1
|
Xi Y, Tao K, Wen X, Feng D, Mai Z, Ding H, Mao H, Wang M, Yang Q, Xiang J, Zhang J, Wu S. SIRT3-Mediated Deacetylation of DRP1 K711 Prevents Mitochondrial Dysfunction in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411235. [PMID: 39976201 PMCID: PMC12061286 DOI: 10.1002/advs.202411235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Dysregulation of mitochondrial dynamics is a key contributor to the pathogenesis of Parkinson's disease (PD). Aberrant mitochondrial fission induced by dynamin-related protein 1 (DRP1) causes mitochondrial dysfunction in dopaminergic (DA) neurons. However, the mechanism of DRP1 activation and its role in PD progression remain unclear. In this study, Mass spectrometry analysis is performed and identified a significant increased DRP1 acetylation at lysine residue 711 (K711) in the mitochondria under oxidative stress. Enhanced DRP1K711 acetylation facilitated DRP1 oligomerization, thereby exacerbating mitochondrial fragmentation and compromising the mitochondrial function. DRP1K711 acetylation also affects mitochondrial DRP1 recruitment and fission independent of canonical S616 phosphorylation. Further analysis reveals the critical role of sirtuin (SIRT)-3 in deacetylating DRP1K711, thereby regulating mitochondrial dynamics and function. SIRT3 agonists significantly inhibit DRP1K711 acetylation, rescue DA neuronal loss, and improve motor function in a PD mouse model. Conversely, selective knockout of SIRT3 in DA neurons exacerbates DRP1K711 acetylation, leading to increased DA neuronal damage, neuronal death, and worsened motor dysfunction. Notably, this study identifies a novel mechanism involving aberrant SIRT3-mediated DRP1 acetylation at K711 as a key driver of mitochondrial dysfunction and DA neuronal death in PD, revealing a potential target for PD treatment.
Collapse
Affiliation(s)
- Ye Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Tao
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Xiaomin Wen
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Zifan Mai
- Department of BiophysicsInstitute of NeuroscienceNHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhou310058China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Honghui Mao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Mingming Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Qian Yang
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jie Xiang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jie Zhang
- Institute of NeuroscienceCollege of MedicineXiamen University XiamenFujian361105China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
2
|
Reid MJ, Rogdaki M, Dutan L, Hanger B, Sabad K, Nagy R, Adhya D, Baron-Cohen S, McAlonan G, Price J, Vernon AC, Howes OD, Srivastava DP. Cell line specific alterations in genes associated with dopamine metabolism and signaling in midbrain dopaminergic neurons derived from 22q11.2 deletion carriers with elevated dopamine synthesis capacity. Schizophr Res 2024; 273:98-106. [PMID: 35701280 PMCID: PMC11586776 DOI: 10.1016/j.schres.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
Microdeletions at the 22q11.2 locus are associated with increased risk for schizophrenia. Recent work has demonstrated that antipsychotic naïve 22q11.2 carriers display elevated levels of dopamine synthesis capacity (DSC) as assessed by 18F-DOPA PET imaging. While this is consistent with a role for abnormal dopamine function in schizophrenia, it is unclear what molecular changes may be associated with this neuro-imaging endophenotype, and moreover, if these alterations occur independently of clinical presentation. We therefore conducted a pilot study in which we generated human induced pluripotent stem cells (hiPSCs) from two 22q11.2 deletion carriers with elevated DSC in vivo, but distinct clinical presentations. From these and neurotypical control lines we were able to robustly generate midbrain dopaminergic neurons (mDA-neurons). We then assessed whether genes associated with dopamine synthesis, metabolism or signaling show altered expression between genotypes and further between the 22q11.2 deletion lines. Our data showed alterations in expression of genes associated with dopamine metabolism and signaling that differed between the two 22q11.2 hiPSC lines with distinct clinical presentations. This reinforces the importance of considering clinical, genetic and molecular information, when possible, when choosing which donors to generate hiPSCs from, to carry out mechanistic studies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Maria Rogdaki
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Bjørn Hanger
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kaarin Sabad
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dwaipayan Adhya
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oliver D Howes
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
3
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
4
|
Do QB, Noor H, Marquez-Gomez R, Cramb KML, Ng B, Abbey A, Ibarra-Aizpurua N, Caiazza MC, Sharifi P, Lang C, Beccano-Kelly D, Baleriola J, Bengoa-Vergniory N, Wade-Martins R. Early deficits in an in vitro striatal microcircuit model carrying the Parkinson's GBA-N370S mutation. NPJ Parkinsons Dis 2024; 10:82. [PMID: 38609392 PMCID: PMC11014935 DOI: 10.1038/s41531-024-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding medium spiny neuron (MSN) physiology is essential to understand motor impairments in Parkinson's disease (PD) given the architecture of the basal ganglia. Here, we developed a custom three-chambered microfluidic platform and established a cortico-striato-nigral microcircuit partially recapitulating the striatal presynaptic landscape in vitro using induced pluripotent stem cell (iPSC)-derived neurons. We found that, cortical glutamatergic projections facilitated MSN synaptic activity, and dopaminergic transmission enhanced maturation of MSNs in vitro. Replacement of wild-type iPSC-derived dopamine neurons (iPSC-DaNs) in the striatal microcircuit with those carrying the PD-related GBA-N370S mutation led to a depolarisation of resting membrane potential and an increase in rheobase in iPSC-MSNs, as well as a reduction in both voltage-gated sodium and potassium currents. Such deficits were resolved in late microcircuit cultures, and could be reversed in younger cultures with antagonism of protein kinase A activity in iPSC-MSNs. Taken together, our results highlight the unique utility of modelling striatal neurons in a modular physiological circuit to reveal mechanistic insights into GBA1 mutations in PD.
