathrin Schumann
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; TUM, Institute for Advanced Study, 85748 Garching, Germany.
| |
Collapse
|
18
|
Yin S, Li C, Shen X, Yu G, Cui L, Wu Y, He Y, Yu S, Chen J, Lu S, Qiu G, Song M, Qian C, Zou Z, Yu Y, Xu S. Siglec-G Suppresses CD8 + T Cells Responses through Metabolic Rewiring and Can be Targeted to Enhance Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403438. [PMID: 39373395 PMCID: PMC11615767 DOI: 10.1002/advs.202403438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Indexed: 10/08/2024]
Abstract
CD8+ T cells play a critical role in cancer immune-surveillance and pathogen elimination. However, their effector function can be severely impaired by inhibitory receptors such as programmed death-1 (PD-1) and T cell immunoglobulin domain and mucin domain-3 (Tim-3). Here Siglec-G is identified as a coinhibitory receptor that limits CD8+ T cell function. Siglec-G is highly expressed on tumor-infiltrating T cells and is enriched in the exhausted T cell subset. Ablation of Siglec-G enhances the efficacy of adoptively transferred T cells and chimeric antigen receptor (CAR) T cells in suppressing solid tumors growth. Mechanistically, sialoglycan ligands, such as CD24 on tumor cells, activate the Siglec-G-SHP2 axis in CD8+ T cells, impairing metabolic reprogramming from oxidative phosphorylation to glycolysis, which dampens cytotoxic T lymphocyte (CTL) activation, expansion, and cytotoxicity. These findings discover a critical role for Siglec-G in inhibiting CD8+ T cell responses, suggesting its potential therapeutic effect in adoptive T cell therapy and tumor immunotherapy.
Collapse
Affiliation(s)
- Shenhui Yin
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Chunzhen Li
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Xin Shen
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Guanyu Yu
- Department of Colorectal SurgeryChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Likun Cui
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Yunyang Wu
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Yixian He
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Shu Yu
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jie Chen
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Shaoteng Lu
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Guifang Qiu
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Mengqi Song
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Cheng Qian
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Zui Zou
- School of AnesthesiologyNaval Medical UniversityShanghai200433China
- Faculty of AnesthesiologyChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Yizhi Yu
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Sheng Xu
- National Key Laboratory of Immunity & InflammationNaval Medical University/Second Military Medical UniversityShanghai200433China
| |
Collapse
|
19
|
Qu J, Wang Y, Xiong C, Wang M, He X, Jia W, Li CY, Zhang T, Wang Z, Li W, Kuang BY, Shi P. In vivo gene editing of T-cells in lymph nodes for enhanced cancer immunotherapy. Nat Commun 2024; 15:10218. [PMID: 39587061 PMCID: PMC11589603 DOI: 10.1038/s41467-024-54292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy, while promising for cancer treatment, faces challenges like unexpected side effects and limited objective responses. Here, we develop an in vivo gene-editing strategy for improving ICB cancer therapy in a lastingly effective manner. The approach uses a conductive hydrogel-based electroporation system to enable nucleofection of programmed cell death protein 1 (PD1) targeted CRISPR-Cas9 DNAs into T-cells directly within the lymph nodes, and subsequently produces PD1-deficient T-cells to combat tumor growth, metastasis and recurrence in different melanoma models in mice. Following in vivo gene editing, animals show enhanced cellular and humoral immune responses along with multi-fold increases of effector T-cells infiltration to the solid tumors, preventing tumor recurrence and prolonging their survival. These findings provide a proof-of-concept for direct in vivo T-cell engineering via localized gene-editing for enhanced cancer immunotherapy, and also unlock the possibilities of using this method to treat more complex human diseases.
