1
|
Jimenez-Sanchez M, Celiberto LS, Yang H, Sham HP, Vallance BA. The gut-skin axis: a bi-directional, microbiota-driven relationship with therapeutic potential. Gut Microbes 2025; 17:2473524. [PMID: 40050613 PMCID: PMC11901370 DOI: 10.1080/19490976.2025.2473524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This review explores the emerging term "gut-skin axis" (GSA), describing the bidirectional signaling that occurs between the skin and the gastrointestinal tract under both homeostatic and disease conditions. Central to GSA communication are the gut and skin microbiota, the microbial communities that colonize these barrier surfaces. By influencing diverse host pathways, including innate immune, vitamin D receptor, and Aryl hydrocarbon receptor signaling, a balanced microbiota contributes to both tissue homeostasis and host defense. In contrast, microbiota imbalance, or dysbiosis at one site, can lead to local barrier dysfunction, resulting in the activation of signaling pathways that can disrupt tissue homeostasis at the other site, potentially leading to inflammatory skin conditions such as atopic dermatitis and psoriasis, or gut diseases like Inflammatory Bowel Disease. To date, most research on the GSA has examined the impact of the gut microbiota and diet on skin health, but recent studies show that exposing the skin to ultraviolet B-light can beneficially modulate both the gut microbiome and intestinal health. Thus, despite the traditional focus of clinicians and researchers on these organ systems as distinct, the GSA offers new opportunities to better understand the pathogenesis of cutaneous and gastrointestinal diseases and promote health at both sites.
Collapse
Affiliation(s)
- Maira Jimenez-Sanchez
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Larissa S. Celiberto
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Hyungjun Yang
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Ho Pan Sham
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Lee C, Pei L, Park H, Kim H, Huh CS. Skin Protection Effects of Lactobacillus paragasseri HN910 Lysate and the Role of Alanine. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10533-2. [PMID: 40244537 DOI: 10.1007/s12602-025-10533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Skin aging is influenced by structural alterations, oxidative stress, inflammation, and microbiome changes, and a comprehensive approach to addressing these factors may be effective for mitigating skin aging. This study evaluates the multifaceted anti-aging effects of heat-killed (HK-HN910) and lysed (LS-HN910) forms of Lactobacillus paragasseri HN910. Protective effects on cell viability, cell permeability, nitric oxide (NO) production, and skin anti-aging gene expression for both HK-HN910 and LS-HN910 were observed. Both forms significantly enhanced tight junction (TJ) protein zonula occludens- 1 (ZO- 1) and antioxidant enzyme glutathione peroxidase (GPx) gene expression, while significantly downregulating that of senescence-associated secretory phenotype pro-inflammatory cytokines interleukin (IL)- 1α, IL- 1β, IL- 6, IL- 8, and tumor necrosis factor-alpha (TNFα). LS-HN910 showed significantly greater upregulation of ZO- 1 and GPx and greater downregulation of IL- 1β and TNFα expression compared to HK-HN910. Cell wall component D-alanine (D-Ala) was released in higher amounts in LS-HN910 than in HK-HN910 and demonstrated anti-aging effects. D-Ala upregulated gene expression of skin barrier ZO- 1, claudin- 1 (Cla- 1), occludin (OCC), filaggrin (FLG), and sphingomyelin phosphodiesterase 2 (SMPD2) and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and GPx, while downregulating IL- 1α, IL- 1β, IL- 6, IL- 8, and TNFα. LS-HN910 treatment clinically revealed improvements in anti-aging parameters, including transepidermal water loss, skin water contents, sebum levels, dermal density, eye wrinkle index, skin pH, brightness, and microbiota composition, with a significant increase in Rhodococcus abundance. These findings indicate that LS-HN910, containing released D-Ala, is a promising cosmeceutical for preventing skin aging by enhancing the skin barrier, promoting oxidative defense, modulating inflammatory responses, and influencing skin microbiota.
Collapse
Affiliation(s)
- Chaewon Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Hyunjun Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chul Sung Huh
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
- Biodome Co., Wonju, South Korea.
| |
Collapse
|
3
|
Shao L, Huang J, Li Y, Ma L, Niu Y, Jiang W, Yuan C, Bai T, Yang S. Antioxidant Activities of the Cell-Free Supernatant of a Potential Probiotic Cutibacterium acnes Strain CCSM0331, Isolated From a Healthy Skin. J Cosmet Dermatol 2025; 24:e70105. [PMID: 40071444 PMCID: PMC11897930 DOI: 10.1111/jocd.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE Oxidative stress activates the reactive oxygen species (ROS) and excessive ROS can damage skin cells, initiating oxidative stress responses that contribute to inflammation, aging, and other skin issues. As a resident skin bacterium, Cutibacterium acnes (C. acnes) plays an important role in maintaining skin homeostasis and provides antioxidant benefits. However, the metabolite components and mechanisms of C. acnes exerting antioxidant activity are not yet clear. This study aimed to analyze the potential antioxidant effects of C. acnes cell-free supernatant and the mechanisms. METHODS The antioxidant effects were evaluated by measuring the scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS) radicals, and hydroxyl radicals, as well as the effects on ROS levels in menadione-induced primary human keratinocytes in vitro. Additionally, western blot analysis was performed to assess the antioxidant effects of the C. acnes CCSM0331 cell-free supernatant (CFS). RESULTS C. acnes CCSM0331 was isolated from the facial skin of healthy individuals. This strain, classified as type II, is associated with healthy skin. The CFS of strain CCSM0331 contained various short-chain fatty acids (SCFAs), glutathione peroxidase (GSH-Px), and total superoxide dismutase(T-SOD), exhibiting strong DPPH and ABTS radical scavenging capabilities, thus demonstrating substantial antioxidant activity. In a reactive oxygen species model induced by menadione in primary human keratinocytes, the addition of 5% of the fermentation supernatant from this strain significantly reduced ROS levels, indicating a notable ROS-scavenging effect. Western blot analysis further confirmed that the CCSM0331 fermentation supernatant activated the expression of Nrf-2 and HO-1 proteins, thereby activating the Nrf-2 oxidative stress pathway and exerting antioxidant effects. CONCLUSION C. acnes CCSM0331 is a promising skin probiotic with notable antioxidant properties. The activity of this strain exhibited significant free radical scavenging activity, suggesting its potential application in the development of antiaging products. This study provides theoretical support for the screening of functional skin bacteria or skin probiotics.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Jieyan Huang
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yan Li
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Laiji Ma
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Yujie Niu
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Wen Jiang
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Chunying Yuan
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Tianming Bai
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| | - Suzhen Yang
- R&D Innovation CenterShandong Freda Biotech Co., Ltd.JinanShandongP. R. China
| |
Collapse
|
4
|
Ghose SL, Eisen JA. Skin microbiomes of frogs vary among individuals and body regions, revealing differences that reflect known patterns of chytrid infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636728. [PMID: 39975414 PMCID: PMC11839087 DOI: 10.1101/2025.02.05.636728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The amphibian skin microbiome is an important line of defense against pathogens including the deadly chytrid fungus, Batrachochytrium dendrobatidis (Bd). Intra-species variation in disease susceptibility and intra-individual variation in infection distribution across the skin, therefore, may relate to differences in skin microbiomes. However, characterization of microbiome variation within and among amphibian individuals is needed. We utilized 16S rRNA gene amplicon sequencing to compare microbiomes of ten body regions from nine captive R. sierrae individuals and their tank environments. While frogs harbored distinct microbial communities compared to their tank environments, tank identity was associated with more variation in frog microbiomes than individual frog identity. Within individuals, we detected differences between microbiomes of body regions where Bd infection would be expected compared to regions that infrequently experience infection. Notably, the bacterial families Burkholderiaceae (phylum Proteobacteria) and Rubritaleaceae (phylum Verrucomicrobia) were dominant on frog skin, and the relative abundances of undescribed members of these families were important to describing differences among and within individuals. Two undescribed Burkholderiaceae taxa were found to be putatively Bd-inhibitory, and both showed higher relative abundance on body regions where Bd infection is often localized. These findings highlight the importance of considering intrapopulation and intraindividual heterogeneities, which could provide insights relevant to predicting localized interactions with pathogens.
Collapse
Affiliation(s)
- Sonia L. Ghose
- Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Pagac MP, Davient B, Plado LA, Lam HYI, Lee SM, Ravikrishnan A, Chua WLE, Muralidharan S, Sridharan A, Irudayaswamy AS, Srinivas R, Wearne S, Mohamed Naim AN, Ho EXP, Ng HQA, Kwah JS, Png E, Bendt AK, Wenk MR, Torta F, Nagarajan N, Common J, Chong YS, Tham EH, Shek LPC, Loo EXL, Chambers J, Yew YW, Loh M, Dawson TL. Life stage impact on the human skin ecosystem: lipids and the microbial community. NPJ Biofilms Microbiomes 2025; 11:13. [PMID: 39800795 PMCID: PMC11725588 DOI: 10.1038/s41522-025-00652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin. Co-culturing Malassezia with keratinocytes demonstrated a link between 9,10-DiHOME and pro-inflammatory cytokines IL-1β and IL-6 production. We also observed strong correlations between other skin oxylipins and microbial taxa, highlighting life stage differences in sebum production and microbial community composition. Our findings imply a complex host-microbe communication system mediated by lipid metabolism occurring on human skin, warranting further research into its role in skin health and disease and paving the way towards novel therapeutic targets and treatments.
