1
|
Ortega R, Fernández-Monreal M, Pied N, Roudeau S, Cloetens P, Carmona A. Native Cryo-Correlative Light and Synchrotron X-ray Fluorescence Imaging of Proteins and Essential Metals in Subcellular Neuronal Compartments. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:744-754. [PMID: 39610464 PMCID: PMC11600181 DOI: 10.1021/cbmi.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 11/30/2024]
Abstract
Essential metals such as iron, copper, and zinc are required for a wide variety of biological processes. For example, they act as cofactors in many proteins, conferring enzymatic activity or structural stability. Interactions between metals and proteins are often difficult to characterize due to the low concentration of metals in biological tissues and the sometimes labile nature of the chemical bonds involved. To better understand the cellular functions of essential metals, we correlate protein localization, using fluorescence light microscopy (FLM), and metal distribution with synchrotron X-ray fluorescence (SXRF), a high-sensitivity and high-spatial-resolution technique for metal imaging. Both chemical imaging modalities are implemented under cryogenic conditions to preserve native cell structure and chemical element distribution. As a proof of concept, we applied cryo-FLM and cryo-SXRF correlative imaging to cultured primary hippocampal neurons. Neurons were labeled under live conditions with fluorescent F-actin and tubulin dyes, then samples were flash-frozen and observed in a frozen hydrated state. This methodology, cryo-FLM combined to cryo-SXRF, revealed the distribution of iron, copper and zinc relative to F-actin and tubulin in the growth cones, dendrites, axons, and axonal en passant boutons of developing neurons.
Collapse
Affiliation(s)
- Richard Ortega
- Université
Bordeaux, CNRS, LP2IB, Chemical Imaging and Speciation, UMR 5797, 33170 Gradignan, France
| | | | - Noémie Pied
- Université
Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, 33000 Bordeaux, France
| | - Stéphane Roudeau
- Université
Bordeaux, CNRS, LP2IB, Chemical Imaging and Speciation, UMR 5797, 33170 Gradignan, France
| | | | - Asuncion Carmona
- Université
Bordeaux, CNRS, LP2IB, Chemical Imaging and Speciation, UMR 5797, 33170 Gradignan, France
| |
Collapse
|
2
|
Rahman A, Tamseel S, Dutta S, Khan N, Faaiz M, Rastogi H, Nath JR, Haldar K, Chowdhury P, Ashish, Bhattacharjee S. Artemisinin-resistant Plasmodium falciparum Kelch13 mutant proteins display reduced heme-binding affinity and decreased artemisinin activation. Commun Biol 2024; 7:1499. [PMID: 39538019 PMCID: PMC11561146 DOI: 10.1038/s42003-024-07178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13.
Collapse
Affiliation(s)
- Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Sabahat Tamseel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Smritikana Dutta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Nawaal Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Mohammad Faaiz
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jyoti Rani Nath
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Pramit Chowdhury
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India.
| |
Collapse
|
3
|
Klar PB, Waterman DG, Gruene T, Mullick D, Song Y, Gilchrist JB, Owen CD, Wen W, Biran I, Houben L, Regev-Rudzki N, Dzikowski R, Marom N, Palatinus L, Zhang P, Leiserowitz L, Elbaum M. Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin. ACS CENTRAL SCIENCE 2024; 10:1504-1514. [PMID: 39220700 PMCID: PMC11363319 DOI: 10.1021/acscentsci.4c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
Collapse
Affiliation(s)
- Paul Benjamin Klar
- Faculty
of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - David Geoffrey Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K.
- CCP4,
Research Complex at Harwell, Rutherford
Appleton Laboratory, Didcot OX11 0FA, U.K.
| | - Tim Gruene
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Debakshi Mullick
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Yun Song
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - C. David Owen
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Wen Wen
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Idan Biran
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, Institute for Medical Research
Israel-Canada, and The Kuvin Center for the Study of Infectious and
Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112010, Israel
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lukas Palatinus
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - Peijun Zhang
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
- Division
of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Leslie Leiserowitz
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Elbaum
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
4
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
5
|
Cooper C, Thompson RCA, Clode PL. Investigating parasites in three dimensions: trends in volume microscopy. Trends Parasitol 2023; 39:668-681. [PMID: 37302958 DOI: 10.1016/j.pt.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
To best understand parasite, host, and vector morphologies, host-parasite interactions, and to develop new drug and vaccine targets, structural data should, ideally, be obtained and visualised in three dimensions (3D). Recently, there has been a significant uptake of available 3D volume microscopy techniques that allow collection of data across centimetre (cm) to Angstrom (Å) scales by utilising light, X-ray, electron, and ion sources. Here, we present and discuss microscopy tools available for the collection of 3D structural data, focussing on electron microscopy-based techniques. We highlight their strengths and limitations, such that parasitologists can identify techniques best suited to answer their research questions. Additionally, we review the importance of volume microscopy to the advancement of the field of parasitology.
