1
|
Polkoff KM, Lampe R, Gupta NK, Murphy Y, Chung J, Carter A, Simon JM, Gleason K, Moatti A, Murthy PK, Edwards L, Greenbaum A, Tata A, Tata PR, Piedrahita JA. Novel Porcine Model Reveals Two Distinct LGR5 Cell Types during Lung Development and Homeostasis. Am J Respir Cell Mol Biol 2025; 72:496-509. [PMID: 39499850 PMCID: PMC12051919 DOI: 10.1165/rcmb.2024-0040oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cells expressing leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) play a pivotal role in homeostasis, repair, and regeneration in multiple organs, including skin and gastrointestinal tract, but little is known about their role in the lung. Findings from mice, a widely used animal model, suggest that lung LGR5 expression differs from that of humans. In this work, using a new transgenic pig model, we identify two main populations of LGR5+ cells in the lung that are conserved in human but not mouse lungs. Using RNA sequencing, three-dimensional imaging, and organoid models, we determine that in the fetal lung, epithelial LGR5 expression is transient in a subpopulation of SOX9+/ETV5+/SFTPC+ progenitor lung tip cells. In contrast, epithelial LGR5 expression is absent from postnatal lung but is reactivated in bronchioalveolar organoids derived from basal airway cells. We also describe a separate population of mesenchymal LGR5+ cells that surrounds developing and mature airways, lies adjacent to airway basal cells, and is closely associated with nerve fibers. Transcriptionally, mesenchymal LGR5+ cells include a subset of peribronchial fibroblasts that express unique patterns of SHH, FGF, WNT, and TGF-β signaling pathway genes. These results support distinct roles for LGR5+ cells in the lung and describe a physiologically relevant animal model for further studies on the function of these cells in repair and regeneration.
Collapse
Affiliation(s)
- Kathryn M. Polkoff
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Ross Lampe
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Nithin K. Gupta
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- School of Osteopathic Medicine, Campbell University, Lillington, North Carolina
| | - Yanet Murphy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Jaewook Chung
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Amber Carter
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Jeremy M. Simon
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Katherine Gleason
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh and Chapel Hill, North Carolina; and
| | - Preetish K. Murthy
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Laura Edwards
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh and Chapel Hill, North Carolina; and
| | - Aleksandra Tata
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Purushothama Rao Tata
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
2
|
Pimpão C, da Silva IV, Soveral G. The Expanding Role of Aquaporin-1, Aquaporin-3 and Aquaporin-5 as Transceptors: Involvement in Cancer Development and Potential Druggability. Int J Mol Sci 2025; 26:1330. [PMID: 39941100 PMCID: PMC11818598 DOI: 10.3390/ijms26031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins that facilitate the transport of water and small solutes, including glycerol, hydrogen peroxide and ions, across cell membranes. Beyond their established physiological roles in water regulation and metabolic processes, AQPs also exhibit receptor-like signaling activities in cancer-associated signaling pathways, integrating the dual roles of transporters and receptors, hence functioning as transceptors. This dual functionality underpins their critical involvement in cancer biology, where AQPs play key roles in promoting cell proliferation, migration, and invasion, contributing significantly to carcinogenesis. Among the AQPs, AQP1, AQP3 and AQP5 have been consistently identified as being aberrantly expressed in various tumor types. Their overexpression is strongly associated with tumor progression, metastasis, and poor patient prognosis. This review explores the pivotal roles of AQP1, AQP3 and AQP5 as transceptors in cancer biology, underscoring their importance as pharmacological targets. It highlights the urgent need for the development of effective modulators to target these AQPs, offering a promising avenue to enhance current therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Wang L, Xiao J, Zhang B, Hou A. Epigenetic modifications in the development of bronchopulmonary dysplasia: a review. Pediatr Res 2024; 96:632-642. [PMID: 38570557 DOI: 10.1038/s41390-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
While perinatal medicine advancements have bolstered survival outcomes for premature infants, bronchopulmonary dysplasia (BPD) continues to threaten their long-term health. Gene-environment interactions, mediated by epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA regulation, take center stage in BPD pathogenesis. Recent discoveries link methylation variations across biological pathways with BPD. Also, the potential reversibility of histone modifications fuels new treatment avenues. The review also highlights the promise of utilizing mesenchymal stem cells and their exosomes as BPD therapies, given their ability to modulate non-coding RNA, opening novel research and intervention possibilities. IMPACT: The complexity and universality of epigenetic modifications in the occurrence and development of bronchopulmonary dysplasia were thoroughly discussed. Both molecular and cellular mechanisms contribute to the diverse nature of epigenetic changes, suggesting the need for deeper biochemical techniques to explore these molecular alterations. The utilization of innovative cell-specific drug delivery methods like exosomes and extracellular vesicles holds promise in achieving precise epigenetic regulation.