Collapse
Grants
- This research was supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore - NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding was provided by the Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore. This study was also supported by Agency for Science, Technology and Research (A*STAR) BMRC EDB IAF-PP grant (H17/01/a0/004) (TD); Skin Research Institute of Singapore, IAF-PP (HBMS) grant; Asian Skin Microbiome Program IAF-PP grants (H18/01/a0/016) (TD) and (H22/J1/a0/040). HELIOS study (NTU IRB: 2016-11-030) is supported by the Singapore Ministry of Health’s National Medical Research Council under its OF-LCG funding scheme (NMRC Project Ref. MOH-000271-00), STaR funding scheme (NMRC Project Ref. NMRC/STaR/0028/2017) and intramural funding from Nanyang Technological University, Lee Kong Chian School of Medicine and the National Healthcare Group. The HELIOS study team is also supported by a team of outstanding operational and administrative staff.
- "This research was supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore - NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding was provided by the Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore. This study was also supported by Agency for Science, Technology and Research (A*STAR) BMRC EDB IAF-PP grant (H17/01/a0/004) (TD); Skin Research Institute of Singapore, IAF-PP (HBMS) grant; Asian Skin Microbiome Program IAF-PP grants (H18/01/a0/016) (TD) and (H22/J1/a0/040). HELIOS study (NTU IRB: 2016-11-030) is supported by the Singapore Ministry of Health’s National Medical Research Council under its OF-LCG funding scheme (NMRC Project Ref. MOH-000271-00), STaR funding scheme (NMRC Project Ref. NMRC/STaR/0028/2017) and intramural funding from Nanyang Technological University, Lee Kong Chian School of Medicine and the National Healthcare Group. The HELIOS study team is also supported by a team of outstanding operational and administrative staff."
Collapse
Affiliation(s)
- Martin P Pagac
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
- DSM-Firmenich, Perfumery and Beauty, Wurmisweg 576, Kaiseraugst, Switzerland
| | - Bala Davient
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
| | - Luca Antonio Plado
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
- Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Hilbert Yuen In Lam
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore, Singapore
| | - Shi Mun Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
| | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - Wee Ling Esther Chua
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sneha Muralidharan
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Aishwarya Sridharan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
| | - Antony S Irudayaswamy
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
| | - Ramasamy Srinivas
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
- Cellivate Technologies, Singapore, Singapore
| | - Stephen Wearne
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - H Q Amanda Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - Junmei Samantha Kwah
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - Eileen Png
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - Anne K Bendt
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
| | - John Common
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, Republic of Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), Singapore, Singapore
| | - Evelyn Xiu Ling Loo
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, Republic of Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, Singapore
| | - Yik Weng Yew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, Singapore
| | - Marie Loh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, UK
- National Skin Centre, Singapore, Singapore
| | - Thomas L Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore.
- Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, USA.
| |
Collapse
|
6
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
7
|
Zhou J, Mehling A, Wang Q, Wang X, Hu X, Song L. Age-related changes in the bacterial composition of healthy female facial skin in Beijing area. Int J Cosmet Sci 2024; 46:982-994. [PMID: 39049756 DOI: 10.1111/ics.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Exploring the effects of age on microbial community structure and understanding the effects of chronological ageing as well as sun exposure on microbial community diversity. METHOD The microbial characteristics of the facial skin of 98 adult women aged 18-70 years were studied using 16S rRNA gene sequencing, and differences based on age and reported sun exposure were assessed. RESULTS The cheek skin's bacterial diversity and richness increased with age. The relative abundance of Cutibacterium decreased with age, while the relative abundance of Corynebacterium, Anaerococcus, Paracoccus, Micrococcus, Kocuria, Kytococcus, and Chryseobacterium increased. In addition, an increase in Micrococcus and a decrease in Cutibacterium were observed in volunteers with more than 2 h of daily sun exposure compared to volunteers with <2 h of daily sun exposure. Under low-sunlight conditions, Cutibacterium was more prevalent in the youth group, and Corynebacterium, Anaerococcus, and Kytococcus were more prevalent in the older group. CONCLUSION The diversity and composition of the bacterial community on the cheeks are affected by age and extrinsic factors (sun exposure) may also play a role in this.
Collapse
Affiliation(s)
- Jin Zhou
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | | | - Qiujing Wang
- BASF East Asia Regional Headquarters Ltd., Hong Kong, SAR, China
| | | | - Xinyue Hu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Boira C, Chapuis E, Lapierre L, Auriol D, Jarrin C, Robe P, Tiguemounine J, Scandolera A, Reynaud R. Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity-Involvement of Skin Microbiota. Molecules 2024; 29:5391. [PMID: 39598779 PMCID: PMC11597265 DOI: 10.3390/molecules29225391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: Ultraviolet radiation takes part in photoaging and pigmentation disorders on skin. Epigallocatechin gallate (EGCG) is a well-known brightening and photoprotective compound but it faces limitations in terms of stability and solubility. (2) Methods: A more stable and water-soluble glucoside called EGCG-G1 was obtained by enzymatic glucosylation of EGCG. In vitro and ex vivo experiments evaluated EGCG-G1 skin penetration, antioxidant activity, and antimelanogenic properties compared to EGCG. This gene expression study characterized the pathways impacted by EGCG-G1. Four clinical studies covering phototypes I to V, at various ages, and different skin areas, using several tools, were conducted to assess the effect of EGCG-G1 on skin hyperpigmentation and tone. The impact of glucoside on skin microbiota, especially Lactobacillus sp., was assessed through in vitro and in vivo investigations. (3) Results: EGCG-G1 better penetrated the epidermis than EGCG due to a possible interaction with GLUT1. EGCG-G1 presented similar antioxidant activity to that of EGCG and decreased melanogenesis through the inhibition of 13 genes, including MITF. The skin Lactobacillus population increased with EGCG-G1, which promoted bacterial growth in vitro as prebiotic, and induced the release of a microbial brightening metabolite. Clinical trials demonstrated EGCG-G1 to decrease hyperpigmented spots and increase skin brightness and homogeneity in a large panel of phototypes, outperforming EGCG and vitamin C. (4) Conclusions: Glucosylation of EGCG maintained its photoprotective antioxidant properties and enhanced penetration across the epidermis. EGCG-G1 demonstrated brightening properties on all skin types by down-regulation of melanogenesis pathways and indirectly by skin microbiota stimulation.
Collapse
Affiliation(s)
- Cloé Boira
- Givaudan Active Beauty, R&D, 51110 Pomacle, France
| | | | | | | | | | - Patrick Robe
- Givaudan Active Beauty, R&D, 31400 Toulouse, France
| | | | | | | |
Collapse
|
9
|
Jung Y, Kim I, Jung DR, Ha JH, Lee EK, Kim JM, Kim JY, Jang JH, Bae JT, Shin JH, Cho YS. Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms 2024; 12:2179. [PMID: 39597568 PMCID: PMC11596587 DOI: 10.3390/microorganisms12112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Skin aging involves biomechanical changes like decreased elasticity, increased wrinkle formation, and altered barrier function. The skin microbiome significantly impacts this process. Here, we investigated the effects of decreased Cutibacterium acnes abundance and increase in other skin microorganisms on skin biomechanical properties in 60 healthy Koreans from Seoul, divided into younger (20-29 years) and older (60-75 years) groups. Metagenomic sequencing and skin assessments showed that the older group exhibited decreased C. acnes dominance and increased microbial diversity, correlating with reduced skin elasticity and increased wrinkles. In the younger age group, the enriched pathways included zeatin biosynthesis, distinct biotin metabolism pathways, and cofactor and vitamin metabolism in the younger age group, whereas pathways related to lipid metabolism, energy metabolism, and responses to environmental stressors, including UV damage and pollution, were enriched in the older group, according to functional analysis results. Network analysis indicated higher microbial connectivity in the younger group, suggesting a more stable community, whereas the older group's community displayed higher modularity, indicating more independent and specialized clusters. This study enhances our understanding of the impact of skin microbiome changes on skin aging, particularly the anti-aging effects of C. acnes. Future research should focus on the physiological mechanisms of skin microbiota on skin aging and explore therapeutic potentials to enhance skin health.
