1
|
Chew AAN, Yap YZ, Poquita-Du RC, Huang D, Todd PA. Potential drivers of pocilloporid coral extirpations in Singapore. MARINE POLLUTION BULLETIN 2025; 214:117791. [PMID: 40088638 DOI: 10.1016/j.marpolbul.2025.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
The reason why four out of five historically recorded pocilloporid species in Singapore went extinct remains unclear. However, potential causes include urbanization-related stressors such as sedimentation and low light. In this study, we conducted two ex-situ experiments to examine the effects of light limitation and sediment load on the survival and health of two extirpated (Stylophora pistillata, and Seriatopora hystrix), one extant (Pocillopora acuta), and one regional (Pocillopora meandrina) pocilloporid species. All were able to photoacclimate to high sedimentation and low light conditions. However, P. acuta and Se. hystrix exhibited reduced growth under low light, and mortality was significantly higher under increased sedimentation, especially for St. pistillata. While our results indicate that sedimentation and low light characteristic in Singapore's urban reefs are unlikely to be the sole drivers of pocilloporid extirpations, these variables probably contributed to the overall stress burden, pushing already uncommon species into functional, and then actual, extinction.
Collapse
Affiliation(s)
- Annie Ann Nee Chew
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yan Zhi Yap
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Rosa Celia Poquita-Du
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Peter Alan Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
2
|
Cecchini P, Nitta T, Sena E, Du ZY. Saving coral reefs: significance and biotechnological approaches for coral conservation. ADVANCED BIOTECHNOLOGY 2024; 2:42. [PMID: 39883363 PMCID: PMC11740877 DOI: 10.1007/s44307-024-00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Abstract
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Collapse
Affiliation(s)
- Pansa Cecchini
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Thomas Nitta
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Edoardo Sena
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Suedel BC, Wilkens JL, McQueen AD, Gailani JZ, Lackey TC, Mays N. Adaptation of a risk-based framework for evaluating indirect effects of dredging on sensitive habitats near federal navigation channels: An application of the framework to coral reefs at Honolulu Harbor, Hawai'i. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:547-561. [PMID: 37593916 DOI: 10.1002/ieam.4830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
In major harbors and ports in the United States and its territories, the US Army Corps of Engineers maintains federal navigation channels in proximity to coral reefs (e.g., Honolulu Harbor, HI; Miami Harbor, FL; Apra Harbor, Guam) and other sensitive habitats. To effectively predict potential adverse impacts from dredging activities near these sensitive habitats, a holistic approach to improve understanding of the pressures on these habitats is needed to foster a more complete prediction of risk drivers. To achieve this, risk-based frameworks that account for the full range of natural and anthropogenic impacts need to be adapted and applied specifically for assessing and managing indirect dredging impacts on sensitive environments. In this article, we address this need by incorporating a drivers-pressures-stressors-condition-response (DPSCR4 ) conceptual framework to broaden a comprehensive conceptual model of the coupled human-ecological system. To help understand these complex interactions, DPSCR4 was applied to evaluate dredging and other unrelated environmental pressures (e.g., terrestrial runoff) in a proof-of-concept dredging project in Honolulu Harbor, Hawai'i, USA, with a focus on the indirect effects of dredge plumes. Particle tracking models and risk-based tools were used to evaluate sediment resuspended during a hypothetical mechanical dredging activity near sensitive coral habitats. Stoplight indicators were developed to predict indirect sediment plume impacts on coral and then compared to exposure modeling results. The strengths and limitations of the approach are presented and the incorporation of the risk framework into environmental management decisions is discussed. Integr Environ Assess Manag 2024;20:547-561. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Burton C Suedel
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Justin L Wilkens
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Andrew D McQueen
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Joseph Z Gailani
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Tahirih C Lackey
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Nathan Mays
- US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Mississippi, USA
| |
Collapse
|
4
|
Page CE, Leggat W, Egan S, Ainsworth TD. A coral disease outbreak highlights vulnerability of remote high-latitude lagoons to global and local stressors. iScience 2023; 26:106205. [PMID: 36915696 PMCID: PMC10006636 DOI: 10.1016/j.isci.2023.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/17/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Outbreaks of coral disease are often associated with global and local stressors like changes in temperature and poor water quality. A severe coral disease outbreak was recorded in the primary reef-building taxa Montipora spp. in a high-latitude lagoon at Norfolk Island following heat stress and pollution events in 2020. Disease signs suggest the occurrence of a Montiporid White Syndrome with four distinct phases and maximum measured tissue loss of 329 mm-2 day-1. In December 2020 and April 2021, 60% of the Montipora community were impacted and disease severity increased by 54% over this period. Spatial patterns in prevalence indicate the disease is associated with exposure to poor water quality in addition to size class of coral colonies. High prevalence levels make this event comparable to some of the most severe coral disease outbreaks recorded to date demonstrating the vulnerability of this system to combined impacts of warming and pollution.