Collapse
Affiliation(s)
- Lichuan Wang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jun Xiao
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Toth A, Kannan P, Snowball J, Kofron M, Wayman JA, Bridges JP, Miraldi ER, Swarr D, Zacharias WJ. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat Commun 2023; 14:8452. [PMID: 38114516 PMCID: PMC10775890 DOI: 10.1038/s41467-023-44184-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Lung epithelial regeneration after acute injury requires coordination cellular coordination to pattern the morphologically complex alveolar gas exchange surface. During adult lung regeneration, Wnt-responsive alveolar epithelial progenitor (AEP) cells, a subset of alveolar type 2 (AT2) cells, proliferate and transition to alveolar type 1 (AT1) cells. Here, we report a refined primary murine alveolar organoid, which recapitulates critical aspects of in vivo regeneration. Paired scRNAseq and scATACseq followed by transcriptional regulatory network (TRN) analysis identified two AT1 transition states driven by distinct regulatory networks controlled in part by differential activity of Nkx2-1. Genetic ablation of Nkx2-1 in AEP-derived organoids was sufficient to cause transition to a proliferative stressed Krt8+ state, and AEP-specific deletion of Nkx2-1 in adult mice led to rapid loss of progenitor state and uncontrolled growth of Krt8+ cells. Together, these data implicate dynamic epigenetic maintenance via Nkx2-1 as central to the control of facultative progenitor activity in AEPs.
Collapse
Affiliation(s)
- Andrea Toth
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paranthaman Kannan
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Bio-Imaging and Analysis Facility, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James P Bridges
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - Emily R Miraldi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Swarr
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
5
|
da Rosa NN, Appel JM, Irioda AC, Mogharbel BF, de Oliveira NB, Perussolo MC, Stricker PEF, Rosa-Fernandes L, Marinho CRF, de Carvalho KAT. Three-Dimensional Bioprinting of an In Vitro Lung Model. Int J Mol Sci 2023; 24:5852. [PMID: 36982923 PMCID: PMC10059924 DOI: 10.3390/ijms24065852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In December 2019, COVID-19 emerged in China, and in January 2020, the World Health Organization declared a state of international emergency. Within this context, there is a significant search for new drugs to fight the disease and a need for in vitro models for preclinical drug tests. This study aims to develop a 3D lung model. For the execution, Wharton's jelly mesenchymal stem cells (WJ-MSC) were isolated and characterized through flow cytometry and trilineage differentiation. For pulmonary differentiation, the cells were seeded in plates coated with natural functional biopolymer matrix as membrane until spheroid formation, and then the spheroids were cultured with differentiation inductors. The differentiated cells were characterized using immunocytochemistry and RT-PCR, confirming the presence of alveolar type I and II, ciliated, and goblet cells. Then, 3D bioprinting was performed with a sodium alginate and gelatin bioink in an extrusion-based 3D printer. The 3D structure was analyzed, confirming cell viability with a live/dead assay and the expression of lung markers with immunocytochemistry. The results showed that the differentiation of WJ-MSC into lung cells was successful, as well as the bioprinting of these cells in a 3D structure, a promising alternative for in vitro drug testing.
Collapse
Affiliation(s)
- Nádia Nascimento da Rosa
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Julia Maurer Appel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Nathalia Barth de Oliveira
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| | - Lívia Rosa-Fernandes
- Experimental Immunoparasitology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (L.R.-F.); (C.R.F.M.)
| | - Cláudio Romero Farias Marinho
- Experimental Immunoparasitology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (L.R.-F.); (C.R.F.M.)
