1
|
Yamanaka T, Sogo A, Maegawa S, Kinoshita M. Low-temperature embryo incubation suppresses off-target mutagenesis during CRISPR-Cas9 genome editing in medaka (Oryzias latipes) and zebrafish (Danio rerio). Transgenic Res 2025; 34:15. [PMID: 40131558 DOI: 10.1007/s11248-025-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Gene knockout using CRISPR-Cas9 is often employed in research aimed at elucidating gene functions in fish. However, CRISPR-Cas9 sometimes introduces unintended alterations, known as off-target mutations. These mutations can reduce the robustness of data during phenotypic analysis. In this study, we focused on the culture temperature, which is known to significantly influence mutagenesis, and examined whether low-temperature culture after introducing CRISPR-Cas9 into early embryos of medaka and zebrafish suppresses off-target mutations. Continuous incubation of medaka at 16 °C significantly reduced off-target mutation rates compared to those at 28 °C; the drawback is that it decreased the survival rate of medaka embryos. Therefore, low-temperature incubation was limited to early development in both zebrafish and medaka, and then the temperature was increased to 28 °C. Under these conditions, the mutation rates of the three off-target regions in medaka (Off-D, Off-P, and Off-A) significantly decreased, whereas those of the three target regions (DJ-1, p4hb, and avt) were unaffected. Similarly, the mutation rate of the zebrafish target region (ywhaqa) remained high, whereas the off-target (Off-Y1) mutation rate significantly reduced. Furthermore, this method effectively suppressed the germ line transmission of off-target mutations in medaka. This approach is effective to obtain more reliable data from the G0 generation of medaka and zebrafish and may reduce the screening effort required to remove individuals with off-target mutations in the F1 generation.
Collapse
|
2
|
Yang H, Zheng Y, Yu T, Wu B, Liu Z, Liu S, Sun X, Zhou L. A functional role for myostatin in muscle hyperplasia and hypertrophy revealed by comparative transcriptomics in Yesso scallop Patinopecten yessoensis. Int J Biol Macromol 2025; 307:142308. [PMID: 40118415 DOI: 10.1016/j.ijbiomac.2025.142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Elucidating the molecular regulatory mechanisms underlying muscle growth and development is of profound significance in aquaculture. Yesso scallop is a cold-water bivalve of considerable economic importance, having its primary edible component of adductor muscle. In this study, comparative transcriptomics and histological analysis at different sampling times after Myostatin (MSTN) interference were performed to identify the potential candidate genes potentially involved in muscle growth and development. The comparative transcriptomics revealed that growth factors and cytokines, extracellular matrix proteins and ubiquitin-proteasome system are potentially involved in muscle hypertrophy and hyperplasia. After MSTN interference, striated adductor muscle displays significant muscle hypertrophy (51.77 % increase on day 7 and 59.83 % increase on day 21) and muscle hyperplasia (59.36 % increase on day 7 and 61.83 % increase on day 21). WGCNA identifies the key darkolivegreen module, which may play crucial roles in muscle hyperplasia and hypertrophy within the striated muscle of the scallop. Five key transcription factors (zf-CCCH, zf-C2H2, PPP1R10, LRRFIP2, and Gon4) are identified by analyzing the co-expression patterns of core genes within the module. These findings will aid in understanding the regulatory mechanisms of muscle growth in scallops and provide a basis for genetic improvement in shellfish aquaculture.
Collapse
Affiliation(s)
- Hongsu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China; Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Andersen LK, Thompson NF, Abernathy JW, Ahmed RO, Ali A, Al-Tobasei R, Beck BH, Calla B, Delomas TA, Dunham RA, Elsik CG, Fuller SA, García JC, Gavery MR, Hollenbeck CM, Johnson KM, Kunselman E, Legacki EL, Liu S, Liu Z, Martin B, Matt JL, May SA, Older CE, Overturf K, Palti Y, Peatman EJ, Peterson BC, Phelps MP, Plough LV, Polinski MP, Proestou DA, Purcell CM, Quiniou SMA, Raymo G, Rexroad CE, Riley KL, Roberts SB, Roy LA, Salem M, Simpson K, Waldbieser GC, Wang H, Waters CD, Reading BJ. Advancing genetic improvement in the omics era: status and priorities for United States aquaculture. BMC Genomics 2025; 26:155. [PMID: 39962419 PMCID: PMC11834649 DOI: 10.1186/s12864-025-11247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The innovations of the "Omics Era" have ushered in significant advancements in genetic improvement of agriculturally important animal species through transforming genetics, genomics and breeding strategies. These advancements were often coordinated, in part, by support provided over 30 years through the 1993-2023 National Research Support Project 8 (NRSP8, National Animal Genome Research Program, NAGRP) and affiliate projects focused on enabling genomic discoveries in livestock, poultry, and aquaculture species. These significant and parallel advances demand strategic planning of future research priorities. This paper, as an output from the May 2023 Aquaculture Genomics, Genetics, and Breeding Workshop, provides an updated status of genomic resources for United States aquaculture species, highlighting major achievements and emerging priorities. MAIN TEXT Finfish and shellfish genome and omics resources enhance our understanding of genetic architecture and heritability of performance and production traits. The 2023 Workshop identified present aims for aquaculture genomics/omics research to build on this progress: (1) advancing reference genome assembly quality; (2) integrating multi-omics data to enhance analysis of production and performance traits; (3) developing resources for the collection and integration of phenomics data; (4) creating pathways for applying and integrating genomics information across animal industries; and (5) providing training, extension, and outreach to support the application of genome to phenome. Research focuses should emphasize phenomics data collection, artificial intelligence, identifying causative relationships between genotypes and phenotypes, establishing pathways to apply genomic information and tools across aquaculture industries, and an expansion of training programs for the next-generation workforce to facilitate integration of genomic sciences into aquaculture operations to enhance productivity, competitiveness, and sustainability. CONCLUSION This collective vision of applying genomics to aquaculture breeding with focus on the highlighted priorities is intended to facilitate the continued advancement of the United States aquaculture genomics, genetics and breeding research community and industries. Critical challenges ahead include the practical application of genomic tools and analytical frameworks beyond academic and research communities that require collaborative partnerships between academia, government, and industry. The scope of this review encompasses the use of omics tools and applications in the study of aquatic animals cultivated for human consumption in aquaculture settings throughout their life-cycle.