Collapse
Affiliation(s)
- Quyen B Do
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Humaira Noor
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Nuffield Department of Medicine (NDM), University of Oxford, Henry Wellcome Building for Molecular Physiology, Old Road, Oxford, OX3 7BN, UK
| | - Ricardo Marquez-Gomez
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Kaitlyn M L Cramb
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Bryan Ng
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Ajantha Abbey
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Naroa Ibarra-Aizpurua
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Parnaz Sharifi
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Charmaine Lang
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dayne Beccano-Kelly
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
| | - Jimena Baleriola
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain
| | - Nora Bengoa-Vergniory
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain.
- University of the Basque Country (UPV/EHU), Department of Neuroscience, Leioa, Spain.
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
5
|
Ozgun A, Lomboni DJ, Aylsworth A, Macdonald A, Staines WA, Martina M, Schlossmacher MG, Tauskela JS, Woulfe J, Variola F. Unraveling the assembloid: Real-time monitoring of dopaminergic neurites in an inter-organoid pathway connecting midbrain and striatal regions. Mater Today Bio 2024; 25:100992. [PMID: 38371467 PMCID: PMC10873721 DOI: 10.1016/j.mtbio.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Modern in vitro technologies for preclinical research, including organ-on-a-chip, organoids- and assembloid-based systems, have rapidly emerged as pivotal tools for elucidating disease mechanisms and assessing the efficacy of putative therapeutics. In this context, advanced in vitro models of Parkinson's Disease (PD) offer the potential to accelerate drug discovery by enabling effective platforms that recapitulate both physiological and pathological attributes of the in vivo environment. Although these systems often aim at replicating the PD-associated loss of dopaminergic (DA) neurons, only a few have modelled the degradation of dopaminergic pathways as a way to mimic the disruption of downstream regulation mechanisms that define the characteristic motor symptoms of the disease. To this end, assembloids have been successfully employed to recapitulate neuronal pathways between distinct brain regions. However, the investigation and characterization of these connections through neural tracing and electrophysiological analysis remain a technically challenging and time-consuming process. Here, we present a novel bioengineered platform consisting of surface-grown midbrain and striatal organoids at opposite sides of a self-assembled DA pathway. In particular, dopaminergic neurons and striatal GABAergic neurons spontaneously form DA connections across a microelectrode array (MEA), specifically integrated for the real-time monitoring of electrophysiological development and stimuli response. Calcium imaging data showed spiking synchronicity of the two organoids forming the inter-organoid pathways (IOPs) demonstrating that they are functionally connected. MEA recordings confirm a more robust response to the DA neurotoxin 6-OHDA compared to midbrain organoids alone, thereby validating the potential of this technology to generate highly tractable, easily extractable real-time functional readouts to investigate the dysfunctional dopaminergic network of PD patients.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| | - David J. Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Allison Macdonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
| | - William A. Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marzia Martina
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Michael G. Schlossmacher
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Joseph S. Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Pathology, The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
6
|
Kilfeather P, Khoo JH, Wagner K, Liang H, Caiazza MC, An Y, Zhang X, Chen X, Connor-Robson N, Shang Z, Wade-Martins R. Single-cell spatial transcriptomic and translatomic profiling of dopaminergic neurons in health, aging, and disease. Cell Rep 2024; 43:113784. [PMID: 38386560 DOI: 10.1016/j.celrep.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/14/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
The brain is spatially organized and contains unique cell types, each performing diverse functions and exhibiting differential susceptibility to neurodegeneration. This is exemplified in Parkinson's disease with the preferential loss of dopaminergic neurons of the substantia nigra pars compacta. Using a Parkinson's transgenic model, we conducted a single-cell spatial transcriptomic and dopaminergic neuron translatomic analysis of young and old mouse brains. Through the high resolving capacity of single-cell spatial transcriptomics, we provide a deep characterization of the expression features of dopaminergic neurons and 27 other cell types within their spatial context, identifying markers of healthy and aging cells, spanning Parkinson's relevant pathways. We integrate gene enrichment and genome-wide association study data to prioritize putative causative genes for disease investigation, identifying CASR as a regulator of dopaminergic calcium handling. These datasets represent the largest public resource for the investigation of spatial gene expression in brain cells in health, aging, and disease.