Collapse
Affiliation(s)
- Charlotte E Page
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - William Leggat
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - Tracy D Ainsworth
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| |
Collapse
|
5
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
6
|
Kim H, Kim D, An YJ. Microplastics enhance the toxicity and phototoxicity of UV filter avobenzone on Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130627. [PMID: 37056007 DOI: 10.1016/j.jhazmat.2022.130627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs) and ultraviolet (UV) filters cause pollution in aquatic ecosystems. Moreover, regulations on the use and discharge of UV filters in personal care products are lacking. Therefore, the combined toxicity of MPs (virgin polystyrene (PS) spheres; size: 200 nm) and avobenzone (AVO; a UV filter) on Daphnia magna were assessed. The exposure groups were AVO, AVO + UV irradiation for 6 h [AVO (UV)], AVO with MPs (Mix), and AVO with MPs + UV irradiation for 6 h [Mix (UV)]. The daphnids were exposed to these treatments for 48 h and observed for an additional 6 h. Energy reserves of all treated groups increased compared to that of the control group. Growth in the Mix group was inhibited despite a high food uptake, and food uptake and growth inhibition were validated in the Mix (UV) group. Additionally, the food uptake of the AVO (UV) and Mix (UV) groups decreased during the recovery period, possibly owing to a decrease in the normal feeding ability resulting from an increase in abnormality. These results indicate that the combined toxicity of MPs+AVO can be exacerbated under natural conditions; the complex toxicity should be considered when assessing aquatic environment pollution.
Collapse
Affiliation(s)
- Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
7
|
Winston M, Oliver T, Couch C, Donovan MK, Asner GP, Conklin E, Fuller K, Grady BW, Huntington B, Kageyama K, Kindinger TL, Kozar K, Kramer L, Martinez T, McCutcheon A, McKenna S, Rodgers K, Shayler CK, Vargas-Angel B, Zgliczynski B. Coral taxonomy and local stressors drive bleaching prevalence across the Hawaiian Archipelago in 2019. PLoS One 2022; 17:e0269068. [PMID: 36048764 PMCID: PMC9436070 DOI: 10.1371/journal.pone.0269068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The Hawaiian Archipelago experienced a moderate bleaching event in 2019—the third major bleaching event over a 6-year period to impact the islands. In response, the Hawai‘i Coral Bleaching Collaborative (HCBC) conducted 2,177 coral bleaching surveys across the Hawaiian Archipelago. The HCBC was established to coordinate bleaching monitoring efforts across the state between academic institutions, non-governmental organizations, and governmental agencies to facilitate data sharing and provide management recommendations. In 2019, the goals of this unique partnership were to: 1) assess the spatial and temporal patterns of thermal stress; 2) examine taxa-level patterns in bleaching susceptibility; 3) quantify spatial variation in bleaching extent; 4) compare 2019 patterns to those of prior bleaching events; 5) identify predictors of bleaching in 2019; and 6) explore site-specific management strategies to mitigate future bleaching events. Both acute thermal stress and bleaching in 2019 were less severe overall compared to the last major marine heatwave events in 2014 and 2015. Bleaching observed was highly site- and taxon-specific, driven by the susceptibility of remaining coral assemblages whose structure was likely shaped by previous bleaching and subsequent mortality. A suite of environmental and anthropogenic predictors was significantly correlated with observed bleaching in 2019. Acute environmental stressors, such as temperature and surface light, were equally important as previous conditions (e.g. historical thermal stress and historical bleaching) in accounting for variation in bleaching during the 2019 event. We found little evidence for acclimation by reefs to thermal stress in the main Hawaiian Islands. Moreover, our findings illustrate how detrimental effects of local anthropogenic stressors, such as tourism and urban run-off, may be exacerbated under high thermal stress. In light of the forecasted increase in severity and frequency of bleaching events, future mitigation of both local and global stressors is a high priority for the future of corals in Hawai‘i.
