1
|
Lu F, Mai Z, Zhang L, Luo H, Wang L, Li S, Zhong M. Differential Expression of Disulfidptosis-Related Genes in Spinal Cord Injury and Their Role in the Immune Microenvironment. Mol Neurobiol 2025:10.1007/s12035-025-04931-4. [PMID: 40237950 DOI: 10.1007/s12035-025-04931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Spinal cord injury (SCI) often results in severe sensory, motor, and autonomic dysfunction, with limited treatment options due to complex underlying mechanisms. Disulfidptosis, a recently discovered form of cell death driven by disulfide bond accumulation, has been linked to various diseases, but its role in SCI remains unexplored. This study investigates the involvement of disulfidptosis-related genes (DRGs) in SCI to identify potential diagnostic markers and therapeutic targets. Using SCI datasets from the Gene Expression Omnibus (GEO), we conducted differential gene expression analysis, identifying key disulfidptosis-related differentially expressed genes (DRDEGs). Further analysis through gene set enrichment (GSEA) and Bayesian pathway enrichment highlighted significant involvement in pathways such as NF-κB, PI3K/Akt, and MAPK, with an emphasis on nephrin family interactions. Three core DRDEGs-HK2, Map3k8, and S100a6-were identified, and a diagnostic model built on these genes demonstrated strong predictive performance (AUC: 0.896 in training, 0.850 in validation). Additionally, real-time PCR (qRT-PCR) in an animal model validated the elevated expression of these DRDEGs in SCI samples. This research provides novel insights into disulfidptosis in SCI, suggesting these genes as promising targets for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zifeng Mai
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longfei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hao Luo
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shihong Li
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
2
|
Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, Wang H, Zhang X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J Nanobiotechnology 2022; 20:65. [PMID: 35109874 PMCID: PMC8811988 DOI: 10.1186/s12951-022-01273-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Stem cell-derived exosomes have recently been regarded as potential drugs for treating spinal cord injury (SCI) by reducing reactive oxygen species (ROS) and suppressing M1 macrophage polarization. However, the roles of ROS and exosomes in the process of M1 macrophage polarization are not known. Herein, we demonstrated that ROS can induce M1 macrophage polarization and have a concentration-dependent effect. ROS can induce M1 macrophage polarization through the MAPK-NFκB P65 signaling pathway. Dental pulp stem cell (DPSC)-derived exosomes can reduce macrophage M1 polarization through the ROS-MAPK-NFκB P65 signaling pathway in treating SCI. This study suggested that DPSC-derived exosomes might be a potential drug for treating SCI. Disruption of the cycle between ROS and M1 macrophage polarization might also be a potential effective treatment by reducing secondary damage.
Collapse
Affiliation(s)
- Chao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Fanqi Hu
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Genlong Jiao
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Yue Guo
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
| | - Yuning Zhang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhen Zhang
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Jing Yi
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yonggang You
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhizhong Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Huangpu Avenue West Road, Guangzhou, People's Republic of China.