Collapse
Affiliation(s)
- Peter Kilfeather
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Katherina Wagner
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | | | - Maria Claudia Caiazza
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yanru An
- BGI Research, 49276 Riga, Latvia
| | | | | | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | | | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Hornauer P, Prack G, Anastasi N, Ronchi S, Kim T, Donner C, Fiscella M, Borgwardt K, Taylor V, Jagasia R, Roqueiro D, Hierlemann A, Schröter M. DeePhys: A machine learning-assisted platform for electrophysiological phenotyping of human neuronal networks. Stem Cell Reports 2024; 19:285-298. [PMID: 38278155 PMCID: PMC10874850 DOI: 10.1016/j.stemcr.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024] Open
Abstract
Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data-driven functional phenotyping of in vitro neuronal cultures recorded by high-density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike-sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine-learning-assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.
Collapse
Affiliation(s)
- Philipp Hornauer
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland.
| | - Gustavo Prack
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Nadia Anastasi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Taehoon Kim
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | | | - Michele Fiscella
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; MaxWell Biosystems AG, 8047 Zürich, Switzerland
| | - Karsten Borgwardt
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Damian Roqueiro
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Manuel Schröter
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Chandrababu K, Radhakrishnan V, Anjana AS, Rajan R, Sivan U, Krishnan S, Baby Chakrapani PS. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies. Exp Brain Res 2024; 242:1-23. [PMID: 38015243 DOI: 10.1007/s00221-023-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.
Collapse
Affiliation(s)
- Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Rahul Rajan
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Unnikrishnan Sivan
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India.
- Centre for Excellence in Neurodegeneration and Brain Health (CENBH), Kochi, Kerala, India.
| |
Collapse
|
9
|
Ra EA, Kim MS, Lee G. Optogenetic induction of alpha-synuclein aggregation in human dopaminergic neurons to model Parkinson's disease pathology. STAR Protoc 2023; 4:102609. [PMID: 37742181 PMCID: PMC10522986 DOI: 10.1016/j.xpro.2023.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Alpha-synuclein (α-syn) aggregation is a principal factor in Parkinson's disease (PD) onset. Here, we present a protocol for optogenetic induction of α-syn aggregation in human midbrain dopaminergic (mDA) neurons, facilitating a detailed PD pathology study. We describe steps for nucleofection of the opto-α-syn construct, single colony selection and validation, alongside mDA neuron differentiation and rapid induction of toxic α-syn aggregates via blue light. This establishes a potent human induced pluripotent-stem-cell-based platform for PD drug testing and validation. For complete details on the use and execution of this protocol, please refer to Kim et al. (2023).1.
Collapse
Affiliation(s)
- Eun A Ra
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Ye P, Fang Q, Hu X, Zou W, Huang M, Ke M, Li Y, Liu M, Cai X, Zhang C, Hua N, Al-Sheikh U, Liu X, Yu P, Jiang P, Pan PY, Luo J, Jiang LH, Xu S, Fang EF, Su H, Kang L, Yang W. TRPM2 as a conserved gatekeeper determines the vulnerability of DA neurons by mediating ROS sensing and calcium dyshomeostasis. Prog Neurobiol 2023; 231:102530. [PMID: 37739206 DOI: 10.1016/j.pneurobio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.
Collapse
Affiliation(s)
- Peiwu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuyuan Fang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xupang Hu
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Miaodan Huang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Minjing Ke
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yunhao Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobo Cai
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Congyi Zhang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ning Hua
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xingyu Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peiran Jiang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Sino-UK Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453000, China; University of Leeds, Leeds LS2 9JT, UK
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lijun Kang
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Kim MS, Ra EA, Kweon SH, Seo BA, Ko HS, Oh Y, Lee G. Advanced human iPSC-based preclinical model for Parkinson's disease with optogenetic alpha-synuclein aggregation. Cell Stem Cell 2023; 30:973-986.e11. [PMID: 37339636 PMCID: PMC10829432 DOI: 10.1016/j.stem.2023.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/02/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer advantages for disease modeling and drug discovery. However, recreating innate cellular pathologies, particularly in late-onset neurodegenerative diseases with accumulated protein aggregates including Parkinson's disease (PD), has been challenging. To overcome this barrier, we developed an optogenetics-assisted α-synuclein (α-syn) aggregation induction system (OASIS) that rapidly induces α-syn aggregates and toxicity in PD hiPSC-midbrain dopaminergic neurons and midbrain organoids. Our OASIS-based primary compound screening with SH-SY5Y cells identified 5 candidates that were secondarily validated with OASIS PD hiPSC-midbrain dopaminergic neurons and midbrain organoids, leading us to finally select BAG956. Furthermore, BAG956 significantly reverses characteristic PD phenotypes in α-syn preformed fibril models in vitro and in vivo by promoting autophagic clearance of pathological α-syn aggregates. Following the FDA Modernization Act 2.0's emphasis on alternative non-animal testing methods, our OASIS can serve as an animal-free preclinical test model (newly termed "nonclinical test") for the synucleinopathy drug development.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eun A Ra
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sin Ho Kweon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bo Am Seo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea
| | - Han Seok Ko