Collapse
Affiliation(s)
| | | | | | - Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Bernarda Calla
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
| | - Thomas A Delomas
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | | | - S Adam Fuller
- USDA-ARS Harry K Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Julio C García
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Mackenzie R Gavery
- Environmental and Fishery Sciences Division, NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Christopher M Hollenbeck
- Texas A&M AgriLife Research, College Station, TX, USA
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kevin M Johnson
- California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Erin L Legacki
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Sixin Liu
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Zhanjiang Liu
- Department of Biology, Tennessee Technological University, Cookeville, TN, USA
| | - Brittany Martin
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph L Matt
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Samuel A May
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Caitlin E Older
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS, USA
| | - Ken Overturf
- USDA-ARS Small Grains and Potato Germplasm Research, Hagerman, ID, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | | | - Louis V Plough
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Mark P Polinski
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Dina A Proestou
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | | | | | - Guglielmo Raymo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Kenneth L Riley
- Office of Aquaculture, NOAA Fisheries, Silver Spring, MD, USA
| | | | - Luke A Roy
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Alabama Fish Farming Center, Greensboro, AL, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Kelly Simpson
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | | | - Charles D Waters
- NOAA Alaska Fisheries Science Center Auke Bay Laboratories, Juneau, AK, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Aboelhassan DM, Abozaid H. Opportunities for CRISPR-Cas9 application in farm animal genetic improvement. Mol Biol Rep 2024; 51:1108. [PMID: 39476174 DOI: 10.1007/s11033-024-10052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025]
Abstract
CRISPR-Cas9 has emerged as a powerful tool in livestock breeding, enabling precise genetic modifications to address genetic diseases, enhance productivity, and develop disease-resistant animal breeds. A thorough analysis of previous research highlights the potential of CRISPR-Cas9 in overcoming genetic disorders by targeting specific mutations in genes. Furthermore, its integration with reproductive biotechnologies and genomic selection facilitates the production of gene-edited animals with high genomic value, contributing to genetic enhancement and improved productivity. Additionally, CRISPR-Cas9 opens new avenues for developing disease-resistant livestock and creating innovative breeding models for high-quality production. A key trend in the field is the development of multi-sgRNA vectors to correct mutations in various genes linked to productivity traits or certain diseases within individual genomes, thereby increasing resistance in animals. However, despite the potential advantages of CRISPR-Cas9, public acceptance of genetically modified agricultural products remains uncertain. Would consumers be willing to purchase such products? It is essential to advocate for bold and innovative research into genetically edited animals, with a focus on safety, careful promotion, and strict regulatory oversight to align with long-term goals and public acceptance. Continued advancements in this technology and its underlying mechanisms promise to improve poultry products and genetically modified livestock. Overall, CRISPR-Cas9 technology offers a promising pathway for advancing livestock breeding practices, with opportunities for genetic improvement, enhanced disease resistance, and greater productivity.
Collapse
Affiliation(s)
- Dalia M Aboelhassan
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth Street, P.O:12622, Dokki, Giza, Egypt.
| | - Hesham Abozaid
- Department of Animal Production, Agricultural and Biology Research Institute, National Research Centre, 33 El- Bohouth Street, P.O:12622, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Rodriguez-Villamil P, Beaton BP, Krisher RL. Gene editing in livestock: innovations and applications. Anim Reprod 2024; 21:e20240054. [PMID: 39372257 PMCID: PMC11452096 DOI: 10.1590/1984-3143-ar2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 10/08/2024] Open
Abstract
Gene editing technologies have revolutionized the field of livestock breeding, offering unprecedented opportunities to enhance animal welfare, productivity, and sustainability. This paper provides a comprehensive review of recent innovations and applications of gene editing in livestock, exploring the diverse applications of gene editing in livestock breeding, as well as the regulatory and ethical considerations, and the current challenges and prospects of the technology in the industry. Overall, this review underscores the transformative potential of gene editing in livestock breeding and its pivotal role in shaping the future of agriculture and biomedicine.
Collapse
|
6
|
Torsabo D, Ishak SD, Noordin NM, Waiho K, Koh ICC, Yazed MA, Abol-Munafi AB. Optimizing reproductive performance in pangasius catfish broodstock: A review of dietary and molecular strategies. Vet Anim Sci 2024; 25:100375. [PMID: 39005967 PMCID: PMC11245938 DOI: 10.1016/j.vas.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Pangasius catfish, a significant player in the global whitefish market, encounters challenges in aquaculture production sustainability. Quality broodstock maintenance and seed production are impeded by growth, maturation, and fecundity issues. This review investigates the efficacy of strategic nutrient composition and molecular strategies in enhancing broodstock conditions and reproductive performance across various fish species. A notable knowledge gap for Pangasius catfish hampers aquaculture progress. The review assesses nutrient manipulation's impact on reproductive physiology, emphasizing pangasius broodstock. A systematic review analysis following PRISMA guidelines was conducted to identify research trends and hotspots quantitatively, revealing a focus on P. bocourti and fertilization techniques. Addressing this gap, the review offers insights into dietary nutrients manipulation and genetic tool utilization for improved seed production, contributing to pangasius catfish aquaculture sustainability.
Collapse
Affiliation(s)
- Donald Torsabo
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University, Makurdi, Makurdi, Benue State, Nigeria
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Noordiyana Mat Noordin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity and Conservation, College of Marine Sciences, Beibu Gulf University, Guangxi, China
- Center for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Ivan Chong Chu Koh
- Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Abduh Yazed
- Faculty of Fisheries and Food Science Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ambok Bolong Abol-Munafi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
7
|
Fei Y, Bao Z, Wang Q, Zhu Y, Lu J, Ouyang L, Hu Q, Zhou Y, Chen L. CRISPR/Cas9-induced LEAP2 and GHSR1a knockout mutant zebrafish displayed abnormal growth and impaired lipid metabolism. Gen Comp Endocrinol 2024; 355:114563. [PMID: 38830459 DOI: 10.1016/j.ygcen.2024.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutantmodels andexamining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.Incontrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.
Collapse
Affiliation(s)
- Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhonggui Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yihong Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linyue Ouyang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Quiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int J Mol Sci 2024; 25:9299. [PMID: 39273247 PMCID: PMC11395652 DOI: 10.3390/ijms25179299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaculture, the world's fastest-growing food production sector, is critical for addressing food security concerns because of its potential to deliver high-quality, nutrient-rich supplies by 2050. This review assesses the effectiveness of CRISPR/Cas9 genome editing technology in enhancing desirable traits in fish species, including growth rates, muscle quality, disease resistance, pigmentation, and more. It also focuses on the potential effectiveness of the technology in allowing precise and targeted modifications of fish DNA to improve desirable characteristics. Many studies have reported successful applications of CRISPR/Cas9, such as knocking out reproductive genes to control reproduction and sex determination, enhancing feed conversion efficiency, and reducing off-target effects. Additionally, this technology has contributed to environmental sustainability by reducing nitrogen-rich waste and improving the nutritional composition of fish. However, the acceptance of CRISPR/Cas9 modified fish by the public and consumers is hindered by concerns regarding public perception, potential ecological impacts, and regulatory frameworks. To gain public approval and consumer confidence, clear communication about the editing process, as well as data on the safety and environmental considerations of genetically modified fish, are essential. This review paper discusses these challenges, provides possible solutions, and recommends future research on the integration of CRISPR/Cas9 into sustainable aquaculture practices, focusing on the responsible management of genetically modified fish to enable the creation of growth and disease-resistant strains. In conclusion, this review highlights the transformative potential of CRISPR/Cas9 technology in improving fish traits, while also considering the challenges and ethical considerations associated with sustainable and responsible practices in aquaculture.
Collapse
Affiliation(s)
- Minli Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | - Yan Shui
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
9
|
Richman J, Phelps M. Activin Signaling Pathway Specialization During Embryonic and Skeletal Muscle Development in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:766-775. [PMID: 39052141 DOI: 10.1007/s10126-024-10345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Activin signaling is essential for proper embryonic, skeletal muscle, and reproductive development. Duplication of the pathway in teleost fish has enabled diversification of gene function across the pathway but how gene duplication influences the function of activin signaling in non-mammalian species is poorly understood. Full characterization of activin receptor signaling pathway expression was performed across embryonic development and during early skeletal muscle growth in rainbow trout (RBT, Oncorhynchus mykiss). Rainbow trout are a model salmonid species that have undergone two additional rounds of whole genome duplication. A small number of genes were expressed early in development and most genes increased expression throughout development. There was limited expression of activin Ab in RBT embryos despite these genes exhibiting significantly elevated expression in post-hatch skeletal muscle. CRISPR editing of the activin Aa1 ohnolog and subsequent production of meiotic gynogenetic offspring revealed that biallelic disruption of activin Aa1 did not result in developmental defects, as occurs with knockout of activin A in mammals. The majority of gynogenetic offspring exhibited homozygous activin Aa1 genotypes (wild type, in-frame, or frameshift) derived from the mosaic founder female. The research identifies mechanisms of specialization among the duplicated activin ohnologs across embryonic development and during periods of high muscle growth in larval and juvenile fish. The knowledge gained provides insights into potential viable gene-targeting approaches for engineering the activin receptor signaling pathway and establishes the feasibility of employing meiotic gynogenesis as a tool for producing homozygous F1 genome-edited fish for species with long-generation times, such as salmonids.