Collapse
Affiliation(s)
- Morgan Winston
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i, Honolulu, Hawai‘i, United States of America
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, Hawai‘i, United States of America
- Center for Global Discovery and Conservation Science and School of Geographic Sciences and Urban Planning, Arizona State University, Hilo, Hawai‘i, United States of America
- * E-mail:
| | - Thomas Oliver
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, Hawai‘i, United States of America
| | - Courtney Couch
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i, Honolulu, Hawai‘i, United States of America
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, Hawai‘i, United States of America
| | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographic Sciences and Urban Planning, Arizona State University, Hilo, Hawai‘i, United States of America
| | - Gregory P. Asner
- Center for Global Discovery and Conservation Science and School of Geographic Sciences and Urban Planning, Arizona State University, Hilo, Hawai‘i, United States of America
| | - Eric Conklin
- The Nature Conservancy, Honolulu, Hawai‘i, United States of America
| | - Kimberly Fuller
- Division of Aquatic Resources (O‘ahu), Anuenue Fisheries Research Center, Honolulu, Hawai‘i, United States of America
| | - Bryant W. Grady
- Center for Global Discovery and Conservation Science and School of Geographic Sciences and Urban Planning, Arizona State University, Hilo, Hawai‘i, United States of America
| | - Brittany Huntington
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i, Honolulu, Hawai‘i, United States of America
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, Hawai‘i, United States of America
| | - Kazuki Kageyama
- Division of Aquatic Resources (O‘ahu), Anuenue Fisheries Research Center, Honolulu, Hawai‘i, United States of America
| | - Tye L. Kindinger
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, Hawai‘i, United States of America
| | - Kelly Kozar
- Pacific Island Network Inventory and Monitoring Program, Hawai‘i National Park, Hawai‘i, United States of America
| | - Lindsey Kramer
- Division of Aquatic Resources (Kona), Kailua-Kona, Hawai‘i, United States of America
| | - Tatiana Martinez
- Division of Aquatic Resources (Maui), Wailuku, Hawai‘i, United States of America
| | - Amanda McCutcheon
- Pacific Island Network Inventory and Monitoring Program, Hawai‘i National Park, Hawai‘i, United States of America
| | - Sheila McKenna
- Pacific Island Network Inventory and Monitoring Program, Hawai‘i National Park, Hawai‘i, United States of America
| | - Ku‘ulei Rodgers
- Hawai‘i Institute of Marine Biology, Kāne‘ohe, Hawai‘i, United States of America
| | | | - Bernardo Vargas-Angel
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i, Honolulu, Hawai‘i, United States of America
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, Hawai‘i, United States of America
| | - Brian Zgliczynski
- Scripps Institution of Oceanography, La Jolla, California, United States of America
| |
Collapse
|
8
|
Ashok A, Høj L, Brinkman DL, Negri AP, Agusti S. Food-chain length determines the level of phenanthrene bioaccumulation in corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118789. [PMID: 34990739 DOI: 10.1016/j.envpol.2022.118789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure from the dissolved-phase and through food-chains contributes to bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in organisms such as fishes and copepods. However, very few studies have investigated the accumulation of PAHs in corals. Information on dietary uptake contribution to PAHs accumulation in corals is especially limited. Here, we used Cavity-Ring-Down Spectroscopy (CRDS) to investigate the uptake rates and accumulation of a 13C-labeled PAH, phenanthrene, in Acropora millepora corals over 14 days. Our experiment involved three treatments representing exposure levels of increasing food-chain length. In Level W, corals were exposed to 13C-phenanthrene directly dissolved in seawater. In Level 1 representing herbivory, Dunaliella salina microalgal culture pre-exposed to 13C-phenanthrene for 48 h was added to the coral treatment jars. In Level 2 representing predation, corals were provided a diet of copepod (Parvocalanus crassirostris) nauplii fed on D. salina pre-exposed to 13C-phenanthrene. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were calculated as appropriate for all organisms, and biomagnification factors (BMF) were calculated for A. millepora. We found that while phenanthrene uptake rates were not significantly different for the treatments, the accumulated concentration in corals was significantly higher in Level W (33.5 ± 2.83 mg kg-1) than in Level 1 (27.55 ± 2.77 mg kg-1) and Level 2 (29.36 ± 3.84 mg kg-1). Coral log BAF values increased with food-chain length; Level 2 log BAF (6.45) was higher than Level W log BCF (4.18) and Level 1 log BAF (4.5). Coral BMF was also higher for Level 2 than for Level 1. Exposure to dissolved or diet-bound phenanthrene had no significant effect on the coral symbionts' photosynthetic efficiency (Fv/Fm) as monitored by pulse-amplitude-modulation (PAM) fluorometry, indicating the PAH can be accumulated without toxic effects to their Photosystem II. Our study highlights the critical role of dietary exposure for pollutant accumulation in corals.