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Gehrlein A, Udayar V, Anastasi N, Morella ML, Ruf I, Brugger D, von der Mark S, Thoma R, Rufer A, Heer D, Pfahler N, Jochner A, Niewoehner J, Wolf L, Fueth M, Ebeling M, Villaseñor R, Zhu Y, Deen MC, Shan X, Ehsaei Z, Taylor V, Sidransky E, Vocadlo DJ, Freskgård PO, Jagasia R. Targeting neuronal lysosomal dysfunction caused by β-glucocerebrosidase deficiency with an enzyme-based brain shuttle construct. Nat Commun 2023; 14:2057. [PMID: 37045813 PMCID: PMC10097658 DOI: 10.1038/s41467-023-37632-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Mutations in glucocerebrosidase cause the lysosomal storage disorder Gaucher's disease and are the most common risk factor for Parkinson's disease. Therapies to restore the enzyme's function in the brain hold great promise for treating the neurological implications. Thus, we developed blood-brain barrier penetrant therapeutic molecules by fusing transferrin receptor-binding moieties to β-glucocerebrosidase (referred to as GCase-BS). We demonstrate that these fusion proteins show significantly increased uptake and lysosomal efficiency compared to the enzyme alone. In a cellular disease model, GCase-BS rapidly rescues the lysosomal proteome and lipid accumulations beyond known substrates. In a mouse disease model, intravenous injection of GCase-BS leads to a sustained reduction of glucosylsphingosine and can lower neurofilament-light chain plasma levels. Collectively, these findings demonstrate the potential of GCase-BS for treating GBA1-associated lysosomal dysfunction, provide insight into candidate biomarkers, and may ultimately open a promising treatment paradigm for lysosomal storage diseases extending beyond the central nervous system.
Collapse
Affiliation(s)
- Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Vinod Udayar
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nadia Anastasi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Martino L Morella
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center | VUmc, Amsterdam, Netherlands
| | - Iris Ruf
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Brugger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sophia von der Mark
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ralf Thoma
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne Rufer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dominik Heer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nina Pfahler
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Interfaculty Institute of Biochemistry & Structural Biology Biochemistry (IFIB), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anton Jochner
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development, Therapeutic Modalities Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Luise Wolf
- Roche Pharma Research and Early Development, Data & Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias Fueth
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Xiaoyang Shan
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Zahra Ehsaei
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ellen Sidransky
- Molecular Neurogenetics Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Per-Ola Freskgård
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- BioArctic AB, Stockholm, Sweden
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
13
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
14
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
15
|
Orlando R, Ginerete RP, Cavalleri L, Aliperti V, Imbriglio T, Battaglia G, Zuena AR, Nicoletti F, Merlo Pich E, Collo G. Synergic action of L-acetylcarnitine and L-methylfolate in Mouse Models of Stress-Related Disorders and Human iPSC-Derived Dopaminergic Neurons. Front Pharmacol 2022; 13:913210. [PMID: 35721218 PMCID: PMC9201783 DOI: 10.3389/fphar.2022.913210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The epigenetic agents, L-acetylcarnitine (LAC) and L-methylfolate (MF) are putative candidates as add-on drugs in depression. We evaluated the effect of a combined treatment with LAC and MF in two different paradigms of chronic stress in mice and in human inducible pluripotent stem cells (hiPSCs) differentiated into dopaminergic neurons. Two groups of mice were exposed to chronic unpredictable stress (CUS) for 28 days or chronic restraint stress (CRS) for 21 day, and LAC (30 or 100 mg/kg) and/or MF (0.75 or 3 mg/kg) were administered i.p. once a day for 14 days, starting from the last week of stress. In both stress paradigms, LAC and MF acted synergistically in reducing the immobility time in the forced swim test and enhancing BDNF protein levels in the frontal cortex and hippocampus. In addition, LAC and MF acted synergistically in enhancing type-2 metabotropic glutamate receptor (mGlu2) protein levels in the hippocampus of mice exposed to CRS. Interestingly, CRS mice treated with MF showed an up-regulation of NFκB p65, which is a substrate for LAC-induced acetylation. We could also demonstrate a synergism between LAC and MF in cultured hiPSCs differentiated into dopamine neurons, by measuring dendrite length and number, and area of the cell soma after 3 days of drug exposure. These findings support the combined use of LAC and MF in the treatment of MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Laura Cavalleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincenza Aliperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Ginetta Collo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Involvement of DA D3 Receptors in Structural Neuroplasticity of Selected Limbic Brain Circuits: Possible Role in Treatment-Resistant Depression. Curr Top Behav Neurosci 2022; 60:73-87. [PMID: 35538302 DOI: 10.1007/7854_2022_348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Structural neuroplasticity in the adult brain is a process involving quantitative changes of the number and size of neurons and of their dendritic arborization, axon branching, spines, and synapses. These changes can occur in specific neural circuits as adaptive response to environmental challenges, exposure to stressors, tissue damage or degeneration. Converging studies point to evidence of structural plasticity in circuits operated by glutamate, GABA, dopamine, and serotonin neurotransmitters, in concert with neurotrophic factors such as Brain Derived Neurotrophic Factor (BDNF) or Insulin Growth Factor 1 (IGF1) and a series of modulators that include circulating hormones. Intriguingly, most of these endogenous agents trigger the activation of the PI3K/Akt/mTOR and ERK1/2 intracellular pathways that, in turn, lead to the production of growth-related structural changes, enhancing protein synthesis, metabolic enzyme functions, mitogenesis for energy, and new lipid-bilayer membrane apposition. The dopamine (DA) D3 receptor has been shown to play a specific role by inducing structural plasticity of the DAergic neurons of the nigrostriatal and mesocorticolimbic circuit, where they are expressed in rodents and humans, via activation of the mTORC1 and ERK1/2 pathways. These effects are BDNF-dependent and require the recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to allow the structural changes. Since in mood disorders, depression and anhedonia have been proposed to be associated with impaired neuroplasticity and reduced DAergic tone in brain circuits connecting prefrontal cortex, ventral striatum, amygdala, and ventral mesencephalon, activation of D3 receptors could provide a therapeutic benefit. Sustained improvements of mood and anhedonia were observed in subjects with an unsatisfactory response to serotonin uptake inhibitors (SSRI) when treated with D3-preferential D2/D3 agonists such as pramipexole and ropinirole. The recent evidence that downstream mTOR pathway activation in human mesencephalic DA neurons is also produced by ketamine, probably the most effective antidepressant currently used in subjects with treatment-resistant depression, further supports the rationale for a D3 receptor activation in mood disorders.