Collapse
Affiliation(s)
- Jasmine Richman
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Michael Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
10
|
Liu Q, Duan L, Li B, Zhang X, Liu F, Yu J, Shu Y, Hu F, Lin J, Xiong X, Liu S. The key role of myostatin b in somatic growth in fishes derived from distant hybridization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1441-1454. [PMID: 38561484 DOI: 10.1007/s11427-023-2487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 04/04/2024]
Abstract
The basic mechanism of heterosis has not been systematically and completely characterized. In previous studies, we obtained three economically important fishes that exhibit rapid growth, WR (WCC ♀ × RCC ♂), WR-II (WR ♀ × WCC ♂), and WR-III (WR-II ♀ × 4nAU ♂), through distant hybridization. However, the mechanism underlying this rapid growth remains unclear. In this study, we found that WR, WR-II, and WR-III showed muscle hypertrophy and higher muscle protein and fat contents compared with their parent species (RCC and WCC). Candidate genes responsible for this rapid growth were then obtained through an analysis of 12 muscle transcriptomes. Notably, the mRNA level of mstnb (myostatin b), which is a negative regulator of myogenesis, was significantly reduced in WR, WR-II, and WR-III compared with the parent species. To verify the function of mstnb, a mstnb-deficient mutant RCC line was generated using the CRISPR-Cas9 technique. The average body weight of mstnb-deficient RCC at 12 months of age was significantly increased by 29.57% compared with that in wild-type siblings. Moreover, the area and number of muscle fibers were significantly increased in mstnb-deficient RCC, indicating hypertrophy and hyperplasia. Furthermore, the muscle protein and fat contents were significantly increased in mstnb-deficient RCC. The molecular regulatory mechanism of mstnb was then revealed by transcription profiling, which showed that genes related to myogenesis (myod, myog, and myf5), protein synthesis (PI3K-AKT-mTOR), and lipogenesis (pparγ and fabp3) were highly activated in hybrid fishes and mstnb-deficient RCC. This study revealed that low expression or deficiency of mstnb regulates somatic growth by promoting myogenesis, protein synthesis, and lipogenesis in hybrid fishes and mstnb-deficient RCC, which provides evidence for the molecular mechanism of heterosis via distant hybridization.
Collapse
Affiliation(s)
- Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lujiao Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Bei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xuanyi Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fanglei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jianming Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jingjing Lin
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoxia Xiong
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
11
|
Murakami Y, Ando M, Kishimoto K, Ohama M, Uemura Y, Tani R, Akazawa A, Matsumiya K, Sato K, Kinoshita M. Alterations in the fillet quality of myostatin-knockout red sea bream Pagrus major: Preliminary insights into nutritional, compositional, and textural properties. Heliyon 2024; 10:e32242. [PMID: 38873675 PMCID: PMC11170198 DOI: 10.1016/j.heliyon.2024.e32242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth and a popular target for enhancing the productivity of farmed fish. We previously developed an mstn-knockout breed of the aquaculture fish red sea bream (Pagrus major) using genome editing technology. However, little is known about the effects of mstn disruption on the fillet quality of red sea bream and other fish species. In this study, we used fillets of mstn-deficient red sea bream to evaluate their compositional and textural changes during refrigeration. Compared to the wild type, the mutant fillets exhibited an increase in moisture content and a decrease in drippings, indicating an enhanced water-holding capacity. Furthermore, the mutant fillets showed increased water retention and marginally lower collagen content, resulting in lower breaking force, an index of texture. In conclusion, we demonstrated that mstn disruption alters the compositional and textural properties of red sea bream fillets.
Collapse
Affiliation(s)
- Yu Murakami
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masashi Ando
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505, Japan
| | - Kenta Kishimoto
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitsuki Ohama
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuto Uemura
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Reoto Tani
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsushi Akazawa
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kentaro Matsumiya
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masato Kinoshita
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
12
|
Miklau M, Burn SJ, Eckerstorfer M, Dolezel M, Greiter A, Heissenberger A, Hörtenhuber S, Zollitsch W, Hagen K. Horizon scanning of potential environmental applications of terrestrial animals, fish, algae and microorganisms produced by genetic modification, including the use of new genomic techniques. Front Genome Ed 2024; 6:1376927. [PMID: 38938511 PMCID: PMC11208717 DOI: 10.3389/fgeed.2024.1376927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.
Collapse
Affiliation(s)
- Marianne Miklau
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Sarah-Joe Burn
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Eckerstorfer
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Marion Dolezel
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Anita Greiter
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristin Hagen
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology/Enforcement Genetic Engineering Act, Bonn, Germany
| |
Collapse
|
13
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
14
|
Zhu K, He H, Guo H, Liu B, He X, Zhang N, Xian L, Zhang D. Identification of two MEF2s and their role in inhibiting the transcription of the mstn2a gene in the yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Gene 2024; 909:148322. [PMID: 38423140 DOI: 10.1016/j.gene.2024.148322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-β superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Xin He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China.
| |
Collapse
|
15
|
Richman JA, Davis LR, Phelps MP. Gene Function is a Driver of Activin Signaling Pathway Evolution Following Whole-Genome Duplication in Rainbow Trout (Oncorhynchus mykiss). Genome Biol Evol 2024; 16:evae096. [PMID: 38701021 PMCID: PMC11110936 DOI: 10.1093/gbe/evae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The genomes of plant and animal species are influenced by ancestral whole-genome duplication (WGD) events, which have profound impacts on the regulation and function of gene networks. To gain insight into the consequences of WGD events, we characterized the sequence conservation and expression patterns of ohnologs in the highly duplicated activin receptor signaling pathway in rainbow trout (RBT). The RBT activin receptor signaling pathway is defined by tissue-specific expression of inhibitors and ligands and broad expression of receptors and Co-Smad signaling molecules. Signaling pathway ligands exhibited shared expression, while inhibitors and Smad signaling molecules primarily express a single dominant ohnolog. Our findings suggest that gene function influences ohnolog evolution following duplication of the activin signaling pathway in RBT.