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil; (N.N.d.R.); (J.M.A.); (A.C.I.); (B.F.M.); (N.B.d.O.); (M.C.P.); (P.E.F.S.)
| |
Collapse
|
6
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
7
|
Yang MS, Park MJ, Lee J, Oh B, Kang KW, Kim Y, Lee SM, Lim JO, Jung TY, Park JH, Park SC, Lim YS, Hwang SB, Lyoo KS, Kim DI, Kim B. Non-invasive administration of AAV to target lung parenchymal cells and develop SARS-CoV-2-susceptible mice. Mol Ther 2022; 30:1994-2004. [PMID: 35007757 PMCID: PMC8739362 DOI: 10.1016/j.ymthe.2022.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022] Open
Abstract
Adeno-associated virus (AAV)-mediated gene delivery holds great promise for gene therapy. However, the non-invasive delivery of AAV for lung tissues has not been adequately established. Here, we revealed that the intratracheal administration of an appropriate amount of AAV2/8 predominantly targets lung tissue. AAV-mediated gene delivery that we used in this study induced the expression of the desired protein in lung parenchymal cells, including alveolar type II cells. We harnessed the technique to develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-susceptible mice. Three kinds of immune function-relevant gene knockout (KO) mice were transduced with AAV encoding human angiotensin-converting enzyme 2 (hACE2) and then injected with SARS-CoV-2. Among these mice, type I interferon receptor (IFNAR) KO mice showed increased viral titer in the lungs compared to that in the other KO mice. Moreover, nucleocapsid protein of SARS-CoV-2 and multiple lesions in the trachea and lung were observed in AAV-hACE2-transduced, SARS-CoV-2-infected IFNAR KO mice, indicating the involvement of type I interferon signaling in the protection of SARS-CoV-2. In this study, we demonstrate the ease and rapidness of the intratracheal administration of AAV for targeting lung tissue in mice, and this can be used to study diverse pulmonary diseases.
Collapse
Affiliation(s)
- Myeon-Sik Yang
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Byungkwan Oh
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea
| | - Yeonhwa Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Tae-Yang Jung
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Jong-Hwan Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Seok-Chan Park
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Yun-Sook Lim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Soon B Hwang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea.
| |
Collapse
|
8
|
Mitsuboshi S, Homma J, Sekine H, Takagi R, Shimizu T, Kanzaki M. A novel alveolar epithelial cell sheet fabricated under feeder-free conditions for potential use in pulmonary regenerative therapy. Regen Ther 2022; 19:113-121. [PMID: 35582208 PMCID: PMC9073894 DOI: 10.1016/j.reth.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Methods Results Conclusions Alveolar epithelial cells were cultured and expanded under feeder-free conditions. Alveolar epithelial cell sheets were generated using temperature-responsive dishes. Alveolar epithelial cell sheets engrafted after transplantation onto rat lung. The sheets retained alveolar epithelial cell characteristics after transplantation. These cell sheets potentially could be used for pulmonary regenerative therapy.
Collapse
|
9
|
He Y, Rofaani E, Huang X, Huang B, Liang F, Wang L, Shi J, Peng J, Chen Y. Generation of Alveolar Epithelium Using Reconstituted Basement Membrane and hiPSC-Derived Organoids. Adv Healthc Mater 2022; 11:e2101972. [PMID: 34935309 DOI: 10.1002/adhm.202101972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Indexed: 12/11/2022]
Abstract
In vitro modeling of alveolar epithelium needs to recapitulate features of both cellular and noncellular components of the lung tissues. Herein, a method is presented to generate alveolar epithelium by using human induced pluripotent stem cells (hiPSCs) and reconstituted or artificial basement membrane (ABM). The ABM is obtained by self-assembling type IV collagen and laminin with a monolayer of crosslinked gelatin nanofibers as backbone and a patterned honeycomb microframe for handling. Alveolar organoids are obtained from hiPSCs and then dissociated into single cells. After replating the alveolar cells on the ABM and a short-period incubation under submerged and air-liquid interface culture conditions, an alveolar epithelium is achieved, showing high-level expressions of both alveolar cell-specific proteins and characteristic tight junctions. Besides, endothelial cells derived from the same hiPSCs are cocultured on the backside of the epithelium, forming an air-blood barrier. The method is generic and can potentially be applied to other types of artificial epithelium and endothelium.