Collapse
Affiliation(s)
- Crystal Cooper
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia.
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia; School of Biological Sciences, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Ma W, Balta VA, Pan W, Rimer JD, Sullivan DJ, Vekilov PG. Nonclassical mechanisms to irreversibly suppress β-hematin crystal growth. Commun Biol 2023; 6:783. [PMID: 37500754 PMCID: PMC10374632 DOI: 10.1038/s42003-023-05046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Hematin crystallization is an essential element of heme detoxification of malaria parasites and its inhibition by antimalarial drugs is a common treatment avenue. We demonstrate at biomimetic conditions in vitro irreversible inhibition of hematin crystal growth due to distinct cooperative mechanisms that activate at high crystallization driving forces. The evolution of crystal shape after limited-time exposure to both artemisinin metabolites and quinoline-class antimalarials indicates that crystal growth remains suppressed after the artemisinin metabolites and the drugs are purged from the solution. Treating malaria parasites with the same agents reveals that three- and six-hour inhibitor pulses inhibit parasite growth with efficacy comparable to that of inhibitor exposure during the entire parasite lifetime. Time-resolved in situ atomic force microscopy (AFM), complemented by light scattering, reveals two molecular-level mechanisms of inhibitor action that prevent β-hematin growth recovery. Hematin adducts of artemisinins incite copious nucleation of nonextendable nanocrystals, which incorporate into larger growing crystals, whereas pyronaridine, a quinoline-class drug, promotes step bunches, which evolve to engender abundant dislocations. Both incorporated crystals and dislocations are known to induce lattice strain, which persists and permanently impedes crystal growth. Nucleation, step bunching, and other cooperative behaviors can be amplified or curtailed as means to control crystal sizes, size distributions, aspect ratios, and other properties essential for numerous fields that rely on crystalline materials.
Collapse
Affiliation(s)
- Wenchuan Ma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Victoria A Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Weichun Pan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, Zhejiang, 314423, China
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA.
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA.
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA.
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
7
|
Aghabi D, Sloan M, Gill G, Hartmann E, Antipova O, Dou Z, Guerra AJ, Carruthers VB, Harding CR. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun 2023; 14:3659. [PMID: 37339985 PMCID: PMC10281983 DOI: 10.1038/s41467-023-39436-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.
Collapse
Affiliation(s)
- Dana Aghabi
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan Sloan
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Grace Gill
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Hartmann
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Olga Antipova
- X-Ray Sciences Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Cayman Chemical Company, Ann Arbor, MI, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clare R Harding
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Tong X, Chen Y, Xu Z, Li Y, Xing Z, Mu C, Zhao J, Zhen X, Mao C, Tai R. High-efficiency focusing and imaging by dielectric kinoform zone plate lenses with soft X-rays. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:319-326. [PMID: 36891845 PMCID: PMC10000800 DOI: 10.1107/s1600577522012115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
With fast advances in enhancing the focusing/imaging resolution of Fresnel zone plate lenses toward sub-10 nm, low diffraction efficiency in connection with their rectangular zone shape still remains a big issue in both soft and hard X-ray microscopy. In hard X-ray optics, encouraging progress has recently been reported in our earlier attempts of high focusing efficiency by 3D kinoform shaped metallic zone plates, formed by greyscale electron beam lithography. This paper addresses our efforts towards high focusing/imaging efficiency by developing a novel dielectric kinoform zone plate lens for soft X-rays. The effects of the zone materials and zone shapes on the focusing/imaging quality were first theoretically investigated by a modified thin-grating-approximation method, revealing superior efficiencies of dielectric kinoform zone plates over rectangular ones in metals. Optical characterizations of replicated dielectric kinoform zone plates by greyscale electron beam lithography demonstrate a focusing efficiency of 15.5% with a resolution of 110 nm in the water window of X-rays. Apart from high efficiency, the novel kinoform zone plate lenses developed in this work exhibit significant advantages over conventional zone plates, i.e. simplified process, low cost and no need for a beamstop.