Collapse
Affiliation(s)
- Jasmine A Richman
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Leah R Davis
- College of the Environment, University of Washington, Seattle, WA, USA
| | - Michael P Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
Wang H, Su B, Zhang Y, Shang M, Wang J, Johnson A, Dilawar H, Bruce TJ, Dunham RA, Wang X. Transcriptome analysis revealed potential mechanisms of channel catfish growth advantage over blue catfish in a tank culture environment. Front Genet 2024; 15:1341555. [PMID: 38742167 PMCID: PMC11089159 DOI: 10.3389/fgene.2024.1341555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production. While hybrid catfish have significant growth advantages in earthen ponds, channel catfish were reported to grow faster in tank culture environments. In this study, we confirmed channel fish's superiority in growth over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this study, respectively; p < 0.001). In addition, we conducted RNA sequencing experiments and established transcriptomic resources for the heart, liver, intestine, mucus, and muscle of both species. The number of expressed genes varied across tissues, ranging from 5,036 in the muscle to over 20,000 in the mucus. Gene Ontology analysis has revealed the functional specificity of differentially expressed genes within their respective tissues, with significant pathway enrichment in metabolic pathways, immune activity, and stress responses. Noteworthy tissue-specific marker genes, including lrrc10, fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This transcriptome resource is poised to support future investigations into the molecular mechanisms underlying environment-dependent heterosis and advance genetic breeding efforts of hybrid catfish.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Rex A. Dunham
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
17
|
Wang J, Torres IM, Shang M, Al-Armanazi J, Dilawar H, Hettiarachchi DU, Paladines-Parrales A, Chambers B, Pottle K, Soman M, Su B, Dunham RA. One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering. Int J Biol Macromol 2024; 260:129384. [PMID: 38224812 DOI: 10.1016/j.ijbiomac.2024.129384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/23/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
CRISPR/Cas9-mediated multiplex genome editing (MGE) conventionally uses multiple single-guide RNAs (sgRNAs) for gene-targeted mutagenesis via the non-homologous end joining (NHEJ) pathway. MGE has been proven to be highly efficient for functional gene disruption/knockout (KO) at multiple loci in mammalian cells or organisms. However, in the absence of a DNA donor, this approach is limited to small indels without transgene integration. Here, we establish the linear double-stranded DNA (dsDNA) and double-cut plasmid (dcPlasmid) combination-assisted MGE in channel catfish (Ictalurus punctatus), allowing combinational deletion mutagenesis and transgene knock-in (KI) at multiple sites through NHEJ/homology-directed repair (HDR) pathway in parallel. In this study, we used single-sgRNA-based genome editing (ssGE) and multi-sgRNA-based MGE (msMGE) to replace the luteinizing hormone (lh) and melanocortin-4 receptor (mc4r) genes with the cathelicidin (As-Cath) transgene and the myostatin (two target sites: mstn1, mstn2) gene with the cecropin (Cec) transgene, respectively. A total of 9000 embryos were microinjected from three families, and 1004 live fingerlings were generated and analyzed. There was no significant difference in hatchability (all P > 0.05) and fry survival (all P > 0.05) between ssGE and msMGE. Compared to ssGE, CRISPR/Cas9-mediated msMGE assisted by the mixture of dsDNA and dcPlasmid donors yielded a higher knock-in (KI) efficiency of As-Cath (19.93 %, [59/296] vs. 12.96 %, [45/347]; P = 0.018) and Cec (22.97 %, [68/296] vs. 10.80 %, [39/361]; P = 0.003) transgenes, respectively. The msMGE strategy can be used to generate transgenic fish carrying two transgenes at multiple loci. In addition, double and quadruple mutant individuals can be produced with high efficiency (36.3 % ∼ 71.1 %) in one-step microinjection. In conclusion, we demonstrated that the CRISPR/Cas9-mediated msMGE allows the one-step generation of simultaneous insertion of the As-Cath and Cec transgenes at four sites, and the simultaneous disruption of the lh, mc4r, mstn1 and mstn2 alleles. This msMGE system, aided by the mixture donors, promises to pioneer a new dimension in the drive and selection of multiple designated traits in other non-model organisms.
Collapse
Affiliation(s)
- Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America.
| | - Indira Medina Torres
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Jacob Al-Armanazi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Darshika U Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Abel Paladines-Parrales
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Barrett Chambers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Kate Pottle
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Misha Soman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America.
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| |
Collapse
|
18
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
19
|
Sankappa NM, Lange MD, Yildirim-Aksoy M, Eljack R, Kucuktas H, Beck BH, Abernathy JW. Transcriptome analysis and immune gene expression of channel catfish ( Ictalurus punctatus) fed diets with inclusion of frass from black soldier fly larvae. Front Physiol 2024; 14:1330368. [PMID: 38264328 PMCID: PMC10803510 DOI: 10.3389/fphys.2023.1330368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
The larval waste, exoskeleton shedding, and leftover feed components of the black soldier fly and its larvae make up the by-product known as frass. In this study, we subjected channel catfish (Ictalurus punctatus) to a 10-week feeding trial to assess how different dietary amounts of frass inclusion would affect both systemic and mucosal tissue gene expression, especially in regard to growth and immune-related genes. Fish were divided in quadruplicate aquaria, and five experimental diets comprising 0, 50, 100, 200, and 300 g of frass per kilogram of feed were fed twice daily. At the end of the trial, liver, head kidney, gill, and intestine samples were collected for gene expression analyses. First, liver and intestine samples from fish fed with a no frass inclusion diet (control), low-frass (50 g/kg) inclusion diet, or a high-frass (300 g/kg) inclusion diet were subjected to Illumina RNA sequencing to determine global differential gene expression among diet groups. Differentially expressed genes (DEGs) included the upregulation of growth-related genes such as glucose-6-phosphatase and myostatin, as well as innate immune receptors and effector molecules such as toll-like receptor 5, apolipoprotein A1, C-type lectin, and lysozyme. Based on the initial screenings of low/high frass using RNA sequencing, a more thorough evaluation of immune gene expression of all tissues sampled, and all levels of frass inclusion, was further conducted. Using targeted quantitative PCR panels for both innate and adaptive immune genes from channel catfish, differential expression of genes was identified, which included innate receptors (TLR1, TLR5, TLR9, and TLR20A), proinflammatory cytokines (IL-1β type a, IL-1β type b, IL-17, IFN-γ, and TNFα), chemokines (CFC3 and CFD), and hepcidin in both systemic (liver and head kidney) and mucosal (gill and intestine) tissues. Overall, frass from black soldier fly larvae inclusion in formulated diets was found to alter global gene expression and activate innate and adaptive immunity in channel catfish, which has the potential to support disease resistance in this species in addition to demonstrated growth benefits.
Collapse
Affiliation(s)
- Nithin Muliya Sankappa
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Miles D. Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Mediha Yildirim-Aksoy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Rashida Eljack
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Huseyin Kucuktas
- U.S. Fish and Wildlife Service, Southwestern Native Aquatic Resources and Recovery Center, Aquatic Animal Health Unit, Dexter, NM, United States
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Jason W. Abernathy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| |
Collapse
|
20
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
21
|
Wang Q, Yan Y, Tao Y, Lu S, Xu P, Qiang J. Transcriptional Knock-down of mstn Encoding Myostatin Improves Muscle Quality of Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:951-965. [PMID: 37755584 DOI: 10.1007/s10126-023-10252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Myostatin (encoded by mstn) negatively regulates skeletal muscle mass and affects lipid metabolism. To explore the regulatory effects of mstn on muscle development and lipid metabolism in Nile tilapia (Oreochromis niloticus), we used antisense RNA to transcriptionally knock-down mstn. At 180 days, the body weight and body length were significantly higher in the mstn-knock-down group than in the control group (p < 0.05). Additionally, fish with mstn-knock-down exhibited myofiber hyperplasia but not hypertrophy. Oil red O staining revealed a remarkable increase in the area of lipid droplets in muscle in the mstn-knockdown group (p < 0.05). Nutrient composition analyses of muscle tissue showed that the crude fat content was significantly increased in the mstn-knock-down group (p < 0.05). The contents of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were all significantly increased in the mstn-knock-down group (p < 0.05). Comparative transcriptome analyses revealed 2420 significant differentially expressed genes between the mstn-knock-down group and the control group. KEGG analysis indicates that disruptions to fatty acid degradation, glycerolipid metabolism, and the PPAR signaling pathway affect muscle development and lipid metabolism in mstn-knock-down Nile tilapia: acaa2, eci1, and lepr were remarkably up-regulated, and acadvl, lpl, foxo3, myod1, myog, and myf5 were significantly down-regulated (p < 0.05). These results show that knock-down of mstn results in abnormal lipid metabolism, acceleration of skeletal muscle development, and increased adipogenesis and weight gain in Nile tilapia.