Collapse
Affiliation(s)
- Yong He
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Elrade Rofaani
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Xiaochen Huang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Boxin Huang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Feng Liang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Li Wang
- MesoBioTech 231 Rue Saint‐Honoré Paris 75001 France
| | - Jian Shi
- MesoBioTech 231 Rue Saint‐Honoré Paris 75001 France
| | - Juan Peng
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Yong Chen
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| |
Collapse
|
10
|
Invasive aspergillosis-on-chip: A quantitative treatment study of human Aspergillus fumigatus infection. Biomaterials 2022; 283:121420. [DOI: 10.1016/j.biomaterials.2022.121420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
|
11
|
Balzanelli MG, Distratis P, Lazzaro R, D’Ettorre E, Nico A, Inchingolo F, Dipalma G, Tomassone D, Serlenga EM, Dalagni G, Ballini A, Nguyen KCD, Isacco CG. New Translational Trends in Personalized Medicine: Autologous Peripheral Blood Stem Cells and Plasma for COVID-19 Patient. J Pers Med 2022; 12:85. [PMID: 35055400 PMCID: PMC8778886 DOI: 10.3390/jpm12010085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), still remains a severe threat. At the time of writing this paper, the second infectious wave has caused more than 280,000 deaths all over the world. Italy was one of the first countries involved, with more than 200,000 people reported as infected and 30,000 deaths. There are no specific treatments for COVID-19 and the vaccine still remains somehow inconclusive. The world health community is trying to define and share therapeutic protocols in early and advanced clinical stages. However, numbers remain critical with a serious disease rate of 14%, ending with sepsis, acute respiratory distress syndrome (ARDS), multiple organ failure (MOF) and vascular and thromboembolic findings. The mortality rate was estimated within 2-3%, and more than double that for individuals over 65 years old; almost one patient in three dies in the Intensive Care Unit (ICU). Efforts for effective solutions are underway with multiple lines of investigations, and health authorities have reported success treating infected patients with donated plasma from survivors of the illness, the proposed benefit being protective antibodies formed by the survivors. Plasma transfusion, blood and stem cells, either autologous or allograft transplantation, are not novel therapies, and in this short paper, we propose therapeutic autologous plasma and peripheral blood stem cells as a possible treatment for fulminant COVID-19 infection.
Collapse
Affiliation(s)
- Mario Giosuè Balzanelli
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
| | - Pietro Distratis
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
| | - Rita Lazzaro
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
| | - Ernesto D’Ettorre
- Department of Pneumology, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (E.D.); (A.N.); (G.D.)
| | - Andrea Nico
- Department of Pneumology, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (E.D.); (A.N.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (G.D.)
| | - Diego Tomassone
- Foundation of Physics Research Center, Celico, 87100 Cosenza, Italy;
| | | | - Giancarlo Dalagni
- Department of Pneumology, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (E.D.); (A.N.); (G.D.)
| | - Andrea Ballini
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | | - Ciro Gargiulo Isacco
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
- American Stem Cells Hospital, Ho Chi Minh 70000, Vietnam;
| |
Collapse
|
12
|
Differential Expression of Mitosis and Cell Cycle Regulatory Genes during Recovery from an Acute Respiratory Virus Infection. Pathogens 2021; 10:pathogens10121625. [PMID: 34959580 PMCID: PMC8708581 DOI: 10.3390/pathogens10121625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.
Collapse
|
13
|
Gao S, Dai Y, Rehman J. A Bayesian inference transcription factor activity model for the analysis of single-cell transcriptomes. Genome Res 2021; 31:1296-1311. [PMID: 34193535 PMCID: PMC8256867 DOI: 10.1101/gr.265595.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/26/2021] [Indexed: 01/06/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful experimental approach to study cellular heterogeneity. One of the challenges in scRNA-seq data analysis is integrating different types of biological data to consistently recognize discrete biological functions and regulatory mechanisms of cells, such as transcription factor activities and gene regulatory networks in distinct cell populations. We have developed an approach to infer transcription factor activities from scRNA-seq data that leverages existing biological data on transcription factor binding sites. The Bayesian inference transcription factor activity model (BITFAM) integrates ChIP-seq transcription factor binding information into scRNA-seq data analysis. We show that the inferred transcription factor activities for key cell types identify regulatory transcription factors that are known to mechanistically control cell function and cell fate. The BITFAM approach not only identifies biologically meaningful transcription factor activities, but also provides valuable insights into underlying transcription factor regulatory mechanisms.
