1
|
Reihs E, Fischer A, Gerner I, Windhager R, Toegel S, Zaucke F, Rothbauer M, Jenner F. Beyond symptomatic alignment: evaluating the integration of causal mechanisms in matching animal models with human pathotypes in osteoarthritis research. Arthritis Res Ther 2025; 27:109. [PMID: 40382623 PMCID: PMC12084918 DOI: 10.1186/s13075-025-03561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/14/2025] [Indexed: 05/20/2025] Open
Abstract
Osteoarthritis (OA) is a highly prevalent and disabling condition lacking curative treatments, with only symptomatic relief available. Recognizing OA as a heterogenous disorder with diverse aetiologies and molecular foundations underscores the need to classify patients by both phenotypes and molecular pathomechanisms (endotypes). Such stratification could enable the development of targeted therapies to surmount existing treatment barriers. From a scientific, economic, and ethical perspective, it is crucial to employ animal models that accurately represent the endotype of the target patient population, not merely their clinical symptoms. These models must also account for intrinsic and extrinsic factors, like age, sex, metabolic status, and comorbidities, which impact OA's pathogenesis and its clinical and molecular variability and can profoundly influence not only structural and symptomatic disease severity and progression but also the underlying molecular pathophysiology. The molecular definition of the OA subpopulation must also be reflected in the read-outs, as the traditional methods-macroscopic and histological scoring, along with limited gene expression profiling of established biomarkers for cartilage degradation, extracellular matrix (ECM) turnover, and synovial inflammation-are inadequate for discovering new, phenotype- and endotype-specific biomarkers or therapeutic targets. Thus, animal model characterisation should evolve to include both clinically and pathophysiologically pertinent measures of disease progression and response to treatment. This review evaluates the utility and accuracy of current animal models in OA research, focusing on their capacity to replicate the disease's pathophysiological processes.
Collapse
Affiliation(s)
- Eva Reihs
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
- Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Getreidemarkt 9/163, 1060, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
| | - Iris Gerner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Veterinärplatz 1, 1210, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim GmbH, Maienburgstr. 2, Frankfurt/Main, 60528, Germany
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18 - 20, Vienna, 1090, Austria.
- Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Getreidemarkt 9/163, 1060, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria.
| | - Florien Jenner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Veterinärplatz 1, 1210, Austria
| |
Collapse
|
2
|
Liu Y, Molchanov V, Brass D, Yang T. Recent advances in omics and the integration of multi-omics in osteoarthritis research. Arthritis Res Ther 2025; 27:100. [PMID: 40319309 PMCID: PMC12049056 DOI: 10.1186/s13075-025-03563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
Osteoarthritis (OA) is a complex disorder driven by the combination of environmental and genetic factors. Given its high global prevalence and heterogeneity, developing effective and personalized treatment methods is crucial. This requires identifying new disease mechanisms, drug targets, and biomarkers. Various omics approaches have been applied to identify OA-related genes, pathways, and biomarkers, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. These omics studies have generated vast datasets that are shaping the field of OA research. The emergence of high-resolution methodologies, such as single-cell and spatial omics techniques, further enhances our ability to dissect molecular complexities within the OA microenvironment. By integrating these multi-layered datasets, researchers can uncover central signaling hubs and disease mechanisms, ultimately facilitating the development of targeted therapies and precision medicine approaches for OA treatment.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - David Brass
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Tao Yang
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Sun Y, Yu N, Zhang J, Yang B. Advances in Microfluidic Single-Cell RNA Sequencing and Spatial Transcriptomics. MICROMACHINES 2025; 16:426. [PMID: 40283301 PMCID: PMC12029715 DOI: 10.3390/mi16040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 04/29/2025]
Abstract
The development of micro- and nano-fabrication technologies has greatly advanced single-cell and spatial omics technologies. With the advantages of integration and compartmentalization, microfluidic chips are capable of generating high-throughput parallel reaction systems for single-cell screening and analysis. As omics technologies improve, microfluidic chips can now integrate promising transcriptomics technologies, providing new insights from molecular characterization for tissue gene expression profiles and further revealing the static and even dynamic processes of tissues in homeostasis and disease. Here, we survey the current landscape of microfluidic methods in the field of single-cell and spatial multi-omics, as well as assessing their relative advantages and limitations. We highlight how microfluidics has been adapted and improved to provide new insights into multi-omics over the past decade. Last, we emphasize the contributions of microfluidic-based omics methods in development, neuroscience, and disease mechanisms, as well as further revealing some perspectives for technological advances in translational and clinical medicine.
Collapse
Affiliation(s)
- Yueqiu Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Nianzuo Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun 130000, China
| |
Collapse
|
4
|
Tariq MH, Advani D, Almansoori BM, AlSamahi ME, Aldhaheri MF, Alkaabi SE, Mousa M, Kohli N. The Identification of Novel Therapeutic Biomarkers in Rheumatoid Arthritis: A Combined Bioinformatics and Integrated Multi-Omics Approach. Int J Mol Sci 2025; 26:2757. [PMID: 40141401 PMCID: PMC11943070 DOI: 10.3390/ijms26062757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 03/28/2025] Open
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disease that is marked by a complex molecular profile influenced by an array of factors, including genetic, epigenetic, and environmental elements. Despite significant advancements in research, the precise etiology of RA remains elusive, presenting challenges in developing innovative therapeutic markers. This study takes an integrated multi-omics approach to uncover novel therapeutic markers for RA. By analyzing both transcriptomics and epigenomics datasets, we identified common gene candidates that span these two omics levels in patients diagnosed with RA. Remarkably, we discovered eighteen multi-evidence genes (MEGs) that are prevalent across transcriptomics and epigenomics, twelve of which have not been previously linked directly to RA. The bioinformatics analyses of the twelve novel MEGs revealed they are part of tightly interconnected protein-protein interaction networks directly related to RA-associated KEGG pathways and gene ontology terms. Furthermore, these novel MEGs exhibited direct interactions with miRNAs linked to RA, underscoring their critical role in the disease's pathogenicity. Overall, this comprehensive bioinformatics approach opens avenues for identifying new candidate markers for RA, empowering researchers to validate these markers efficiently through experimental studies. By advancing our understanding of RA, we can pave the way for more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Dia Advani
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai 505055, United Arab Emirates
| | - Buttia Mohamed Almansoori
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Maithah Ebraheim AlSamahi
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Maitha Faisal Aldhaheri
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Shahad Edyen Alkaabi
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
| | - Mira Mousa
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Nupur Kohli
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (M.H.T.); (D.A.); (B.M.A.); (M.E.A.); (M.F.A.); (S.E.A.)
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Deng M, Tang C, Yin L, Jiang Y, Huang Y, Feng Y, Chen C. Clinical and omics biomarkers in osteoarthritis diagnosis and treatment. J Orthop Translat 2025; 50:295-305. [PMID: 39911590 PMCID: PMC11795539 DOI: 10.1016/j.jot.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease that significantly impacts the quality of life for hundreds of millions, and is a major cause of disability. Despite this, diagnostic and therapeutic options for OA are still limited. With advances in molecular biology, an increasing number of OA biomarkers have been identified, which not only enhances our understanding of OA pathogenesis, but also offers new approaches for OA diagnosis and treatment. This review discussed the research progress on traditional OA biomarkers, and analyzed the application of various omics, including genomics, transcriptomics, proteomics, and metabolomics, in the diagnosis and treatment of OA. Furthermore, we explored how integrating multi-omics methods can reveal interactions among different biomolecules and their roles in the development of OA. This emerging interdisciplinary approach not only provides a more comprehensive understanding of the fundamental biological characteristics of OA, but also aids in identifying new integrated biomarkers, thereby allowing for more accurate predictions of disease progression and treatment responses. The identification and development of biomarkers offer new perspectives in understanding OA, enhancing the specificity and sensitivity of biological diagnostic markers, providing a basis for the design of targeted drugs, and ultimately advancing the development of precision diagnosis and treatment strategies in clinical OA. This study provides an overview of both commonly used and emerging biomarkers of OA which is beneficial for a more accurate, timely, effective clinical diagnosis and treatment for OA.