| | - Hua Wang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Xuesong Zhang
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Lee GR, Gallo D, Alves de Souza RW, Tiwari-Heckler S, Csizmadia E, Harbison JD, Shankar S, Banner-Goodspeed V, Yaffe MB, Longhi MS, Hauser CJ, Otterbein LE. Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight 2021; 6:e150813. [PMID: 34520397 PMCID: PMC8564912 DOI: 10.1172/jci.insight.150813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Infection is a common complication of major trauma that causes significantly increased morbidity and mortality. The mechanisms, however, linking tissue injury to increased susceptibility to infection remain poorly understood. To study this relationship, we present a potentially novel murine model in which a major liver crush injury is followed by bacterial inoculation into the lung. We find that such tissue trauma both impaired bacterial clearance and was associated with significant elevations in plasma heme levels. While neutrophil (PMN) recruitment to the lung in response to Staphylococcus aureus was unchanged after trauma, PMN cleared bacteria poorly. Moreover, PMN show > 50% less expression of TLR2, which is responsible, in part, for bacterial recognition. Administration of heme effectively substituted for trauma. Finally, day 1 trauma patients (n = 9) showed similar elevations in free heme compared with that seen after murine liver injury, and circulating PMN showed similar TLR2 reduction compared with volunteers (n = 6). These findings correlate to high infection rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valerie Banner-Goodspeed
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Yaffe
- Department of Surgery and.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maria Serena Longhi
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
4
|
Latha K, Jamison KF, Watford WT. Tpl2 Ablation Leads to Hypercytokinemia and Excessive Cellular Infiltration to the Lungs During Late Stages of Influenza Infection. Front Immunol 2021; 12:738490. [PMID: 34691044 PMCID: PMC8529111 DOI: 10.3389/fimmu.2021.738490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Tumor progression locus 2 (Tpl2) is a serine-threonine kinase known to promote inflammation in response to various pathogen-associated molecular patterns (PAMPs), inflammatory cytokines and G-protein-coupled receptors and consequently aids in host resistance to pathogens. We have recently shown that Tpl2-/- mice succumb to infection with a low-pathogenicity strain of influenza (x31, H3N2) by an unknown mechanism. In this study, we sought to characterize the cytokine and immune cell profile of influenza-infected Tpl2-/- mice to gain insight into its host protective effects. Although Tpl2-/- mice display modestly impaired viral control, no virus was observed in the lungs of Tpl2-/- mice on the day of peak morbidity and mortality suggesting that morbidity is not due to virus cytopathic effects but rather to an overactive antiviral immune response. Indeed, increased levels of interferon-β (IFN-β), the IFN-inducible monocyte chemoattractant protein-1 (MCP-1, CCL2), Macrophage inflammatory protein 1 alpha (MIP-1α; CCL3), MIP-1β (CCL4), RANTES (CCL5), IP-10 (CXCL10) and Interferon-γ (IFN-γ) was observed in the lungs of influenza-infected Tpl2-/- mice at 7 days post infection (dpi). Elevated cytokine and chemokines were accompanied by increased infiltration of the lungs with inflammatory monocytes and neutrophils. Additionally, we noted that increased IFN-β correlated with increased CCL2, CXCL1 and nitric oxide synthase (NOS2) expression in the lungs, which has been associated with severe influenza infections. Bone marrow chimeras with Tpl2 ablation localized to radioresistant cells confirmed that Tpl2 functions, at least in part, within radioresistant cells to limit pro-inflammatory response to viral infection. Collectively, this study suggests that Tpl2 tempers inflammation during influenza infection by constraining the production of interferons and chemokines which are known to promote the recruitment of detrimental inflammatory monocytes and neutrophils.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Katelyn F. Jamison
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Treatment with a neutrophil elastase inhibitor and ofloxacin reduces P. aeruginosa burden in a mouse model of chronic suppurative otitis media. NPJ Biofilms Microbiomes 2021; 7:31. [PMID: 33824337 PMCID: PMC8024339 DOI: 10.1038/s41522-021-00200-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic suppurative otitis media (CSOM) is a widespread, debilitating problem with poorly understood immunology. Here, we assess the host response to middle ear infection over the course of a month post-infection in a mouse model of CSOM and in human subjects with the disease. Using multiparameter flow cytometry and a binomial generalized linear machine learning model, we identified Ly6G, a surface marker of mature neutrophils, as the most informative factor of host response driving disease in the CSOM mouse model. Consistent with this, neutrophils were the most abundant cell type in infected mice and Ly6G expression tracked with the course of infection. Moreover, neutrophil-specific immunomodulatory treatment using the neutrophil elastase inhibitor GW 311616A significantly reduces bacterial burden relative to ofloxacin-only treated animals in this model. The levels of dsDNA in middle ear effusion samples are elevated in both humans and mice with CSOM and decreased during treatment, suggesting that dsDNA may serve as a molecular biomarker of treatment response. Together these data strongly implicate neutrophils in the ineffective immune response to P. aeruginosa infection in CSOM and suggest that immunomodulatory strategies may benefit drug-tolerant infections for chronic biofilm-mediated disease.