Collapse
Affiliation(s)
- Shang Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Jalees Rehman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- University of Illinois Cancer Center, Chicago, Illinois 60612, USA
| |
Collapse
|
14
|
Sexual fate of murine external genitalia development: Conserved transcriptional competency for male-biased genes in both sexes. Proc Natl Acad Sci U S A 2021; 118:2024067118. [PMID: 34074765 DOI: 10.1073/pnas.2024067118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.
Collapse
|
15
|
Min S, Choe C, Roh S. AQP3 Increases Intercellular Cohesion in NSCLC A549 Cell Spheroids through Exploratory Cell Protrusions. Int J Mol Sci 2021; 22:ijms22084287. [PMID: 33924231 PMCID: PMC8074759 DOI: 10.3390/ijms22084287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we examined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate-based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cytoskeleton. Moreover, the cells with reduced levels of AQP3 decreased their transmigration. Overall, these data indicate that cell detachment-upregulated AQP3 contributes to cell surface protrusions through actomyosin cytoskeleton remodeling, causing the aggressive aggregation of free-floating cells dependent on the property of the substratum and collective metastasis.
Collapse
Affiliation(s)
- Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
| | - Chungyoul Choe
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (C.C.); (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.)
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.C.); (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.)
| |
Collapse
|
16
|
Gut-Lung Dysbiosis Accompanied by Diabetes Mellitus Leads to Pulmonary Fibrotic Change through the NF-κB Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:838-856. [PMID: 33705752 DOI: 10.1016/j.ajpath.2021.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Growing evidence shows that the lungs are an unavoidable target organ of diabetic complications. However, the pathologic mechanisms of diabetic lung injury are still controversial. This study demonstrated the dysbiosis of the gut and lung microbiome, pulmonary alveolar wall thickening, and fibrotic change in streptozotocin-induced diabetic mice and antibiotic-induced gut dysbiosis mice compared with controls. In both animal models, the NF-κB signaling pathway was activated in the lungs. Enhanced pulmonary alveolar well thickening and fibrotic change appeared in the lungs of transgenic mice expressing a constitutively active NF-κB mutant compared with wild type. When lincomycin hydrochloride-induced gut dysbiosis was ameliorated by fecal microbiota transplant, enhanced inflammatory response in the intestine and pulmonary fibrotic change in the lungs were significantly decreased compared with lincomycin hydrochloride-treated mice. Furthermore, the application of fecal microbiota transplant and baicalin could also redress the microbial dysbiosis of the gut and lungs in streptozotocin-induced diabetic mice. Taken together, these data suggest that multiple as yet undefined factors related to microbial dysbiosis of gut and lungs cause pulmonary fibrogenesis associated with diabetes mellitus through an NF-κB signaling pathway.
Collapse
|
17
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
18
|
Dexamethasone Upregulates the Expression of Aquaporin4 by Increasing SUMOylation in A549 Cells. Inflammation 2020; 43:1925-1935. [PMID: 32495129 DOI: 10.1007/s10753-020-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dexamethasone can alleviate the severity of bronchial and alveolar edema and therefore is widely applied in the treatment of various exudative diseases including pulmonary edema. However, the effectiveness of dexamethasone is still being questioned and its mechanism is not fully understood. Aquaporins (AQPs) are mainly responsible for the transmembrane transport of water, which is tightly associated with pulmonary edema. Small ubiquitin-like modifiers (SUMOs) are considered to play a protective role in some pathological conditions. In this study, we demonstrated that dexamethasone can upregulate the expression of AQPs in A549 cells by inducing SUMOylation. We found that a low dose of dexamethasone significantly upregulated the levels of SUMOylation and AQP expression in A549 cells, accompanied by a translocation of SUMOs from the cytoplasm to the nucleus. We also explored the possible relation between SUMOylation and AQPs. Knockdown of SUMO2/3 by RNA interference decreased the level of AQP4 in A549 cells after dexamethasone stimulation. Together, our findings demonstrated that AQP4 expression was upregulated in A549 cells exposed to dexamethasone, and SUMOylation may participate in the regulation of AQP4.