Collapse
Affiliation(s)
- YeonGyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Ikwhan Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Hoon Ha
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Jin Mo Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jin Young Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jun-Hwan Jang
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jun-Tae Bae
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jae-Ho Shin
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| |
Collapse
|
10
|
Faria AVS, Andrade SS. Decoding the impact of ageing and environment stressors on skin cell communication. Biogerontology 2024; 26:3. [PMID: 39470857 DOI: 10.1007/s10522-024-10145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 11/01/2024]
Abstract
The integumentary system serves as a crucial protective barrier and is subject to complex signaling pathways that regulate its physiological functions. As the body's first line of defense, the skin is continuously exposed to environmental stressors, necessitating a robust network of signaling molecules to maintain homeostasis. Considering the main cellular components to be keratinocytes, melanocytes, fibroblasts, and fibrous components, collagen of various types, this review explores the intricate signaling mechanisms that govern skin integrity, focusing on key pathways involved in impacts of ageing and environment factors on skin health. The role of growth factors, cytokines, hormones and other molecular mediators in these processes is examined. Specially for women, decrease of estrogen is determinant to alter signaling and to compromise skin structure, especially the dermis. Environmental factors, such as ultraviolet rays and pollution alongside the impact of ageing on signaling pathways, especially TGF-β and proteases (metalloproteinases and cathepsins). Furthermore, with advancing age, the skin's capacity to shelter microbiome challenges diminishes, leading to alterations in signal transduction and subsequent functional decline. Understanding these age-related changes is essential for developing targeted therapies aimed at enhancing skin health and resilience, but also offers a promising avenue for the treatment of skin disorders and the promotion of healthy ageing.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | | |
Collapse
|
11
|
Radaschin DS, Iancu AV, Ionescu AM, Gurau G, Niculet E, Bujoreanu FC, Beiu C, Tatu AL, Popa LG. Comparative Analysis of the Cutaneous Microbiome in Psoriasis Patients and Healthy Individuals-Insights into Microbial Dysbiosis: Final Results. Int J Mol Sci 2024; 25:10583. [PMID: 39408916 PMCID: PMC11477231 DOI: 10.3390/ijms251910583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Psoriasis is one of the most frequent chronic inflammatory skin diseases and exerts a significant psychological impact, causing stigmatization, low self-esteem and depression. The pathogenesis of psoriasis is remarkably complex, involving genetic, immune and environmental factors, some of which are still incompletely explored. The cutaneous microbiome has become more and more important in the pathogenesis of inflammatory skin diseases such as acne, rosacea, atopic dermatitis and psoriasis. Dysbiosis of the skin microbiome could be linked to acute flare ups in psoriatic disease, as recent studies suggest. Given this hypothesis, we conducted a study in which we evaluated the cutaneous microbiome of psoriasis patients and healthy individuals. In our study, we collected multiple samples using swab sampling, adhesive tape and punch biopsies. Our results are similar to other studies in which the qualitative and quantitative changes found in the cutaneous microbiome of psoriasis patients are different than healthy individuals. Larger, standardized studies are needed in order to elucidate the microbiome changes in psoriasis patients, clarify their role in the pathogenesis of psoriasis, decipher the interactions between the commensal microorganisms of the same and different niches and between microbiomes and the host and identify new therapeutic strategies.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | | | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Florin Ciprian Bujoreanu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Cristina Beiu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| | - Alin Laurentiu Tatu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Liliana Gabriela Popa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| |
Collapse
|
12
|
Christman L, De Benedetto A, Johnson E, Khoo C, Gu L. Polyphenol-Rich Cranberry Beverage Positively Affected Skin Health, Skin Lipids, Skin Microbiome, Inflammation, and Oxidative Stress in Women in a Randomized Controlled Trial. Nutrients 2024; 16:3126. [PMID: 39339726 PMCID: PMC11434900 DOI: 10.3390/nu16183126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to determine whether a polyphenol-rich cranberry beverage affects skin properties, lipids, and the microbiome in women using a randomized, double-blinded, placebo-controlled, cross-over design. Twenty-two women with Fitzpatrick skin types 2-3 were randomized to drink a cranberry beverage or placebo for six weeks. After a 21-day washout, they consumed the opposite beverage for six weeks. Six weeks of cranberry beverage significantly reduced UVB-induced erythema, improved net elasticity on the face and forearm, smoothness on the face, and gross elasticity on the forearm compared to the placebo. When stratified by age, these effects of the cranberry beverage were primarily observed in women >40 years old. SOD activities were improved after six weeks of cranberry beverage consumption compared to the placebo, while glutathione peroxide and TNF-α were improved compared to baseline. These effects were found to differ by age group. Skin lipid composition was modulated by both the cranberry beverage and the placebo. Cranberry beverages did not change α- or β-diversity but altered the abundance of several skin microbes at the species and strain level. Consumption of a cranberry beverage for six weeks improved specific skin properties and oxidative stress and modulated skin lipids and microbiome compared to placebo.
Collapse
Affiliation(s)
- Lindsey Christman
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Anna De Benedetto
- Department of Dermatology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | | | | | - Liwei Gu
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Koch W, Zagórska J, Michalak-Tomczyk M, Karav S, Wawruszak A. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules 2024; 29:4234. [PMID: 39275081 PMCID: PMC11397085 DOI: 10.3390/molecules29174234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Plants are a rich source of secondary metabolites, among which phenolics are the most abundant. To date, over 8000 various polyphenolic compounds have been identified in plant species, among which phenolic acids, flavonoids, coumarins, stilbenes and lignans are the most important ones. Acne is one of the most commonly treated dermatological diseases, among which acne vulgaris and rosacea are the most frequently diagnosed. In the scientific literature, there is a lack of a detailed scientific presentation and discussion on the importance of plant phenolics in the treatment of the most common specific skin diseases, e.g., acne. Therefore, the aim of this review is to gather, present and discuss the current state of knowledge on the activity of various plant phenolics towards the prevention and treatment of acne, including in vitro, in vivo and human studies. It was revealed that because of their significant antibacterial, anti-inflammatory and antioxidant activities, phenolic compounds may be used in the treatment of various types of acne, individually as well as in combination with commonly used drugs like clindamycin and benzoyl peroxide. Among the various phenolics that have been tested, EGCG, quercetin and nobiletin seem to be the most promising ones; however, more studies, especially clinical trials, are needed to fully evaluate their efficacy in treating acne.
Collapse
Affiliation(s)
- Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Magdalena Michalak-Tomczyk
- Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Delanghe L, De Boeck I, Van Malderen J, Gehrmann T, Allonsius CN, Bron PA, Claes I, Hagendorens M, Leysen J, Wittouck S, Lebeer S. The inner elbow skin microbiome contains Lactobacillus among its core taxa and varies with age, season and lifestyle. MICROBIOME RESEARCH REPORTS 2024; 3:43. [PMID: 39741954 PMCID: PMC11684916 DOI: 10.20517/mrr.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 01/03/2025]
Abstract
Background: The human skin microbiome plays an essential role in protecting against pathogens and other external substances. This open ecosystem is also influenced by personal and environmental factors, but the precise impact of these factors, such as lifestyle and season, is understudied. We focused here on the inner elbow, a skin site prone to inflammatory conditions like atopic dermatitis and psoriasis. Methods: We collected skin swabs from the inner elbow of 52 children and adults, with no signs of skin disorders, in the winter and summer seasons. Samples were analyzed using metagenomic shallow shotgun sequencing. In addition, metadata were collected using questionnaires on health, lifestyle, and environmental factors. Results: The core inner elbow community, taxa with a prevalence of 95% or higher, consisted of several well-known skin taxa, such as Staphylococcus hominis, Staphylococcus capitis, Staphylococcus epidermidis, and Cutibacterium acnes. In addition, Streptococcus and Lactobacillus species were also found to be highly prevalent members of the skin microbiota, especially in the age group up to 3 years old. Of all investigated factors, age appeared to be the major driver defining the skin microbiome composition and longitudinal stability over the seasons. Differential abundance analysis using three statistical tests also pointed out that specific skin species were significantly associated with sampling season, age, hygiene practices, vitamin D supplements, probiotics, and the number of household members. Conclusion: This study identifies novel factors influencing the inner elbow skin microbiome composition and paves the way for future comparative and intervention studies in skin disorders such as atopic dermatitis.
Collapse
Affiliation(s)
- Lize Delanghe
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Joke Van Malderen
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | | | - Peter A. Bron
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | | | - Margo Hagendorens
- Department of Pediatrics, University Hospital Antwerp/University of Antwerp, Edegem 2650, Belgium
| | - Julie Leysen
- Department of Dermatology, University Hospital Antwerp/University of Antwerp, Edegem 2650, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| |
Collapse
|
15
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
16
|
Nierenberg NE, Levine JM. Infectious Aspects of Chronic Wounds. Clin Geriatr Med 2024; 40:471-480. [PMID: 38960538 DOI: 10.1016/j.cger.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The treatment, maintenance, and suppression of infection in chronic wounds remain a challenge to all practitioners. From an infectious disease standpoint, knowing when a chronic wound has progressed from colonized to infected, when to use systemic antimicrobial therapy and when and how to culture such wounds can be daunting. With few standardized clinical guidelines for infections in chronic wounds, caring for them is an art form. However, there have been notable advances in the diagnosis, treatment, and management of infected wounds. This article will discuss the pathophysiology of infection in older adults, including specific infections such as cutaneous candidiasis, necrotizing soft tissue infection, osteomyelitis, and infections involving hardware.
Collapse
Affiliation(s)
- Natalie E Nierenberg
- Wound Care, Department of Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Jeffrey M Levine
- Icahn School of Medicine at Mount Sinai, New York, NY 10010, USA.