Collapse
|
6
|
Abstract
Obesity and obesity-related diseases like type 2 diabetes (T2D) are prominent global health issues; therefore, there is a need to better understand the mechanisms underlying these conditions. The onset of obesity is characterized by accumulation of proinflammatory cells, including Ly6chi monocytes (which differentiate into proinflammatory macrophages) and neutrophils, in metabolic tissues. This shift toward chronic, low-grade inflammation is an obese-state hallmark and highly linked to metabolic disorders and other obesity comorbidities. The mechanisms that induce and maintain increased inflammatory myelopoiesis are of great interest, with a recent focus on how obesity affects more primitive hematopoietic cells. The hematopoietic system is constantly replenished by proper regulation of hematopoietic stem and progenitor (HSPC) pools in the BM. While early research suggests that chronic obesity promotes expansion of myeloid-skewed HSPCs, the involvement of the hematopoietic stem cell (HSC) niche in regulating obesity-induced myelopoiesis remains undefined. In this review, we explore the role of the multicellular HSC niche in hematopoiesis and inflammation, and the potential contribution of this niche to the hematopoietic response to obesity. This review further aims to summarize the potential HSC niche involvement as a target of obesity-induced inflammation and a driver of obesity-induced myelopoiesis.
Collapse
|
7
|
Zhang YH, Li Z, Zeng T, Chen L, Li H, Huang T, Cai YD. Detecting the Multiomics Signatures of Factor-Specific Inflammatory Effects on Airway Smooth Muscles. Front Genet 2021; 11:599970. [PMID: 33519902 PMCID: PMC7838645 DOI: 10.3389/fgene.2020.599970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Smooth muscles are a specific muscle subtype that is widely identified in the tissues of internal passageways. This muscle subtype has the capacity for controlled or regulated contraction and relaxation. Airway smooth muscles are a unique type of smooth muscles that constitute the effective, adjustable, and reactive wall that covers most areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2, which caused the world-wide COVID-19 pandemic, involves airway smooth muscles and their surrounding inflammatory environment. Therefore, airway smooth muscles and related inflammatory factors may play an irreplaceable role in the initiation and progression of several severe diseases. Many previous studies have attempted to reveal the potential relationships between interleukins and airway smooth muscle cells only on the omics level, and the continued existence of numerous false-positive optimal genes/transcripts cannot reflect the actual effective biological mechanisms underlying interleukin-based activation effects on airway smooth muscles. Here, on the basis of newly presented machine learning-based computational approaches, we identified specific regulatory factors and a series of rules that contribute to the activation and stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both interleukins on the epigenetic and/or transcriptional levels. The detected discriminative factors (genes) and rules can contribute to the identification of potential regulatory mechanisms linking airway smooth muscle tissues and inflammatory factors and help reveal specific pathological factors for diseases associated with airway smooth muscle inflammation on multiomics levels.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Sánchez Á, Orizaola MC, Rodríguez-Muñoz D, Aranda A, Castrillo A, Alemany S. Stress erythropoiesis in atherogenic mice. Sci Rep 2020; 10:18469. [PMID: 33116141 PMCID: PMC7595174 DOI: 10.1038/s41598-020-74665-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Bone marrow erythropoiesis is mainly homeostatic and a demand of oxygen in tissues activates stress erythropoiesis in the spleen. Here, we show an increase in the number of circulating erythrocytes in apolipoprotein E-/- mice fed a Western high-fat diet, with similar number of circulating leukocytes and CD41+ events (platelets). Atherogenic conditions increase spleen erythropoiesis with no variations of this cell lineage in the bone marrow. Spleens from atherogenic mice show augmented number of late-stage erythroblasts and biased differentiation of progenitor cells towards the erythroid cell lineage, with an increase of CD71+CD41CD34-CD117+Sca1-Lin- cells (erythroid-primed megakaryocyte-erythroid progenitors), which is consistent with the way in which atherogenesis modifies the expression of pro-erythroid and pro-megakaryocytic genes in megakaryocyte-erythroid progenitors. These data explain the transiently improved response to an acute severe hemolytic anemia insult found in atherogenic mice in comparison to control mice, as well as the higher burst-forming unit-erythroid and colony forming unit-erythroid capacity of splenocytes from atherogenic mice. In conclusion, our work demonstrates that, along with the well stablished enhancement of monocytosis during atherogenesis, stress erythropoiesis in apolipoprotein E-/- mice fed a Western high fat diet results in increased numbers of circulating red blood cells.