Collapse
Affiliation(s)
- Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mingxue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xingdao He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Weibin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China
| | - Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Tianlong Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zixun Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Becki Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Nanshan, Shenzhen, China.
| |
Collapse
|
20
|
Wang Y, Chen P, Wen H, Gui Y, Yan D, Huang D, Wang D, Tang BZ, Tan H. Advanced Nanoplatform Mediated by CRISPR-Cas9 and Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics. ACS NANO 2024. [PMID: 39563182 DOI: 10.1021/acsnano.4c11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Immunotherapy combined with phototherapy is emerging as a promising strategy to treat omnipotent cancers. In this study, a clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system, aggregation-induced emission (AIE) photosensitizer (PS) and surface coating of polyethylene imine/hyaluronic acid were combined to construct a multifunctional nanoplatform, denoted as TCPH nanoparticles (NPs), for comprehensive cancer theranostics. TCPH NPs are featured by intrinsic functions including efficient reactive oxygen species (ROS) production, good photothermal conversion, programmed death-ligand 1 (PD-L1)-eliminating capability, and effective intracellular transport. The generated ROS and hyperthermia do not only achieve primary tumor elimination but also regulate the tumor immune microenvironment. Genomic disruption of PD-L1 conspicuously augments its therapeutic efficacy, especially in tumor metastasis and recurrence. Exceptional multimodal imaging navigation has also been developed. Excellent theranostics performance was substantiated in diverse tumor models, implying that this synergistic strategy of phototheranostics and immunotherapy provides a paradigm shift in emerging CRISPR-mediated nanomedicines.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518034, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Penghang Chen
- Institute of Lung Health and Immunity (LHI) and Comprehensive, Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Neuherberg 85764, Germany
- Light Innovation Technology Ltd., Shenzhen 518110, China
| | - Haifei Wen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Yixiong Gui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Di Huang
- Light Innovation Technology Ltd., Shenzhen 518110, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518034, China
| |
Collapse
|
21
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
22
|
Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong OK, Liz Touza J, Selfjord N, Weisheit I, Francescatto M, Akcakaya P, Porritt M, Maresca M, Taylor D, Sienski G. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 2024; 15:9173. [PMID: 39511150 PMCID: PMC11544209 DOI: 10.1038/s41467-024-53418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Clinical implementation of therapeutic genome editing relies on efficient in vivo delivery and the safety of CRISPR-Cas tools. Previously, we identified PsCas9 as a Type II-B family enzyme capable of editing mouse liver genome upon adenoviral delivery without detectable off-targets and reduced chromosomal translocations. Yet, its efficacy remains insufficient with non-viral delivery, a common challenge for many Cas9 orthologues. Here, we sought to redesign PsCas9 for in vivo editing using lipid nanoparticles. We solve the PsCas9 ribonucleoprotein structure with cryo-EM and characterize it biochemically, providing a basis for its rational engineering. Screening over numerous guide RNA and protein variants lead us to develop engineered PsCas9 (ePsCas9) with up to 20-fold increased activity across various targets and preserved safety advantages. We apply the same design principles to boost the activity of FnCas9, an enzyme phylogenetically relevant to PsCas9. Remarkably, a single administration of mRNA encoding ePsCas9 and its guide formulated with lipid nanoparticles results in high levels of editing in the Pcsk9 gene in mouse liver, a clinically relevant target for hypercholesterolemia treatment. Collectively, our findings introduce ePsCas9 as a highly efficient, and precise tool for therapeutic genome editing, in addition to the engineering strategy applicable to other Cas9 orthologues.