Collapse
Affiliation(s)
- Xujie Tong
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yifang Chen
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Yijie Li
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhenjiang Xing
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Chengyang Mu
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jun Zhao
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Xiangjun Zhen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Chengwen Mao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| |
Collapse
|
9
|
Singh R, Makde RD. An assay procedure to investigate the transformation of toxic heme into inert hemozoin via plasmodial heme detoxification protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140832. [PMID: 35934300 DOI: 10.1016/j.bbapap.2022.140832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Most antimalarial therapeutics, including chloroquine and artemisinin, induce free heme-mediated toxicity in Plasmodium. This cytotoxic heme is produced as a by-product during the large-scale digestion of host hemoglobin. Conversion of this host-derived heme into inert crystalline hemozoin is the only defense mechanism in Plasmodium against heme-induced cytotoxicity. Heme detoxification protein (HDP), a highly conserved plasmodial protein, is reported to be the most efficient biological mediator for heme to hemozoin transformation. Despite its significance, HDP has never been extensively studied for heme transformation into hemozoin. Therefore, we wish to develop a method to study the HDP-mediated transformation of heme into hemozoin. We have adopted, modified, and optimized the pyridine hemochrome assay to study HDP catalysis and use substrate and time kinetics to study the HDP-mediated transformation of heme into hemozoin. In contrast to the previously reported assay for HDP, we found that the new assay is more precise, accurate, and handy, making it more suitable for kinetic studies. HDP-mediated transformation of heme into hemozoin is not a single-step process, and involves a transient intermediate, most likely a cyclic heme dimer. The kinetics and the manner of HDP-mediated hemozoin production are dependent on the substrate concentration, and a small fraction of substrate remains untransformed to hemozoin irrespective of reaction time. Combining HDP as a catalyst and the pyridine hemochrome assay will facilitate the efficient screening of future antimalarials.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
10
|
Kaur N, Korkor C, Mobin SM, Chibale K, Singh K. Fluorene-Chloroquine Hybrids: Synthesis, in vitro Antiplasmodial Activity, and Inhibition of Heme Detoxification Machinery of Plasmodium falciparum. ChemMedChem 2022; 17:e202200414. [PMID: 36017666 DOI: 10.1002/cmdc.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Fluorene-chloroquine hybrids have been identified as a new promising class of antiplasmodial agents. The most active compound 9d exhibited good in vitro antiplasmodial activity against a chloroquine-sensitive NF54 strain of the human malaria parasite Plasmodium falciparum with an IC50 value of 139 nM. UV-visible absorption, FTIR spectral and 1H NMR titration data corroborated the binding of 9d to monomeric and µ-oxodimeric heme as well as inhibition of β-hematin formation, which collectively supported the inhibition of heme detoxification machinery in P. falciparum. In silico docking studies revealed the binding interactions of the hybrids in the active site of the wild type as well as quadruple mutant of Pf-DHFR-TS dihydrofolate enzyme. Further, the ADMET parameters were predicted and were in good agreement with the expected values, suggesting the drug likeness of the synthesized hybrid molecules.Introduction.
Collapse
Affiliation(s)
- Navpreet Kaur
- IIT Indore Discipline of Chemistry: Indian Institute of Technology Indore Discipline of Chemistry, Chemistry, INDIA
| | - Constance Korkor
- University of Cape Town Institute of Infectious Disease and Molecular Medicine, Chemistry, INDIA
| | - Shaikh M Mobin
- IIT Indore: Indian Institute of Technology Indore, Chemistry, INDIA
| | - Kelly Chibale
- University of Cape Town Institute of Infectious Disease and Molecular Medicine, Chemistry, INDIA
| | - Kamaljit Singh
- Guru Nanak Dev University, Department of Chemistry, Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143005, 143005, Amritsar, INDIA
| |
Collapse
|
11
|
Olivier T, Loots L, Kok M, de Villiers M, Reader J, Birkholtz LM, Arnott GE, de Villiers KA. Adsorption to the Surface of Hemozoin Crystals: Structure-Based Design and Synthesis of Amino-Phenoxazine β-Hematin Inhibitors. ChemMedChem 2022; 17:e202200139. [PMID: 35385211 PMCID: PMC9119941 DOI: 10.1002/cmdc.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
In silico adsorption of eight antimalarials that inhibit β-hematin (synthetic hemozoin) formation identified a primary binding site on the (001) face, which accommodates inhibitors via formation of predominantly π-π interactions. A good correlation (r2 =0.64, P=0.017) between adsorption energies and the logarithm of β-hematin inhibitory activity was found for this face. Of 53 monocyclic, bicyclic and tricyclic scaffolds, the latter yielded the most favorable adsorption energies. Five new amino-phenoxazine compounds were pursued as β-hematin inhibitors based on adsorption behaviour. The 2-substituted phenoxazines show good to moderate β-hematin inhibitory activity (<100 μM) and Plasmodium falciparum blood stage activity against the 3D7 strain. N1 ,N1 -diethyl-N4 -(10H-phenoxazin-2-yl)pentane-1,4-diamine (P2a) is the most promising hit with IC50 values of 4.7±0.6 and 0.64±0.05 μM, respectively. Adsorption energies are predictive of β-hematin inhibitory activity, and thus the in silico approach is a beneficial tool for structure-based development of new non-quinoline inhibitors.