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Tuttle LJ, Donahue MJ. Effects of sediment exposure on corals: a systematic review of experimental studies. ENVIRONMENTAL EVIDENCE 2022; 11:4. [PMID: 39294657 PMCID: PMC8818373 DOI: 10.1186/s13750-022-00256-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Management actions that address local-scale stressors on coral reefs can rapidly improve water quality and reef ecosystem condition. In response to reef managers who need actionable thresholds for coastal runoff and dredging, we conducted a systematic review and meta-analysis of experimental studies that explore the effects of sediment on corals. We identified exposure levels that 'adversely' affect corals while accounting for sediment bearing (deposited vs. suspended), coral life-history stage, and species, thus providing empirically based estimates of stressor thresholds on vulnerable coral reefs. METHODS We searched online databases and grey literature to obtain a list of potential studies, assess their eligibility, and critically appraise them for validity and risk of bias. Data were extracted from eligible studies and grouped by sediment bearing and coral response to identify thresholds in terms of the lowest exposure levels that induced an adverse physiological and/or lethal effect. Meta-regression estimated the dose-response relationship between exposure level and the magnitude of a coral's response, with random-effects structures to estimate the proportion of variance explained by factors such as study and coral species. REVIEW FINDINGS After critical appraisal of over 15,000 records, our systematic review of corals' responses to sediment identified 86 studies to be included in meta-analyses (45 studies for deposited sediment and 42 studies for suspended sediment). The lowest sediment exposure levels that caused adverse effects in corals were well below the levels previously described as 'normal' on reefs: for deposited sediment, adverse effects occurred as low as 1 mg/cm2/day for larvae (limited settlement rates) and 4.9 mg/cm2/day for adults (tissue mortality); for suspended sediment, adverse effects occurred as low as 10 mg/L for juveniles (reduced growth rates) and 3.2 mg/L for adults (bleaching and tissue mortality). Corals take at least 10 times longer to experience tissue mortality from exposure to suspended sediment than to comparable concentrations of deposited sediment, though physiological changes manifest 10 times faster in response to suspended sediment than to deposited sediment. Threshold estimates derived from continuous response variables (magnitude of adverse effect) largely matched the lowest-observed adverse-effect levels from a summary of studies, or otherwise helped us to identify research gaps that should be addressed to better quantify the dose-response relationship between sediment exposure and coral health. CONCLUSIONS We compiled a global dataset that spans three oceans, over 140 coral species, decades of research, and a range of field- and lab-based approaches. Our review and meta-analysis inform the no-observed and lowest-observed adverse-effect levels (NOAEL, LOAEL) that are used in management consultations by U.S. federal agencies. In the absence of more location- or species-specific data to inform decisions, our results provide the best available information to protect vulnerable reef-building corals from sediment stress. Based on gaps and limitations identified by our review, we make recommendations to improve future studies and recommend future synthesis to disentangle the potentially synergistic effects of multiple coral-reef stressors.
Collapse
Affiliation(s)
- Lillian J. Tuttle
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744 USA
- NOAA NMFS Pacific Islands Regional Office, Honolulu, HI 96860 USA
| | - Megan J. Donahue
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744 USA
| |
Collapse
|
10
|
Bejarano S, Diemel V, Feuring A, Ghilardi M, Harder T. No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata. Sci Rep 2022; 12:1468. [PMID: 35087129 PMCID: PMC8795188 DOI: 10.1038/s41598-022-05420-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Investigations of encounters between corals and microplastics have, to date, used particle concentrations that are several orders of magnitude above environmentally relevant levels. Here we investigate whether concentrations closer to values reported in tropical coral reefs affect sediment shedding and heterotrophy in reef-building corals. We show that single-pulse microplastic deposition elicits significantly more coral polyp retraction than comparable amounts of calcareous sediments. When deposited separately from sediments, microplastics remain longer on corals than sediments, through stronger adhesion and longer periods of examination by the coral polyps. Contamination of sediments with microplastics does not retard corals' sediment clearing rates. Rather, sediments speed-up microplastic shedding, possibly affecting its electrostatic behaviour. Heterotrophy rates are three times higher than microplastic ingestion rates when corals encounter microzooplankton (Artemia salina cysts) and microplastics separately. Exposed to cysts-microplastic combinations, corals feed preferentially on cysts regardless of microplastic concentration. Chronic-exposure experiments should test whether our conclusions hold true under environmental conditions typical of inshore marginal coral reefs.