Collapse
Affiliation(s)
- Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jack Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Aikaterini Emmanouilidi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Aleksandar Zdravković
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Oi Kuan Choong
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Isabel Weisheit
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Michelle Porritt
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - David Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
23
|
Chen Z, Shu J, Hu Y, Mei H. Synergistic integration of mRNA-LNP with CAR-engineered immune cells: Pioneering progress in immunotherapy. Mol Ther 2024; 32:3772-3792. [PMID: 39295145 PMCID: PMC11573621 DOI: 10.1016/j.ymthe.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has emerged as a revolutionary approach in the treatment of malignancies. Despite its remarkable successes, this field continues to grapple with challenges such as scalability, safety concerns, limited therapeutic effect, in vivo persistence, and the need for precise control over CAR expression. In the post-pandemic era of COVID-19 vaccine immunization, the application of messenger RNA (mRNA) encapsulated within lipid nanoparticles (LNPs) has recently garnered significant attention as a potential solution to address these challenges. This review delves into the dynamic landscape of mRNA-LNP technology and its potential implications for CAR-engineered immune cell-based immunotherapy.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
24
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024; 68:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Disease Models, Animal
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
25
|
Cheng H, Deng H, Ma D, Gao M, Zhou Z, Li H, Liu S, Teng T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024; 10:e39538. [PMID: 39502233 PMCID: PMC11535992 DOI: 10.1016/j.heliyon.2024.e39538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas, the adaptive immune system exclusive to prokaryotes, confers resistance against foreign mobile genetic elements. The CRISPR-Cas system is now being exploited by scientists in a diverse range of genome editing applications. CRISPR-Cas systems can be categorized into six different types based on their composition and mechanism, and there are also natural regulatory biomolecules in bacteria and bacteriophages that can either enhance or inhibit the immune function of CRISPR-Cas. The CRISPR-Cas systems are currently being trialed as a new tool for gene therapy to treat various human diseases, including cancers and genetic diseases, offering significant therapeutic potential. This paper comprehensively summarizes various aspects of the CRISPR-Cas system, encompassing its diversity, regulatory mechanisms, its clinical applications and the obstacles encountered.
Collapse
Affiliation(s)
- Hui Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Haoyue Deng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongdao Ma
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Zhihan Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
26
|
Hang Y, Huang J, Ding M, Shen Y, Zhou Y, Cai W. Extracellular vesicles reshape the tumor microenvironment to improve cancer immunotherapy: Current knowledge and future prospects. Int Immunopharmacol 2024; 140:112820. [PMID: 39096874 DOI: 10.1016/j.intimp.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor immunotherapy has revolutionized cancer treatment, but limitations remain, including low response rates and immune complications. Extracellular vesicles (EVs) are emerging as a new class of therapeutic agents for various diseases. Recent research shows that changes in the amount and composition of EVs can reshape the tumor microenvironment (TME), potentially improving the effectiveness of immunotherapy. This exciting discovery has sparked clinical interest in using EVs to enhance the immune system's response to cancer. In this Review, we delve into the world of EVs, exploring their origins, how they're generated, and their complex interactions within the TME. We also discuss the crucial role EVs play in reshaping the TME during tumor development. Specifically, we examine how their cargo, including molecules like PD-1 and non-coding RNA, influences the behavior of key immune cells within the TME. Additionally, we explore the current applications of EVs in various cancer therapies, the latest advancements in engineering EVs for improved immunotherapy, and the challenges faced in translating this research into clinical practice. By gaining a deeper understanding of how EVs impact the TME, we can potentially uncover new therapeutic vulnerabilities and significantly enhance the effectiveness of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Yu Hang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JingYi Huang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Ding
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Shen
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YaoZhong Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China.
| | - Wan Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
27
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
28
|
Li YJ, Chien SH, Huang R, Herrmann A, Zhao Q, Li PC, Zhang C, Martincuks A, Santiago NL, Zong K, Swiderski P, Okimoto RA, Song M, Rodriguez L, Forman SJ, Wang X, Yu H. A platform to deliver single and bi-specific Cas9/guide RNA to perturb genes in vitro and in vivo. Mol Ther 2024; 32:3629-3649. [PMID: 39091030 PMCID: PMC11489542 DOI: 10.1016/j.ymthe.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Although CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency in vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers in vitro and in vivo with reduced off-target effects. We show that PS-Cas9/gRNA-mediated gene knockout preserves chimeric antigen receptor T cell viability and expansion in vitro and in vivo. PS-Cas9/gRNA mediates gene perturbation in patient-derived tumor organoids and mouse xenograft tumors, leading to potent tumor antitumor effects. Further, HER2 antibody-PS-Cas9/gRNA conjugate selectively perturbs targeted genes in HER2+ ovarian cancer xenografts in vivo. Moreover, we created bi-specific PS-Cas9 with two gRNAs to target two adjacent sequences of the same gene, leading to efficient targeted gene disruption ex vivo and in vivo with markedly reduced unintended gene perturbation. Thus, the cell-penetrating PS-Cas9/gRNA can achieve efficient systemic delivery and precision in gene disruption.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Sheng-Hsuan Chien