Collapse
|
19
|
Deinhardt-Emmer S, Rennert K, Schicke E, Cseresnyés Z, Windolph M, Nietzsche S, Heller R, Siwczak F, Haupt KF, Carlstedt S, Schacke M, Figge MT, Ehrhardt C, Löffler B, Mosig AS. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 2020; 12:025012. [PMID: 31994489 DOI: 10.1088/1758-5090/ab7073] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pneumonia is one of the most common infectious diseases worldwide. The influenza virus can cause severe epidemics, which results in significant morbidity and mortality. Beyond the virulence of the virus itself, epidemiological data suggest that bacterial co-infections are the major cause of increased mortality. In this context, Staphylococcus aureus represents a frequent causative bacterial pathogen. Currently available models have several limitations in the analysis of the pathogenesis of infections, e.g. some bacterial toxins strongly act in a species-specific manner. Human 2D mono-cell culture models often fail to maintain the differentiation of alveolus-specific functions. A detailed investigation of the underlying pathogenesis mechanisms requires a physiological interaction of alveolus-specific cell types. The aim of the present work was to establish a human in vitro alveolus model system composed of vascular and epithelial cell structures with cocultured macrophages resembling the human alveolus architecture and functions. We demonstrate that high barrier integrity maintained for up to 14 d in our model containing functional tissue-resident macrophages. We show that flow conditions and the presence of macrophages increased the barrier function. The infection of epithelial cells induced a high inflammatory response that spread to the endothelium. Although the integrity of the epithelium was not compromised by a single infection or co-infection, we demonstrated significant endothelial cell damage associated with loss of barrier function. We established a novel immune-responsive model that reflects the complex crosstalk between pathogens and host. The in vitro model allows for the monitoring of spatiotemporal spreading of the pathogens and the characterization of morphological and functional alterations attributed to infection. The alveolus-on-a-chip represents a promising platform for mechanistic studies of host-pathogen interactions and the identification of molecular and cellular targets of novel treatment strategies in pneumonia.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany. Center for Sepsis Control and Care, Jena University Hospital, D-07747 Jena, Germany. Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin C, Ding J, Bar-Joseph Z. Inferring TF activation order in time series scRNA-Seq studies. PLoS Comput Biol 2020; 16:e1007644. [PMID: 32069291 PMCID: PMC7048296 DOI: 10.1371/journal.pcbi.1007644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Methods for the analysis of time series single cell expression data (scRNA-Seq) either do not utilize information about transcription factors (TFs) and their targets or only study these as a post-processing step. Using such information can both, improve the accuracy of the reconstructed model and cell assignments, while at the same time provide information on how and when the process is regulated. We developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) method which integrates probabilistic modeling of scRNA-Seq data with the ability to assign TFs to specific activation points in the model. TFs are assumed to influence the emission probabilities for cells assigned to later time points allowing us to identify not just the TFs controlling each path but also their order of activation. We tested CSHMM-TF on several mouse and human datasets. As we show, the method was able to identify known and novel TFs for all processes, assigned time of activation agrees with both expression information and prior knowledge and combinatorial predictions are supported by known interactions. We also show that CSHMM-TF improves upon prior methods that do not utilize TF-gene interaction. An important attribute of time series single cell RNA-Seq (scRNA-Seq) data, is the ability to infer continuous trajectories of genes based on orderings of the cells. While several methods have been developed for ordering cells and inferring such trajectories, to date it was not possible to use these to infer the temporal activity of several key TFs. These TFs are are only post-transcriptionally regulated and so their expression does not provide complete information on their activity. To address this we developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) methods that assigns continuous activation time to TFs based on both, their expression and the expression of their targets. Applying our method to several time series scRNA-Seq datasets we show that it correctly identifies the key regulators for the processes being studied. We analyze the temporal assignments for these TFs and show that they provide new insights about combinatorial regulation and the ordering of TF activation. We used several complementary sources to validate some of these predictions and discuss a number of other novel suggestions based on the method. As we show, the method is able to scale to large and noisy datasets and so is appropriate for several studies utilizing time series scRNA-Seq data.