| |
Collapse
|
17
|
Min M, Egli C, Sivamani RK. The Gut and Skin Microbiome and Its Association with Aging Clocks. Int J Mol Sci 2024; 25:7471. [PMID: 39000578 PMCID: PMC11242811 DOI: 10.3390/ijms25137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024] Open
Abstract
Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
| | - Caitlin Egli
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, University of St. George's, University Centre, West Indies, Grenada
| | - Raja K Sivamani
- Integrative Skin Science and Research, 1451 River Park Drive, Suite 222, Sacramento, CA 95819, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA
- Integrative Research Institute, 4825 River Park Drive, Suite 100, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Drive, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
18
|
Ionescu MA, Tatu AL, Busila C, Axente ER, Badalato N, Feuilloley MGJ, Asquier E, Martínez JD, Lefeuvre L. Microbiome Modulation in Acne Patients and Clinical Correlations. Life (Basel) 2024; 14:688. [PMID: 38929671 PMCID: PMC11204784 DOI: 10.3390/life14060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The imbalance of skin microbiota in acne can induce changes leading to induction or to aggravation of chronic inflammatory lesions; complex mechanisms are involved. Cutibacterium acnes (C. acnes) ribotypes RT4 and RT5 express more biofilm and are associated with inflammatory acne lesions. C. acnes RT6 is a non-acne ribotype, beneficial for the skin. OBJECTIVES In an open clinical trial, acne adults were included and assessed clinically at baseline and at month 2 using the Investigator Global Assessment of Acne (IGA) score. A topical emulsion was applied twice daily for 2 months (M2) in each included patient. In the same series of acne patients, skin swab samples were collected from acne patients at baseline and M2 from lesional and non-lesional skin; skin swabs were collected for the metagenomic long-read analysis of microbiota. MATERIALS AND METHODS Acne patients with a gravity score IGA of >1<3 were included in this pilot study. An emulsion of O/W formulated with vegetal extract of Umbelliferae associated with a polysaccharide at 1% was applied twice daily for 2 months. At baseline and M2 clinical assessments were made; skin swab samples were also taken for microbiota analysis from lesional and non-lesional skin in each included patient. Extractions of genomic DNA (gDNA) from swab samples from baseline and from M2 were made, followed by full-length (V1-V9) amplification of the 16S rDNA and sequencing of amplicon libraries for strain-level bacterial community profiling. RESULTS In a series of 32 adult acne patients, the mean initial IGA scale was 3.1; at M2 the IGA scale was 1.5 (p < 0.001). The mean decrease in acne lesions was by 63%. Microbiome metagenomic long-read analysis in these series was mainly dominated by C. acnes followed by Staphylococcus epidermidis (S. epidermidis). The density of C. acnes ribotypes RT6 (non-acne strain) was increased at M2 compared to baseline and the density of ribotypes C. acnes RT1 to RT5 was decreased at M2, compared to baseline (p < 0.0001). S. epidermidis ribotypes (1 to 36) were non significantly increased at M2, compared to baseline (p < 0.1). CONCLUSIONS In a series of 32 acne patients that applied an emulsion based on vegetal extract of Umbelliferae and a polysaccharide at 1% twice daily, a significant clinical improvement in IGA scale for acne lesions was seen at M2, compared to baseline (p < 0.0001). The clinical improvement was correlated with an improvement in skin microbiome at M2 compared to baseline, indicated by the increase in the relative abundance of non-acne strain of C. acnes ribotype 6 and of the decrease in the relative abundance of acne strains ribotypes C. acnes RT1 to RT5.
Collapse
Affiliation(s)
- Marius-Anton Ionescu
- Dermatology Department, University Hospital “Saint Louis”, University of Paris, 75010 Paris, France;
| | - Alin Laurentiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- “Sfanta Cuvioasa Parascheva” Hospital of Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR (Centrul Integrat Multidisciplinar de Cercetare de Interfata Dermatologica—CIM-CID), “Dunărea de Jos” University, 800201 Galati, Romania
| | - Camelia Busila
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- “Sf. Ioan” Emergency Clinical Paediatric Hospital, 800487 Galati, Romania
| | - Elena Roxana Axente
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 AI I Cuza St., 800010 Galati, Romania;
| | | | | | - Estelle Asquier
- Laboratoires Dermatologiques d’Uriage, 92200 Neuilly sur-Seine, France; (E.A.); (L.L.)
| | - José Dario Martínez
- Department of Internal Medicine, Faculty of Medicine, Hospital Universitario José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Luc Lefeuvre
- Laboratoires Dermatologiques d’Uriage, 92200 Neuilly sur-Seine, France; (E.A.); (L.L.)
| |
Collapse
|
19
|
Garlet A, Andre-Frei V, Del Bene N, Cameron HJ, Samuga A, Rawat V, Ternes P, Leoty-Okombi S. Facial Skin Microbiome Composition and Functional Shift with Aging. Microorganisms 2024; 12:1021. [PMID: 38792850 PMCID: PMC11124346 DOI: 10.3390/microorganisms12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle grade. Volunteers' metadata were collected through questionnaires and non-invasive biophysical measurements. A simple model and a biological statistical model were used to show the difference in skin microbiota composition between the two age groups. Taxonomic and non-metric multidimensional scaling analysis showed that the skin microbiome was more diverse in the older group (≥55 yo). There was also a significant decrease in Actinobacteria, namely in Cutibacterium acnes, and an increase in Corynebacterium kroppenstedtii. Some Streptococcus and Staphylococcus species belonging to the Firmicutes phylum and species belonging to the Proteobacteria phylum increased. In the 18-35 yo younger group, the microbiome was characterized by a significantly higher proportion of Cutibacterium acnes and Lactobacillus, most strikingly, Lactobacillus crispatus. The functional analysis using GO terms revealed that the young group has a higher significant expression of genes involved in biological and metabolic processes and in innate skin microbiome protection. The better comprehension of age-related impacts observed will later support the investigation of skin microbiome implications in antiaging protection.
Collapse
Affiliation(s)
- Allison Garlet
- BASF Corporation, 540 White Plains Road, Tarrytown, NY 10591, USA; (A.G.); (N.D.B.)
| | - Valerie Andre-Frei
- BASF Beauty Care Solutions, 32 Rue Saint Jean de Dieu, 69007 Lyon, France;
| | - Nicolas Del Bene
- BASF Corporation, 540 White Plains Road, Tarrytown, NY 10591, USA; (A.G.); (N.D.B.)
| | | | - Anita Samuga
- BASF Corporation, 26 Davis Dr, Raleigh-Durham, NC 27709, USA; (H.J.C.); (A.S.)
| | - Vimal Rawat
- BASF SE, Speyerer Str. 2, 67117 Limburgerhof, Germany;
| | - Philipp Ternes
- BASF Metabolome Solutions GmbH, Tegeler Weg 33, 10589 Berlin, Germany;
| | | |
Collapse
|
20
|
Bhardwaj V, Handler MZ, Mao J, Azadegan C, Panda PK, Breunig HG, Wenskus I, Diaz I, König K. A novel professional-use synergistic peel technology to reduce visible hyperpigmentation on face: Clinical evidence and mechanistic understanding by computational biology and optical biopsy. Exp Dermatol 2024; 33:e15069. [PMID: 38568090 DOI: 10.1111/exd.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Topicals and chemical peels are the standard of care for management of facial hyperpigmentation. However, traditional therapies have come under recent scrutiny, such as topical hydroquinone (HQ) has some regulatory restrictions, and high concentration trichloroacetic acid (TCA) peel pose a risk in patients with skin of colour. The objective of our research was to identify, investigate and elucidate the mechanism of action of a novel TCA- and HQ-free professional-use chemical peel to manage common types of facial hyperpigmentation. Using computational modelling and in vitro assays on tyrosinase, we identified proprietary multi-acid synergistic technology (MAST). After a single application on human skin explants, MAST peel was found to be more effective than a commercial HQ peel in inhibiting melanin (histochemical imaging and gene expression). All participants completed the case study (N = 9) without any adverse events. After administration of the MAST peel by a dermatologist, the scoring and VISIA photography reported improvements in hyperpigmentation, texture and erythema, which could be linked to underlying pathophysiological changes in skin after peeling, visualized by non-invasive optical biopsy of face. Using reflectance confocal microscopy (VivaScope®) and multiphoton tomography (MPTflex™), we observed reduction in melanin, increase in metabolic activity of keratinocytes, and no signs of inflammatory cells after peeling. Subsequent swabbing of the cheek skin found no microbiota dysbiosis resulting from the chemical peel. The strong efficacy with minimum downtime and no adverse events could be linked to the synergistic action of the ingredients in the novel HQ- and TCA-free professional peel technology.
Collapse
Affiliation(s)
- Vinay Bhardwaj
- Department of Global Personal Care and Skin Health R&D, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Marc Zachary Handler
- Dermal Clinical Research, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Junhong Mao
- Department of Global Personal Care and Skin Health R&D, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Chloe Azadegan
- Department of Global Personal Care and Skin Health R&D, Colgate-Palmolive Company, Piscataway, New Jersey, USA
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Pritam K Panda
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- Nerdalytics, Uppsala, Sweden
| | | | | | - Isabel Diaz
- Dermal Clinical Research, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Karsten König
- JenLab GmbH, Berlin, Germany
- Department of Biophotonics and Laser Technology, Saarland University, Saarbrucken, Germany
| |
Collapse
|
21
|
Zhang Q, Wang Y, Ran C, Zhou Y, Zhao Z, Xu T, Hou H, Lu Y. Characterization of distinct microbiota associated with androgenetic alopecia patients treated and untreated with platelet-rich plasma (PRP). Animal Model Exp Med 2024; 7:106-113. [PMID: 38720238 PMCID: PMC11079158 DOI: 10.1002/ame2.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.
Collapse
Affiliation(s)
- Qian Zhang
- Beijing Life Science AcademyBeijingChina
| | - Yanan Wang
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Cheng Ran
- Department of OtolaryngologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Yingmei Zhou
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Zigang Zhao
- Department of DermatologyHainan Hospital of PLA General HospitalSanyaChina
| | - Tianhua Xu
- Department of OtolaryngologyAffiliated Hospital of Hebei UniversityBaodingChina
| | - Hongwei Hou
- Beijing Life Science AcademyBeijingChina
- Department of Chemical EngineeringTsinghua UniversityBeijingChina
| | - Yuan Lu
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| |
Collapse
|
22
|
Pagac MP, Stalder M, Campiche R. Menopause and facial skin microbiomes: a pilot study revealing novel insights into their relationship. FRONTIERS IN AGING 2024; 5:1353082. [PMID: 38577131 PMCID: PMC10991793 DOI: 10.3389/fragi.2024.1353082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
Introduction: The human skin microbial composition is affected by age. Previous studies reported skin microbiome diversity shifts between elderly and significantly younger subjects. Some studies implied that menopausal status, which is inherently linked to age, could be associated with changes in skin microbial compositions. Nevertheless, the influence of menopausal status on skin microbiome profiles while minimizing the impact of aging-associated changes in skin parameters still needs further clarification. Methods: We performed an observational study on healthy Caucasian female volunteers, which were grouped according to their pre- or postmenopausal status. Bacterial community structures on facial skin were analyzed using 16S rRNA gene sequencing. Cutometer® measurements were performed to evaluate aging-associated changes in facial skin biophysical properties. Results: The relative abundance of the lipophilic Cutibacterium genus was decreased, and bacterial diversity was increased in skin samples of postmenopausal volunteers. The mean age difference between examined groups in this study was 12.4 years only. Accordingly, Cutometer® measurements revealed no differences in aging-associated skin biophysical parameters between pre- and postmenopausal groups. Consequently, no correlation was detected between Shannon diversity and measured age-dependent biomechanical properties of facial skin. Discussion: These findings are in line with previous studies, which investigated the wide-ranging impact of chronological aging on skin microbial communities. However, this work reports for the first time a direct association between menopausal status and facial microbiomes on skin of similarly aged study participants, and hence uncouples aging-associated skin biophysical parameters, such as viscoelastic properties, from the equation. These findings open avenues for the development of microbiome-targeting strategies for treatment of menopause-associated skin disorders.