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11201, Taiwan
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Chunyan Zhang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Nicole Lugo Santiago
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Katherine Zong
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mihae Song
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lorna Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stephen J Forman
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Shamjetsabam ND, Rana R, Malik P, Ganguly NK. CRISPR/Cas9: an overview of recent developments and applications in cancer research. Int J Surg 2024; 110:6198-6213. [PMID: 38377059 PMCID: PMC11486967 DOI: 10.1097/js9.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) has risen as a potent gene editing method with vast potential across numerous domains, including its application in cancer research and therapy. This review article provides an extensive overview of the research that has been done so far on CRISPR-Cas9 with an emphasis on how it could be utilized in the treatment of cancer. The authors go into the underlying ideas behind CRISPR-Cas9, its mechanisms of action, and its application for the study of cancer biology. Furthermore, the authors investigate the various uses of CRISPR-Cas9 in cancer research, spanning from the discovery of genes and the disease to the creation of novel therapeutic approaches. The authors additionally discuss the challenges and limitations posed by CRISPR-Cas9 technology and offer insights into the potential applications and future directions of this cutting-edge field of research. The article intends to consolidate the present understanding and stimulate more research into CRISPR-Cas9's promise as a game-changing tool for cancer research and therapy.
Collapse
Affiliation(s)
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital New Delhi
| | - Priyanka Malik
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | |
Collapse
|
30
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
31
|
Nasiri F, Asaadi Y, Mirzadeh F, Abdolahi S, Molaei S, Gavgani SP, Rahbarizadeh F. Updates on CAR T cell therapy in multiple myeloma. Biomark Res 2024; 12:102. [PMID: 39261906 PMCID: PMC11391811 DOI: 10.1186/s40364-024-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by the abnormal proliferation of plasma cells. Initial treatments often include immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and monoclonal antibodies (mAbs). Despite salient progress in diagnosis and treatment, most MM patients typically have a median life expectancy of only four to five years after starting treatment. In recent developments, the success of chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies exemplifies a new paradigm shift in advanced immunotherapy techniques with promising therapeutic outcomes. Ide-cel and cilta-cel stand as the only two FDA-approved BCMA-targeted CAR T-cells for MM patients, a recognition achieved despite extensive preclinical and clinical research efforts in this domain. Challenges remain regarding certain aspects of CAR T-cell manufacturing and administration processes, including the lack of accessibility and durability due to T-cell characteristics, along with expensive and time-consuming processes limiting health plan coverage. Moreover, MM features, such as tumor antigen heterogeneity, antigen presentation alterations, complex tumor microenvironments, and challenges in CAR-T trafficking, contribute to CAR T-cell exhaustion and subsequent therapy relapse or refractory status. Additionally, the occurrence of adverse events such as cytokine release syndrome, neurotoxicity, and on-target, off-tumor toxicities present obstacles to CAR T-cell therapies. Consequently, ongoing CAR T-cell trials are diligently addressing these challenges and barriers. In this review, we provide an overview of the effectiveness of currently available CAR T-cell treatments for MM, explore the primary resistance mechanisms to these treatments, suggest strategies for improving long-lasting remissions, and investigate the potential for combination therapies involving CAR T-cells.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzaneh Mirzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Molaei
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Piri Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
32
|
Gandhi M, Sharma B, Nair S, Vaidya ADB. Current Insights into CAR T-Cell-Based Therapies for Myelodysplastic Syndrome. Pharm Res 2024; 41:1757-1773. [PMID: 39187686 DOI: 10.1007/s11095-024-03761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Myelodysplastic syndromes (MDS) are due to defective hematopoiesis in bone marrow characterized by cytopenia and dysplasia of blood cells, with a varying degree of risk of acute myeloid leukemia (AML). Currently, the only potentially curative strategy is hematopoietic stem cell transplantation (HSCT). Many patients are ineligible for HSCT, due to late diagnosis, presence of co-morbidities, old age and complications likely due to graft-versus-host disease (GvHD). As a consequence, patients with MDS are often treated conservatively with blood transfusions, chemotherapy, immunotherapy etc. based on the grade and manifestations of MDS. The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized immunotherapy for hematological malignancies, as evidenced by a large body of literature. However, resistance and toxicity associated with it are also a challenge. Hence, there is an urgent need to develop new strategies for immunological and hematopoetic management of MDS. Herein, we discuss current limitations of CAR T-cell therapy and summarize novel approaches to mitigate this. Further, we discuss the in vivo activation of tumor-specific T cells, immune check inhibitors (ICI) and other approaches to normalize the bone marrow milieu for the management of MDS.