Collapse
Affiliation(s)
- Muhai Deng
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Cong Tang
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Li Yin
- Department of Orthopaedics, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yunsheng Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Feng
- Department of Orthopedic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Katsoula G, Lawrence JEG, Arruda AL, Tutino M, Balogh P, Southam L, Swift D, Behjati S, Teichmann SA, Wilkinson JM, Zeggini E. Primary cartilage transcriptional signatures reflect cell-type-specific molecular pathways underpinning osteoarthritis. Am J Hum Genet 2024; 111:2735-2755. [PMID: 39579762 PMCID: PMC11639091 DOI: 10.1016/j.ajhg.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
Translational efforts in osteoarthritis are hampered by a gap in our understanding of disease processes at the molecular level. Here, we present evidence of pronounced transcriptional changes in high- and low-disease-grade cartilage tissue, pointing to embryonic processes involved in disease progression. We identify shared transcriptional programs between osteoarthritis cartilage and cell populations in the human embryonic and fetal limb, pointing to increases in pre-hypertrophic chondrocytes' transcriptional programs in low-grade cartilage and increases in osteoblastic signatures in high-grade disease tissue. We find that osteoarthritis genetic risk signals are enriched in six gene co-expression modules and show that these transcriptional signatures reflect cell-type-specific expression along the endochondral ossification developmental trajectory. Using this network approach in combination with causal inference analysis, we present evidence of a causal effect on osteoarthritis risk for variants associated with the expression of ten genes that have not been previously reported as effector genes in genome-wide association studies in osteoarthritis. Our findings point to key molecular pathways as drivers of cartilage degeneration and identify high-value drug targets and repurposing opportunities.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine and Health, Graduate School of Experimental Medicine, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - John E G Lawrence
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Box 37, Hills Road, Cambridge CB2 0QQ, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ana Luiza Arruda
- Technical University of Munich (TUM), School of Medicine and Health, Graduate School of Experimental Medicine, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Mauro Tutino
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Petra Balogh
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Diane Swift
- School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Physics/Cavendish Laboratory, University of Cambridge, JJ Thomson, Cambridge CB3 0HE, UK
| | - J Mark Wilkinson
- School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany.
| |
Collapse
|
7
|
Zhai G, Huang J. Genetics of osteoarthritis. Best Pract Res Clin Rheumatol 2024; 38:101972. [PMID: 38971692 DOI: 10.1016/j.berh.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis with well recognized multifactorial nature. While several environmental factors such as older age, obesity and previous joint injury are strongly associated with its development, a genetic influence on OA has been recognized for over 80 years. Identification of genes associated with OA has received considerable attention over the last two decades, aided by the rapidly evolving genotyping and sequencing technologies. More than 300 genomic loci have been identified to be associated with OA at different joints. These findings are likely to help our better understanding of the pathogenesis of OA and lead to important therapeutic and diagnostic advances in this most common disabling rheumatic disorder. This article will review the data that support the role of genetic factors in common idiopathic OA.
Collapse
Affiliation(s)
- Guangju Zhai
- Human Genetics & Genomics, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada.
| | - Jingyi Huang
- Human Genetics & Genomics, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada
| |
Collapse
|
8
|
Kreitmaier P, Swift D, Wilkinson JM, Zeggini E. Epigenomic differences between osteoarthritis grades in primary cartilage. Osteoarthritis Cartilage 2024; 32:1126-1133. [PMID: 39053729 DOI: 10.1016/j.joca.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Osteoarthritis is a common and complex joint disorder that shows higher prevalence and greater disease severity in women. Here, we investigate genome-wide methylation profiles of primary chondrocytes from osteoarthritis patients. DESIGN We compare genome-wide methylation profiles of macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage samples matched from osteoarthritis patients undergoing knee replacement surgery. We perform an epigenome-wide association study for cartilage degeneration across 170 patients and separately in 96 women and 74 men. RESULTS We reveal widespread epigenetic differences with enrichments of nervous system and apoptosis-related processes. We further identify substantial similarities between sexes, but also sex-specific markers and pathways. CONCLUSIONS Together, we provide the largest genome-wide methylation profiles of primary cartilage to date with enhanced and sex-specific insights into epigenetic processes underlying osteoarthritis progression.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Diane Swift
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - J Mark Wilkinson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Eleftheria Zeggini
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
9
|
Giaretta S, Magni A, Migliore A, Natoli S, Puntillo F, Ronconi G, Santoiemma L, Sconza C, Viapiana O, Zanoli G. A Review of Current Approaches to Pain Management in Knee Osteoarthritis with a Focus on Italian Clinical Landscape. J Clin Med 2024; 13:5176. [PMID: 39274389 PMCID: PMC11396710 DOI: 10.3390/jcm13175176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
The global cases of knee osteoarthritis (KOA) are projected to increase by 74.9% by 2050. Currently, over half of patients remain dissatisfied with their pain relief. This review addresses unmet needs for moderate-to-severe KOA pain; it offers evidence and insights for improved management. Italian experts from the fields of rheumatology, physical medicine and rehabilitation, orthopedics, primary care, and pain therapy have identified several key issues. They emphasized the need for standardized care protocols to address inconsistencies in patient management across different specialties. Early diagnosis is crucial, as cartilage responds better to early protective and structural therapies. Faster access to physiatrist evaluation and reimbursement for physical, rehabilitative, and pharmacological treatments, including intra-articular (IA) therapy, could reduce access disparities. Concerns surround the adverse effects of oral pharmacological treatments, highlighting the need for safer alternatives. Patient satisfaction with corticosteroids and hyaluronic acid-based IA therapies reduces over time and there is no consensus on the optimal IA therapy protocol. Surgery should be reserved for severe symptoms and radiographic KOA evidence, as chronic pain post-surgery poses significant societal and economic burdens. The experts advocate for a multidisciplinary approach, promoting interaction and collaboration between specialists and general practitioners, to enhance KOA care and treatment consistency in Italy.
Collapse
Affiliation(s)
- Stefano Giaretta
- UOC Ortopedia e Traumatologia OC San Bortolo di Vicenza (AULSS 8 Berica), 36100 Vicenza, Italy
| | - Alberto Magni
- Local Health Department, Desenzano sul Garda, 25015 Brescia, Italy
| | - Alberto Migliore
- Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy
| | - Silvia Natoli
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Pain Unit, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Filomena Puntillo
- Anaesthesia, Intensive Care and Pain Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gianpaolo Ronconi
- Department of Rehabilitation, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | | | - Ombretta Viapiana
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, 37126 Verona, Italy
| | - Gustavo Zanoli
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, Occhiobello, 45030 Rovigo, Italy
| |
Collapse
|
10
|
Arruda AL, Katsoula G, Chen S, Reimann E, Kreitmaier P, Zeggini E. The Genetics and Functional Genomics of Osteoarthritis. Annu Rev Genomics Hum Genet 2024; 25:239-257. [PMID: 39190913 DOI: 10.1146/annurev-genom-010423-095636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Munich School for Data Science, Helmholtz Munich, Neuherberg, Germany
| | - Georgia Katsoula
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Shibo Chen
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
| | - Ene Reimann
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter Kreitmaier
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany;
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
11
|
Loughlin J. Three decades of osteoarthritis molecular genetics research: From early discussions to impressive breakthroughs. Osteoarthritis Cartilage 2024; 32:352-354. [PMID: 37972686 DOI: 10.1016/j.joca.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Affiliation(s)
- J Loughlin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Costa MC, Angelini C, Franzese M, Iside C, Salvatore M, Laezza L, Napolitano F, Ceccarelli M. Identification of therapeutic targets in osteoarthritis by combining heterogeneous transcriptional datasets, drug-induced expression profiles, and known drug-target interactions. J Transl Med 2024; 22:281. [PMID: 38491514 PMCID: PMC10941480 DOI: 10.1186/s12967-024-05006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifactorial, hypertrophic, and degenerative condition involving the whole joint and affecting a high percentage of middle-aged people. It is due to a combination of factors, although the pivotal mechanisms underlying the disease are still obscure. Moreover, current treatments are still poorly effective, and patients experience a painful and degenerative disease course. METHODS We used an integrative approach that led us to extract a consensus signature from a meta-analysis of three different OA cohorts. We performed a network-based drug prioritization to detect the most relevant drugs targeting these genes and validated in vitro the most promising candidates. We also proposed a risk score based on a minimal set of genes to predict the OA clinical stage from RNA-Seq data. RESULTS We derived a consensus signature of 44 genes that we validated on an independent dataset. Using network analysis, we identified Resveratrol, Tenoxicam, Benzbromarone, Pirinixic Acid, and Mesalazine as putative drugs of interest for therapeutics in OA for anti-inflammatory properties. We also derived a list of seven gene-targets validated with functional RT-qPCR assays, confirming the in silico predictions. Finally, we identified a predictive subset of genes composed of DNER, TNFSF11, THBS3, LOXL3, TSPAN2, DYSF, ASPN and HTRA1 to compute the patient's risk score. We validated this risk score on an independent dataset with a high AUC (0.875) and compared it with the same approach computed using the entire consensus signature (AUC 0.922). CONCLUSIONS The consensus signature highlights crucial mechanisms for disease progression. Moreover, these genes were associated with several candidate drugs that could represent potential innovative therapeutics. Furthermore, the patient's risk scores can be used in clinical settings.
Collapse
Affiliation(s)
- Maria Claudia Costa
- Biogem s.c.ar.l, Ariano Irpino, Italy
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università di Napoli Federico II, Napoli, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | - Luigi Laezza
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università di Napoli Federico II, Napoli, Italy
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Francesco Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Michele Ceccarelli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università di Napoli Federico II, Napoli, Italy.