Collapse
Affiliation(s)
- Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Siqi Lu
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
22
|
Zhang X, Wang F, Ou M, Liu H, Luo Q, Fei S, Zhao J, Chen K, Zhao Q, Li K. Effects of Myostatin b Knockout on Offspring Body Length and Skeleton in Yellow Catfish ( Pelteobagrus fulvidraco). BIOLOGY 2023; 12:1331. [PMID: 37887041 PMCID: PMC10604553 DOI: 10.3390/biology12101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Based on obtaining mstnb gene knockout in Pelteobagrus fulvidraco, a study on the effect of the mstn gene on skeletal morphology and growth was performed by comparing the number and length of the vertebrae of mutant and wild-type fish in a sibling group of P. fulvidraco, combined with the differences in cells at the level of vertebral skeletal tissue. It was found that mstnb gene knockdown resulted in a reduction in the number of vertebrae, the length, and the intervertebral distance in P. fulvidraco, and these changes may be the underlying cause of the shorter body length in mutant P. fulvidraco. Further, histological comparison of the same sites in the mstn mutant and wild groups of P. fulvidraco also revealed that the number and density of osteocytes were greater in mstnb knockout P. fulvidraco than in wild-type P. fulvidraco. Our results demonstrated that when using genome editing technology to breed new lines, the effects of knockout need to be analyzed comprehensively and may have some unexpected effects due to insufficient study of the function of certain genes.
Collapse
Affiliation(s)
- Xincheng Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Fang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-Tech Development Zone, Nanjing 210061, China
- Institute of Genome Editing, Nanjing YSY Biotech Company, No. 1 Amber Road, Nanjing 211812, China
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| |
Collapse
|
23
|
Coogan M, Xing D, Su B, Alston V, Johnson A, Khan M, Khalil K, Elaswad A, Li S, Wang J, Lu C, Wang W, Hettiarachchi D, Shang M, Hasin T, Qin Z, Cone R, Butts IAE, Dunham RA. CRISPR/Cas9-mediated knock-in of masu salmon (Oncorhyncus masou) elongase gene in the melanocortin-4 (mc4r) coding region of channel catfish (Ictalurus punctatus) genome. Transgenic Res 2023; 32:251-264. [PMID: 37468714 DOI: 10.1007/s11248-023-00346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/24/2023] [Indexed: 07/21/2023]
Abstract
Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccβA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, β-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccβA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.
Collapse
Affiliation(s)
- Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohd Khan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
24
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
25
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
26
|
Mwaura JG, Wekesa C, Ogutu PA, Okoth P. Whole Transcriptome Analysis of Differentially Expressed Genes in Cultured Nile Tilapia (O. niloticus) Subjected to Chronic Stress Reveals Signaling Pathways Associated with Depressed Growth. Genes (Basel) 2023; 14:genes14040795. [PMID: 37107553 PMCID: PMC10137778 DOI: 10.3390/genes14040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic stress is a serious threat to aquaculture as it lowers fish growth performance and compromises fish welfare. The exact mechanism by which growth is retarded is, however, not clearly understood. This study sought to elucidate the gene expression profiles associated with chronic stress in cultured Nile tilapia (Oreochromis niloticus) reared for 70 days at different ammonia concentrations and stocking densities. Fish in the treatment groups showed negative growth, while the controls showed positive allometric growth. The specific condition factor (Kn) ranged from 1.17 for the controls to 0.93 for the ammonia and 0.91 for the stocking density treatments. RNA was extracted from muscle tissue using TRIzol followed by library construction and Illumina sequencing. Comparative transcriptome analysis revealed 209 differentially expressed genes (DEGs) (156 up- and 53 down-regulated) in the ammonia and 252 DEGs (175 up- and 77 down-regulated) in the stocking density treatment. In both treatments, 24 and 17 common DEGs were up- and down-regulated, respectively. DEGs were significantly enriched in six pathways associated with muscle activity, energy mobilization and immunity. The heightened muscular activity consumes energy which would otherwise have been utilized for growth. These results bring to fore the molecular mechanisms underlying chronic stress’ suppression of growth in cultured Nile tilapia.
Collapse
|
27
|
Ohga H, Shibata K, Sakanoue R, Ogawa T, Kitano H, Kai S, Ohta K, Nagano N, Nagasako T, Uchida S, Sakuma T, Yamamoto T, Kim S, Tashiro K, Kuhara S, Gen K, Fujiwara A, Kazeto Y, Kobayashi T, Matsuyama M. Development of a chub mackerel with less-aggressive fry stage by genome editing of arginine vasotocin receptor V1a2. Sci Rep 2023; 13:3190. [PMID: 36823281 PMCID: PMC9950132 DOI: 10.1038/s41598-023-30259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.
Collapse
Affiliation(s)
- Hirofumi Ohga
- grid.177174.30000 0001 2242 4849Aqua-Bioresource Innovation Center (ABRIC) Karatsu Satellite, Faculty of Agriculture, Kyushu University, Saga, 847-0132 Japan
| | - Koki Shibata
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryo Sakanoue
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takuma Ogawa
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Hajime Kitano
- grid.410851.90000 0004 1764 1824Fishery Third Group, Marine Fisheries Research and Development Center, Japan Fisheries Research and Education Agency (FRA), Kanagawa, 221-8529 Japan
| | - Satoshi Kai
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Kohei Ohta
- grid.177174.30000 0001 2242 4849Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Naoki Nagano
- grid.410849.00000 0001 0657 3887Laboratory of Aquaculture, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192 Japan
| | - Tomoya Nagasako
- grid.177174.30000 0001 2242 4849Human Interface Laboratory, Factory of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395 Japan
| | - Seiichi Uchida
- grid.177174.30000 0001 2242 4849Human Interface Laboratory, Factory of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tetsushi Sakuma
- grid.257022.00000 0000 8711 3200Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Takashi Yamamoto
- grid.257022.00000 0000 8711 3200Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Sangwan Kim
- grid.177174.30000 0001 2242 4849Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Kosuke Tashiro
- grid.177174.30000 0001 2242 4849Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Satoru Kuhara
- grid.177174.30000 0001 2242 4849Laboratory of Molecular Gene Technics, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Koichiro Gen
- Planning and Coordination Department, Fisheries Technology Institute, FRA, Nagasaki, 851-2213 Japan
| | - Atushi Fujiwara
- grid.410851.90000 0004 1764 1824Aquatic Breeding Division, Aquaculture Research Department, Fisheries Technology Institute, FRA, Mie, 516-0193 Japan
| | - Yukinori Kazeto
- Fisheries Technology Institute, Minamiizu Field Station, FRA, Shizuoka, 415-0156 Japan
| | - Takanori Kobayashi
- grid.410851.90000 0004 1764 1824Aquatic Breeding Division, Aquaculture Research Department, Fisheries Technology Institute, FRA, Kanagawa, 236-8648 Japan
| | - Michiya Matsuyama
- ABRIC, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
28
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
29
|
Moreno-Nombela S, Romero-Parra J, Ruiz-Ojeda FJ, Solis-Urra P, Baig AT, Plaza-Diaz J. Genome Editing and Protein Energy Malnutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:215-232. [DOI: 10.1007/978-981-19-5642-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Xing D, Li S, Shang M, Wang W, Zhang Q, Wang J, Hasin T, Hettiarachchi D, Alston V, Bern L, Parrales AP, Lu C, Coogan M, Johnson A, Qin Z, Su B, Dunham R. A New Strategy for Increasing Knock-in Efficiency: Multiple Elongase and Desaturase Transgenes Knock-in by Targeting Long Repeated Sequences. ACS Synth Biol 2022; 11:4210-4219. [PMID: 36332126 DOI: 10.1021/acssynbio.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CRISPR/Cas9-mediated knock-in (KI) has a wide application in gene therapy, gene function study, and transgenic breeding programs. Unlike gene therapy, which requires accurate KI to correct gene mutation, transgenic breeding programs can accept robust KI as long as integration does not interrupt normal gene functions and result in any negative pleiotropic effects. High KI efficiency is required to reduce the breeding cost and shorten the breeding period, especially in transferring multiple foreign genes to a single individual. To elevate the KI efficacy and achieve multiple gene KIs simultaneously, we introduced a new strategy that enables transgene integration into numerous sites of the genome by targeting long repeated sequences (LRSs). Using this simple strategy, for the first time we successfully generated transgenic fish carrying the masu salmon (Oncorhynchus masou) elovl2 gene and rabbitfish (Siganus canaliculatus) Δ4 fad and Δ6 fad genes, and achieved robust target KI of elovl2 and Δ6 fad genes at multiple sites of LRS1 and LRS3, respectively, in the initial generation. This demonstrated that donor plasmid homology arms, which were nearly identical but not completely the same as the genome sequence, still led to on-target KI. Although the target KI efficiencies at LRS1, LRS2, and LRS3 sites were still relatively low in the current study, it is very promising that 100% KI efficiency in the future could be realized and perfected by selection of better LRSs and optimization of sgRNAs.