Collapse
Affiliation(s)
- Manav Gandhi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bhirisha Sharma
- University of Mumbai, Santa Cruz (East), Mumbai, 400055, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd, Mumbai, 400022, India.
- Phytoveda Pvt. Ltd, Mumbai, 400022, India.
| | - Ashok D B Vaidya
- Kasturba Health Society-Medical Research Centre, Vile Parle (West), Mumbai, 400056, India
| |
Collapse
|
33
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
34
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
35
|
Rakhshandehroo T, Mantri SR, Moravej H, Louis BBV, Salehi Farid A, Munaretto L, Regan K, Khan RMM, Wolff A, Farkash Z, Cong M, Kuhnast A, Nili A, Lee UJ, Allen HH, Berland L, Simkova E, Uslu SC, Tavakolpour S, Rowley JE, Codet E, Shahbazian H, Baral J, Pyrdol J, Jacobson CA, Nadeem O, Nia HT, Wucherpfennig KW, Rashidian M. A CAR enhancer increases the activity and persistence of CAR T cells. Nat Biotechnol 2024:10.1038/s41587-024-02339-4. [PMID: 39079964 PMCID: PMC11779983 DOI: 10.1038/s41587-024-02339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/27/2024] [Indexed: 10/11/2024]
Abstract
Although chimeric antigen receptor (CAR) T cell therapies have demonstrated promising clinical outcomes, durable remissions remain limited. To extend the efficacy of CAR T cells, we develop a CAR enhancer (CAR-E), comprising a CAR T cell antigen fused to an immunomodulatory molecule. Here we demonstrate this strategy using B cell maturation antigen (BCMA) CAR T cells for the treatment of multiple myeloma, with a CAR-E consisting of the BCMA fused to a low-affinity interleukin 2 (IL-2). This selectively induces IL-2 signaling in CAR T cells upon antigen-CAR binding, enhancing T cell activation and antitumor activity while reducing IL-2-associated toxicities. We show that the BCMA CAR-E selectively binds CAR T cells and increases CAR T cell proliferation, clearance of tumor cells and development of memory CAR T cells. The memory cells retain the ability to re-expand upon restimulation, effectively controlling tumor growth upon rechallenge. Mechanistic studies reveal the involvement of both CAR and IL-2 receptor endodomains in the CAR-E mechanism of action. The CAR-E approach avoids the need for specific engineering and enables CAR T cell therapy with lower cell doses.
Collapse
Affiliation(s)
- Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shreya R Mantri
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Heydar Moravej
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Benjamin B V Louis
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ali Salehi Farid
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Leila Munaretto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Radia M M Khan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexandra Wolff
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoe Farkash
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adrien Kuhnast
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ali Nili
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Uk-Jae Lee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ester Simkova
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Safak C Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer E Rowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Elisabeth Codet
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haneyeh Shahbazian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessika Baral
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caron A Jacobson
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Omar Nadeem
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Zhou D, Zhu X, Xiao Y. CAR-T cell combination therapies in hematologic malignancies. Exp Hematol Oncol 2024; 13:69. [PMID: 39026380 PMCID: PMC11264744 DOI: 10.1186/s40164-024-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors through different mechanisms, improving patient response and survival rates.