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
13
|
Bharadwaj AG, McLean ME, Dahn ML, Cahill HF, Wasson MD, Arun RP, Walker OL, Cruickshank BM, Fernando W, Venkatesh J, Barnes PJ, Bethune G, Knapp G, Helyer LK, Giacomantonio CA, Waisman DM, Marcato P. ALDH1A3 promotes invasion and metastasis in triple-negative breast cancer by regulating the plasminogen activation pathway. Mol Oncol 2024; 18:91-112. [PMID: 37753740 PMCID: PMC10766202 DOI: 10.1002/1878-0261.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is a cancer stem cell marker that promotes metastasis. Triple-negative breast cancer (TNBC) progression has been linked to ALDH1A3-induced gene expression changes. To investigate the mechanism of ALDH1A3-mediated breast cancer metastasis, we assessed the effect of ALDH1A3 on the expression of proteases and the regulators of proteases that degrade the extracellular matrix, a process that is essential for invasion and metastasis. This revealed that ALDH1A3 regulates the plasminogen activation pathway; it increased the levels and activity of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). This resulted in a corresponding increase in the activity of serine protease plasmin, the enzymatic product of tPA and uPA. The ALDH1A3 product all-trans-retinoic acid similarly increased tPA and plasmin activity. The increased invasion of TNBC cells by ALDH1A3 was plasminogen-dependent. In patient tumours, ALDH1A3 and tPA are co-expressed and their combined expression correlated with the TNBC subtype, high tumour grade and recurrent metastatic disease. Knockdown of tPA in TNBC cells inhibited plasmin generation and lymph node metastasis. These results identify the ALDH1A3-tPA-plasmin axis as a key contributor to breast cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gregory Knapp
- Department of SurgeryDalhousie UniversityHalifaxCanada
| | | | - Carman A. Giacomantonio
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of SurgeryDalhousie UniversityHalifaxCanada
| | - David M. Waisman
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
| | - Paola Marcato
- Department of PathologyDalhousie UniversityHalifaxCanada
- Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada
- Nova Scotia Health AuthorityHalifaxCanada
| |
Collapse
|
14
|
Khan NM, Diaz-Hernandez ME, Martin WN, Patel B, Chihab S, Drissi H. pH-sensing G protein-coupled orphan receptor GPR68 is expressed in human cartilage and correlates with degradation of extracellular matrix during OA progression. PeerJ 2023; 11:e16553. [PMID: 38077417 PMCID: PMC10704986 DOI: 10.7717/peerj.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background Osteoarthritis (OA) is a debilitating joints disease affecting millions of people worldwide. As OA progresses, chondrocytes experience heightened catabolic activity, often accompanied by alterations in the extracellular environment's osmolarity and acidity. Nevertheless, the precise mechanism by which chondrocytes perceive and respond to acidic stress remains unknown. Recently, there has been growing interest in pH-sensing G protein-coupled receptors (GPCRs), such as GPR68, within musculoskeletal tissues. However, function of GPR68 in cartilage during OA progression remains unknown. This study aims to identify the role of GPR68 in regulation of catabolic gene expression utilizing an in vitro model that simulates catabolic processes in OA. Methods We examined the expression of GPCR by analyzing high throughput RNA-Seq data in human cartilage isolated from healthy donors and OA patients. De-identified and discarded OA cartilage was obtained from joint arthroplasty and chondrocytes were prepared by enzymatic digestion. Chondrocytes were treated with GPR68 agonist, Ogerin and then stimulated IL1β and RNA isolation was performed using Trizol method. Reverse transcription was done using the cDNA synthesis kit and the expression of GPR68 and OA related catabolic genes was quantified using SYBR® green assays. Results The transcriptome analysis revealed that pH sensing GPCR were expressed in human cartilage with a notable increase in the expression of GPR68 in OA cartilage which suggest a potential role for GPR68 in the pathogenesis of OA. Immunohistochemical (IHC) and qPCR analyses in human cartilage representing various stages of OA indicated a progressive increase in GPR68 expression in cartilage associated with higher OA grades, underscoring a correlation between GPR68 expression and the severity of OA. Furthermore, IHC analysis of Gpr68 in murine cartilage subjected to surgically induced OA demonstrated elevated levels of GPR68 in knee cartilage and meniscus. Using IL1β stimulated in vitro model of OA catabolism, our qPCR analysis unveiled a time-dependent increase in GPR68 expression in response to IL1β stimulation, which correlates with the expression of matrix degrading proteases suggesting the role of GPR68 in chondrocytes catabolism and matrix degeneration. Using pharmacological activator of GPR68, our results further showed that GPR68 activation repressed the expression of MMPs in human chondrocytes. Conclusions Our results demonstrated that GPR68 was robustly expressed in human cartilage and mice and its expression correlates with matrix degeneration and severity of OA progression in human and surgical model. GPR68 activation in human chondrocytes further repressed the expression of MMPs under OA pathological condition. These results identify GPR68 as a possible therapeutic target in the regulation of matrix degradation during OA.
Collapse
Affiliation(s)
- Nazir M. Khan
- Orthopaedics, Emory University, Atlanta, GA, United States
| | | | | | - Bhakti Patel
- Orthopaedics, Emory University, Atlanta, GA, United States
| | - Samir Chihab
- Orthopaedics, Emory University, Atlanta, GA, United States
| | - Hicham Drissi
- Orthopaedics, Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
Pihlström S, Richardt S, Määttä K, Pekkinen M, Olkkonen VM, Mäkitie O, Mäkitie RE. SGMS2 in primary osteoporosis with facial nerve palsy. Front Endocrinol (Lausanne) 2023; 14:1224318. [PMID: 37886644 PMCID: PMC10598846 DOI: 10.3389/fendo.2023.1224318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Pathogenic heterozygous variants in SGMS2 cause a rare monogenic form of osteoporosis known as calvarial doughnut lesions with bone fragility (CDL). The clinical presentations of SGMS2-related bone pathology range from childhood-onset osteoporosis with low bone mineral density and sclerotic doughnut-shaped lesions in the skull to a severe spondylometaphyseal dysplasia with neonatal fractures, long-bone deformities, and short stature. In addition, neurological manifestations occur in some patients. SGMS2 encodes sphingomyelin synthase 2 (SMS2), an enzyme involved in the production of sphingomyelin (SM). This review describes the biochemical structure of SM, SM metabolism, and their molecular actions in skeletal and neural tissue. We postulate how disrupted SM gradient can influence bone formation and how animal models may facilitate a better understanding of SGMS2-related osteoporosis.
Collapse
Affiliation(s)
- Sandra Pihlström
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampo Richardt
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Pekkinen
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Riikka E. Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Xiang L, Li Y, Wang X, Liu H, Chang P, Mu X, Tianteng T, Hu M. Transcriptomic and proteomic studies of condylar ossification of the temporomandibular joint in porcine embryos. Animal Model Exp Med 2023; 6:294-305. [PMID: 37259472 PMCID: PMC10486337 DOI: 10.1002/ame2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/09/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The ossification mechanism of the temporomandibular joint (TMJ) condyle remains unclear in human embryo. The size and structure of TMJ, shape of articular disc and the characteristics of omnivorous chewing in the pig are similar to those of humans. The pig is an ideal animal for studying the mechanism of ossification of the TMJ condyle during the embryonic period. METHOD In a previous study by our group, it was found that there was no condylar ossification on embryonic day(E) 45, but the ossification of condyle occurred between E75 and E90. In this study, a total of 12 miniature pig embryos on E45 and E85 were used. Six embryos were used for tissue sections (3 in each group). The remaining six embryos were used for transcriptomic and proteomic studies to find differential genes and proteins. The differentially expressed genes in transcriptome and proteomic analysis were verified by QPCR. RESULTS In total, 1592 differential genes comprising 1086 up-regulated genes and 506 down-regulated genes were screened for fold changes of ≥2 to ≤0.5 between E45 and E85. In the total of 4613 proteins detected by proteomic analysis, there were 419 differential proteins including 313 up-regulated proteins and 106 down-regulated proteins screened for fold changes of ≥2 to ≤0.5 between E45 and E85. A total of 36 differential genes differing in both transcriptome and proteome analysis were found. QPCR analysis showed that 14 of 15 selected genes were consistent with transcriptome analysis. CONCLUSION Condylar transcriptome and proteomic analysis during the development of TMJ in miniature pigs revealed the regulatory genes/proteins of condylar ossification.
Collapse
Affiliation(s)
- Lei Xiang
- Beijing Research Institute of Traumatology and OrthopaedicsBeijingChina
| | - Yongfeng Li
- Department of StomatologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Xuewen Wang
- Institute for Laboratory Animal ResourcesNational Institutes for Food and Drug ControlBeijingChina
| | - HuaWei Liu
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| | - Ping Chang
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| | - Xiaodan Mu
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| | - Tengyue Tianteng
- State Key Laboratory of West China College of StomatologySichuan UniversityCheng DuChina
| | - Min Hu
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
17
|
Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature 2023; 620:737-745. [PMID: 37612393 DOI: 10.1038/s41586-023-06388-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/29/2023] [Indexed: 08/25/2023]
Abstract
The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.
Collapse
Affiliation(s)
- Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Claude Bhérer
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Taliun
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Kehayova YS, Wilkinson JM, Rice SJ, Loughlin J. Mediation of the Same Epigenetic and Transcriptional Effect by Independent Osteoarthritis Risk-Conferring Alleles on a Shared Target Gene, COLGALT2. Arthritis Rheumatol 2023; 75:910-922. [PMID: 36538011 PMCID: PMC10952352 DOI: 10.1002/art.42427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Over 100 DNA variants have been associated with osteoarthritis (OA), including rs1046934, located within a linkage disequilibrium block encompassing part of COLGALT2 and TSEN15. The present study was undertaken to determine the target gene(s) and the mechanism of action of the OA locus using human fetal cartilage, cartilage from OA and femoral neck fracture arthroplasty patients, and a chondrocyte cell model. METHODS Genotyping and methylation array data of DNA from human OA cartilage samples (n = 87) were used to determine whether the rs1046934 genotype is associated with differential DNA methylation at proximal CpGs. Results were replicated in DNA from human arthroplasty (n = 132) and fetal (n = 77) cartilage samples using pyrosequencing. Allelic expression imbalance (AEI) measured the effects of genotype on COLGALT2 and TSEN15 expression. Reporter gene assays and epigenetic editing determined the functional role of regions harboring differentially methylated CpGs. In silico analyses complemented these experiments. RESULTS Three differentially methylated CpGs residing within regulatory regions were detected in the human OA cartilage array data, and 2 of these were replicated in human arthroplasty and fetal cartilage. AEI was detected for COLGALT2 and TSEN15, with associations between expression and methylation for COLGALT2. Reporter gene assays confirmed that the CpGs are in chondrocyte enhancers, with epigenetic editing results directly linking methylation with COLGALT2 expression. CONCLUSION COLGALT2 is a target of this OA locus. We previously characterized another OA locus, marked by rs11583641, that independently targets COLGALT2. The genotype of rs1046934, like rs11583641, mediates its effect by modulating expression of COLGALT2 via methylation changes to CpGs located in enhancers. Although the single-nucleotide polymorphisms, CpGs, and enhancers are distinct between the 2 independent OA risk loci, their effect on COLGALT2 is the same. COLGALT2 is the target of independent OA risk loci sharing a common mechanism of action.