Collapse
Affiliation(s)
- Sonia Bejarano
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
| | - Valeska Diemel
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Bund Für Umwelt Und Naturschutz (BUND) E.V., Am Dobben 44, 28203, Bremen, Germany
| | - Anna Feuring
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Biological Oceanography Department, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119, Rostock, Germany
| | - Mattia Ghilardi
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Tilmann Harder
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| |
Collapse
|
11
|
Bollati E, Rosenberg Y, Simon-Blecher N, Tamir R, Levy O, Huang D. Untangling the molecular basis of coral response to sedimentation. Mol Ecol 2021; 31:884-901. [PMID: 34738686 DOI: 10.1111/mec.16263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level. Here, we investigated the transcriptomic response to sediment stress in corals of the family Merulinidae from a chronically turbid reef (one genet each of Goniastrea pectinata and Mycedium elephantotus from Singapore) and a clear-water reef (multiple genets of G. pectinata from the Gulf of Aqaba/Eilat). In two ex-situ experiments, we exposed corals to either natural sediment or artificial sediment enriched with organic matter and used whole-transcriptome sequencing (RNA sequencing) to quantify gene expression. Analysis revealed a shared basis for the coral transcriptomic response to sediment stress, which involves the expression of genes broadly related to energy metabolism and immune response. In particular, sediment exposure induced upregulation of anaerobic glycolysis and glyoxylate bypass enzymes, as well as genes involved in hydrogen sulphide metabolism and in pathogen pattern recognition. Our results point towards hypoxia as a probable driver of this transcriptomic response, providing a molecular basis to previous work that identified hypoxia as a primary cause of tissue necrosis in sediment-stressed corals. Potential metabolic and immunity trade-offs of corals living under chronic sedimentation should be considered in future studies on the ecology and conservation of turbid reefs.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Tamir
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Kim D, Kim H, An YJ. Effects of synthetic and natural microfibers on Daphnia magna-Are they dependent on microfiber type? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105968. [PMID: 34583288 DOI: 10.1016/j.aquatox.2021.105968] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 05/12/2023]
Abstract
Microfibers, which are sourced from textiles and some products from the fishery industry, are the biggest contributors to microplastic pollution in aquatic ecosystems. In addition to these synthetic microfibers, naturally derived microfibers can also be found in aquatic environments. However, there are limited studies on the ecotoxicity of natural microfibers. To shed light on this topic, this study assessed and compared the toxicity of natural and synthetic microfibers on Daphnia magna, using lyocell, polyester (PET) and polypropylene (PP) microfibers. To evaluate the adverse effect of microfibers on D. magna, after effects including depuration, food intake, growth, mortality, and immobilization rate were continually observed for up to 96 h after the initial 48 h of exposure to the microfibers. Immobilization rate decreased in the following order: PP, PET, and lyocell. However, the depuration of microfibers in the lyocell and PET treatment groups was similar, with higher mortality rates than in the PP treatment group. Furthermore, despite the high rates of food intake following exposure, the lyocell and PET exposed groups exhibited growth inhibition during the same period. This growth inhibition corresponded with, and was likely due to, reductions in the length of gut microvilli, probably an expression of gut damage, which is believed to have reduced nutrient absorption in the affected individuals. Based on the results of this study, it was confirmed that even natural microfibers, and not just synthetic microfibers, can have adverse effects on aquatic organisms. This study confirmed not only the toxicity of microfibers, but also the consequences of their after effects. These results could be the basis for future research on the after effects of microplastics on aquatic organisms and provide directions for further microplastic ecotoxicity studies.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
13
|
Suárez-Castro AF, Beyer HL, Kuempel CD, Linke S, Borrelli P, Hoegh-Guldberg O. Global forest restoration opportunities to foster coral reef conservation. GLOBAL CHANGE BIOLOGY 2021; 27:5238-5252. [PMID: 34350684 DOI: 10.1111/gcb.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sediment runoff from disturbed coastal catchments is a major threat to marine ecosystems. Understanding where sediments are produced and where they are delivered enables managers to design more effective strategies for improving water quality. A management strategy is targeted restoration of degraded terrestrial areas, as it provides opportunities to reduce land-based runoff from coastal areas and consequently foster coral reef conservation. To do this strategically, a systematic approach is needed to identify watersheds where restoration actions will provide the highest conservation benefits for coral reefs. Here, we develop a systematic approach for identifying global forest restoration opportunities that would also result in large decreases in the flux of sediments to coral reefs. We estimate how land-use change affects sediment runoff globally using high-resolution spatial data and determine the subsequent risk of sediment exposure on coral reefs using a diffusion-based ocean transport model. Our results reveal that sediment export is a major issue affecting 41% of coral reefs globally. The main coastal watersheds with the highest sediment export are predominantly located in Southeast Asian countries, with Indonesia and the Philippines accounting for 52% of the sediment export in coastal areas near coral reefs. We show how restoring forest across multiple watersheds could help to reduce sediment export to 63,000 km2 of coral reefs. Although reforestation opportunities in areas that discharge onto coral reefs are relatively small across watersheds, it is possible to achieve large sediment reduction benefits by strategically targeting watersheds located in regions with a high density of corals near to the coast. Thus, reforestation benefits on coral reefs do not necessarily come from the watersheds that produce the highest sediment export. These analyses are key for generating informed action to support both international conservation policy and national restoration activities.