Collapse
|
17
|
Havins L, Capel A, Christie SD, Lewis MP, Roach P. Gradient biomimetic platforms for neurogenesis studies. J Neural Eng 2021; 19. [PMID: 34942614 DOI: 10.1088/1741-2552/ac4639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
There is a need for the development of new cellular therapies for the treatment of many diseases, with the central nervous system (CNS) currently an area of specific focus. Due to the complexity and delicacy of its biology, there is currently a limited understanding of neurogenesis and consequently a lack of reliable test platforms, resulting in several CNS based diseases having no cure. The ability to differentiate pluripotent stem cells into specific neuronal sub-types may enable scalable manufacture for clinical therapies, with a focus also on the purity and quality of the cell population. This focus is targeted towards an urgent need for the diseases that currently have no cure, e.g. Parkinson's disease. Differentiation studies carried out using traditional 2D cell culture techniques are designed using biological signals and morphogens known to be important for neurogenesis in vivo. However, such studies are limited by their simplistic nature, including a general poor efficiency and reproducibility, high reagent costs and an inability to scale-up the process to a manufacture-wide design for clinical use. Biomimetic approaches to recapitulate a more in vivo-like environment are progressing rapidly within this field, with application of bio(chemical) gradients presented both as 2D surfaces and within a 3D volume. This review focusses on the development and application of these advanced extracellular environments particularly for the neural niche. We emphasise the progress that has been made specifically in the area of stem cell derived neuronal differentiation. Increasing developments in biomaterial approaches to manufacture stem cells will enable the improvement of differentiation protocols, enhancing the efficiency and repeatability of the process with a move towards up-scaling. Progress in this area brings these techniques closer to enabling the development of therapies for the clinic.
Collapse
Affiliation(s)
- Laurissa Havins
- Department of Chemistry, Loughborough University, Dept Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Capel
- Loughborough University, 2National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Steven D Christie
- Department of Chemistry, Loughborough University, Dept Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Mark P Lewis
- Loughborough University School of Sport Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Paul Roach
- Chemistry, Loughborough University, Dept Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
18
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
19
|
Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcón EP, Jozwik KM, Mendez MA, Horder J, Loth E, Nowosiad P, Lee I, Skuse D, Flinter FA, Murphy D, McAlonan G, Geschwind DH, Price J, Carroll J, Srivastava DP, Baron-Cohen S. Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. Biol Psychiatry 2021; 89:486-496. [PMID: 32826066 PMCID: PMC7843956 DOI: 10.1016/j.biopsych.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carole Shum
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva P Valencia-Alarcón
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Maria Andreina Mendez
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina Nowosiad
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Irene Lee
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - David Skuse
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Frances A Flinter
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Jansch C, Ziegler GC, Forero A, Gredy S, Wäldchen S, Vitale MR, Svirin E, Zöller JEM, Waider J, Günther K, Edenhofer F, Sauer M, Wischmeyer E, Lesch KP. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna) 2021; 128:225-241. [PMID: 33560471 PMCID: PMC7914246 DOI: 10.1007/s00702-021-02303-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sina Gredy
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Rosaria Vitale
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Evgeniy Svirin
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Johanna E M Zöller
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
- Institute of Molecular Regenerative Medicine, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Cosi C, Martel JC, Auclair AL, Collo G, Cavalleri L, Heusler P, Leriche L, Gaudoux F, Sokoloff P, Moser PC, Gatti-McArthur S. Pharmacology profile of F17464, a dopamine D 3 receptor preferential antagonist. Eur J Pharmacol 2021; 890:173635. [PMID: 33065094 DOI: 10.1016/j.ejphar.2020.173635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.