Collapse
Affiliation(s)
- De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Qin Zhang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Logan Bern
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Abel Paladines Parrales
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
31
|
Coogan M, Alston V, Su B, Khalil K, Elaswad A, Khan M, Johnson A, Xing D, Li S, Wang J, Simora RMC, Lu C, Page-McCaw P, Chen W, Michel M, Wang W, Hettiarachchi D, Hasin T, Butts IAE, Cone RD, Dunham RA. Improved Growth and High Inheritance of Melanocortin-4 Receptor (mc4r) Mutation in CRISPR/Cas-9 Gene-Edited Channel Catfish, Ictalurus punctatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:843-855. [PMID: 35943638 DOI: 10.1007/s10126-022-10146-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing. An overall mutation rate of 33% and 33% homozygosity/bi-allelism was achieved in 2017. Approximately 71% of progeny inherited the mutation. Growth was generally higher in MC4R mutants than controls (CNTRL) at all life stages and in both pond and tank environments. There was a positive relationship between zygosity and growth, with F1 homozygous/bi-allelic mutants reaching market size 30% faster than F1 heterozygotes in earthen ponds (p = 0.022). At the stocker stage (~ 50 g), MC4R × MC4R mutants generated in 2019 were 40% larger than the mean of combined CNTRL × CNTRL families (p = 0.005) and 54% larger than F1 MC4R × CNTRL mutants (p = 0.001) indicating mutation may be recessive. With a high mutation rate and inheritance of the mutation as well as improved growth, the use of gene-edited MC4R channel catfish appears to be beneficial for application on commercial farms.
Collapse
Affiliation(s)
- Michael Coogan
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Veronica Alston
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ahmed Elaswad
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohd Khan
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Fisheries Biology and Genetics, Agricultural University, Mymensingh, 2202, Bangladesh
| | - Andrew Johnson
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - De Xing
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rhoda M C Simora
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, 5023, Miagao, Iloilo, Philippines
| | - Cuiyu Lu
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Patrick Page-McCaw
- Department of Molecular and Integrative Physiology, Vanderbilt University, Nashville, TN, 37203-5721, USA
| | - Wenbiao Chen
- Department of Molecular and Integrative Physiology, Vanderbilt University, Nashville, TN, 37203-5721, USA
| | - Max Michel
- Department of Molecular and Integrative Physiology, Vanderbilt University, Nashville, TN, 37203-5721, USA
| | - Wenwen Wang
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Tasnuba Hasin
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ian A E Butts
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger D Cone
- Department of Molecular and Integrative Physiology, Vanderbilt University, Nashville, TN, 37203-5721, USA
| | - Rex A Dunham
- Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
32
|
What Can Genetics Do for the Control of Infectious Diseases in Aquaculture? Animals (Basel) 2022; 12:ani12172176. [PMID: 36077896 PMCID: PMC9454762 DOI: 10.3390/ani12172176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Infectious diseases place an economic burden on aquaculture and a limitation to its growth. This state-of-the-art review describes the application of genetics and genomics as novel tools to control infectious disease in aquaculture. Abstract Infectious diseases place an economic burden on aquaculture and a limitation to its growth. An innovative approach to mitigate their impact on production is breeding for disease resistance: selection for domestication, family-based selection, marker-assisted selection, and more recently, genomic selection. Advances in genetics and genomics approaches to the control of infectious diseases are key to increasing aquaculture efficiency, profitability, and sustainability and to reducing its environmental footprint. Interaction and co-evolution between a host and pathogen can, however, turn breeding to boost infectious disease resistance into a potential driver of pathogenic change. Parallel molecular characterization of the pathogen and its virulence and antimicrobial resistance genes is therefore essential to understand pathogen evolution over time in response to host immunity, and to apply appropriate mitigation strategies.
Collapse
|
33
|
Wang H, Su B, Butts IAE, Dunham RA, Wang X. Chromosome-level assembly and annotation of the blue catfish Ictalurus furcatus, an aquaculture species for hybrid catfish reproduction, epigenetics, and heterosis studies. Gigascience 2022; 11:6636942. [PMID: 35809049 PMCID: PMC9270728 DOI: 10.1093/gigascience/giac070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 12/17/2022] Open
Abstract
Background The blue catfish is of great value in aquaculture and recreational fisheries. The F1 hybrids of female channel catfish (Ictalurus punctatus) × male blue catfish (Ictalurusfurcatus) have been the primary driver of US catfish production in recent years because of superior growth, survival, and carcass yield. The channel–blue hybrid also provides an excellent model to investigate molecular mechanisms of environment-dependent heterosis. However, transcriptome and methylome studies suffered from low alignment rates to the channel catfish genome due to divergence, and the genome resources for blue catfish are not publicly available. Results The blue catfish genome assembly is 841.86 Mbp in length with excellent continuity (8.6 Mbp contig N50, 28.2 Mbp scaffold N50) and completeness (98.6% Eukaryota and 97.0% Actinopterygii BUSCO). A total of 30,971 protein-coding genes were predicted, of which 21,781 were supported by RNA sequencing evidence. Phylogenomic analyses revealed that it diverged from channel catfish approximately 9 million years ago with 15.7 million fixed nucleotide differences. The within-species single-nucleotide polymorphism (SNP) density is 0.32% between the most aquaculturally important blue catfish strains (D&B and Rio Grande). Gene family analysis discovered significant expansion of immune-related families in the blue catfish lineage, which may contribute to disease resistance in blue catfish. Conclusions We reported the first high-quality, chromosome-level assembly of the blue catfish genome, which provides the necessary genomic tool kit for transcriptome and methylome analysis, SNP discovery and marker-assisted selection, gene editing and genome engineering, and reproductive enhancement of the blue catfish and hybrid catfish.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
| | - Baofeng Su
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A E Butts
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex A Dunham
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
34
|
Yang F, Liu S, Qu J, Zhang Q. Identification and functional characterization of Pomstna in Japanese flounder (Paralichthys olivaceus). Gene 2022; 837:146675. [PMID: 35738447 DOI: 10.1016/j.gene.2022.146675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Myostatin (MSTN) as a negative regulator of muscle growth has been identified in Japanese flounder. Yet, most fish experienced the teleost specific genome duplication and possess at least two mstn genes. In current study, the second mstn gene named Pomstna is identified in Japanese flounder. Pomstna is clustered with other mstn2 of teleosts and owned highly conserved TGF-beta domain. In addition to muscle, Pomstna also highly expressed in brain and spleen. Using the primarily cultured muscle cells of Japanese flounder, we found that Pomstna could inhibit the proliferation and differentiation of muscle cells in vitro. As a ligand of TGF-beta signaling pathway, Pomstnb could regulate the expression of p21 and myod by activating the TGF-beta signaling pathway. Different from the function of Pomstnb, Pomstna could not activate the TGF-beta signaling pathway in vitro. During the differentiation of PoM cells, the expression of Pomstnb decreased significantly but the expression of Pomstna showed no change. Our study suggests that Pomstna could negatively regulate the growth and differentiation of muscle like Pomstnb yet through a different regulatory mechanism than Pomstnb. The present study suggests that muscle proliferation and differentiation were regulated by mstn not only through the TGF-beta signaling pathway but also other unknown mechanisms.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Process, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237 Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, 572000 Sanya, China.