Collapse
Affiliation(s)
- Delian Zhou
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaojian Zhu
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yi Xiao
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
37
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
39
|
Pal SK, Tran B, Haanen JB, Hurwitz ME, Sacher A, Tannir NM, Budde LE, Harrison SJ, Klobuch S, Patel SS, Meza L, Dequeant ML, Ma A, He QA, Williams LM, Keegan A, Gurary EB, Dar H, Karnik S, Guo C, Heath H, Yuen RR, Morrow PK, Agarwal N, Srour SA. CD70-Targeted Allogeneic CAR T-Cell Therapy for Advanced Clear Cell Renal Cell Carcinoma. Cancer Discov 2024; 14:1176-1189. [PMID: 38583184 PMCID: PMC11215406 DOI: 10.1158/2159-8290.cd-24-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Therapeutic approaches for clear cell renal cell carcinoma (ccRCC) remain limited; however, chimeric antigen receptor (CAR) T-cell therapies may offer novel treatment options. CTX130, an allogeneic CD70-targeting CAR T-cell product, was developed for the treatment of advanced or refractory ccRCC. We report that CTX130 showed favorable preclinical proliferation and cytotoxicity profiles and completely regressed RCC xenograft tumors. We also report results from 16 patients with relapsed/refractory ccRCC who received CTX130 in a phase I, multicenter, first-in-human clinical trial. No patients encountered dose-limiting toxicity, and disease control was achieved in 81.3% of patients. One patient remains in a durable complete response at 3 years. Finally, we report on a next-generation CAR T construct, CTX131, in which synergistic potency edits to CTX130 confer improved expansion and efficacy in preclinical studies. These data represent a proof of concept for the treatment of ccRCC and other CD70+ malignancies with CD70- targeted allogeneic CAR T cells. Significance: Although the role of CAR T cells is well established in hematologic malignancies, the clinical experience in solid tumors has been disappointing. This clinical trial demonstrates the first complete response in a patient with RCC, reinforcing the potential benefit of CAR T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Sumanta K. Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - John B.A.G. Haanen
- Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Leiden University Medical Center, Leiden, the Netherlands.
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada.
| | - Nizar M. Tannir
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Lihua E. Budde
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Simon J. Harrison
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Sagar S. Patel
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Luis Meza
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | | | - Anna Ma
- CRISPR Therapeutics, Boston, Massachusetts.
| | | | | | | | - Ellen B. Gurary
- Formerly employed by CRISPR Therapeutics, Boston, Massachusetts.
| | - Henia Dar
- CRISPR Therapeutics, Boston, Massachusetts.
| | | | - Changan Guo
- Formerly employed by CRISPR Therapeutics, Boston, Massachusetts.
| | | | | | - Phuong K. Morrow
- Formerly employed by CRISPR Therapeutics, Boston, Massachusetts.
| | - Neeraj Agarwal
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Samer A. Srour
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
41
|
Squalli Houssaini A, Lamrabet S, Nshizirungu JP, Senhaji N, Sekal M, Karkouri M, Bennis S. Glioblastoma Vaccines as Promising Immune-Therapeutics: Challenges and Current Status. Vaccines (Basel) 2024; 12:655. [PMID: 38932383 PMCID: PMC11209492 DOI: 10.3390/vaccines12060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard treatments including surgical resection, radiotherapy, and chemotherapy, have failed to significantly improve the prognosis of glioblastoma patients. Currently, immunotherapeutic approaches based on vaccines, chimeric antigen-receptor T-cells, checkpoint inhibitors, and oncolytic virotherapy are showing promising results in clinical trials. The combination of different immunotherapeutic approaches is proving satisfactory and promising. In view of the challenges of immunotherapy and the resistance of glioblastomas, the treatment of these tumors requires further efforts. In this review, we explore the obstacles that potentially influence the efficacy of the response to immunotherapy and that should be taken into account in clinical trials. This article provides a comprehensive review of vaccine therapy for glioblastoma. In addition, we identify the main biomarkers, including isocitrate dehydrogenase, epidermal growth factor receptor, and telomerase reverse transcriptase, known as potential immunotherapeutic targets in glioblastoma, as well as the current status of clinical trials. This paper also lists proposed solutions to overcome the obstacles facing immunotherapy in glioblastomas.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Jean Paul Nshizirungu