Collapse
Affiliation(s)
| | - J. Mark Wilkinson
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Sarah J. Rice
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| | - John Loughlin
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
19
|
Zhong J, Xiang D, Ma X. Prediction and analysis of osteoarthritis hub genes with bioinformatics. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:66. [PMID: 36819525 PMCID: PMC9929772 DOI: 10.21037/atm-22-6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Osteoarthritis (OA) is the most common type of arthritis. OA can cause joint pain, stiffness, and loss of function. The pathogenesis of OA is not completely clear. Moreover, there is no effective treatment, and clinical management is limited to symptomatic relief or joint surgery. This study utilized bioinformatics to analyze normal and OA articular cartilage samples to find biomarkers and therapeutic targets for OA. Methods The GSE169077 gene chip dataset was downloaded from the public gene chip data platform of the National Biotechnology Information Center. The dataset included 6 samples of OA tissues and 5 samples of healthy cartilage tissues. Differentially expressed genes (DEGs) were screened using the R language "limma" function package under the threshold of log2[fold change (FC)] ≥2 and a P value <0.05. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways of the target genes were enriched and analyzed using the database for annotation, visualization, and integrated discovery (DAVID), and a protein-protein interaction (PPI) network was further constructed using the search tool for the retrieval of interacting genes/proteins (STRING) database. The coexpression relationship of the genes in the module was visualized and screened with Cytoscape. Results A total of 27 DEGs were identified, including 9 downregulated genes and 18 upregulated genes. GO signal pathway enrichment analysis showed involvement in hypoxic response, fibrous collagen trimer, and extracellular matrix structural components. KEGG analysis demonstrated associations with protein digestion and absorption, extracellular matrix receptor interaction, and the peroxisome proliferator-activated receptor signal pathway, among several other pathways. A PPI network was obtained through STRING analysis, and the results were imported into Cytoscape software. The 27 DEGs were sequenced by the cytoHubba plug-in by various calculation methods, and 5 hub genes (COL1A1, COL1A2, POSTN, BMP1, and MMP13) were finally selected. These genes were analyzed by PPI again and annotated with GO and KEGG in different colors. Conclusions Bioinformatics technology effectively identified differential genes in the knee cartilage tissue of healthy controls and patients with OA, providing opportunities to further explore the mechanism and treatment of OA on a transcriptional level.
Collapse
Affiliation(s)
- Junqing Zhong
- Integration of Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ding Xiang
- Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
20
|
Zhou K, Li YJ, Soderblom EJ, Reed A, Jain V, Sun S, Moseley MA, Kraus VB. A "best-in-class" systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression. SCIENCE ADVANCES 2023; 9:eabq5095. [PMID: 36696492 PMCID: PMC9876540 DOI: 10.1126/sciadv.abq5095] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We aimed to identify markers in blood (serum) to predict clinically relevant knee osteoarthritis (OA) progression defined as the combination of both joint structure and pain worsening over 48 months. A set of 15 serum proteomic markers corresponding to 13 total proteins reached an area under the receiver operating characteristic curve (AUC) of 73% for distinguishing progressors from nonprogressors in a cohort of 596 individuals with knee OA. Prediction based on these blood markers was far better than traditional prediction based on baseline structural OA and pain severity (59%) or the current "best-in-class" biomarker for predicting OA progression, urinary carboxyl-terminal cross-linked telopeptide of type II collagen (58%). The generalizability of the marker set was confirmed in a second cohort of 86 individuals that yielded an AUC of 70% for distinguishing joint structural progressors. Blood is a readily accessible biospecimen whose analysis for these biomarkers could facilitate identification of individuals for clinical trial enrollment and those most in need of treatment.
Collapse
Affiliation(s)
- Kaile Zhou
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Yi-Ju Li
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Shuming Sun
- Duke Molecular Physiology Institute, Durham, NC, USA
| | | | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Corresponding author.
| |
Collapse
|
21
|
Insights from multi-omics integration in complex disease primary tissues. Trends Genet 2023; 39:46-58. [PMID: 36137835 DOI: 10.1016/j.tig.2022.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
Genome-wide association studies (GWAS) have provided insights into the genetic basis of complex diseases. In the next step, integrative multi-omics approaches can characterize molecular profiles in relevant primary tissues to reveal the mechanisms that underlie disease development. Here, we highlight recent progress in four examples of complex diseases generated by integrative studies: type 2 diabetes (T2D), osteoarthritis, Alzheimer's disease (AD), and systemic lupus erythematosus (SLE). High-resolution methodologies such as single-cell and spatial omics techniques will become even more important in the future. Furthermore, we emphasize the urgent need to include as yet understudied cell types and increase the diversity of studied populations.
Collapse
|
22
|
Zuluaga-Vélez A, Toro-Acevedo CA, Quintero-Martinez A, Melchor-Moncada JJ, Pedraza-Ordoñez F, Aguilar-Fernández E, Sepúlveda-Arias JC. Performance of Colombian Silk Fibroin Hydrogels for Hyaline Cartilage Tissue Engineering. J Funct Biomater 2022; 13:297. [PMID: 36547557 PMCID: PMC9788426 DOI: 10.3390/jfb13040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development and evaluation of scaffolds play a crucial role in the engineering of hyaline cartilage tissue. This work aims to evaluate the performance of silk fibroin hydrogels fabricated from the cocoons of the Colombian hybrid in the in vitro regeneration of hyaline cartilage. The scaffolds were physicochemically characterized, and their performance was evaluated in a cellular model. The results showed that the scaffolds were rich in random coils and β-sheets in their structure and susceptible to various serine proteases with different degradation profiles. Furthermore, they showed a significant increase in ACAN, COL10A1, and COL2A1 expression compared to pellet culture alone and allowed GAG deposition. The soluble portion of the scaffold did not affect chondrogenesis. Furthermore, they promoted the increase in COL1A2, showing a slight tendency to differentiate towards fibrous cartilage. The results also showed that Colombian silk could be used as a source of biomedical devices, paving the way for sericulture to become a more diverse economic activity in emerging countries.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Carlos Andrés Toro-Acevedo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Adrián Quintero-Martinez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México City 04510, Mexico
| | - Jhon Jairo Melchor-Moncada
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | | | - Enrique Aguilar-Fernández
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
23
|
Kuhns BD, Reuter JM, Hansen VL, Soles GL, Jonason JH, Ackert-Bicknell CL, Wu CL, Giordano BD. Whole-genome RNA sequencing identifies distinct transcriptomic profiles in impingement cartilage between patients with femoroacetabular impingement and hip osteoarthritis. J Orthop Res 2022. [PMID: 36463522 DOI: 10.1002/jor.25485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Femoroacetabular impingement (FAI) has a strong clinical association with the development of hip osteoarthritis (OA); however, the pathobiological mechanisms underlying the transition from focal impingement to global joint degeneration remain poorly understood. The purpose of this study is to use whole-genome RNA sequencing to identify and subsequently validate differentially expressed genes (DEGs) in femoral head articular cartilage samples from patients with FAI and hip OA secondary to FAI. Thirty-seven patients were included in the study with whole-genome RNA sequencing performed on 10 gender-matched patients in the FAI and OA cohorts and the remaining specimens were used for validation analyses. We identified a total of 3531 DEGs between the FAI and OA cohorts with multiple targets for genes implicated in canonical OA pathways. Quantitative reverse transcription-polymerase chain reaction validation confirmed increased expression of FGF18 and WNT16 in the FAI samples, while there was increased expression of MMP13 and ADAMTS4 in the OA samples. Expression levels of FGF18 and WNT16 were also higher in FAI samples with mild cartilage damage compared to FAI samples with severe cartilage damage or OA cartilage. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. We independently validated the results of the sequencing analysis and found increased expression of anabolic markers in patients with FAI and minimal histologic cartilage damage, suggesting that anabolic signaling may be increased in early FAI with a transition to catabolic and inflammatory gene expression as FAI progresses towards more severe hip OA. Clinical significance:Cam-type FAI has a strong clinical association with hip OA; however, the cellular pathophysiology of disease progression remains poorly understood. Several previous studies have demonstrated increased expression of inflammatory markers in FAI cartilage samples, suggesting the involvement of these inflammatory pathways in the disease progression. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. In addition to differences in inflammatory gene expression, we also identified differential expression in multiple pathways involved in hip OA progression.