| |
Collapse
|
35
|
Xing D, Su B, Li S, Bangs M, Creamer D, Coogan M, Wang J, Simora R, Ma X, Hettiarachchi D, Alston V, Wang W, Johnson A, Lu C, Hasin T, Qin Z, Dunham R. CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:513-523. [PMID: 35416602 DOI: 10.1007/s10126-022-10110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (Ictalurus punctatus) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon (Oncorhynchus masou) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (P < 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin-elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (P < 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.
Collapse
Affiliation(s)
- De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - David Creamer
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rhoda Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, 5023, Miagao, Iloilo, Philippines
| | - Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
36
|
Gene Editing of the Catfish Gonadotropin-Releasing Hormone Gene and Hormone Therapy to Control the Reproduction in Channel Catfish, Ictalurus punctatus. BIOLOGY 2022; 11:biology11050649. [PMID: 35625377 PMCID: PMC9138287 DOI: 10.3390/biology11050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Transcription activator-like effector nuclease (TALEN) plasmids targeting the channel catfish gonadotropin-releasing hormone (cfGnRH) gene were delivered into fertilized eggs with double electroporation to sterilize channel catfish (Ictalurus punctatus). Targeted cfGnRH fish were sequenced and base deletion, substitution, and insertion were detected. The gene mutagenesis was achieved in 52.9% of P1 fish. P1 mutants (individuals with human-induced sequence changes at the cfGnRH locus) had lower spawning rates (20.0−50.0%) when there was no hormone therapy compared to the control pairs (66.7%) as well as having lower average egg hatch rates (2.0% versus 32.3−74.3%) except for one cfGnRH mutated female that had a 66.0% hatch rate. After low fertility was observed in 2016, application of luteinizing hormone-releasing hormone analog (LHRHa) hormone therapy resulted in good spawning and hatch rates for mutants in 2017, which were not significantly different from the controls (p > 0.05). No exogenous DNA fragments were detected in the genome of mutant P1 fish, indicating no integration of the plasmids. No obvious effects on other economically important traits were observed after the knockout of the reproductive gene in the P1 fish. Growth rates, survival, and appearance between mutant and control individuals were not different. While complete knock-out of reproductive output was not achieved, as these were mosaic P1 brood stock, gene editing of channel catfish for the reproductive confinement of gene-engineered, domestic, and invasive fish to prevent gene flow into the natural environment appears promising.
Collapse
|
37
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
38
|
Luo M, Wang J, Dong Z, Wang C, Lu G. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Goswami M, Yashwanth BS, Trudeau V, Lakra WS. Role and relevance of fish cell lines in advanced in vitro research. Mol Biol Rep 2022; 49:2393-2411. [PMID: 35013860 PMCID: PMC8747882 DOI: 10.1007/s11033-021-06997-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Introduction Cell line derived from fish has been established as a promising tool for studying many key issues of aquaculture covering fish growth, disease, reproduction, genetics, and biotechnology. In addition, fish cell lines are very useful in vitro models for toxicological, pathological, and immunological studies. The easier maintenance of fish cell lines in flexible temperature regimes and hypoxic conditions make them preferable in vitro tools over mammalian cell lines. Great excitement has been observed in establishing and characterizing new fish cell lines representing diverse fish species and tissue types. The well-characterized and authenticated cell lines are of utmost essential as these represent cellular functions very similar to in vivo state of an organism otherwise it would affect the reproducibility of scientific research. Conclusion The fish cell lines have exhibited encouraging results in several key aspects of in vitro research in aquaculture including virology, nutrition and metabolism, production of vaccines, and transgenic fish production. The review paper reports the cell lines developed from fish, their characterization, and biobanking along with their potential applications and challenges in in vitro research.
Collapse
Affiliation(s)
- M Goswami
- ICAR - Central Institute of Fisheries Education, Mumbai, 400061, India.
| | - B S Yashwanth
- ICAR - Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Vance Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Canada
| | - W S Lakra
- NABARD Chair Unit, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Versova, Mumbai, India
| |
Collapse
|
40
|
Senthilkumaran B, Kar S. Advances in Reproductive Endocrinology and Neuroendocrine Research Using Catfish Models. Cells 2021; 10:2807. [PMID: 34831032 PMCID: PMC8616529 DOI: 10.3390/cells10112807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Catfishes, belonging to the order siluriformes, represent one of the largest groups of freshwater fishes with more than 4000 species and almost 12% of teleostean population. Due to their worldwide distribution and diversity, catfishes are interesting models for ecologists and evolutionary biologists. Incidentally, catfish emerged as an excellent animal model for aquaculture research because of economic importance, availability, disease resistance, adaptability to artificial spawning, handling, culture, high fecundity, hatchability, hypoxia tolerance and their ability to acclimate to laboratory conditions. Reproductive system in catfish is orchestrated by complex network of nervous, endocrine system and environmental factors during gonadal growth as well as recrudescence. Lot of new information on the molecular mechanism of gonadal development have been obtained over several decades which are evident from significant number of scientific publications pertaining to reproductive biology and neuroendocrine research in catfish. This review aims to synthesize key findings and compile highly relevant aspects on how catfish can offer insight into fundamental mechanisms of all the areas of reproduction and its neuroendocrine regulation, from gametogenesis to spawning including seasonal reproductive cycle. In addition, the state-of-knowledge surrounding gonadal development and neuroendocrine control of gonadal sex differentiation in catfish are comprehensively summarized in comparison with other fish models.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India;
| | | |
Collapse
|
41
|
Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of Gene Editing for Climate Change in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.685801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Climate change imposes a severe threat to agricultural systems, food security, and human nutrition. Meanwhile, efforts in crop and livestock gene editing have been undertaken to improve performance across a range of traits. Many of the targeted phenotypes include attributes that could be beneficial for climate change adaptation. Here, we present examples of emerging gene editing applications and research initiatives that are aimed at the improvement of crops and livestock in response to climate change, and discuss technical limitations and opportunities therein. While only few applications of gene editing have been translated to agricultural production thus far, numerous studies in research settings have demonstrated the potential for potent applications to address climate change in the near future.