Collapse
Affiliation(s)
- Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, Thickett DR, Pongracz JE. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res 2019; 20:204. [PMID: 31492143 PMCID: PMC6731587 DOI: 10.1186/s12931-019-1176-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background Type 2 alveolar epithelial cells (AT2s) behave as stem cells and show clonal proliferation upon alveolar injury followed by trans-differentiation (TD) into Type 1 alveolar epithelial cells (AT1s). In the present study we identified signaling pathways involved in the physiological AT2-to-AT1 TD process. Methods AT2 cells can be isolated from human lungs and cultured in vitro where they undergo TD into AT1s. In the present study we identified signaling pathways involved in the physiological AT2-to-AT1 TD process using Affymetrix microarray, qRT-PCR, fluorescence microscopy, and an in vitro lung aggregate culture. Results Affymetrix microarray revealed Wnt signaling to play a crucial role in the TD process. Wnt7a was identified as a ligand regulating the AT1 marker, Aquaporin 5 (AQP5). Artificial Neural Network (ANN) analysis of the Affymetrix data exposed ITGAV: Integrin alpha V (ITGAV), thrombospondin 1 (THBS1) and epithelial membrane protein 2 (EMP2) as Wnt signaling targets. Conclusions Wnt signaling targets that can serve as potential alveolar epithelial repair targets in future therapies of the gas exchange surface after injury. As ITGAV is significantly increases during TD and is regulated by Wnt signaling, ITGAV might be a potential target to speed up the alveolar healing process.
Collapse
Affiliation(s)
- Elhusseiny Mohamed Mahmud Abdelwahab
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Diana Feller
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary
| | - Szilard Pal
- Department of Pharmaceutical Technology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary
| | - Domokos Bartis
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary.,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary.,Respiratory Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, B15 2TT, UK
| | - David R Thickett
- Respiratory Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, B15 2TT, UK
| | - Judit Erzsebet Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, 2 Rokus Str, Pecs, H-7624, Hungary. .,Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, Pecs, H-7624, Hungary.
| |
Collapse
|
22
|
Kindermann A, Baier J, Simm A, Haase R, Bartling B. Receptor for advanced glycation end-products modulates lung development and lung sensitivity to hyperoxic injury in newborn mice. Pflugers Arch 2019; 471:983-994. [PMID: 30879195 DOI: 10.1007/s00424-019-02267-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products is mainly expressed in type I alveolar epithelial cells but its importance in lung development and response to neonatal hyperoxia is unclear. Therefore, our study aimed at the analysis of young wildtype and RAGE knockout mice which grew up under normoxic or hyperoxic air conditions for the first 14 days followed by a longer period of normoxic conditions. Lung histology, expression of lung-specific proteins, and respiratory mechanics were analyzed when the mice reached an age of 2 or 4 months. These analyses indicated less but larger and thicker alveoli in RAGE knockout mice, reverse differences in the mRNA and protein amount of pro-surfactant proteins (pro-SP-B, pro-SP-C) and aquaporin-5, and differences in the amount of elastin and CREB, a pro-survival transcription factor, as well as higher lung compliance. Despite this potential disadvantages, RAGE knockout lungs showed less long-term damages mediated by neonatal hyperoxia. In detail, the hyperoxia-mediated reduction in alveoli, enlargement of airspaces, fragmentation of elastic fibers, and increased lung compliance combined with reduced peak airflows was less pronounced in RAGE knockout mice. In conclusion, RAGE supports the alveolarization but makes the lung more susceptible to hyperoxic injury shortly after birth. Blocking RAGE function could still be a helpful tool in reducing hyperoxia-mediated lung pathologies during alveolarization.
Collapse
Affiliation(s)
- Anke Kindermann
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Jan Baier
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Roland Haase
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
23
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
24
|
Zhou B, Flodby P, Luo J, Castillo DR, Liu Y, Yu FX, McConnell A, Varghese B, Li G, Chimge NO, Sunohara M, Koss MN, Elatre W, Conti P, Liebler JM, Yang C, Marconett CN, Laird-Offringa IA, Minoo P, Guan K, Stripp BR, Crandall ED, Borok Z. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. J Clin Invest 2018; 128:970-984. [PMID: 29400695 DOI: 10.1172/jci90429] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/05/2017] [Indexed: 12/19/2022] Open
Abstract
Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.
Collapse
Affiliation(s)
- Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Jiao Luo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Dan R Castillo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Fa-Xing Yu
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA.,Childrens Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Alicia McConnell
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Guanglei Li
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Nyam-Osor Chimge
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Mitsuhiro Sunohara
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | | | | | | | - Janice M Liebler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Chenchen Yang
- Department of Surgery.,Department of Biochemistry and Molecular Medicine, and
| | - Crystal N Marconett
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Surgery
| | - Ite A Laird-Offringa
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Surgery.,Department of Biochemistry and Molecular Medicine, and
| | - Parviz Minoo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Edward D Crandall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and.,Department of Pathology.,Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Medicine, and
| |
Collapse
|