Collapse
|
23
|
Han JH, Kim HS. Skin Deep: The Potential of Microbiome Cosmetics. J Microbiol 2024; 62:181-199. [PMID: 38625646 DOI: 10.1007/s12275-024-00128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
Collapse
Affiliation(s)
- Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
24
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
25
|
Myers T, Bouslimani A, Huang S, Hansen ST, Clavaud C, Azouaoui A, Ott A, Gueniche A, Bouez C, Zheng Q, Aguilar L, Knight R, Moreau M, Song SJ. A multi-study analysis enables identification of potential microbial features associated with skin aging signs. FRONTIERS IN AGING 2024; 4:1304705. [PMID: 38362046 PMCID: PMC10868648 DOI: 10.3389/fragi.2023.1304705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 02/17/2024]
Abstract
Introduction: During adulthood, the skin microbiota can be relatively stable if environmental conditions are also stable, yet physiological changes of the skin with age may affect the skin microbiome and its function. The microbiome is an important factor to consider in aging since it constitutes most of the genes that are expressed on the human body. However, severity of specific aging signs (one of the parameters used to measure "apparent" age) and skin surface quality (e.g., texture, hydration, pH, sebum, etc.) may not be indicative of chronological age. For example, older individuals can have young looking skin (young apparent age) and young individuals can be of older apparent age. Methods: Here we aim to identify microbial taxa of interest associated to skin quality/aging signs using a multi-study analysis of 13 microbiome datasets consisting of 16S rRNA amplicon sequence data and paired skin clinical data from the face. Results: We show that there is a negative relationship between microbiome diversity and transepidermal water loss, and a positive association between microbiome diversity and age. Aligned with a tight link between age and wrinkles, we report a global positive association between microbiome diversity and Crow's feet wrinkles, but with this relationship varying significantly by sub-study. Finally, we identify taxa potentially associated with wrinkles, TEWL and corneometer measures. Discussion: These findings represent a key step towards understanding the implication of the skin microbiota in skin aging signs.
Collapse
Affiliation(s)
- Tyler Myers
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| | | | - Shi Huang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Shalisa T. Hansen
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | - Alban Ott
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | - Charbel Bouez
- L’Oréal Research and Innovation, Clark, NJ, United States
| | - Qian Zheng
- L’Oréal Research and Innovation, Clark, NJ, United States
| | - Luc Aguilar
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
- Shu Chien-Gene Lay Department of Engineering, University of California San Diego, La Jolla, CA, United States
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, United States
| | - Magali Moreau
- L’Oréal Research and Innovation, Clark, NJ, United States
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
26
|
Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus 2024; 16:e52548. [PMID: 38371024 PMCID: PMC10874500 DOI: 10.7759/cureus.52548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
In this narrative review, we sought to provide a comprehensive overview of the mechanisms underlying cutaneous senescence, framed by the twelve traditional hallmarks of aging. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. We also examined how topical interventions targeting these hallmarks can be integrated with conventional aesthetic medicine techniques to enhance skin rejuvenation. The potential of combining targeted topical therapies against the aging hallmarks with minimally invasive procedures represents a significant advancement in aesthetic medicine, offering personalized and effective strategies to combat skin aging. The reviewed evidence paves the way for future advancements and underscores the transformative potential of integrating scientifically validated interventions targeted against aging hallmarks into traditional aesthetic practices.
Collapse
|
27
|
Hülpüsch C, Rauer L, Nussbaumer T, Schwierzeck V, Bhattacharyya M, Erhart V, Traidl-Hoffmann C, Reiger M, Neumann AU. Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data. BMC Biol 2023; 21:269. [PMID: 37996810 PMCID: PMC10666409 DOI: 10.1186/s12915-023-01737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Microbiome analysis is becoming a standard component in many scientific studies, but also requires extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample composition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove contaminants using negative controls. RESULTS We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA amplicon sequencing datasets: three serially diluted mock communities (108-103 cells, 0.4-80% contamination) with even or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algorithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass samples (≤ 106 cells). We show that a correct decontamination benchmarking requires realistic staggered mock communities and unbiased evaluation measures such as Youden's index. In the skin dataset, the Decontam prevalence filter and MicrobIEM's ratio filter effectively reduced common contaminants while keeping skin-associated genera. CONCLUSIONS MicrobIEM's ratio filter for decontamination performs better or as good as established bioinformatic decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and supports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM is the first quality control tool for microbiome experts without coding experience.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Luise Rauer
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
| | - Thomas Nussbaumer
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
| | - Vera Schwierzeck
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
- Institute of Hygiene, University Hospital Muenster, Muenster, Germany
| | - Madhumita Bhattacharyya
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
| | - Veronika Erhart
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
| | - Avidan U Neumann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany.
| |
Collapse
|
28
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
29
|
Kurokawa R, Masuoka H, Takayasu L, Kiguchi Y, Ogata Y, Miura-Kawatsu R, Hattori M, Suda W. Recovery of microbial DNA by agar-containing solution from extremely low-biomass specimens including skin. Sci Rep 2023; 13:19666. [PMID: 37952000 PMCID: PMC10640576 DOI: 10.1038/s41598-023-46890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Recovering a sufficient amount of microbial DNA from extremely low-biomass specimens, such as human skin, to investigate the community structure of the microbiome remains challenging. We developed a sampling solution containing agar to increase the abundance of recovered microbial DNA. Quantitative PCR targeting the 16S rRNA gene revealed a significant increase in the amount of microbial DNA recovered from the developed sampling solution compared with conventional solutions from extremely low-biomass skin sites such as the volar forearm and antecubital fossa. In addition, we confirmed that the developed sampling solution reduces the contamination rate of probable non-skin microbes compared to the conventional solutions, indicating that the enhanced recovery of microbial DNA was accompanied by a reduced relative abundance of contaminating microbes in the 16S rRNA gene amplicon sequencing data. In addition, agar was added to each step of the DNA extraction process, which improved the DNA extraction efficiency as a co-precipitant. Enzymatic lysis with agar yielded more microbial DNA than conventional kits, indicating that this method is effective for analyzing microbiomes of low-biomass specimens.
Collapse
Affiliation(s)
- Rina Kurokawa
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Advanced Science and Engineering, Cooperative Major in Advanced Health Science, Waseda University, 3-4-1 Ohkubo Shinjuku-Ku, Tokyo, 169-8555, Japan
| | - Hiroaki Masuoka
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Lena Takayasu
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Human Ecology, The University of Tokyo, Tokyo, Japan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yuya Kiguchi
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yusuke Ogata
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryoko Miura-Kawatsu
- Division of Research and Development, Biogenomics, Co., Ltd, Nagasaki, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Advanced Science and Engineering, Cooperative Major in Advanced Health Science, Waseda University, 3-4-1 Ohkubo Shinjuku-Ku, Tokyo, 169-8555, Japan.
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
30
|
Jung Y, Cui HS, Lee EK, Joo SY, Seo CH, Cho YS. Effects of Factors Influencing Scar Formation on the Scar Microbiome in Patients with Burns. Int J Mol Sci 2023; 24:15991. [PMID: 37958976 PMCID: PMC10648024 DOI: 10.3390/ijms242115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Skin microbiome dysbiosis has deleterious effects, and the factors influencing burn scar formation, which affects the scar microbiome composition, are unknown. Therefore, we investigated the effects of various factors influencing scar formation on the scar microbiome composition in patients with burns. We collected samples from the burn scar center and margin of 40 patients with burns, subgrouped by factors influencing scar formation. Scar microbiome composition-influencing factors were analyzed using univariate and multivariate analyses. Skin graft, hospitalization period, intensive care unit (ICU) admission, burn degree, sex, age, total body surface area burned (TBSA), time post-injury, transepidermal water loss, the erythrocyte sedimentation rate, and C-reactive protein levels were identified as factors influencing burn scar microbiome composition. Only TBSA and ICU admission were associated with significant differences in alpha diversity. Alpha diversity significantly decreased with an increase in TBSA and was significantly lower in patients admitted to the ICU than in those not admitted to the ICU. Furthermore, we identified microorganisms associated with various explanatory variables. Our cross-sectional systems biology study confirmed that various variables influence the scar microbiome composition in patients with burns, each of which is associated with various microorganisms. Therefore, these factors should be considered during the application of skin microbiota for burn scar management.
Collapse
Affiliation(s)
- Yeongyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea; (Y.J.); (H.S.C.); (E.K.L.)
| | - Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea; (Y.J.); (H.S.C.); (E.K.L.)
| | - Eun Kyung Lee
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea; (Y.J.); (H.S.C.); (E.K.L.)
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea; (S.Y.J.); (C.H.S.)
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea; (S.Y.J.); (C.H.S.)