Collapse
|
42
|
Lu J, Fang W, Huang J, Li S. The application of genome editing technology in fish. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:326-346. [PMID: 37073287 PMCID: PMC10077250 DOI: 10.1007/s42995-021-00091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
43
|
Okoli AS, Blix T, Myhr AI, Xu W, Xu X. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res 2021; 31:1-21. [PMID: 34304349 PMCID: PMC8821480 DOI: 10.1007/s11248-021-00274-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Aquaculture is becoming the primary source of seafood for human diets, and farmed fish aquaculture is one of its fastest growing sectors. The industry currently faces several challenges including infectious and parasitic diseases, reduced viability, fertility reduction, slow growth, escapee fish and environmental pollution. The commercialization of the growth-enhanced AquAdvantage salmon and the CRISPR/Cas9-developed tilapia (Oreochromis niloticus) proffers genetic engineering and genome editing tools, e.g. CRISPR/Cas, as potential solutions to these challenges. Future traits being developed in different fish species include disease resistance, sterility, and enhanced growth. Despite these notable advances, off-target effect and non-clarification of trait-related genes among other technical challenges hinder full realization of CRISPR/Cas potentials in fish breeding. In addition, current regulatory and risk assessment frameworks are not fit-for purpose regarding the challenges of CRISPR/Cas notwithstanding that public and regulatory acceptance are key to commercialization of products of the new technology. In this study, we discuss how CRISPR/Cas can be used to overcome some of these limitations focusing on diseases and environmental release in farmed fish aquaculture. We further present technical limitations, regulatory and risk assessment challenges of the use of CRISPR/Cas, and proffer research strategies that will provide much-needed data for regulatory decisions, risk assessments, increased public awareness and sustainable applications of CRISPR/Cas in fish aquaculture with emphasis on Atlantic salmon (Salmo salar) breeding.
Collapse
Affiliation(s)
- Arinze S Okoli
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.
| | - Torill Blix
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.,The Norwegian College of Fishery Science, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Anne I Myhr
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, 266061, China
| |
Collapse
|
44
|
Straume AH, Kjærner-Semb E, Skaftnesmo KO, Güralp H, Lillico S, Wargelius A, Edvardsen RB. Single nucleotide replacement in the Atlantic salmon genome using CRISPR/Cas9 and asymmetrical oligonucleotide donors. BMC Genomics 2021; 22:563. [PMID: 34294050 PMCID: PMC8296724 DOI: 10.1186/s12864-021-07823-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background New breeding technologies (NBT) using CRISPR/Cas9-induced homology directed repair (HDR) has the potential to expedite genetic improvement in aquaculture. The long generation time in Atlantic salmon makes breeding an unattractive solution to obtain homozygous mutants and improving the rates of perfect HDR in founder (F0) fish is thus required. Genome editing can represent small DNA changes down to single nucleotide replacements (SNR). This enables edits such as premature stop codons or single amino acid changes and may be used to obtain fish with traits favorable to aquaculture, e.g. disease resistance. A method for SNR has not yet been demonstrated in salmon. Results Using CRISPR/Cas9 and asymmetrical ODNs, we were able to perform precise SNR and introduce a premature stop codon in dnd in F0 salmon. Deep sequencing demonstrated up to 59.2% efficiency in single embryos. In addition, using the same asymmetrical ODN design, we inserted a FLAG element into slc45a2 and dnd, showing high individual perfect HDR efficiencies (up to 36.7 and 32.7%, respectively). Conclusions In this work, we demonstrate that precise SNR and knock-in (KI) can be performed in F0 salmon embryos using asymmetrical oligonucleotide (ODN) donors. We suggest that HDR-induced SNR can be applied as a powerful NBT, allowing efficient introgression of favorable alleles and bypassing challenges associated with traditional selective breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07823-8.
Collapse
Affiliation(s)
- Anne Hege Straume
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Erik Kjærner-Semb
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Hilal Güralp
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Simon Lillico
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | | |
Collapse
|
45
|
Fujimoto T, Nishimura T. Chromosome Set Manipulation and Genome Manipulation in Aquaculture. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Maximiano MR, Távora FTPK, Prado GS, Dias SC, Mehta A, Franco OL. CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6379-6395. [PMID: 34097395 DOI: 10.1021/acs.jafc.1c01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The natural increase of the world's population implies boosting agricultural demand. In the current non-optimistic global scenario, where adverse climate changes come associated with substantial population growth, the main challenge in agribusiness is food security. Recently, the CRISPR/Cas system has emerged as a friendly gene editing biotechnological tool, enabling a precise manipulation of genomes and enhancement of desirable traits in several organisms. This review highlights the CRISPR/Cas system as a paramount tool for the improvement of agribusiness products and brings up-to-date findings showing its potential applications in improving agricultural-related traits in major plant crops and farm animals, all representing economic-relevant commodities responsible for feeding the world. Several applied pieces of research have successfully demonstrated the CRISPR/Cas ability in boosting interesting traits in agribusiness products, including animal productivity and welfare, crop yield growth, and seed quality, reflecting positive impacts in both socioeconomics and human health aspects. Hence, the CRISPR/Cas system has revolutionized bioscience and biotechnology, and its concrete application in agribusiness goods is on the horizon.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Fabiano T P K Távora
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal 70770-917, Brazil
- Programa de Pós Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Guilherme Souza Prado
- Laboratório de Biotecnologia, Embrapa Arroz e Feijão, Goiânia, Goiás 75375-000, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal 70770-917, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
47
|
Zoppo M, Okoniewski N, Pantelyushin S, Vom Berg J, Schirmer K. A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells. Cell Biosci 2021; 11:103. [PMID: 34082820 PMCID: PMC8176604 DOI: 10.1186/s13578-021-00618-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology marked the beginning of a new era in the field of molecular biology, allowing the efficient and precise creation of targeted mutations in the genome of every living cell. Since its discovery, different gene editing approaches based on the CRISPR/Cas9 technology have been widely established in mammalian cell lines, while limited knowledge is available on genetic manipulation in fish cell lines. In this work, we developed a strategy to CRISPR/Cas9 gene edit rainbow trout (Oncorhynchus mykiss) cell lines and to generate single cell clone-derived knock-out cell lines, focusing on the phase I biotransformation enzyme encoding gene, cyp1a1, and on the intestinal cell line, RTgutGC, as example. RESULTS Ribonucleoprotein (RNP) complexes, consisting of the Cas9 protein and a fluorescently labeled crRNA/tracrRNA duplex targeting the cyp1a1 gene, were delivered via electroporation. A T7 endonuclease I (T7EI) assay was performed on flow cytometry enriched transfected cells in order to detect CRISPR-mediated targeted mutations in the cyp1a1 locus, revealing an overall gene editing efficiency of 39%. Sanger sequencing coupled with bioinformatic analysis led to the detection of multiple insertions and deletions of variable lengths in the cyp1a1 region directed by CRISPR/Cas9 machinery. Clonal isolation based on the use of cloning cylinders was applied, allowing to overcome the genetic heterogeneity created by the CRISPR/Cas9 gene editing. Using this method, two monoclonal CRISPR edited rainbow trout cell lines were established for the first time. Sequencing analysis of the mutant clones confirmed the disruption of the cyp1a1 gene open reading frame through the insertion of 101 or 1 base pair, respectively. CONCLUSIONS The designed RNP-based CRISPR/Cas9 approach, starting from overcoming limitations of transfection to achieving a clonal cell line, sets the stage for exploiting permanent gene editing in rainbow trout, and potentially other fish cells, for unprecedented exploration of gene function.
Collapse
Affiliation(s)
- Marina Zoppo
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Nicole Okoniewski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Stanislav Pantelyushin
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,ENAC, EPF Lausanne, 1015, Lausanne, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
48
|
Zhou Z, Wang M, Yang J, Liu B, Li L, Shi Y, Pu F, Xu P. Genome-wide association analysis reveals genetic variations and candidate genes associated with growth-related traits and condition factor in Takifugu bimaculatus. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Effective CRISPR/Cas9-based genome editing in large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|