Collapse
Affiliation(s)
- Tania Olivier
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| |
Collapse
|
12
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
13
|
Shtukenberg AG, Hu L, Sahota A, Kahr B, Ward MD. Disrupting Crystal Growth through Molecular Recognition: Designer Therapies for Kidney Stone Prevention. Acc Chem Res 2022; 55:516-525. [PMID: 35088591 DOI: 10.1021/acs.accounts.1c00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant crystallization within the human body can lead to several disease states or adverse outcomes, yet much remains to be understood about the critical stages leading to these events, which can include crystal nucleation and growth, crystal aggregation, and the adhesion of crystals to cells. Kidney stones, which are aggregates of single crystals with physiological origins, are particularly illustrative of pathological crystallization, with 10% of the U.S. population experiencing at least one stone occurrence in their lifetimes. The human record of kidney stones is more than 2000 years old, as noted by Hippocrates in his renowned oath and much later by Robert Hooke in his treatise Micrographia. William Hyde Wollaston, who was a physician, chemist, physicist, and crystallographer, was fascinated with stones, leading him to discover an unusual stone that he described in 1810 as cystic oxide, later corrected to cystine. Despite this long history, however, a fundamental understanding of the stages of stone formation and the rational design of therapies for stone prevention have remained elusive.This Account reviews discoveries and advances from our laboratories that have unraveled the complex crystal growth mechanisms of l-cystine, which forms l-cystine kidney stones in at least 20 000 individuals in the U.S. alone. Although l-cystine stones affect fewer individuals than common calcium oxalate stones, they are usually larger, recur more frequently, and are more likely to cause chronic kidney disease. Real-time in situ atomic force microscopy (AFM) reveals that the crystal growth of hexagonal l-cystine is characterized by a complex mechanism in which six interlaced anisotropic spirals grow synchronously, emanating from a single screw dislocation to generate a micromorphology with the appearance of stacked hexagonal islands. In contrast, proximal heterochiral dislocations produce features that appear to be spirals but actually are closed loops, akin to a Frank-Read source. These unusual and aesthetic growth patterns can be explained by the coincidence of the dislocation Burgers vector and the crystallographic 61 screw axis. Inhibiting l-cystine crystal growth is key to preventing stone formation. Decades of studies of "tailor-made additives", which are imposter molecules that closely resemble the solute and bind to crystal faces through molecular recognition, have demonstrated their effects on crystal properties such as morphology and polymorphism. The ability to visualize crystal growth in real time by AFM enables quantitative measurements of step velocities and, by extension, the effect of prospective inhibitors on growth rates, which can then be used to deduce inhibition mechanisms. Investigations with a wide range of prospective inhibitors revealed the importance of precise molecular recognition for binding l-cystine imposters to crystal sites, which results in step pinning and the inhibition of step advancement as well as the growth of bulk crystals. Moreover, select inhibitors of crystal growth, measured in vitro, reduce or eliminate stone formation in knockout mouse models of cystinuria, promising a new pathway to l-cystine stone prevention. These observations have wide-ranging implications for the design of therapies based on tailor-made additives for diseases associated with aberrant crystallization, from disease-related stones to "xenostones" that form in vivo because of the crystallization of low-solubility therapeutic agents such as antiretroviral agents.