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea; (S.Y.J.); (C.H.S.)
| |
Collapse
|
31
|
Zhou W, Fleming E, Legendre G, Roux L, Latreille J, Gendronneau G, Forestier S, Oh J. Skin microbiome attributes associate with biophysical skin ageing. Exp Dermatol 2023; 32:1546-1556. [PMID: 37350224 PMCID: PMC11128091 DOI: 10.1111/exd.14863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/07/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Two major arms of skin ageing are changes in the skin's biophysical conditions and alterations in the skin microbiome. This work partitioned both arms to study their interaction in detail. Leveraging the resolution provided by shotgun metagenomics, we explored how skin microbial species, strains and gene content interact with the biophysical traits of the skin during ageing. With a dataset well-controlled for confounding factors, we found that skin biophysical traits, especially the collagen diffusion coefficient, are associated with the composition and the functional potential of the skin microbiome, including the abundance of bacterial strains found in nosocomial infections and the abundance of antibiotic resistance genes. Our findings reveal important associations between skin biophysical features and ageing-related changes in the skin microbiome and generate testable hypotheses for the mechanisms of such associations.
Collapse
Affiliation(s)
- Wei Zhou
- The Jackson Laboratory, Farmington CT, USA
| | | | | | - Lauriane Roux
- Biology and Clinical Department, Chanel F&B, Pantin, France
| | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington CT, USA
| |
Collapse
|
32
|
Jung Y, Cui HS, Joo SY, Lee EK, Seo CH, Cho YS. Sex differences in the skin microbiome of burn scars. Wound Repair Regen 2023; 31:547-558. [PMID: 37129034 DOI: 10.1111/wrr.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Sex differences are observed in various spectrums of skin diseases, and there are differences in wound healing rate. Herein, sex differences were identified for the newly healed skin microbiome of burn patients. Fifty-two skin samples (26 normal skin, 26 burn scars) were collected from 26 burn patients (12 male, 14 female) and microbiota analysis was performed. The correlation between skin microbiota and biomechanical properties of burn scars was also investigated. There were no significant differences in clinical characteristics between male and female patients. Considering the biomechanical properties of burn scars and normal skin around it performed before sample collection, the mean erythema level of men's normal skin was significantly higher than that of women, whereas the mean levels of melanin, transepidermal water loss and skin hydration showed no significant sex differences. The erythrocyte sedimentation rate was significantly higher in females than that in males. Alpha diversity showed no significant differences between normal skin and burn scars in the male group. However, the scar was significantly higher than that of normal skin in the female group. Microbial network analysis revealed that the male group had more complex microbial network than the female group. Additionally, in the male group, the edge density and clustering coefficient were higher in burn scars when compared to normal skin, than the female group. There were sex differences in the results of microbiome of normal skin and burn scars. Some of the altered microbiota have been correlated with the biomechanical properties of burn scars. In conclusion, sex difference in the burn scar microbiome was confirmed. These results suggest that burn treatment strategies should vary with sex.
Collapse
Affiliation(s)
- Yeongyun Jung
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hui Song Cui
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Lee
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Murphy B, Hoptroff M, Arnold D, Cawley A, Smith E, Adams SE, Mitchell A, Horsburgh MJ, Hunt J, Dasgupta B, Ghatlia N, Samaras S, MacGuire-Flanagan A, Sharma K. Compositional Variations between Adult and Infant Skin Microbiome: An Update. Microorganisms 2023; 11:1484. [PMID: 37374986 DOI: 10.3390/microorganisms11061484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Human skin and its commensal microbiome form the first layer of protection to the outside world. A dynamic microbial ecosystem of bacteria, fungi and viruses, with the potential to respond to external insult, the skin microbiome has been shown to evolve over the life course with an alteration in taxonomic composition responding to altered microenvironmental conditions on human skin. This work sought to investigate the taxonomic, diversity and functional differences between infant and adult leg skin microbiomes. A 16S rRNA gene-based metataxonomic analysis revealed significant differences between the infant and adult skin groups, highlighting differential microbiome profiles at both the genus and species level. Diversity analysis reveals differences in the overall community structure and associated differential predicted functional profiles between the infant and adult skin microbiome suggest differing metabolic processes are present between the groups. These data add to the available information on the dynamic nature of skin microbiome during the life course and highlight the predicted differential microbial metabolic process that exists on infant and adult skin, which may have an impact on the future design and use of cosmetic products that are produced to work in consort with the skin microbiome.
Collapse
Affiliation(s)
- Barry Murphy
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | - David Arnold
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | - Andrew Cawley
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | - Emily Smith
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | - Suzanne E Adams
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | - Alex Mitchell
- Eagle Genomics, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
| | - Malcolm J Horsburgh
- Institute of Infection Biology, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Joanne Hunt
- Unilever Research & Development, Port Sunlight, Bebington, Wirral CH63 3JW, UK
| | | | | | | | | | - Kirti Sharma
- Unilever, North Rocks Road, North Rocks, NSW 2151, Australia
| |
Collapse
|
34
|
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. MLIFE 2023; 2:107-120. [PMID: 38817619 PMCID: PMC10989898 DOI: 10.1002/mlf2.12064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2024]
Abstract
As the largest organ of the body, the skin acts as a barrier to prevent diseases and harbors a variety of beneficial bacteria. Furthermore, the skin bacterial microbiota plays a vital role in health and disease. Disruption of the barrier or an imbalance between symbionts and pathogens can lead to skin disorders or even systemic diseases. In this review, we first provide an overview of research on skin bacterial microbiota and human health, including the composition of skin bacteria in a healthy state, as well as skin bacterial microbiota educating the immune system and preventing the invasion of pathogens. We then discuss the diseases that result from skin microbial dysbiosis, including atopic dermatitis, common acne, chronic wounds, psoriasis, viral transmission, cutaneous lupus, cutaneous lymphoma, and hidradenitis suppurativa. Finally, we highlight the progress that utilizes skin microorganisms for disease therapeutics, such as bacteriotherapy and skin microbiome transplantation. A deeper knowledge of the interaction between human health and disease and the homeostasis of the skin bacterial microbiota will lead to new insights and strategies for exploiting skin bacteria as a novel therapeutic target.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Xi Yu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Gong Cheng
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| |
Collapse
|
35
|
Leung MHY, Tong X, Shen Z, Du S, Bastien P, Appenzeller BMR, Betts RJ, Mezzache S, Bourokba N, Cavusoglu N, Aguilar L, Misra N, Clavaud C, Lee PKH. Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. MICROBIOME 2023; 11:124. [PMID: 37264459 DOI: 10.1186/s40168-023-01564-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The effects of air pollutants, particularly polycyclic aromatic hydrocarbons (PAHs), on the skin microbiome remain poorly understood. Thus, to better understand the interplay between air pollutants, microbiomes, and skin conditions, we applied metagenomics and metabolomics to analyze the effects of PAHs in air pollution on the skin microbiomes of over 120 subjects residing in two cities in China with different levels of air pollution. RESULTS The skin microbiomes differentiated into two cutotypes (termed 1 and 2) with distinct taxonomic, functional, resistome, and metabolite compositions as well as skin phenotypes that transcended geography and host factors. High PAH exposure was linked to dry skin and cutotype 2, which was enriched with species with potential biodegradation functions and had reduced correlation network structure integrity. The positive correlations identified between dominant taxa, key functional genes, and metabolites in the arginine biosynthesis pathway in cutotype 1 suggest that arginine from bacteria contributes to the synthesis of filaggrin-derived natural moisturizing factors (NMFs), which provide hydration for the skin, and could explain the normal skin phenotype observed. In contrast, no correlation with the arginine biosynthesis pathway was observed in cutotype 2, which indicates the limited hydration functions of NMFs and explains the observed dry skin phenotype. In addition to dryness, skin associated with cutotype 2 appeared prone to other adverse conditions such as inflammation. CONCLUSIONS This study revealed the roles of PAHs in driving skin microbiome differentiation into cutotypes that vary extensively in taxonomy and metabolic functions and may subsequently lead to variations in skin-microbe interactions that affect host skin health. An improved understanding of the roles of microbiomes on skin exposed to air pollutants can aid the development of strategies that harness microbes to prevent undesirable skin conditions. Video Abstract.
Collapse
Affiliation(s)
- Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Shicong Du
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | | | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | | | | | | | - Luc Aguilar
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Namita Misra
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Cécile Clavaud
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
36
|
De Almeida CV, Antiga E, Lulli M. Oral and Topical Probiotics and Postbiotics in Skincare and Dermatological Therapy: A Concise Review. Microorganisms 2023; 11:1420. [PMID: 37374920 DOI: 10.3390/microorganisms11061420] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The skin microbiota is a pivotal contributor to the maintenance of skin homeostasis by protecting it from harmful pathogens and regulating the immune system. An imbalance in the skin microbiota can lead to pathological conditions such as eczema, psoriasis, and acne. The balance of the skin microbiota components can be disrupted by different elements and dynamics such as changes in pH levels, exposure to environmental toxins, and the use of certain skincare products. Some research suggests that certain probiotic strains and their metabolites (postbiotics) may provide benefits such as improving the skin barrier function, reducing inflammation, and improving the appearance of acne-prone or eczema-prone skin. Consequently, in recent years probiotics and postbiotics have become a popular ingredient in skincare products. Moreover, it was demonstrated that skin health can be influenced by the skin-gut axis, and imbalances in the gut microbiome caused by poor diet, stress, or the use of antibiotics can lead to skin conditions. In this way, products that improve gut microbiota balance have been gaining attention from cosmetic and pharmaceutical companies. The present review will focus on the crosstalk between the SM and the host, and its effects on health and diseases.