Collapse
Affiliation(s)
- Benjamin D Kuhns
- Center for Regenerative and Personalized Medicine, Steadman-Philippon Research Institute, Vail, Colorado, USA
| | - John M Reuter
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Victoria L Hansen
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Gillian L Soles
- Department of Orthopedic Surgery, University of California Davis Health System, Sacramento, California, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian D Giordano
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
24
|
Peng G, Chen S, Zheng N, Tang Y, Su X, Wang J, Dong R, Wu D, Hu M, Zhao Y, Liu M, Wu H. Integrative proteomics and m6A microarray analyses of the signatures induced by METTL3 reveals prognostically significant in gastric cancer by affecting cellular metabolism. Front Oncol 2022; 12:996329. [PMID: 36465351 PMCID: PMC9709115 DOI: 10.3389/fonc.2022.996329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/27/2022] [Indexed: 10/13/2023] Open
Abstract
METTL3-mediated RNA N6-methyladenosine (m6A) is the most prevalent modification that participates in tumor initiation and progression via governing the expression of their target genes in cancers. However, its role in tumor cell metabolism remains poorly characterized. In this study, m6A microarray and quantitative proteomics were employed to explore the potential effect and mechanism of METTL3 on the metabolism in GC cells. Our results showed that METTL3 induced significant alterations in the protein and m6A modification profile in GC cells. Gene Ontology (GO) enrichment indicated that down-regulated proteins were significantly enriched in intracellular mitochondrial oxidative phosphorylation (OXPHOS). Moreover, the protein-protein Interaction (PPI) network analysis found that these differentially expressed proteins were significantly associated with OXPHOS. A prognostic model was subsequently constructed based on the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, and the high-risk group exhibited a worse prognosis in GC patients. Meanwhile, Gene Set Enrichment Analysis (GSEA) demonstrated significant enrichment in the energy metabolism signaling pathway. Then, combined with the results of the m6A microarray analysis, the intersection molecules of DEPs and differential methylation genes (DMGs) were significantly correlated with the molecules of OXPHOS. Besides, there were significant differences in prognosis and GSEA enrichment between the two clusters of GC patients classified according to the consensus clustering algorithm. Finally, highly expressed and highly methylated molecules regulated by METTL3 were analyzed and three (AVEN, DAZAP2, DNAJB1) genes were identified to be significantly associated with poor prognosis in GC patients. These results signified that METTL3-regulated DEPs in GC cells were significantly associated with OXPHOS. After combined with m6A microarray analysis, the results suggested that these proteins might be implicated in cell energy metabolism through m6A modifications thus influencing the prognosis of GC patients. Overall, our study revealed that METTL3 is involved in cell metabolism through an m6A-dependent mechanism in GC cells, and indicated a potential biomarker for prognostic prediction in GC.
Collapse
Affiliation(s)
- Guisen Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ni Zheng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yuan Tang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xu Su
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Jing Wang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Di Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Mingjie Hu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yunli Zhao
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
25
|
Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes. Genes (Basel) 2022; 13:genes13091664. [PMID: 36140831 PMCID: PMC9498306 DOI: 10.3390/genes13091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson’s disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.
Collapse
|
26
|
The Kinesin Gene KIF26B Modulates the Severity of Post-Traumatic Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23169203. [PMID: 36012474 PMCID: PMC9409126 DOI: 10.3390/ijms23169203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of pathological bone deposits within soft tissues, termed heterotopic ossification (HO), is common after trauma. However, the severity of HO formation varies substantially between individuals, from relatively isolated small bone islands through to extensive soft tissue replacement by bone giving rise to debilitating symptoms. The aim of this study was to identify novel candidate therapeutic molecular targets for severe HO. We conducted a genome-wide scan in men and women with HO of varying severity following hip replacement for osteoarthritis. HO severity was dichotomized as mild or severe, and association analysis was performed with adjustment for age and sex. We next confirmed expression of the gene encoded by the lead signal in human bone and in primary human mesenchymal stem cells. We then examined the effect of gene knockout in a murine model of osseous trans-differentiation, and finally we explored transcription factor phosphorylation in key pathways perturbed by the gene. Ten independent signals were suggestively associated with HO severity, with KIF26B as the lead. We subsequently confirmed KIF26B expression in human bone and upregulation upon BMP2-induced osteogenic differentiation in primary human mesenchymal stem cells, and also in a rat tendo-Achilles model of post-traumatic HO. CRISPR-Cas9 mediated knockout of Kif26b inhibited BMP2-induced Runx2, Sp7/Osterix, Col1A1, Alp, and Bglap/Osteocalcin expression and mineralized nodule formation in a murine myocyte model of osteogenic trans-differentiation. Finally, KIF26B deficiency inhibited ERK MAP kinase activation during osteogenesis, whilst augmenting p38 and SMAD 1/5/8 phosphorylation. Taken together, these data suggest a role for KIF26B in modulating the severity of post-traumatic HO and provide a potential novel avenue for therapeutic translation.
Collapse
|
27
|
Brumwell A, Aubourg G, Hussain J, Parker E, Deehan DJ, Rice SJ, Loughlin J. Identification of TMEM129, encoding a ubiquitin-protein ligase, as an effector gene of osteoarthritis genetic risk. Arthritis Res Ther 2022; 24:189. [PMID: 35941660 PMCID: PMC9358880 DOI: 10.1186/s13075-022-02882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis is highly heritable and genome-wide studies have identified single nucleotide polymorphisms (SNPs) associated with the disease. One such locus is marked by SNP rs11732213 (T > C). Genotype at rs11732213 correlates with the methylation levels of nearby CpG dinucleotides (CpGs), forming a methylation quantitative trait locus (mQTL). This study investigated the regulatory activity of the CpGs to identify a target gene of the locus. METHODS Nucleic acids were extracted from the articular cartilage of osteoarthritis patients. Samples were genotyped, and DNA methylation was quantified by pyrosequencing at 14 CpGs within a 259-bp interval. CpGs were tested for enhancer effects in immortalised chondrocytes using a reporter gene assay. DNA methylation at the locus was altered using targeted epigenome editing, with the impact on gene expression determined using quantitative polymerase chain reaction. RESULTS rs11732213 genotype correlated with DNA methylation at nine CpGs, which formed a differentially methylated region (DMR), with the osteoarthritis risk allele T corresponding to reduced levels of methylation. The DMR acted as an enhancer and demethylation of the CpGs altered expression of TMEM129. Allelic imbalance in TMEM129 expression was identified in cartilage, with under-expression of the risk allele. CONCLUSIONS TMEM129 is a target of osteoarthritis genetic risk at this locus. Genotype at rs11732213 impacts DNA methylation at the enhancer, which, in turn, modulates TMEM129 expression. TMEM129 encodes an enzyme involved in protein degradation within the endoplasmic reticulum, a process previously implicated in osteoarthritis. TMEM129 is a compelling osteoarthritis susceptibility target.
Collapse
Affiliation(s)
- Abby Brumwell
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, UK
| | - Guillaume Aubourg
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, UK
| | - Juhel Hussain
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, UK
| | - Eleanor Parker
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, UK
| | - David J Deehan
- Freeman Hospital, Newcastle University Teaching Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Sarah J Rice
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, UK
| | - John Loughlin
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, UK.
| |
Collapse
|
28
|
Kreitmaier P, Suderman M, Southam L, Coutinho de Almeida R, Hatzikotoulas K, Meulenbelt I, Steinberg J, Relton CL, Wilkinson JM, Zeggini E. An epigenome-wide view of osteoarthritis in primary tissues. Am J Hum Genet 2022; 109:1255-1271. [PMID: 35679866 PMCID: PMC9300761 DOI: 10.1016/j.ajhg.2022.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Graduate School of Experimental Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK.
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
29
|
Katsoula G, Steinberg J, Tuerlings M, Coutinho de Almeida R, Southam L, Swift D, Meulenbelt I, Wilkinson JM, Zeggini E. A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis. Hum Mol Genet 2022; 31:2090-2105. [PMID: 35088088 PMCID: PMC9239745 DOI: 10.1093/hmg/ddac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Daffodil Centre, University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich 81675, Germany
| |
Collapse
|
30
|
Tardif G, Paré F, Gotti C, Roux-Dalvai F, Droit A, Zhai G, Sun G, Fahmi H, Pelletier JP, Martel-Pelletier J. Mass spectrometry-based proteomics identify novel serum osteoarthritis biomarkers. Arthritis Res Ther 2022; 24:120. [PMID: 35606786 PMCID: PMC9125906 DOI: 10.1186/s13075-022-02801-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoarthritis (OA) is a slowly developing and debilitating disease, and there are no validated specific biomarkers for its early detection. To improve therapeutic approaches, identification of specific molecules/biomarkers enabling early determination of this disease is needed. This study aimed at identifying, with the use of proteomics/mass spectrometry, novel OA-specific serum biomarkers. As obesity is a major risk factor for OA, we discriminated obesity-regulated proteins to target only OA-specific proteins as biomarkers. Methods Serum from the Osteoarthritis Initiative cohort was used and divided into 3 groups: controls (n=8), OA-obese (n=10) and OA-non-obese (n=10). Proteins were identified and quantified from the liquid chromatography–tandem mass spectrometry analyses using MaxQuant software. Statistical analysis used the Limma test followed by the Benjamini-Hochberg method. To compare the proteomic profiles, the multivariate unsupervised principal component analysis (PCA) followed by the pairwise comparison was used. To select the most predictive/discriminative features, the supervised linear classification model sparse partial least squares regression discriminant analysis (sPLS-DA) was employed. Validation of three differential proteins was performed with protein-specific assays using plasma from a cohort derived from the Newfoundland Osteoarthritis. Results In total, 509 proteins were identified, and 279 proteins were quantified. PCA-pairwise differential comparisons between the 3 groups revealed that 8 proteins were differentially regulated between the OA-obese and/or OA-non-obese with controls. Further experiments using the sPLS-DA revealed two components discriminating OA from controls (component 1, 9 proteins), and OA-obese from OA-non-obese (component 2, 23 proteins). Proteins from component 2 were considered related to obesity. In component 1, compared to controls, 7 proteins were significantly upregulated by both OA groups and 2 by the OA-obese. Among upregulated proteins from both OA groups, some of them alone would not be a suitable choice as specific OA biomarkers due to their rather non-specific role or their strong link to other pathological conditions. Altogether, data revealed that the protein CRTAC1 appears to be a strong OA biomarker candidate. Other potential new biomarker candidates are the proteins FBN1, VDBP, and possibly SERPINF1. Validation experiments revealed statistical differences between controls and OA for FBN1 (p=0.044) and VDPB (p=0.022), and a trend for SERPINF1 (p=0.064). Conclusion Our study suggests that 4 proteins, CRTAC1, FBN1, VDBP, and possibly SERPINF1, warrant further investigation as potential new biomarker candidates for the whole OA population. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02801-1.