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda;
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco;
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital of Casablanca, Casablanca 20250, Morocco;
- Laboratory of Cellular and molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20360, Morocco
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| |
Collapse
|
42
|
Zhou D, Zhu X, Xiao Y. Advances in research on factors affecting chimeric antigen receptor T-cell efficacy. Cancer Med 2024; 13:e7375. [PMID: 38864474 PMCID: PMC11167615 DOI: 10.1002/cam4.7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is becoming an effective technique for the treatment of patients with relapsed/refractory hematologic malignancies. After analyzing patients with tumor progression and sustained remission after CAR-T cell therapy, many factors were found to be associated with the efficacy of CAR-T therapy. This paper reviews the factors affecting the effect of CAR-T such as tumor characteristics, tumor microenvironment and immune function of patients, CAR-T cell structure, construction method and in vivo expansion values, lymphodepletion chemotherapy, and previous treatment, and provides a preliminary outlook on the corresponding therapeutic strategies.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
43
|
Wang X, Zhang Y, Xue S. Recent progress in chimeric antigen receptor therapy for acute myeloid leukemia. Ann Hematol 2024; 103:1843-1857. [PMID: 38381173 DOI: 10.1007/s00277-023-05601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024]
Abstract
Although CAR-T cell therapy has been particularly successful as a treatment for B cell malignancies, effectively treating acute myeloid leukemia with CAR remains a greater challenge. Multiple preclinical studies and clinical trials are underway, including on AML-related surface markers that CAR-T cells can target, such as CD123, CD33, NKG2D, CLL1, CD7, FLT3, Lewis Y and CD70, all of which provide opportunities for developing CAR-T therapies with improved specificity and efficacy. We also explored specific strategies for CAR-T cell treatment of AML, including immune checkpoints, suicide genes, dual targeting, genomic tools and the potential for universal CAR. In addition, CAR-T cell therapy for AML still has certain risks and challenges, including cytokine release syndrome (CRS) and haematotoxicity. Despite these challenges, as a new targeting method for AML treatment, CAR-T cell therapy still has great prospects. Ongoing research aims to further optimize this treatment mode.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, China
| | - Yanming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, China.
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
44
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Mohan M, Van Oekelen O, Akhtar OS, Cohen A, Parekh S. Charting the Course: Sequencing Immunotherapy for Multiple Myeloma. Am Soc Clin Oncol Educ Book 2024; 44:e432204. [PMID: 38875506 DOI: 10.1200/edbk_432204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Multiple chimeric antigen receptor (CAR) T-cell and bispecific antibody (bsAb) therapies have been approved, demonstrating impressive clinical efficacy in relapsed/refractory multiple myeloma (MM). Currently, these treatment share overlapping approval indications in the relapsed/refractory space, highlighting the importance of optimal selection and sequencing to maximize clinical efficacy. For patients previously unexposed to T-cell-directed therapies, several factors should be weighed when both options are available. These factors include access and logistical challenges associated with CAR T-cell therapy, disease-specific factors such as tempo of disease relapse, in addition to patient-specific factors such as frailty, and distinct toxicity profiles across these agents. Sequential therapy, whether it involves CAR T-cell therapy followed by bsAb or vice versa, has demonstrated clinical efficacy. When sequencing these agents, it is crucial to consider various factors that contribute to treatment resistance with careful selection of treatments for subsequent therapy in order to achieve favorable long-term patient outcomes.