Collapse
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | | | | | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| |
Collapse
|
14
|
Loconte V, White KL. The use of soft X-ray tomography to explore mitochondrial structure and function. Mol Metab 2021; 57:101421. [PMID: 34942399 PMCID: PMC8829759 DOI: 10.1016/j.molmet.2021.101421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Mitochondria are cellular organelles responsible for energy production, and dysregulation of the mitochondrial network is associated with many disease states. To fully characterize the mitochondrial network's structure and function, a three-dimensional whole cell mapping technique is required. Scope of review This review highlights the use of soft X-ray tomography (SXT) as a relatively high-throughput approach to quantify mitochondrial structure and function under multiple cellular conditions. Major conclusions The use of SXT opens the door for mapping cellular rearrangements during critical processes such as insulin secretion, stem cell differentiation, or disease progression. SXT provides unique information such as biochemical compositions or molecular densities of organelles and allows for unbiased, label-free imaging of intact whole cells. Mapping mitochondria in the context of the near-native cellular environment will reveal more information regarding mitochondrial network functions within the cell. Soft X-ray tomography (SXT) generates 3D organelle maps of intact cells. 3D maps reveal the positions of mitochondria and their molecular densities. SXT can be used to quantify and compare organelle contacts between conditions. SXT is unbiased imaging that identifies the contents of subcellular neighborhoods. SXT provides an exciting path for exploring metabolic dysfunction.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, CA 94143; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
16
|
Verma L, Vekilov PG, Palmer JC. Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals. J Phys Chem B 2021; 125:11264-11274. [PMID: 34609878 DOI: 10.1021/acs.jpcb.1c06589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hematin crystallization, which is an essential component of the physiology of malaria parasites and the most successful target for antimalarial drugs, proceeds in mixed organic-aqueous solvents both in vivo and in vitro. Here we employ molecular dynamics simulations to examine the structuring and dynamics of a water-normal octanol mixture (a solvent that mimics the environment hosting hematin crystallization in vivo) in the vicinity of the typical faces in the habit of a hematin crystal. The simulations reveal that the properties of the solvent in the layer adjacent to the crystal are strongly impacted by the distinct chemical and topological features presented by each crystal face. The solvent organizes into at least three distinct layers. We also show that structuring of the solvent near the different faces of β-hematin strongly impacts the interfacial dynamics. The relaxation time of n-octanol molecules is longest in the contact layers and correlates with the degree of structural ordering at the respective face. We show that the macroscopically homogeneous water-octanol solution holds clusters of water and n-octanol connected by hydrogen bonds that entrap the majority of the water but are mostly smaller than 30 water molecules. Near the crystal surface the clusters anchor on hematin carboxyl groups. These results provide a direct example that solvent structuring is not restricted to aqueous and other hydrogen-bonded solutions. Our findings illuminate two fundamental features of the mechanisms of hematin crystallization: the elongated shapes of natural and synthetic hematin crystals and the stabilization of charged groups of hematin and antimalarials by encasing in water clusters. In addition, these findings suggest that hematin crystallization may be controlled by additives that disrupt or reinforce solvent structuring.
Collapse
Affiliation(s)
- Laksmanji Verma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.,Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C Palmer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
17
|
The Ambiguous Functions of the Precursors That Enable Nonclassical Modes of Olanzapine Nucleation and Growth. CRYSTALS 2021. [DOI: 10.3390/cryst11070738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One of the most consequential assumptions of the classical theories of crystal nucleation and growth is the Szilard postulate, which states that molecules from a supersaturated phase join a nucleus or a growing crystal individually. In the last 20 years, observations in complex biological, geological, and engineered environments have brought to light violations of the Szilard rule, whereby molecules assemble into ordered or disordered precursors that then host and promote nucleation or contribute to fast crystal growth. Nonclassical crystallization has risen to a default mode presumed to operate in the majority of the inspected crystallizing systems. In some cases, the existence of precursors in the growth media is admitted as proof for their role in nucleation and growth. With the example of olanzapine, a marketed drug for schizophrenia and bipolar disorder, we demonstrate that molecular assemblies in the solution selectively participate in crystal nucleation and growth. In aqueous and organic solutions, olanzapine assembles into both mesoscopic solute-rich clusters and dimers. The clusters facilitate nucleation of crystals and crystal form transformations. During growth, however, the clusters land on the crystal surface and transform into defects, but do not support step growth. The dimers are present at low concentrations in the supersaturated solution, yet the crystals grow by the association of dimers, and not of the majority monomers. The observations with olanzapine emphasize that detailed studies of the crystal and solution structures and the dynamics of molecular association may empower classical and nonclassical models that advance the understanding of natural crystallization, and support the design and manufacture of promising functional materials.
Collapse
|
18
|
Kapishnikov S, Hempelmann E, Elbaum M, Als‐Nielsen J, Leiserowitz L. Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite. ChemMedChem 2021; 16:1515-1532. [PMID: 33523575 PMCID: PMC8252759 DOI: 10.1002/cmdc.202000895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine-hematin complex, at the vacuole's membrane.