Collapse
Affiliation(s)
- Andrés F Suárez-Castro
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Hawthorne L Beyer
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Qld, Australia
| | - Caitlin D Kuempel
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Qld, Australia
| | - Simon Linke
- Australian Rivers Institute - Coast and Estuaries, School of Environment and Science, Griffith University, Gold Coast, Qld, Australia
| | - Pasquale Borrelli
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- Department of Biological Environment, Kangwon National University, Chuncheon, Republic of Korea
| | - Ove Hoegh-Guldberg
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
14
|
Turak E, DeVantier L, Szava-Kovats R, Brodie J. Impacts of coastal land use change in the wet tropics on nearshore coral reefs: Case studies from Papua New Guinea. MARINE POLLUTION BULLETIN 2021; 168:112445. [PMID: 33991988 DOI: 10.1016/j.marpolbul.2021.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Logging and plantation agriculture are vital to economies and livelihoods in tropical nations, including Papua New Guinea. To meet global demand, hundreds of thousands of ha of diverse natural habitat have been logged, cleared and replaced with monoculture crops. Resulting hydrological changes have increased sediment, nutrient and pesticide runoff, impacting down-stream habitats. Here, case studies from Kimbe Bay (New Britain) and Mullins Harbour (Milne Bay), examine effects on nearshore coral reefs. In both places, logging and oil palm development had destabilized soils and removed or degraded riparian vegetation. Downstream, nearshore reefs had high silt levels, which, coincident with minor coral bleaching and predation by crown-of-thorns starfish, were correlated with high levels of coral mortality and low coral species richness. Sediment and related impacts can be reduced by effective catchment management, such as avoiding steep slopes, expanding stream and coastal buffer zones, minimizing fertilizer and pesticide use, monitoring and reactive management.
Collapse
Affiliation(s)
- Emre Turak
- Coral Reef Research, PO Box 129, Millaa Millaa, QLD, Australia.
| | | | | | - Jon Brodie
- Formerly ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
15
|
Brunner CA, Uthicke S, Ricardo GF, Hoogenboom MO, Negri AP. Climate change doubles sedimentation-induced coral recruit mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:143897. [PMID: 33454467 DOI: 10.1016/j.scitotenv.2020.143897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Coral reef replenishment is threatened by global climate change and local water-quality degradation, including smothering of coral recruits by sediments generated by anthropogenic activities. Here we show that the ability of Acropora millepora recruits to remove sediments diminishes under future climate conditions, leading to increased mortality. Recruits raised under future climate scenarios for fourteen weeks (highest treatment: +1.2 °C, pCO2: 950 ppm) showed twofold higher mortality following repeated sediment deposition (50% lethal sediment concentration LC50: 14-24 mg cm-2) compared to recruits raised under current climate conditions (LC50: 37-51 mg cm-2), depending on recruit age at the time of sedimentation. Older and larger recruits were more resistant to sedimentation and only ten-week-old recruits grown under current climate conditions survived sediment loads possible during dredging operations. This demonstrates that water-quality guidelines for managing sediment concentrations will need to be climate-adjusted to protect future coral recruitment.
Collapse
Affiliation(s)
- Christopher A Brunner
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia; Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Gerard F Ricardo
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Mia O Hoogenboom
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| |
Collapse
|
16
|
Thompson A, Martin K, Logan M. Development of the coral index, a summary of coral reef resilience as a guide for management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111038. [PMID: 32778318 DOI: 10.1016/j.jenvman.2020.111038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Coral reef management is increasingly focused on supporting the resilience of coral communities to increasing and cumulative pressures. The coral index provides a concise summary of coral community resilience that can be efficiently communicated to a range of management and policy stakeholders. We detail the development of the index both as a technical reference for users but also as an example of an approach that could be more generally applied to the reporting of ecosystem resilience. The index is sensitive to acute impacts that are expected when coral communities are exposed to disturbances such as cyclones, bleaching events or crown-of-thorns outbreaks. Importantly, spatial and temporal trends in the index enable the identification of areas and periods of reduced resilience that suggest chronic environmental pressure imposed by runoff. The ability to summarise complex ecological processes into a single index provides an efficient and intuitive tool for the communication of where, when and which pressures are impacting ecosystem resilience.