Collapse
Affiliation(s)
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
37
|
Landemaine L, Da Costa G, Fissier E, Francis C, Morand S, Verbeke J, Michel ML, Briandet R, Sokol H, Gueniche A, Bernard D, Chatel JM, Aguilar L, Langella P, Clavaud C, Richard ML. Staphylococcus epidermidis isolates from atopic or healthy skin have opposite effect on skin cells: potential implication of the AHR pathway modulation. Front Immunol 2023; 14:1098160. [PMID: 37304256 PMCID: PMC10250813 DOI: 10.3389/fimmu.2023.1098160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Staphylococcus epidermidis is a commensal bacterium ubiquitously present on human skin. This species is considered as a key member of the healthy skin microbiota, involved in the defense against pathogens, modulating the immune system, and involved in wound repair. Simultaneously, S. epidermidis is the second cause of nosocomial infections and an overgrowth of S. epidermidis has been described in skin disorders such as atopic dermatitis. Diverse isolates of S. epidermidis co-exist on the skin. Elucidating the genetic and phenotypic specificities of these species in skin health and disease is key to better understand their role in various skin conditions. Additionally, the exact mechanisms by which commensals interact with host cells is partially understood. We hypothesized that S. epidermidis isolates identified from different skin origins could play distinct roles on skin differentiation and that these effects could be mediated by the aryl hydrocarbon receptor (AhR) pathway. Methods For this purpose, a library of 12 strains originated from healthy skin (non-hyperseborrheic (NH) and hyperseborrheic (H) skin types) and disease skin (atopic (AD) skin type) was characterized at the genomic and phenotypic levels. Results and discussion Here we showed that strains from atopic lesional skin alter the epidermis structure of a 3D reconstructed skin model whereas strains from NH healthy skin do not. All strains from NH healthy skin induced AhR/OVOL1 path and produced high quantities of indole metabolites in co-culture with NHEK; especially indole-3-aldehyde (IAld) and indole-3-lactic acid (ILA); while AD strains did not induce AhR/OVOL1 path but its inhibitor STAT6 and produced the lowest levels of indoles as compared to the other strains. As a consequence, strains from AD skin altered the differentiation markers FLG and DSG1. The results presented here, on a library of 12 strains, showed that S. epidermidis originated from NH healthy skin and atopic skin have opposite effects on the epidermal cohesion and structure and that these differences could be linked to their capacity to produce metabolites, which in turn could activate AHR pathway. Our results on a specific library of strains provide new insights into how S. epidermidis may interact with the skin to promote health or disease.
Collapse
Affiliation(s)
- Leslie Landemaine
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Gregory Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Elsa Fissier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Carine Francis
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | | | - Marie-Laure Michel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Harry Sokol
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | - Jean-Marc Chatel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Luc Aguilar
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Cecile Clavaud
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Mathias L. Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| |
Collapse
|
38
|
Umehara Y, Aoyagi H. Development of a simple cultured cell-anaerobic microbial co-culture system using liquid paraffin. J Biosci Bioeng 2023; 135:487-492. [PMID: 37069015 DOI: 10.1016/j.jbiosc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Conventional co-culture systems are complicated, lack versatility, and do not adequately replicate the intestinal lumen environment. This study aimed to devise a system that allows for (i) arbitrary sampling of the culture medium, (ii) monitoring the growth of co-cultured cells, (iii) aerobic-anaerobic co-culture, (iv) simple operation, and (v) evaluation of multiple samples. We built a simple cell-anaerobic microorganism co-culture system using liquid paraffin to separate growth spaces for aerobic cells and anaerobic bacteria. Mineral oil was added to the top of the anaerobic bacterial cultivation space to seal the space and reduce gas exchange. Co-culture of anaerobic, Bifidobacterium bifidum and aerobic, epithelial Madin-Darby canine kidney (MDCK) cells demonstrated that the barrier function and viability of co-cultured MDCK cells were comparable to those of a pure MDCK culture after 24 h, and the growth curve of co-cultured B. bifidum was similar to that of pure B. bifidum. Furthermore, the growth of B. bifidum pure culture under sealed conditions was approximately 1.5 times greater than that under non-sealed conditions at 24 h. Glucose consumption at 24 h of co-culture under sealed conditions was 10%-15% higher than that under non-sealed conditions. This highly versatile culture method enabled the quantitative characterisation of B. bifidum and MDCK cells upon co-culture. The newly established co-culture system could be applied to various aerobic cell-anaerobic bacteria co-culture which will provide a strategy for basic and applied research on host-microbe interactions.
Collapse
Affiliation(s)
- Yoshihiro Umehara
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideki Aoyagi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
39
|
The dynamic balance of the skin microbiome across the lifespan. Biochem Soc Trans 2023; 51:71-86. [PMID: 36606709 PMCID: PMC9988004 DOI: 10.1042/bst20220216] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
For decades research has centered on identifying the ideal balanced skin microbiome that prevents disease and on developing therapeutics to foster this balance. However, this single idealized balance may not exist. The skin microbiome changes across the lifespan. This is reflected in the dynamic shifts of the skin microbiome's diverse, inter-connected community of microorganisms with age. While there are core skin microbial taxa, the precise community composition for any individual person is determined by local skin physiology, genetics, microbe-host interactions, and microbe-microbe interactions. As a key interface with the environment, the skin surface and its appendages are also constantly exchanging microbes with close personal contacts and the environment. Hormone fluctuations and immune system maturation also drive age-dependent changes in skin physiology that support different microbial community structures over time. Here, we review recent insights into the factors that shape the skin microbiome throughout life. Collectively, the works summarized within this review highlight how, depending on where we are in lifespan, our skin supports robust microbial communities, while still maintaining microbial features unique to us. This review will also highlight how disruptions to this dynamic microbial balance can influence risk for dermatological diseases as well as impact lifelong health.
Collapse
|
40
|
Kim J, Lee YI, Mun S, Jeong J, Lee DG, Kim M, Jo H, Lee S, Han K, Lee JH. Efficacy and Safety of Epidermidibacterium Keratini EPI-7 Derived Postbiotics in Skin Aging: A Prospective Clinical Study. Int J Mol Sci 2023; 24:4634. [PMID: 36902064 PMCID: PMC10003698 DOI: 10.3390/ijms24054634] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The present study investigated the effect of topical application of Epidermidibacterium Keratini (EPI-7) ferment filtrate, which is a postbiotic product of a novel actinobacteria, on skin aging, by performing a prospective randomized split-face clinical study on Asian woman participants. The investigators measured skin biophysical parameters, including skin barrier function, elasticity, and dermal density, and revealed that the application of the EPI-7 ferment filtrate-including test product resulted in significantly higher improvements in barrier function, skin elasticity, and dermal density compared to the placebo group. This study also investigated the influence of EPI-7 ferment filtrate on skin microbiome diversity to access its potential beneficial effects and safety. EPI-7 ferment filtrate increased the abundance of commensal microbes belonging to Cutibacterium, Staphylococcus, Corynebacterium, Streptococcus, Lawsonella, Clostridium, Rothia, Lactobacillus, and Prevotella. The abundance of Cutibacterium was significantly increased along with significant changes in Clostridium and Prevotella abundance. Therefore, EPI-7 postbiotics, which contain the metabolite called orotic acid, ameliorate the skin microbiota linked with the aging phenotype of the skin. This study provides preliminary evidence that postbiotic therapy may affect the signs of skin aging and microbial diversity. To confirm the positive effect of EPI-7 postbiotics and microbial interaction, additional clinical investigations and functional analyses are required.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| | - Seyoung Mun
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Dong-Geol Lee
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- R&I Center, COSMAX BTI, Seongnam 13486, Republic of Korea
| | - Misun Kim
- R&I Center, COSMAX BTI, Seongnam 13486, Republic of Korea
| | - HyungWoo Jo
- R&I Center, COSMAX BTI, Seongnam 13486, Republic of Korea
| | - Sieun Lee
- Global Medical Research Center, Seoul 06526, Republic of Korea
| | - Kyudong Han
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
41
|
Russo E, Di Gloria L, Cerboneschi M, Smeazzetto S, Baruzzi GP, Romano F, Ramazzotti M, Amedei A. Facial Skin Microbiome: Aging-Related Changes and Exploratory Functional Associations with Host Genetic Factors, a Pilot Study. Biomedicines 2023; 11:684. [PMID: 36979663 PMCID: PMC10045008 DOI: 10.3390/biomedicines11030684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In this exploratory study, we investigate the variation in the facial skin microbiome architecture through aging and their functional association with host genetic factors in a cohort of healthy women, living in the same area and without cutaneous diseases. Notably, facial skin microbiota (SM) samples were collected from a cohort of 15 healthy Caucasian females, firstly divided into three age groups (younger women aged 20-35 years old; middle aged women of 36-52 years old; and older women aged 53-68 years old). Then, the recruited cohort was divided into two groups based on their facial hydration level (dry and normal skin). The facial SM revealed a different composition in the three analyzed aging groups and between normal and dry skins. The middle-aged women also revealed functional variations associated with collagen biosynthesis and oxidative stress damage repair. Otherwise, the association between selected host SNPs (single nucleotide polymorphisms) and the facial SM profile showed significant associations, suggesting a negative correlation with collagen metabolism and ROS damage protection. Finally, the composition and functionality of the facial SM seemed to affect the aging process through the two aging-correlated pathways of host ROS damage repair and collagen metabolism. Our exploratory data could be useful for future studies characterizing the structure, function, and dynamics of the SM in the aging process to design personalized therapeutic agents focusing on potential genomic targets, microbes, and their metabolites.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, 50134 Florence, Italy
| | | | | | | | - Francesca Romano
- Department of General Laboratory, Careggi University Hospital, 50134 Firenze, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
42
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
43
|
Ma L, Niu Y, Yuan C, Bai T, Yang S, Wang M, Li Y, Shao L. The Characteristics of the Skin Physiological Parameters and Facial Microbiome of "Ideal Skin" in Shanghai Women. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:325-337. [PMID: 36762256 PMCID: PMC9904309 DOI: 10.2147/ccid.s400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Purpose Everyone pursues perfect skin, but there exist significant differences between cultures, and no commonly accepted standards have been established. Therefore, our study attempted to define the "ideal skin" of oriental women and analyze the relationship between different skin physiological parameters and microbiomes. Patients and Methods Based on our customized grading standard, the VISIA CR photos of 111 young women aged from 18 to 25 in Shanghai were collected and scored by the severity of pores, acne, spots, and wrinkles. The volunteers were then divided into "ideal skin" (W1), "normal skin" (W2), and "undesirable skin" (W3) groups. The physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiome was analyzed by 16S rRNA and ITS high-throughput sequencing. Results From "ideal skin" to "undesirable skin", the skin physiological parameters, α-diversity, and composition of the facial microbiome showed noticeable regular changes. Compared with the "normal skin" (W2) and "undesirable skin" (W3), the "ideal skin" (W1) group had lower sebum content, TEWL, melanin, hemoglobin, and roughness but higher hydration content and skin pH value. Furthermore, the Shannon index of skin bacteria was significantly increased in W1 (P = 0.004), suggesting that the ideal skin had higher species diversity. From W1 to W3, the species composition was changed significantly. The abundance of Actinobacteria was increased, while Proteobacteria and Bacteroidetes were decreased. Correspondingly, the abundances of lipophilic Propionibacterium and Malassezia were increased, while the abundances of Stenotrophomonas, Pseudomonas, Ralstonia, and Streptococcus, were significantly decreased. Additionally, Spearman correlation analysis revealed strong correlations between the physiological parameters and the microbiota. Notably, the Shannon index of skin bacteria was significantly positively correlated with skin hydration (P = 0.03) but negatively correlated with the abundance of Cutibacterium (P = 0.000), hemoglobin content (P = 0.025), and sebum content (P = 0.5). Therefore, the skin hydration content and the abundance of Cutibacterium played an important role in maintaining the α-diversity and skin homeostasis. Conclusion Ideal skin had better water-oil balance and barrier function, higher microbial diversity, and more reasonable species distribution. Therefore, daily skincare needs to control skin oil and maintain skin microecological balance to achieve ideal skin conditions for young women aged 18-25 years old.