Collapse
Affiliation(s)
- Sergey Kapishnikov
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Ernst Hempelmann
- Center of Cellular and Molecular Biology of DiseasesInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)City of Knowledge0843 (Republic ofPanama
| | - Michael Elbaum
- Dept. of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Jens Als‐Nielsen
- Niels Bohr InstituteUniversity of Copenhagen2100CopenhagenDenmark
| | - Leslie Leiserowitz
- Dept. of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
19
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
20
|
A previously unknown way of heme detoxification in the digestive tract of cats. Sci Rep 2021; 11:8290. [PMID: 33859236 PMCID: PMC8050217 DOI: 10.1038/s41598-021-87421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Free heme is a highly toxic molecule for a living organism and its detoxification is a very important process, especially for carnivorous animals. Here we report the discovery of a previously unknown process for neutralizing free heme in the digestive tract of domestic cats. The cornerstone of this process is the encapsulation of heme into carbonated hydroxyapatite nanoparticles, followed by their excretion with faeces. This way of heme neutralization resembles the formation of insoluble heme-containing particles in the digestive tracts of other hematophagous species (for example, the formation of insoluble hemozoin crystals in malaria-causing Plasmodium parasites). Our findings suggest that the encapsulation of heme molecules into a hydroxyapatite matrix occurs during the transition from the acidic gastric juice to the small intestine with neutral conditions. The formation of these particles and their efficiency to include heme depends on the bone content in a cat's diet. In vitro experiments with heme-hydroxyapatite nanoparticles confirm the proposed scenario.
Collapse
|
21
|
Ibrahim ZY, Uzairu A, Shallangwa G, Abechi S. In-silico Design of Aryl and Aralkyl Amine-Based Triazolopyrimidine Derivatives with Enhanced Activity Against Resistant Plasmodium falciparum. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractA blend of genetic algorithm with multiple linear regression (GA-MLR) method was utilized in generating a quantitative structure–activity relationship (QSAR) model on the antimalarial activity of aryl and aralkyl amine-based triazolopyrimidine derivatives. The structures of derivatives were optimized using density functional theory (DFT) DFT/B3LYP/6–31 + G* basis set to generate their molecular descriptors, where two (2) predictive models were developed with the aid of these descriptors. The model with an excellent statistical parameters; high coefficient of determination (R2) = 0.8884, cross-validated R2 (Q2cv) = 0.8317 and highest external validated R2 (R2pred) = 0.7019 was selected as the best model. The model generated was validated through internal (leave-one-out (LOO) cross-validation), external test set, and Y-randomization test. These parameters are indicators of robustness, excellent prediction, and validity of the selected model. The most relevant descriptor to the antimalarial activity in the model was found to be GATS6p (Geary autocorrelation—lag 6/weighted by polarizabilities), in the model due to its highest mean effect. The descriptor (GATS6p) was significant in the in-silico design of sixteen (16) derivatives of aryl and aralkyl amine-based triazolopyrimidine adopting compound DSM191 with the highest activity (pEC50 = 7.1805) as the design template. The design compound D8 was found to be the most active compound due to its superior hypothetical activity (pEC50 = 8.9545).
Collapse
|
22
|
Tsamesidis I, Pério P, Pantaleo A, Reybier K. Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins. Int J Mol Sci 2020; 21:ijms21134799. [PMID: 32646002 PMCID: PMC7369783 DOI: 10.3390/ijms21134799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Correspondence:
| | - Pierre Pério
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Karine Reybier
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
| |
Collapse
|
23
|
Hopp MT, Schmalohr BF, Kühl T, Detzel MS, Wißbrock A, Imhof D. Heme Determination and Quantification Methods and Their Suitability for Practical Applications and Everyday Use. Anal Chem 2020; 92:9429-9440. [PMID: 32490668 DOI: 10.1021/acs.analchem.0c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many research institutions, clinical diagnostic laboratories, and blood banks are desperately searching for a possibility to identify and quantify heme in different physiological and pathological settings as well as various research applications. The reasons for this are the toxicity of the heme and the fact that it acts as a hemolytic and pro-inflammatory molecule. Heme only exerts these severe and undesired effects when it is not incorporated in hemoproteins. Upon release from the hemoproteins, it enters a biologically available state (labile heme), in which it is loosely associated with proteins, lipids, nucleic acids, or other molecules. While the current methods and procedures for quantitative determination of heme have been used for many years in different settings, their value is limited by the challenging chemical properties of heme. A major cause of inadequate quantification is the separation of labile and permanently bound heme and its high aggregation potential. Thus, none of the current methods are utilized as a generally applicable, standardized approach. The aim of this Feature is to describe and summarize the most common and frequently used chemical, analytical, and biochemical methods for the quantitative determination of heme. Based on this overview, the most promising approaches for future solutions to heme quantification are highlighted.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Benjamin F Schmalohr
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Milena S Detzel
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
24
|
Zhang Q, Liu Y, Yin W, Yan Y, Li L, Xing G. The in situ detection of smoking in public area by laser-induced breakdown spectroscopy. CHEMOSPHERE 2020; 242:125184. [PMID: 31677510 DOI: 10.1016/j.chemosphere.2019.125184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/13/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The cigarette smoke in public area could be harmful to the non-smokers. In this paper, laser-induced breakdown spectroscopy (LIBS) is applied to the in situ detection of the cigarette smoke in public area, and the single particles aerosol mass spectrometer (SPAMS) is utilized to aid the elemental analysis as well as realize the isotope detection. According to the obtained emission spectra, the smoke consists of Mg, Ca, Sr, Na, K elements which are absent in air, and the concentrations of H2O and CO2 in smoke increase obviously. Moreover, the cigarette ash after burning is taken as the sample for off-line detection and several heavy metal elements are detected. The comparison between the spectra of cigarette smoke and ash shows that these two kinds of detection are greatly different in terms of constituent and plasma status. In addition, the molecular emission of Carbon-Nitrogen was observed in smoke spectrum, and the molecular vibrational and rotational temperature of CN molecule was calculated. Finally, the LIBS and SPAMS were applied to the semi-quantitative detection and isotope analysis of Pb in the smoke.