Collapse
Affiliation(s)
- Angus Thompson
- Australian Institute of Marine Science, PMB # 3, Townsville, MC, 4810, Australia.
| | - Katherine Martin
- Great Barrier Reef Marine Park Authority, John Gorton Building, King Edward, Terrace, Parks, 2600, Australian, Australia.
| | - Murray Logan
- Australian Institute of Marine Science, PMB # 3, Townsville, MC, 4810, Australia.
| |
Collapse
|
17
|
Cunning R, Silverstein RN, Barnes BB, Baker AC. Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes. MARINE POLLUTION BULLETIN 2019; 145:185-199. [PMID: 31590775 DOI: 10.1016/j.marpolbul.2019.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/02/2019] [Accepted: 05/12/2019] [Indexed: 05/28/2023]
Abstract
Dredging poses a potential threat to coral reefs, yet quantifying impacts is often difficult due to the large spatial footprint of potential effects and co-occurrence of other disturbances. Here we analyzed in situ monitoring data and remotely-sensed sediment plumes to assess impacts of the 2013-2015 Port of Miami dredging on corals and reef habitat. To control for contemporaneous bleaching and disease, we analyzed the spatial distribution of impacts in relation to the dredged channel. Areas closer to dredging experienced higher sediment trap accumulation, benthic sediment cover, coral burial, and coral mortality, and our spatial analyses indicate that >560,000 corals were killed within 0.5 km, with impacts likely extending over 5-10 km. The occurrence of sediment plumes explained ~60% of spatial variability in measured impacts, suggesting that remotely-sensed plumes, when properly calibrated against in situ monitoring data, can reliably estimate the magnitude and extent of dredging impacts.
Collapse
Affiliation(s)
- Ross Cunning
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL 60605, USA.
| | | | - Brian B Barnes
- College of Marine Science, University of South Florida, 140 7th Avenue South, MSL119, St. Petersburg, FL 33701, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
18
|
Romanó de Orte M, Clowez S, Caldeira K. Response of bleached and symbiotic sea anemones to plastic microfiber exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:512-517. [PMID: 30928523 DOI: 10.1016/j.envpol.2019.02.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Microplastics are emerging contaminants in the marine environment. They enter the ocean in a variety of sizes and shapes, with plastic microfiber being the prevalent form in seawater and in the guts of biota. Most of the laboratory experiments on microplastics has been performed with spheres, so knowledge on the interactions of microfibers and marine organisms is limited. In this study we examined the ingestion of microfibers by the sea anemone Aiptasia pallida using three different types of polymers: nylon, polyester and polypropylene. The polymers were offered to both symbiotic (with algal symbionts) and bleached (without algal symbionts) anemones. The polymers were introduced either alone or mixed with brine shrimp homogenate. We observed a higher percentage of nylon ingestion compared to the other polymers when plastic was offered in the absence of shrimp. In contrast, we observed over 80% of the anemones taking up all types of polymers when the plastics were offered in the presence of shrimp. Retention time differed significantly between symbiotic and bleached anemones with faster egestion in symbiotic anemones. Our results suggest that ingestion of microfibers by sea anemones is dependent both on the type of polymers and on the presence of chemical cues of prey in seawater. The decreased ability of bleached anemones to reject plastic microfiber indicates that the susceptibility of anthozoans to plastic pollution is exacerbated by previous exposure to other stressors. This is particularly concerning given that coral reef ecosystems are facing increases in the frequency and intensity of bleaching events due to ocean warming.
Collapse
Affiliation(s)
- Manoela Romanó de Orte
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat Commun 2019; 10:2346. [PMID: 31138792 PMCID: PMC6538670 DOI: 10.1038/s41467-019-10288-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/24/2019] [Indexed: 02/01/2023] Open
Abstract
Understanding pressure pathways and their cumulative impacts is critical for developing effective environmental policy. For coral reefs, wide spread bleaching resulting from global warming is occurring concurrently with local pressures, such as increases in suspended sediments through coastal development. Here we examine the relative importance of suspended sediment pressure pathways for dredging impacts on corals and evidence for synergistic or antagonistic cumulative effects between suspended sediments and thermal stress. We show that low to moderate reductions in available light associated with dredging may lead to weak antagonistic (less than expected independently) cumulative effects. However, when sediment loads are high any reductions in mortality associated with reduced bleaching are outweighed by increased mortality associated with severe low light periods and high levels of sediment deposition and impacts become synergistic (greater than what would occur independently). The findings suggest efforts to assess global cumulative impacts need to consider how pressures interact to impact ecosystems, and that the cumulative outcome may vary across the range of realised pressure fields.