Collapse
Affiliation(s)
- Cristina Cosi
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Jean-Claude Martel
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Agnès L Auclair
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ginetta Collo
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Laura Cavalleri
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Peter Heusler
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ludovic Leriche
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Florence Gaudoux
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Pierre Sokoloff
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Paul C Moser
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Silvia Gatti-McArthur
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France.
| |
Collapse
|
22
|
Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity. Int J Mol Sci 2020; 21:ijms21134638. [PMID: 32629812 PMCID: PMC7369932 DOI: 10.3390/ijms21134638] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) group of neurons comprises molecularly distinct subgroups, of which the substantia nigra (SN) and ventral tegmental area (VTA) are the best known, due to the selective degeneration of the SN during Parkinson’s disease. However, although significant research has been conducted on the molecular build-up of these subsets, much is still unknown about how these subsets develop and which factors are involved in this process. In this review, we aim to describe the life of an mdDA neuron, from specification in the floor plate to differentiation into the different subsets. All mdDA neurons are born in the mesodiencephalic floor plate under the influence of both SHH-signaling, important for floor plate patterning, and WNT-signaling, involved in establishing the progenitor pool and the start of the specification of mdDA neurons. Furthermore, transcription factors, like Ngn2, Ascl1, Lmx1a, and En1, and epigenetic factors, like Ezh2, are important in the correct specification of dopamine (DA) progenitors. Later during development, mdDA neurons are further subdivided into different molecular subsets by, amongst others, Otx2, involved in the specification of subsets in the VTA, and En1, Pitx3, Lmx1a, and WNT-signaling, involved in the specification of subsets in the SN. Interestingly, factors involved in early specification in the floor plate can serve a dual function and can also be involved in subset specification. Besides the mdDA group of neurons, other systems in the embryo contain different subsets, like the immune system. Interestingly, many factors involved in the development of mdDA neurons are similarly involved in immune system development and vice versa. This indicates that similar mechanisms are used in the development of these systems, and that knowledge about the development of the immune system may hold clues for the factors involved in the development of mdDA neurons, which may be used in culture protocols for cell replacement therapies.
Collapse
|
23
|
Collo G, Mucci A, Giordano GM, Merlo Pich E, Galderisi S. Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Front Neurosci 2020; 14:632. [PMID: 32625059 PMCID: PMC7315891 DOI: 10.3389/fnins.2020.00632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Negative symptoms (NS) represent a heterogeneous dimension of schizophrenia (SCZ), associated with a poor functional outcome. A dysregulated dopamine (DA) system, including a reduced D1 receptor activation in the prefrontal cortex, DA hypoactivity in the caudate and alterations in D3 receptor activity, seems to contribute to the pathogenesis of NS. However, failure to take into account the NS heterogeneity has slowed down progress in research on their neurobiological correlates and discoveries of new effective treatments. A better neurobiological characterization of NS is needed, and this requires objective quantification of their features that can be applied in translational models, such as animal models and human inducible pluripotent stem cells (iPSC). In this review we summarize the evidence for dopaminergic alterations relevant to NS in translational animal models focusing on dysfunctional motivation, a core aspect of NS. Among others, experiments on mutant rodents with an overexpression of DA D2 or D3 receptors and the dopamine deficient mice are discussed. In the second part we summarize the findings from recent studies using iPSC to model the pathogenesis of SCZ. By retaining the genetic background of risk genetic variants, iPSC offer the possibility to study the effect of de novo mutations or inherited polymorphisms from subgroups of patients and their response to drugs, adding an important tool for personalized psychiatry. Given the key role of DA in NS, we focus on findings of iPSC-derived DA neurons. Since implementation of iPSC-derived neurons to study the neurobiology of SCZ is a relatively recent acquisition, the available data are limited. We highlight some methodological aspects of relevance in the interpretation of in vitro testing results, including limitations and strengths, offering a critical viewpoint for the implementation of future pharmacological studies aimed to the discovery and characterization of novel treatments for NS.
Collapse
Affiliation(s)
- Ginetta Collo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia M. Giordano
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Emilio Merlo Pich
- Research & Development, Alfasigma Schweiz, Zofingen, Switzerland
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
24
|
Sim H, Lee JE, Yoo HM, Cho S, Lee H, Baek A, Kim J, Seo H, Kweon MN, Kim HG, Jeon YJ, Son MY, Kim J. Iroquois Homeobox Protein 2 Identified as a Potential Biomarker for Parkinson's Disease. Int J Mol Sci 2020; 21:E3455. [PMID: 32422864 PMCID: PMC7278941 DOI: 10.3390/ijms21103455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of Parkinson's disease (PD) is initiated after the occurrence of motor symptoms, such as resting tremors, rigidity, and bradykinesia. According to previous reports, non-motor symptoms, notably gastrointestinal dysfunction, could potentially be early biomarkers in PD patients as such symptoms occur earlier than motor symptoms. However, connecting PD to the intestine is methodologically challenging. Thus, we generated in vitro human intestinal organoids from PD patients and ex vivo mouse small intestinal organoids from aged transgenic mice. Both intestinal organoids (IOs) contained the human LRRK2 G2019S mutation, which is the most frequent genetic cause of familial and sporadic PD. By conducting comprehensive genomic comparisons with these two types of IOs, we determined that a particular gene, namely, Iroquois homeobox protein 2 (IRX2), showed PD-related expression patterns not only in human pluripotent stem cell (PSC)-derived neuroectodermal spheres but also in human PSC-derived neuronal cells containing dopaminergic neurons. We expected that our approach of using various cell types presented a novel technical method for studying the effects of multi-organs in PD pathophysiology as well as for the development of diagnostic markers for PD.