Collapse
Affiliation(s)
- Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Clarisse Gotti
- CHU de Québec Research Center, Laval University, Quebec, QC, G1V 4G2, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec, QC, G1V 4G2, Canada
| | - Guangju Zhai
- Division of Biomedical Sciences (Genetics), Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Guang Sun
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
31
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
32
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
33
|
Aubourg G, Rice SJ, Bruce-Wootton P, Loughlin J. Genetics of osteoarthritis. Osteoarthritis Cartilage 2022; 30:636-649. [PMID: 33722698 PMCID: PMC9067452 DOI: 10.1016/j.joca.2021.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis genetics has been transformed in the past decade through the application of large-scale genome-wide association scans. So far, over 100 polymorphic DNA variants have been associated with this common and complex disease. These genetic risk variants account for over 20% of osteoarthritis heritability and the vast majority map to non-protein coding regions of the genome where they are presumed to act by regulating the expression of target genes. Statistical fine mapping, in silico analyses of genomics data, and laboratory-based functional studies have enabled the identification of some of these targets, which encode proteins with diverse roles, including extracellular signaling molecules, intracellular enzymes, transcription factors, and cytoskeletal proteins. A large number of the risk variants correlate with epigenetic factors, in particular cartilage DNA methylation changes in cis, implying that epigenetics may be a conduit through which genetic effects on gene expression are mediated. Some of the variants also appear to have been selected as humans adapted to bipedalism, suggesting that a proportion of osteoarthritis genetic susceptibility results from antagonistic pleiotropy, with risk variants having a positive role in joint formation but a negative role in the long-term health of the joint. Although data from an osteoarthritis genetic study has not yet directly led to a novel treatment, some of the osteoarthritis associated genes code for proteins that have available therapeutics. Genetic investigations are therefore revealing fascinating fundamental insights into osteoarthritis and can expose options for translational intervention.
Collapse
Affiliation(s)
- G Aubourg
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - S J Rice
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - P Bruce-Wootton
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - J Loughlin
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
34
|
Fan X, Wu X, Trevisan Franca De Lima L, Stehbens S, Punyadeera C, Webb R, Hamilton B, Ayyapann V, McLauchlan C, Crawford R, Zheng M, Xiao Y, Prasadam I. The deterioration of calcified cartilage integrity reflects the severity of osteoarthritis-A structural, molecular, and biochemical analysis. FASEB J 2022; 36:e22142. [PMID: 35032407 DOI: 10.1096/fj.202101449r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
The calcified cartilage zone (CCZ) is a thin interlayer between the hyaline articular cartilage and the subchondral bone and plays an important role in maintaining the joint homeostasis by providing biological and mechanical support from unmineralized cartilage to the underlying mineralized subchondral bone. The hallmark of CCZ characteristics in osteoarthritis (OA) is less well known. The aim of our study is to evaluate the structural, molecular, and biochemical composition of CCZ in tissues affected by primary knee OA and its relationship with disease severity. We collected osteochondral tissue samples stratified according to disease severity, from 16 knee OA patients who underwent knee replacement surgery. We also used meniscectomy-induced rat samples to confirm the pathophysiologic changes of human samples. We defined the characteristics of the calcified cartilage layer using a combination of morphological, biochemical, proteomic analyses on laser micro-dissected tissue. Our results demonstrated that the Calcium/Phosphate ratio is unchanged during the OA progression, but the calcium-binding protein and cadherin binding protein, as well as carbohydrate metabolism-related proteins, undergo significant changes. These changes were further accompanied by thinning of the CCZ, loss of collagen and proteoglycan content, the occurrence of the endochondral ossification, neovasculature, loss of the elastic module, loss of the collagen direction, and increase of the tortuosity indicating an altered structural and mechanical properties of the CCZ in OA. In conclusion, our results suggest that the calcified cartilage changes can reflect the disease progression.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Samantha Stehbens
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Chamindie Punyadeera
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Richard Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Brett Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Vijay Ayyapann
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Connor McLauchlan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Liu CC, Lee HC, Peng YS, Tseng AH, Wu JL, Tsai WY, Wong CS, Su LJ. Transcriptome Analysis Reveals Novel Genes Associated with Cartilage Degeneration in Posttraumatic Osteoarthritis Progression. Cartilage 2021; 13:1249S-1262S. [PMID: 31104480 PMCID: PMC8804845 DOI: 10.1177/1947603519847744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The current therapeutic strategy for posttraumatic osteoarthritis (PTOA) focuses on early intervention to attenuate disease progression, preserve joint function, and defer joint replacement timing. Sequential transcriptomic changes of articular cartilage in a rat model were investigated to explore the molecular mechanism in early PTOA progression. DESIGN Anterior cruciate ligament transection and medial meniscectomy (ACLT + MMx)-induced PTOA model was applied on male Wistar rats. Articular cartilages were harvested at time 0 (naïve), 2 week, and 4 weeks after surgery. Affymetrix Rat genome 230 2.0 array was utilized to analyze the gene expression changes of articular cartilages. RESULTS We identified 849 differentially expressed genes (DEGs) at 2 weeks and 223 DEGs at 4 weeks post-ACLT + MMx surgery compared with time 0 (naïve group). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to gain further insights from these DEGs. 22 novel genes and 1 novel KEGG pathway (axon guidance) in cartilage degeneration of osteoarthritis were identified. Axon guidance molecules-Gnai1, Sema4d, Plxnb1, and Srgap2 commonly dysregulated in PTOA progression. Gnai1 gene showed a concordant change in protein expression by immunohistochemistry staining. CONCLUSIONS Our study identified 22 novel dysregulated genes and axon guidance pathway associated with articular cartilage degeneration in PTOA progression. These findings provide the potential candidates of biomarkers and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Chih-Chung Liu
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoong-Chien Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan,Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Yi-Shian Peng
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | | | - Jia-Lin Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Yuan Tsai
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwna
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwna,Graduate Institute of Medical Sciences, National Defence Medical Center, Taipei, Taiwan,Chih-Shung Wong, Department of Anesthesiology, Cathay General Hospital, No. 280, Renai Road, Sec. 4, Daan District, Taipei 10630, Taiwan.
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
36
|
Wang K, Esbensen Q, Karlsen T, Eftang C, Owesen C, Aroen A, Jakobsen R. Low-Input RNA-Sequencing in Patients with Cartilage Lesions, Osteoarthritis, and Healthy Cartilage. Cartilage 2021; 13:550S-562S. [PMID: 34775802 PMCID: PMC8808811 DOI: 10.1177/19476035211057245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To analyze and compare cartilage samples from 3 groups of patients utilizing low-input RNA-sequencing. DESIGN Cartilage biopsies were collected from patients in 3 groups (n = 48): Cartilage lesion (CL) patients had at least ICRS grade 2, osteoarthritis (OA) samples were taken from patients undergoing knee replacement, and healthy cartilage (HC) was taken from ACL-reconstruction patients without CLs. RNA was isolated using an optimized protocol. RNA samples were assessed for quality and sequenced with a low-input SmartSeq2 protocol. RESULTS RNA isolation yielded 48 samples with sufficient quality for sequencing. After quality control, 13 samples in the OA group, 9 in the HC group, and 9 in the CL group were included in the analysis. There was a high degree of co-clustering between the HC and CL groups with only 6 genes significantly up- or downregulated. OA and the combined HC/CL group clustered significantly separate from each other, yielding 659 significantly upregulated and 1,369 downregulated genes. GO-term analysis revealed that genes matched to cartilage and connective tissue development terms. CONCLUSION The gene expression profiles from the 3 groups suggest that there are no major differences in gene expression between cartilage from knees with a cartilage injury and knees without an apparent cartilage injury. OA cartilage, as expected, showed markedly different gene expression from the other 2 groups. The gene expression profiles resulting from this low-input RNA-sequencing study offer opportunities to discover new pathways not previously recognized that may be explored in future studies.