Collapse
Affiliation(s)
- Meera Mohan
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Oliver Van Oekelen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Othman Salim Akhtar
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Adam Cohen
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
46
|
Cappabianca D, Li J, Zheng Y, Tran C, Kasparek K, Mendez P, Thu R, Maures T, Capitini CM, Deans R, Saha K. Non-viral expression of chimeric antigen receptors with multiplex gene editing in primary T cells. Front Bioeng Biotechnol 2024; 12:1379900. [PMID: 38882639 PMCID: PMC11177325 DOI: 10.3389/fbioe.2024.1379900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 06/18/2024] Open
Abstract
Efficient engineering of T cells to express exogenous tumor-targeting receptors such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key requirement of effective adoptive cell therapy for cancer. Genome editing technologies, such as CRISPR/Cas9, can further alter the functional characteristics of therapeutic T cells through the knockout of genes of interest while knocking in synthetic receptors that can recognize cancer cells. Performing multiple rounds of gene transfer with precise genome editing, termed multiplexing, remains a key challenge, especially for non-viral delivery platforms. Here, we demonstrate the efficient production of primary human T cells incorporating the knockout of three clinically relevant genes (B2M, TRAC, and PD1) along with the non-viral transfection of a CAR targeting disialoganglioside GD2. Multiplexed knockout results in high on-target deletion for all three genes, with low off-target editing and chromosome alterations. Incorporating non-viral delivery to knock in a GD2-CAR resulted in a TRAC-B2M-PD1-deficient GD2 CAR T-cell product with a central memory cell phenotype and high cytotoxicity against GD2-expressing neuroblastoma target cells. Multiplexed gene-editing with non-viral delivery by CRISPR/Cas9 is feasible and safe, with a high potential for rapid and efficient manufacturing of highly potent allogeneic CAR T-cell products.
Collapse
Affiliation(s)
- Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jingling Li
- Synthego Corporation, Redwood City, CA, United States
| | - Yueting Zheng
- Synthego Corporation, Redwood City, CA, United States
| | - Cac Tran
- Synthego Corporation, Redwood City, CA, United States
| | | | - Pedro Mendez
- Synthego Corporation, Redwood City, CA, United States
| | - Ricky Thu
- Synthego Corporation, Redwood City, CA, United States
| | - Travis Maures
- Synthego Corporation, Redwood City, CA, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Deans
- Synthego Corporation, Redwood City, CA, United States
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
47
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
48
|
Damiani D, Tiribelli M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024; 12:1194. [PMID: 38927401 PMCID: PMC11200794 DOI: 10.3390/biomedicines12061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Despite recent advances, the prognosis of acute myeloid leukemia (AML) remains unsatisfactory due to disease recurrence and the development of resistance to both conventional and novel therapies. Engineered T cells expressing chimeric antigen receptors (CARs) on their cellular surface represent one of the most promising anticancer agents. CAR-T cells are increasingly used in patients with B cell malignancies, with remarkable clinical results despite some immune-related toxicities. However, at present, the role of CAR-T cells in myeloid neoplasms, including AML, is extremely limited, as specific molecular targets for immune cells are generally lacking on AML blasts. Besides the paucity of dispensable targets, as myeloid antigens are often co-expressed on normal hematopoietic stem and progenitor cells with potentially intolerable myeloablation, the AML microenvironment is hostile to T cell proliferation due to inhibitory soluble factors. In addition, the rapidly progressive nature of the disease further complicates the use of CAR-T in AML. This review discusses the current state of CAR-T cell therapy in AML, including the still scanty clinical evidence and the potential approaches to overcome its limitations, including genetic modifications and combinatorial strategies, to make CAR-T cell therapy an effective option for AML patients.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
49
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Andreu-Saumell I, Rodriguez-Garcia A, Mühlgrabner V, Gimenez-Alejandre M, Marzal B, Castellsagué J, Brasó-Maristany F, Calderon H, Angelats L, Colell S, Nuding M, Soria-Castellano M, Barbao P, Prat A, Urbano-Ispizua A, Huppa JB, Guedan S. CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition. Nat Commun 2024; 15:3552. [PMID: 38670972 PMCID: PMC11053011 DOI: 10.1038/s41467-024-47799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.
Collapse
Affiliation(s)
- Irene Andreu-Saumell
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Alba Rodriguez-Garcia
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain.
| | - Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Marta Gimenez-Alejandre
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Berta Marzal
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Joan Castellsagué
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Fara Brasó-Maristany
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Hugo Calderon
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Laura Angelats
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Salut Colell
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Mara Nuding
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Marta Soria-Castellano
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Paula Barbao
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Aleix Prat
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Sonia Guedan
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain.
| |
Collapse
|