Collapse
Affiliation(s)
- Ángela Sánchez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Marta C Orizaola
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Diego Rodríguez-Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Unidad de Biomedicina (Unidad Asociada Al CSIC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
9
|
Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nat Commun 2020; 11:666. [PMID: 32015345 PMCID: PMC6997369 DOI: 10.1038/s41467-020-14478-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory signals arising from the microenvironment have emerged as critical regulators of hematopoietic stem cell (HSC) function during diverse processes including embryonic development, infectious diseases, and myelosuppressive injuries caused by irradiation and chemotherapy. However, the contributions of cellular subsets within the microenvironment that elicit niche-driven inflammation remain poorly understood. Here, we identify endothelial cells as a crucial component in driving bone marrow (BM) inflammation and HSC dysfunction observed following myelosuppression. We demonstrate that sustained activation of endothelial MAPK causes NF-κB-dependent inflammatory stress response within the BM, leading to significant HSC dysfunction including loss of engraftment ability and a myeloid-biased output. These phenotypes are resolved upon inhibition of endothelial NF-κB signaling. We identify SCGF as a niche-derived factor that suppresses BM inflammation and enhances hematopoietic recovery following myelosuppression. Our findings demonstrate that chronic endothelial inflammation adversely impacts niche activity and HSC function which is reversible upon suppression of inflammation.
Collapse
|
10
|
Liao H, Zheng Q, Jin Y, Chozom T, Zhu Y, Liu L, Jiang N. The prognostic significance of hematogones and CD34+ myeloblasts in bone marrow for adult B-cell lymphoblastic leukemia without minimal residual disease. Sci Rep 2019; 9:19722. [PMID: 31871314 PMCID: PMC6928064 DOI: 10.1038/s41598-019-56126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
This study was aimed to dissect the prognostic significances of hematogones and CD34+ myeloblasts in bone marrow for adult B-cell acute lymphoblastic leukemia(ALL) without minimal residual disease(MRD) after the induction chemotherapy cycle. A total of 113 ALL patients who have received standardized chemotherapy cycle were analyzed. Cases that were not remission after induction chemotherapy or have received stem cell transplantation were excluded. Flow cytometry was used to quantify the levels of hematogones and CD34+ myeloblasts in bone marrow aspirations, and the patients were grouped according to the levels of these two precursor cell types. The long-term relapse-free survival(RFS) and recovery of peripheral blood cells of each group after induction chemotherapy were compared. The results indicated that, after induction chemotherapy, patients with hematogones ≥0.1% have a significantly longer remission period than patients with hematogones <0.1% (p = 0.001). Meanwhile, the level of hematogones was positively associated with the recovery of both hemoglobin and platelet in peripheral blood, while CD34+ myeloblasts level is irrelevant to the recovery of Hb and PLT in peripheral blood, level of hematogones and long-term prognosis. This study confirmed hematogones level after induction chemotherapy can be used as a prognostic factor for ALL without MRD. It is more applicable for evaluation prognosis than CD34+ myeloblasts.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Yongmei Jin
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Tashi Chozom
- Tibet Autonomous Region People's Hospital, Lhasa, China
| | - Ying Zhu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Li Liu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China
| | - Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Sichuan, China.
| |
Collapse
|
11
|
Abstract
Neutrophils are implicated in almost every stage of oncogenesis and paradoxically display anti- and pro-tumor properties. Accumulating evidence indicates that neutrophils display diversity in their phenotype resulting from functional plasticity and/or changes to granulopoiesis. In cancer, neutrophils at a range of maturation stages can be identified in the blood and tissues (i.e., outside of their developmental niche). The functional capacity of neutrophils at different states of maturation is poorly understood resulting from challenges in their isolation, identification, and investigation. Thus, the impact of neutrophil maturity on cancer progression and therapy remains enigmatic. In this review, we discuss the identification, prevalence, and function of immature and mature neutrophils in cancer and the potential impact of this on tumor progression and cancer therapy.
Collapse
Affiliation(s)
- John B. G. Mackey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Leo M. Carlin
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|