Collapse
Affiliation(s)
- Katherine Wang
- Faculty of Medicine, University of
Oslo, Oslo, Norway,Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Katherine Wang, Faculty of Medicine,
University of Oslo, P.O. Box 1072 Blindern, 0316 Oslo, Norway.
| | - Q.Y. Esbensen
- Department of Clinical Molecular
Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway,Department of Clinical Molecular
Biology, University of Oslo, Oslo, Norway
| | - T.A. Karlsen
- Norwegian Center for Stem Cell
Research, Department of Immunology and Transfusion Medicine, Oslo University
Hospital, Rikshospitalet, Oslo, Norway
| | - C.N. Eftang
- Department of Pathology, Akershus
University Hospital, Lørenskog, Norway
| | - C. Owesen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway
| | - A. Aroen
- Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Oslo, Norway
| | - R.B. Jakobsen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Department of Health Management and
Health Economics, Institute of Health and Society, Faculty of Medicine, University
of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Izda V, Martin J, Sturdy C, Jeffries MA. DNA methylation and noncoding RNA in OA: Recent findings and methodological advances. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100208. [PMID: 35360044 PMCID: PMC8966627 DOI: 10.1016/j.ocarto.2021.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function. Historically, it has been characterized as a disease caused by mechanical trauma, so-called 'wear and tear'. Over the past two decades, it has come to be understood as a complex systemic disorder involving gene-environmental interactions. Epigenetic changes have been increasingly implicated. Recent improvements in microarray and next-generation sequencing (NGS) technologies have allowed for ever more complex evaluations of epigenetic aberrations associated with the development and progression of OA. Methods A systematic review was conducted in the Pubmed database. We curated studies that presented the results of DNA methylation and noncoding RNA research in human OA and OA animal models since 1985. Results Herein, we discuss recent findings and methodological advancements in OA epigenetics, including a discussion of DNA methylation, including microarray and NGS studies, and noncoding RNAs. Beyond cartilage, we also highlight studies in subchondral bone and peripheral blood mononuclear cells, which highlight widespread and potentially clinically important alterations in epigenetic patterns seen in OA patients. Finally, we discuss epigenetic editing approaches in the context of OA. Conclusions Although a substantial body of literature has already been published in OA, much is still unknown. Future OA epigenetics studies will no doubt continue to broaden our understanding of underlying pathophysiology and perhaps offer novel diagnostics and/or treatments for human OA.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, And Allergy, Oklahoma City, OK, USA
| |
Collapse
|
38
|
Singh P, Wang M, Mukherjee P, Lessard SG, Pannellini T, Carballo CB, Rodeo SA, Goldring MB, Otero M. Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Sci Rep 2021; 11:21107. [PMID: 34702854 PMCID: PMC8548547 DOI: 10.1038/s41598-021-00269-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
In osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression. Here, we integrated transcriptomic and epigenomic analyses in cartilage after induction of OA to show that the structural progression of OA is accompanied by early transcriptomic and pronounced DNA methylation (5mC) changes in chondrocytes. These changes accumulate over time and are associated with recapitulation of developmental processes, including cartilage development, chondrocyte hypertrophy, and ossification. Our integrative analyses also uncovered that Lrrc15 is differentially methylated and expressed in OA cartilage, and that it may contribute to the functional and phenotypic alterations of chondrocytes, likely coordinating stress responses and dysregulated extracellular matrix remodeling.
Collapse
Affiliation(s)
- Purva Singh
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Mengying Wang
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | | | - Samantha G Lessard
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Tania Pannellini
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Camila B Carballo
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mary B Goldring
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Miguel Otero
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA. .,Weill Cornell Medicine, New York, NY, 10021, USA. .,Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, HSS Research Institute, Room 603, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
39
|
Smith JD, Schroeder AN. Second-Order Peer Reviews of Clinically Relevant Articles for the Physiatrist: Physical Therapy vs. Glucocorticoid Injection for Osteoarthritis of the Knee. Am J Phys Med Rehabil 2021; 100:e147-e152. [PMID: 33587453 DOI: 10.1097/phm.0000000000001715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jeffrey D Smith
- From the Department of Physical Medicine & Rehabilitation, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (JDS); and Department of Physical Medicine & Rehabilitation, Mayo Clinic, Minneapolis, Minnesota (ANS)
| | | |
Collapse
|
40
|
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M, Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184:4784-4818.e17. [PMID: 34450027 PMCID: PMC8459317 DOI: 10.1016/j.cell.2021.07.038] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Tian T Wu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eleni Zengini
- 4(th) Psychiatric Department, Dromokaiteio Psychiatric Hospital, 12461 Athens, Greece
| | - George Alexiadis
- 1(st) Department of Orthopaedics, KAT General Hospital, 14561 Athens, Greece
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thorvaldur Ingvarsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland
| | - Marianne B Johnsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway; Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0424 Oslo, Norway
| | - Helgi Jonsson
- Department of Medicine, Landspitali The National University Hospital of Iceland, 108 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Almut Luetge
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Rob R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Orthopedic Surgery, Shimane University, Shimane 693-8501, Japan
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - George C Babis
- 2(nd) Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, Nea Ionia General Hospital Konstantopouleio, 14233 Athens, Greece
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jae Hee Kang
- Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Steven A Lietman
- Musculoskeletal Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Bendik Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - John-Anker Zwart
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9LJ, UK
| | - Ana M Valdes
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire NG5 1PB, UK
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa 411 10, Greece
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism and Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2RX, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA; Institute of Biomedical Sciences, Academia Sinica, 115 Taipei, Taiwan
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
41
|
Destouni A, Tsolis KC, Economou A, Papathanasiou I, Balis C, Mourmoura E, Tsezou A. Chondrocyte protein co-synthesis network analysis links ECM mechanosensing to metabolic adaptation in osteoarthritis. Expert Rev Proteomics 2021; 18:623-635. [PMID: 34348542 DOI: 10.1080/14789450.2021.1962299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Knee osteoarthritis (OA) is one of the most common structural OA disorders globally. Incomplete understanding of the fundamental biological aspects of osteoarthritis underlies the current lack of effective treatment or disease modifying drugs. RESEARCH DESIGN AND METHODS We implemented a systems approach by making use of the statistical network concepts in Weighted Gene Co-expression Analysis to reconstruct the organization of the core proteome network in chondrocytes obtained from OA patients and healthy individuals. Protein modules reflect groups of tightly co-ordinated changes in protein abundance across healthy and OA chondrocytes. RESULTS The unbiased systems analysis identified extracellular matrix (ECM) mechanosensing and glycolysis as two modules that are most highly correlated with ΟΑ. The ECM module was enriched in the OA genetic risk factors tenascin-C (TNC) and collagen 11A1 (COL11A1), as well as in cartilage oligomeric matrix protein (COMP), a biomarker associated with cartilage integrity. Mapping proteins that are unique to OA or healthy chondrocytes onto the core interactome, which connects microenvironment sensing and regulation of glycolysis, identified differences in metabolic and anti-inflammatory adaptation. CONCLUSION The interconnection between cartilage ECM remodeling and metabolism is indicative of the dynamic chondrocyte states and their significance in osteoarthritis.
Collapse
Affiliation(s)
- Aspasia Destouni
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos C Tsolis
- KULeuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Anastassios Economou
- KULeuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Charalampos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
42
|
Critical role of Aquaporin-1 and telocytes in infantile hemangioma response to propranolol beta blockade. Proc Natl Acad Sci U S A 2021; 118:2018690118. [PMID: 33558238 DOI: 10.1073/pnas.2018690118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Propranolol, a nonselective β-adrenergic receptor (ADRB) antagonist, is the first-line therapy for severe infantile hemangiomas (IH). Since the incidental discovery of propranolol efficacy in IH, preclinical and clinical investigations have shown evidence of adjuvant propranolol response in some malignant tumors. However, the mechanism for propranolol antitumor effect is still largely unknown, owing to the absence of a tumor model responsive to propranolol at nontoxic concentrations. Immunodeficient mice engrafted with different human tumor cell lines were treated with anti-VEGF bevacizumab to create a model sensitive to propranolol. Proteomics analysis was used to reveal propranolol-mediated protein alteration correlating with tumor growth inhibition, and Aquaporin-1 (AQP1), a water channel modulated in tumor cell migration and invasion, was identified. IH tissues and cells were then functionally investigated. Our functional protein association networks analysis and knockdown of ADRB2 and AQP1 indicated that propranolol treatment and AQP1 down-regulation trigger the same pathway, suggesting that AQP1 is a major driver of beta-blocker antitumor response. Examining AQP1 in human hemangioma samples, we found it exclusively in a perivascular layer, so far unrecognized in IH, made of telocytes (TCs). Functional in vitro studies showed that AQP1-positive TCs play a critical role in IH response to propranolol and that modulation of AQP1 in IH-TC by propranolol or shAQP1 decreases capillary-like tube formation in a Matrigel-based angiogenesis assay. We conclude that IH sensitivity to propranolol may rely, at least in part, on a cross talk between lesional vascular cells and stromal TCs.
Collapse
|
43
|
Stone RN, Frahs SM, Hardy MJ, Fujimoto A, Pu X, Keller-Peck C, Oxford JT. Decellularized Porcine Cartilage Scaffold; Validation of Decellularization and Evaluation of Biomarkers of Chondrogenesis. Int J Mol Sci 2021; 22:6241. [PMID: 34207917 PMCID: PMC8230108 DOI: 10.3390/ijms22126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.
Collapse
Affiliation(s)
- Roxanne N. Stone
- Interdisciplinary Studies Program, Boise State University, Boise, ID 83725, USA;
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
| | - Stephanie M. Frahs
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Makenna J. Hardy
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Akina Fujimoto
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Cynthia Keller-Peck
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is a degenerative joint disease that features pain as a hallmark symptom. This review summarises progress and obstacles in our understanding of pain mechanisms in arthritis. RECENT FINDINGS Pain phenotypes in osteoarthritis are poorly characterized in clinical studies and animal studies are largely carti-centric. Different animal models incur variable disease progression patterns and activation of distinct pain pathways, but studies reporting both structural and pain outcomes permit better translational insights. In patients, classification of osteoarthritis disease severity is only based on structural integrity of the joint, but pain outcomes do not consistently correlate with joint damage. The complexity of this relationship underlines the need for pain detection in criteria for osteoarthritis classification and patient-reported outcome measures. SUMMARY Variable inflammatory and neuropathic components and spatiotemporal evolution underlie the heterogeneity of osteoarthritis pain phenotypes, which must be considered to adequately stratify patients. Revised classification of osteoarthritis at different stages encompassing both structural and pain outcomes would significantly improve detection and diagnosis at both early and late stages of disease. These are necessary advancements in the field that would also improve trial design and provide better understanding of basic mechanisms of disease progression and pain in osteoarthritis.