Collapse
Affiliation(s)
- Qihang Zhang
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yuzhu Liu
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China; Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing, 210044, PR China.
| | - Wenyi Yin
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yihui Yan
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China
| | - Guanhua Xing
- China National Environmental Monitoring Center, Beijing, 100012, PR China
| |
Collapse
|
25
|
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS NANO 2020; 14:2248-2264. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Virginia Wycisk
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Katharina Achazi
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Sergey Kapishnikov
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Ana Joaquina Pérez-Berná
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Antje Cossmer
- Division 1.1 - Inorganic Trace Analysis , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Helge Ewers
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Chemistry and Biochemisty, Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Thielallee 63 , 14195 Berlin , Germany
| | - Matthias Ballauff
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - James G McNally
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| |
Collapse
|
26
|
Victor TW, O'Toole KH, Easthon LM, Ge M, Smith RJ, Huang X, Yan H, Chu YS, Chen S, Gursoy D, Ralle M, Imperiali B, Allen KN, Miller LM. Lanthanide-Binding Tags for 3D X-ray Imaging of Proteins in Cells at Nanoscale Resolution. J Am Chem Soc 2020; 142:2145-2149. [PMID: 31923358 DOI: 10.1021/jacs.9b11571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the application of lanthanide-binding tags (LBTs) for two- and three-dimensional X-ray imaging of individual proteins in cells with a sub-15 nm beam. The method combines encoded LBTs, which are tags of minimal size (ca. 15-20 amino acids) affording high-affinity lanthanide ion binding, and X-ray fluorescence microscopy (XFM). This approach enables visualization of LBT-tagged proteins while simultaneously measuring the elemental distribution in cells at a spatial resolution necessary for visualizing cell membranes and eukaryotic subcellular organelles.
Collapse
Affiliation(s)
- Tiffany W Victor
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Katherine H O'Toole
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Lindsey M Easthon
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Mingyuan Ge
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Randy J Smith
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Xiaojing Huang
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Hanfei Yan
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Yong S Chu
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Si Chen
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Doga Gursoy
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States.,Department of Electrical Engineering and Computer Science , Northwestern University , Evanston , Illinois 60298 , United States
| | - Martina Ralle
- Department of Molecular and Medical Genetics , Oregon Health Science University , Portland , Oregon 97239 , United States
| | - Barbara Imperiali
- Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Karen N Allen
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Lisa M Miller
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
27
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
28
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2019; 59:1270-1278. [DOI: 10.1002/anie.201911510] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
29
|
Herraiz T, Guillén H, González-Peña D, Arán VJ. Antimalarial Quinoline Drugs Inhibit β-Hematin and Increase Free Hemin Catalyzing Peroxidative Reactions and Inhibition of Cysteine Proteases. Sci Rep 2019; 9:15398. [PMID: 31659177 PMCID: PMC6817881 DOI: 10.1038/s41598-019-51604-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023] Open
Abstract
Malaria caused by Plasmodium affects millions people worldwide. Plasmodium consumes hemoglobin during its intraerythrocytic stage leaving toxic heme. Parasite detoxifies free heme through formation of hemozoin (β-hematin) pigment. Proteolysis of hemoglobin and formation of hemozoin are two main targets for antimalarial drugs. Quinoline antimarial drugs and analogs (β-carbolines or nitroindazoles) were studied as inhibitors of β-hematin formation. The most potent inhibitors were quinacrine, chloroquine, and amodiaquine followed by quinidine, mefloquine and quinine whereas 8-hydroxyquinoline and β-carbolines had no effect. Compounds that inhibited β-hematin increased free hemin that promoted peroxidative reactions as determined with TMB and ABTS substrates. Hemin-catalyzed peroxidative reactions were potentiated in presence of proteins (i.e. globin or BSA) while antioxidants and peroxidase inhibitors decreased peroxidation. Free hemin increased by chloroquine action promoted oxidative reactions resulting in inhibition of proteolysis by three cysteine proteases: papain, ficin and cathepsin B. Glutathione reversed inhibition of proteolysis. These results show that active quinolines inhibit hemozoin and increase free hemin which in presence of H2O2 that abounds in parasite digestive vacuole catalyzes peroxidative reactions and inhibition of cysteine proteases. This work suggests a link between the action of quinoline drugs with biochemical processes of peroxidation and inhibition of proteolysis.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN). Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Hugo Guillén