Collapse
Affiliation(s)
- Hyuna Sim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Joo-Eun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea;
| | - Sunwha Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
| | - Hana Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Aruem Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
| | - Jisun Kim
- Department of Molecular & Life Sciences, College of Science & Technology, Hanyang University, Ansan 15588, Korea; (J.K.); (H.S.)
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, College of Science & Technology, Hanyang University, Ansan 15588, Korea; (J.K.); (H.S.)
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, Korea;
| | - Hyung Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (J.-E.L.); (S.C.); (H.L.); (A.B.); (Y.-J.J.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
25
|
Azoramide protects iPSC-derived dopaminergic neurons with PLA2G6 D331Y mutation through restoring ER function and CREB signaling. Cell Death Dis 2020; 11:130. [PMID: 32071291 PMCID: PMC7028918 DOI: 10.1038/s41419-020-2312-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER)-stress-induced cascade events are implicated in Parkinson’s disease (PD). The discovery of drug candidates to protect dopaminergic (DA) neurons from ER-stress-induced oxidative damage is important to resolve the pathological aspects of PD and modify its progress. In this study, we found that a recently identified unfolded protein response (UPR) modulator, azoramide, showed protective effects on patient induced pluripotent stem cells-derived midbrain DA neurons with the homozygous phospholipase A2 group 6 (PLA2G6) D331Y mutant. A series of PD-related cascade events such as ER stress, abnormal calcium homeostasis, mitochondrial dysfunction, increase of reactive oxygen species, and apoptosis were observed in PLA2G6 D331Y mutant DA neurons, whereas azoramide significantly protected PLA2G6 D331Y mutant DA neurons against these events. The beneficial effects of azoramide were abolished by treatment with a cAMP-response element binding protein (CREB) inhibitor. Our results suggest that azoramide is a potential neuroprotectant against DA neuron damage via restoring ER function and the CREB signaling.
Collapse
|
26
|
Überbacher C, Obergasteiger J, Volta M, Venezia S, Müller S, Pesce I, Pizzi S, Lamonaca G, Picard A, Cattelan G, Malpeli G, Zoli M, Beccano-Kelly D, Flynn R, Wade-Martins R, Pramstaller PP, Hicks AA, Cowley SA, Corti C. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Res 2019; 41:101656. [PMID: 31733438 PMCID: PMC7322529 DOI: 10.1016/j.scr.2019.101656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase - enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.
Collapse
Affiliation(s)
- Christa Überbacher
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy; Department of Biomedical, Metabolic and Neural Sciences, Università di Modena e Reggio Emilia, Modena, Italy.
| | - Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Serena Venezia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Stefan Müller
- Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Isabella Pesce
- CIBIO - Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giulia Lamonaca
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giada Cattelan
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy; Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Università di Modena e Reggio Emilia, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Rowan Flynn
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Sally A Cowley
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK; James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
27
|
Sridharan B, Hubbs C, Llamosas N, Kilinc M, Singhera FU, Willems E, Piper DR, Scampavia L, Rumbaugh G, Spicer TP. A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons. Sci Rep 2019; 9:9000. [PMID: 31227747 PMCID: PMC6588600 DOI: 10.1038/s41598-019-45265-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurons created from human induced pluripotent stem cells (hiPSCs) provide the capability of identifying biological mechanisms that underlie brain disorders. IPSC-derived human neurons, or iNs, hold promise for advancing precision medicine through drug screening, though it remains unclear to what extent iNs can support early-stage drug discovery efforts in industrial-scale screening centers. Despite several reported approaches to generate iNs from iPSCs, each suffer from technological limitations that challenge their scalability and reproducibility, both requirements for successful screening assays. We addressed these challenges by initially removing the roadblocks related to scaling of iNs for high throughput screening (HTS)-ready assays. We accomplished this by simplifying the production and plating of iNs and adapting them to a freezer-ready format. We then tested the performance of freezer-ready iNs in an HTS-amenable phenotypic assay that measured neurite outgrowth. This assay successfully identified small molecule inhibitors of neurite outgrowth. Importantly, we provide evidence that this scalable iN-based assay was both robust and highly reproducible across different laboratories. These streamlined approaches are compatible with any iPSC line that can produce iNs. Thus, our findings indicate that current methods for producing iPSCs are appropriate for large-scale drug-discovery campaigns (i.e. >10e5 compounds) that read out simple neuronal phenotypes. However, due to the inherent limitations of currently available iN differentiation protocols, technological advances are required to achieve similar scalability for screens that require more complex phenotypes related to neuronal function.