Collapse
|
45
|
Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22073594. [PMID: 33808364 PMCID: PMC8036705 DOI: 10.3390/ijms22073594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) of the knee is a disease that significantly decreases the quality of life due to joint deformation and pain caused by degeneration of articular cartilage. Since the degeneration of cartilage is irreversible, intervention from an early stage and control throughout life is important for OA treatment. For the treatment of early OA, the development of a disease-modifying osteoarthritis drug (DMOAD) for intra-articular (IA) injection, which is attracting attention as a point-of-care therapy, is desired. In recent years, the molecular mechanisms involved in OA progression have been clarified while new types of drug development methods based on gene sequences have been established. In addition to conventional chemical compounds and protein therapeutics, the development of DMOAD from the new modalities such as gene therapy and oligonucleotide therapeutics is accelerating. In this review, we have summarized the current status and challenges of DMOAD for IA injection, especially for protein therapeutics, gene therapy, and oligonucleotide therapeutics.
Collapse
|
46
|
Soul J, Barter MJ, Little CB, Young DA. OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals. Ann Rheum Dis 2021; 80:376-383. [PMID: 33077471 PMCID: PMC7892386 DOI: 10.1136/annrheumdis-2020-218344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To collate the genes experimentally modulated in animal models of osteoarthritis (OA) and compare these data with OA transcriptomics data to identify potential therapeutic targets. METHODS PubMed searches were conducted to identify publications describing gene modulations in animal models. Analysed gene expression data were retrieved from the SkeletalVis database of analysed skeletal microarray and RNA-Seq expression data. A network diffusion approach was used to predict new genes associated with OA joint damage. RESULTS A total of 459 genes were identified as having been modulated in animal models of OA, with ageing and post-traumatic (surgical) models the most prominent. Ninety-eight of the 143 genes (69%) genetically modulated more than once had a consistent effect on OA joint damage severity. Several discrepancies between different studies were identified, providing lessons on interpretation of these data. We used the data collected along with OA gene expression data to expand existing annotations and prioritise the most promising therapeutic targets, which we validated using the latest reported associations. We constructed an online database OATargets to allow researchers to explore the collated data and integrate it with existing OA and skeletal gene expression data. CONCLUSIONS We present a comprehensive survey and online resource for understanding gene regulation of animal model OA pathogenesis.
Collapse
Affiliation(s)
- Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Matthew J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute, The University of Sydney, St Leonards, New South Wales, Australia
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
47
|
Boer CG, Yau MS, Rice SJ, Coutinho de Almeida R, Cheung K, Styrkarsdottir U, Southam L, Broer L, Wilkinson JM, Uitterlinden AG, Zeggini E, Felson D, Loughlin J, Young M, Capellini TD, Meulenbelt I, van Meurs JB. Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify WNT9A as novel osteoarthritis gene. Ann Rheum Dis 2021; 80:367-375. [PMID: 33055079 PMCID: PMC7892373 DOI: 10.1136/annrheumdis-2020-217834] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology. METHODS We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees. RESULTS We found two novel genome-wide significant loci for OA in the thumb joints. We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5 loci. CONCLUSIONS We identified a robust novel genetic locus for hand OA on chromosome 1, of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.
Collapse
Affiliation(s)
- Cindy Germaine Boer
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Michelle S Yau
- Hebrew SeniorLife, Beth Israel Deaconess Medical Center. Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research, Boston, Massachusetts, USA
- Department of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kathleen Cheung
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle University, Bioinformatics Support Unit, Newcastle upon Tyne, UK
| | | | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Linda Broer
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - André G Uitterlinden
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - David Felson
- Arthritis Research UK Epidemiology Unit, The University of Manchester, Manchester, UK
| | - John Loughlin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce Bj van Meurs
- Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Steinberg J, Southam L, Roumeliotis TI, Clark MJ, Jayasuriya RL, Swift D, Shah KM, Butterfield NC, Brooks RA, McCaskie AW, Bassett JHD, Williams GR, Choudhary JS, Wilkinson JM, Zeggini E. A molecular quantitative trait locus map for osteoarthritis. Nat Commun 2021; 12:1309. [PMID: 33637762 PMCID: PMC7910531 DOI: 10.1038/s41467-021-21593-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis causes pain and functional disability for over 500 million people worldwide. To develop disease-stratifying tools and modifying therapies, we need a better understanding of the molecular basis of the disease in relevant tissue and cell types. Here, we study primary cartilage and synovium from 115 patients with osteoarthritis to construct a deep molecular signature map of the disease. By integrating genetics with transcriptomics and proteomics, we discover molecular trait loci in each tissue type and omics level, identify likely effector genes for osteoarthritis-associated genetic signals and highlight high-value targets for drug development and repurposing. These findings provide insights into disease aetiopathology, and offer translational opportunities in response to the global clinical challenge of osteoarthritis.
Collapse
Affiliation(s)
- Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Cancer Research Division, Cancer Council NSW, Sydney, NSW, Australia
- Wellcome Sanger Institute, Hinxton, United Kingdom
- School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Theodoros I Roumeliotis
- Wellcome Sanger Institute, Hinxton, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Matthew J Clark
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Raveen L Jayasuriya
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Diane Swift
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Karan M Shah
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Roger A Brooks
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Andrew W McCaskie
- Division of Trauma & Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jyoti S Choudhary
- Wellcome Sanger Institute, Hinxton, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
- Centre for Integrated Research into Musculoskeletal Ageing and Sheffield Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom.
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
- Wellcome Sanger Institute, Hinxton, United Kingdom.
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany.
| |
Collapse
|
49
|
Butterfield NC, Curry KF, Steinberg J, Dewhurst H, Komla-Ebri D, Mannan NS, Adoum AT, Leitch VD, Logan JG, Waung JA, Ghirardello E, Southam L, Youlten SE, Wilkinson JM, McAninch EA, Vancollie VE, Kussy F, White JK, Lelliott CJ, Adams DJ, Jacques R, Bianco AC, Boyde A, Zeggini E, Croucher PI, Williams GR, Bassett JHD. Accelerating functional gene discovery in osteoarthritis. Nat Commun 2021; 12:467. [PMID: 33473114 PMCID: PMC7817695 DOI: 10.1038/s41467-020-20761-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.
Collapse
Affiliation(s)
- Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Katherine F Curry
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Cancer Council NSW, Sydney, NSW, 2000, Australia
| | - Hannah Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Naila S Mannan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anne-Tounsia Adoum
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Julian A Waung
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Elena Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Scott E Youlten
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, 2010, Australia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- Centre for Integrated Research into Musculoskeletal Ageing and Sheffield Healthy Lifespan Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | - Fiona Kussy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Richard Jacques
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Alan Boyde
- Dental Physical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Peter I Croucher
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, 2010, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
50
|
Identification of abnormally methylated-differentially expressed genes and pathways in osteoarthritis: a comprehensive bioinformatic study. Clin Rheumatol 2021; 40:3247-3256. [PMID: 33420869 DOI: 10.1007/s10067-020-05539-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To investigate abnormally methylated-differentially expressed genes (DEGs) and their related pathways in osteoarthritis (OA) by comprehensive bioinformatic analysis. METHODS Gene expression profiles of GSE51588 and GSE114007, and a gene methylation microarray data GSE63695 were downloaded from the Gene Expression Omnibus (GEO) repository. Abnormally methylated DEGs were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of these genes were subsequently performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction (PPI) network was built from STRING. Module analysis and hub gene identification were performed by using Cytoscape. Co-expression analysis was also constructed using the CEMiTool package. RESULTS In total, 133 abnormally methylated DEGs were identified, including 85 hypomethylation high-expression genes and 48 hypermethylation low-expression genes. Among biological processes and KEGG pathways of abnormally methylated DEGs, collagen fibril organization was enriched most frequently, and pathways of oxidative stress and aging were enriched, including HIF-1 signaling pathway, AMPK signaling pathway, and FoxO signaling pathway. In PPI networks, the hub genes of hypomethylation high-expression genes were COL1A1, COL3A1, COL1A2, COL5A2, LUM, MMP2, SPARC, COL2A1, COL6A2, and COL7A1, and the hub genes of hypermethylation low-expression genes were VEGFA, SLC2A1, LDHA, PDK1, and BNIP3. Combined with co-expression analysis, COL3A1, LUM, and MMP2 were the critical hypomethylation high-expression hub genes in medial tibia subchondral bone. CONCLUSIONS Our study implied abnormally methylated DEGs and dysregulated pathways in OA. Common methylation biomarkers included COL3A1, LUM, and MMP2, and we also found that THBS2 may serve as a novel biomarker in end-stage OA. Key Points • Abnormally methylated differentially expressed genes regulate osteoarthritis. • Hypomethylation high-expression genes were related to the extracellular matrix. • Hypermethylation low-expression genes were related to oxidative stress and aging. • COL3A1, LUM, and MMP2 were potential methylation biomarkers for osteoarthritis.
Collapse
|