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN). Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Diana González-Peña
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN). Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
30
|
Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. Proc Natl Acad Sci U S A 2019; 116:22946-22952. [PMID: 31659055 PMCID: PMC6859308 DOI: 10.1073/pnas.1910123116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most widely used antimalarial drugs belong to the quinoline family. The question of their mode of action has been open for centuries. It has been recently narrowed down to whether these drugs interfere with the process of crystallization of heme in the malaria parasite. To date, all studies of the drug action on heme crystals have been done either on model systems or on dried parasites, which yielded limited data and ambiguity. This study was done in actual parasites in their near-native environment, revealing the mode of action of these drugs in vivo. The approach adopted in this study can be extended to other families of antimalarial drugs, such as artemisinins, provided appropriate derivatives can be synthesized. The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cells with nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.
Collapse
|
31
|
Groen J, Conesa JJ, Valcárcel R, Pereiro E. The cellular landscape by cryo soft X-ray tomography. Biophys Rev 2019; 11:611-619. [PMID: 31273607 PMCID: PMC6682196 DOI: 10.1007/s12551-019-00567-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Imaging techniques in structural cell biology are indispensable to understand cell organization and machinery. In this frame, cryo soft X-ray tomography (cryo-SXT), a synchrotron-based imaging technique, is used to analyze the ultrastructure of intact, cryo-preserved cells at nanometric spatial resolution bridging electron microscopy and visible light fluorescence. With their unique interaction with matter and high penetration depth, X-rays are a very useful and complementary source to obtain both high-resolution and quantitative information. In this review, we are elaborating a typical cryo correlative workflow at the Mistral Beamline at the Alba Synchrotron (Spain) with the goal of providing a cartographic description of the cell by cryo-SXT that illustrates the possibilities this technique brings for specific localization of cellular features, organelle organization, and particular events in specific structural cell biology research.
Collapse
Affiliation(s)
- J. Groen
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| | - J. J. Conesa
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
- Department of Macromolecular Structures, Cantoblanco, 28049 Madrid, Spain
| | - R. Valcárcel
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| | - E. Pereiro
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| |
Collapse
|
32
|
Weinhardt V, Chen JH, Ekman A, McDermott G, Le Gros MA, Larabell C. Imaging cell morphology and physiology using X-rays. Biochem Soc Trans 2019; 47:489-508. [PMID: 30952801 PMCID: PMC6716605 DOI: 10.1042/bst20180036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Morphometric measurements, such as quantifying cell shape, characterizing sub-cellular organization, and probing cell-cell interactions, are fundamental in cell biology and clinical medicine. Until quite recently, the main source of morphometric data on cells has been light- and electron-based microscope images. However, many technological advances have propelled X-ray microscopy into becoming another source of high-quality morphometric information. Here, we review the status of X-ray microscopy as a quantitative biological imaging modality. We also describe the combination of X-ray microscopy data with information from other modalities to generate polychromatic views of biological systems. For example, the amalgamation of molecular localization data, from fluorescence microscopy or spectromicroscopy, with structural information from X-ray tomography. This combination of data from the same specimen generates a more complete picture of the system than that can be obtained by a single microscopy method. Such multimodal combinations greatly enhance our understanding of biology by combining physiological and morphological data to create models that more accurately reflect the complexities of life.
Collapse
Affiliation(s)
- Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Gerry McDermott
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Mark A Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
33
|
Expanding horizons of cryo-tomography to larger volumes. Curr Opin Microbiol 2018; 43:155-161. [DOI: 10.1016/j.mib.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|