Collapse
Affiliation(s)
- BanuPriya Sridharan
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Christopher Hubbs
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA
| | - Nerea Llamosas
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA
| | - Murat Kilinc
- Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida, 33458, USA
| | - Fakhar U Singhera
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Erik Willems
- Cell Biology, Thermo Fisher Scientific, Carlsbad, California, 92008, USA
| | - David R Piper
- Cell Biology, Thermo Fisher Scientific, Carlsbad, California, 92008, USA
| | - Louis Scampavia
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Gavin Rumbaugh
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA.
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA.
- Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida, 33458, USA.
| | - Timothy P Spicer
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA.
| |
Collapse
|
28
|
de Boni L, Wüllner U. Epigenetic Analysis in Human Neurons: Considerations for Disease Modeling in PD. Front Neurosci 2019; 13:276. [PMID: 31024227 PMCID: PMC6460245 DOI: 10.3389/fnins.2019.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/08/2019] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder next to Alzheimer’s disease. Most PD cases are considered to be sporadic and despite considerable scientific effort, the underlying cause(s) still remain(s) enigmatic. In particular, it is unknown to which extent epigenetic alterations contribute to the pathophysiology of this devastating disorder. This is partly due to the fact that appropriate PD models are not yet available. Moreover, epigenetic patterns and mechanisms are species specific and murine systems reflect only a few of the idiosyncrasies of human neurons. For several years now, patient-specific stem cell-derived neural and non-neural cells have been employed to overcome this limitation allowing the analysis and establishment of humanized disease models for PD. Thus, several studies tried to dissect epigenetic alterations such as aberrant DNA methylation or microRNA patterns using lund human mesencephalic cell lines or neurons derived from (patient-specific) induced pluripotent stem cells. These studies demonstrate that human neurons have the potential to be used as model systems for the study of epigenetic modifications in PD such as characterizing epigenetic changes, correlating epigenetic changes to gene expression alterations and hopefully using these insights for the development of novel therapeutics. However, more research is required to define the epigenetic (age-associated) landscape of human in vitro neurons and compare these to native neurons before they can be established as suitable models for epigenetic studies in PD. In this review, we summarize the knowledge about epigenetic studies performed on human neuronal PD models, and we discuss advantages and current limitations of these (stem cell-derived) neuronal models for the study of epigenetic alterations in PD.
Collapse
Affiliation(s)
- Laura de Boni
- Dementia Research Institute, University College London, London, United Kingdom
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, German Center for Neurologic Diseases, Bonn, Germany
| |
Collapse
|
29
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
30
|
Collo G, Cavalleri L, Zoli M, Maskos U, Ratti E, Merlo Pich E. Alpha6-Containing Nicotinic Acetylcholine Receptors Mediate Nicotine-Induced Structural Plasticity in Mouse and Human iPSC-Derived Dopaminergic Neurons. Front Pharmacol 2018; 9:572. [PMID: 29910731 PMCID: PMC5992464 DOI: 10.3389/fphar.2018.00572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/23/2022] Open
Abstract
Midbrain dopamine (DA) neurons are considered a critical substrate for the reinforcing and sensitizing effects of nicotine and tobacco dependence. While the role of the α4 and β2 subunit containing nicotinic acetylcholine receptors (α4β2∗nAChRs) in mediating nicotine effects on DA release and DA neuron activity has been widely explored, less information is available on their role in the morphological adaptation of the DA system to nicotine, eventually leading to dysfunctional behaviors observed in nicotine dependence. In particular, no information is available on the role of α6∗nAChRs in nicotine-induced structural plasticity in rodents and no direct evidence exists regarding the occurrence of structural plasticity in human DA neurons exposed to nicotine. To approach this problem, we used two parallel in vitro systems, mouse primary DA neuron cultures from E12.5 embryos and human DA neurons differentiated from induced pluripotent stem cells (iPSCs) of healthy donors, identified using TH+ immunoreactivity. In both systems, nicotine 1–10 μM produced a dose-dependent increase of maximal dendrite length, number of primary dendrites, and soma size when measured after 3 days in culture. These effects were blocked by pretreatments with the α6∗nAChR antagonists α-conotoxin MII and α-conotoxin PIA, as well as by the α4β2nAChR antagonist dihydro-β-erythroidine (DHβE) in both mouse and human DA neurons. Nicotine was also ineffective when the primary DA neurons were obtained from null mutant mice for either the α6 subunit or both the α4 and α6 subunits of nAChR. When pregnant mice were exposed to nicotine from gestational day 15, structural plasticity was also observed in the midbrain DA neurons of postnatal day 1 offspring only in wild-type mice and not in both null mutant mice. This study confirmed the critical role of α4α6∗nAChRs in mediating nicotine-induced structural plasticity in both mouse and human DA neurons, supporting the translational relevance of neurons differentiated from human iPSCs for pharmacological studies.
Collapse
Affiliation(s)
- Ginetta Collo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Cavalleri
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Uwe Maskos
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, Paris, France
| | - Emiliangelo Ratti
- Neuroscience Therapeutic Area Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, United States
| | - Emilio Merlo Pich
- The Division of Brain Science, Imperial College London, London, United Kingdom.,Neuroscience Therapeutic Area Unit, Takeda Pharmaceuticals International, Zurich, Switzerland
| |
Collapse
|