Collapse
|
20
|
Loiola M, Cruz ICS, Lisboa DS, Mariano-Neto E, Leão ZMAN, Oliveira MDM, Kikuchi RKP. Structure of marginal coral reef assemblages under different turbidity regime. MARINE ENVIRONMENTAL RESEARCH 2019; 147:138-148. [PMID: 31097215 DOI: 10.1016/j.marenvres.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Sediment load can influence both the population distribution and structures of coral reef communities. We investigated whether coral assemblages on inshore and more turbid reefs differ from those on offshore reefs in the largest coral reefs of the Southwest Atlantic. We compared inshore and offshore reefs (with different turbidity climatologies) in terms of benthic and coral assemblage structures, abundances and individual sizes of coral populations and recruitment patterns. Unexpectedly, the inshore reefs showed higher coral cover and abundance, larger colonies and more recruits. This finding is related to the predominance of sediment-tolerant species on the turbid reefs. In contrast, only Mussismilia braziliensis (main builder of Abrolhos) showed better performance (greater coverage, larger diameter and more recruits) on offshore reefs, apparently behaving as a strong competitor in less turbid environments. These results reinforce the recent thinking of coral reef of turbid environments as resistant ecosystems and potential refuges considering the unnatural increase of sediment supply.
Collapse
Affiliation(s)
- Miguel Loiola
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40210-340, Bahia, Brazil; Postgraduate Program in Ecology and Biomonitoring, Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40170-115, Bahia, Brazil.
| | - Igor C S Cruz
- Federal University of Bahia (UFBA), Department of Oceanography, Institute of Geosciences, Barão de Jeremoabo Street, Ondina, Salvador, 40210-340, Bahia, Brazil
| | - Danilo S Lisboa
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40210-340, Bahia, Brazil
| | - Eduardo Mariano-Neto
- Postgraduate Program in Ecology and Biomonitoring, Institute of Biology, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40170-115, Bahia, Brazil
| | - Zelinda M A N Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40210-340, Bahia, Brazil
| | - Marilia D M Oliveira
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40210-340, Bahia, Brazil
| | - Ruy K P Kikuchi
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador, 40210-340, Bahia, Brazil
| |
Collapse
|
21
|
Strehlow BW, Pineda MC, Duckworth A, Kendrick GA, Renton M, Abdul Wahab MA, Webster NS, Clode PL. Sediment tolerance mechanisms identified in sponges using advanced imaging techniques. PeerJ 2017; 5:e3904. [PMID: 29158962 PMCID: PMC5694653 DOI: 10.7717/peerj.3904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species Ianthella basta was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure) and 4 weeks (chronic exposure). In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM). Acute exposures resulted in sediment rapidly accumulating in the aquiferous system of I. basta, although this sediment was fully removed within three days. Sediment removal took longer (>2 weeks) following chronic exposures, and I. basta also exhibited tissue regression and a smaller aquiferous system. The application of advanced imaging approaches revealed that I. basta employs a multilevel system for sediment rejection and elimination, containing both active and passive components. Sponges responded to sediment stress through (i) mucus production, (ii) exclusion of particles by incurrent pores, (iii) closure of oscula and pumping cessation, (iv) expulsion of particles from the aquiferous system, and (v) tissue regression to reduce the volume of the aquiferous system, thereby entering a dormant state. These mechanisms would result in tolerance and resilience to exposure to variable and high sediment loads associated with both anthropogenic impacts like dredging programs and natural pressures like flood events.
Collapse
Affiliation(s)
- Brian W Strehlow
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, WA, Australia.,Oceans Institute, University of Western Australia, Crawley, WA, Australia.,Australian Institute of Marine Science, Cape Ferguson, QLD, Australia.,Western Australian Marine Science Institution, Crawley, WA, Australia
| | - Mari-Carmen Pineda
- Australian Institute of Marine Science, Cape Ferguson, QLD, Australia.,Western Australian Marine Science Institution, Crawley, WA, Australia
| | - Alan Duckworth
- Australian Institute of Marine Science, Cape Ferguson, QLD, Australia.,Western Australian Marine Science Institution, Crawley, WA, Australia
| | - Gary A Kendrick
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Oceans Institute, University of Western Australia, Crawley, WA, Australia.,Western Australian Marine Science Institution, Crawley, WA, Australia
| | - Michael Renton
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Muhammad Azmi Abdul Wahab
- Australian Institute of Marine Science, Cape Ferguson, QLD, Australia.,Western Australian Marine Science Institution, Crawley, WA, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Cape Ferguson, QLD, Australia.,Western Australian Marine Science Institution, Crawley, WA, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Peta L Clode
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, WA, Australia.,Oceans Institute, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|