Collapse
Affiliation(s)
- Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Yujie Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Chunying Yuan
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China
| | - Tianming Bai
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, People’s Republic of China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, People’s Republic of China,Yan Li, R&D Innovation Center, Shandong Freda Biotech Co., Ltd, No. 888, Xinluo Street, Lixia District, Jinan, Shandong, 250101, People’s Republic of China, Email
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China,Correspondence: Li Shao, School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100, Haiquan Road, Fengxian District, Shanghai, 201418, People’s Republic of China, Email
| |
Collapse
|
44
|
Batten TJ, Gallacher S, Thomas WJ, Kitson J, Smith CD. C.acnes in the joint, is it all just a false positive? EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:315-320. [PMID: 35031853 DOI: 10.1007/s00590-021-03186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cutibacterium Acnes (C.acnes) has been linked to several shoulder pathologies. An alternative hypothesis suggests it only occurs in the joint secondary to previous instrumentation. Our hypothesis was patients with previous instrumentation would have C.acnes in their joint if it was in skin. MATERIALS AND METHODS Sixty-six patients undergoing arthroscopic shoulder surgery had biopsies taken from the affected joint at the time of surgery, along with control biopsies of subdermal fat. The extended culture results were assessed and correlated to previous intervention. RESULTS 35% tested positive for C.acnes in their joint. 78% were male. 53% had absence of C.acnes in both skin and joint and 29% had presence in both (p = 0.0001). 15% with previous surgery had C.acnes. 53% with previous injection had C.acnes. 25% of patients with virgin joints had C.acnes. There was no statistical difference in the presence of C.acnes in the joint between those with previous instrumentation and without. CONCLUSION The significant factors for joint C.acnes were male sex and the presence of the bacteria in the fat. Previous instrumentation was not correlated with C.acnes in the joint. This raises the question of whether the process of biopsy itself may lead to inoculation of the joint.
Collapse
Affiliation(s)
- Timothy J Batten
- Department of Trauma and Orthopaedics, Princess Elizabeth Orthopaedic Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.
| | - Sian Gallacher
- Department of Trauma and Orthopaedics, Princess Elizabeth Orthopaedic Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - William J Thomas
- Department of Trauma and Orthopaedics, Princess Elizabeth Orthopaedic Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Jeffrey Kitson
- Department of Trauma and Orthopaedics, Princess Elizabeth Orthopaedic Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Christopher D Smith
- Department of Trauma and Orthopaedics, Princess Elizabeth Orthopaedic Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
45
|
Woolery-Lloyd H, Andriessen A, Day D, Gonzalez N, Green L, Grice E, Henry M. Review of the microbiome in skin aging and the effect of a topical prebiotic containing thermal spring water. J Cosmet Dermatol 2023; 22:96-102. [PMID: 36239004 DOI: 10.1111/jocd.15464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Interest in the skin microbiome and the cosmetic benefits of probiotics, prebiotics, and postbiotics is increasing. AIM The current review explores the influence of the skin microbiome on facial skin aging and the effects of oral and topical probiotics, prebiotics, and postbiotics use on skin aging and cosmetic outcomes. METHODS Five dermatologists who treat clinical signs of facial skin aging and a microbiome scientist (advisors) explored the relationship between the skin microbiome and skin aging. Published evidence and the advisors' knowledge lead to guidance on the skin microbiome using oral and topical prebiotics, probiotics, and postbiotics to reduce signs of aging. RESULTS The role of the microbiome in aging skin is an emerging concept. A diverse skin microbiome is essential for skin health. Preliminary studies suggest oral probiotics and prebiotics may play a role in reducing signs of skin aging, likely through shifting to a greater skin and gut microbiome diversity. Thermal spring water contains probiotics and prebiotics. Preliminary studies suggest topically applied probiotics, prebiotics, and postbiotics may improve signs of skin aging, including a reduction in fine lines and increased hydration. CONCLUSIONS The panel agreed that oral and topical prebiotics, probiotics, and postbiotics may play a role in improving signs of aging by improving the skin microbiome. Larger studies with more prolonged treatment trials are needed to better understand the microbiome's role in skin aging and the possible benefits of prebiotics, probiotics, and postbiotics use.
Collapse
Affiliation(s)
- Heather Woolery-Lloyd
- Skin of Color Division Dr Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami, Miller School of Medicine Miami, Miami, Florida, USA
| | - Anneke Andriessen
- Radboud UMC Nijmegen, Andriessen Consultants, Malden, The Netherlands
| | - Doris Day
- NYU Langone Health, New York, New York, USA
| | | | - Lawrence Green
- Dermatology, George Washington University School of Medicine, Diplomate, American Board of Dermatology, Member, Board of Directors, American Academy of Dermatology, Past President, Montgomery County Medical Society, Rockville, Maryland, USA
| | - Elizabeth Grice
- Sandra J. Lazarus Dermatology and Microbiology, Basic Science Research, Department of Dermatology, Penn Skin Biology & Diseases Resource-based Center, Microbiology, Virology, & Parasitology Graduate Group University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Henry
- Skin & Aesthetic Surgery of Manhattan, Manhattan, New York, USA
| |
Collapse
|
46
|
Ishizawa S, Nishi A, Kaifuchi N, Shimobori C, Nahata M, Yamada C, Iizuka S, Ohbuchi K, Nishiyama M, Fujitsuka N, Kono T, Yamamoto M. Integrated analysis of effect of daisaikoto, a traditional Japanese medicine, on the metabolome and gut microbiome in a mouse model of nonalcoholic fatty liver disease. Gene X 2022; 846:146856. [PMID: 36067864 DOI: 10.1016/j.gene.2022.146856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022] Open
Abstract
Dysregulation of lipid metabolism and diabetes are risk factors for nonalcoholic fatty liver disease (NAFLD), and the gut-liver axis and intestinal microbiome are known to be highly associated with the pathogenesis of this disease. In Japan, the traditional medicine daisaikoto (DST) is prescribed for individuals affected by hepatic dysfunction. Herein, we evaluated the therapeutic potential of DST for treating NAFLD through modification of the liver and stool metabolome and microbiome by using STAM mice as a model of NAFLD. STAM mice were fed a high-fat diet with or without 3 % DST for 3 weeks. Plasma and liver of STAM, STAM with DST, and C57BL/6J ("Normal") mice were collected at 9 weeks, and stools at 4, 6, and 9 weeks of age. The liver pathology, metabolome and stool microbiome were analyzed. DST ameliorated the NAFLD activity score of STAM mice and decreased the levels of several liver lipid mediators such as arachidonic acid and its derivatives. In normal mice, nine kinds of family accounted for 94.1 % of microbiome composition; the total percentage of these family was significantly decreased in STAM mice (45.6 %), and DST administration improved this imbalance in microbiome composition (65.2 %). In stool samples, DST increased ursodeoxycholic acid content and altered several amino acids, which were correlated with changes in the gut microbiome and liver metabolites. In summary, DST ameliorates NAFLD by decreasing arachidonic acid metabolism in the liver; this amelioration seems to be associated with crosstalk among components of the liver, intestinal environment, and microbiome.
Collapse
Affiliation(s)
- Shiori Ishizawa
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Akinori Nishi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan.
| | - Noriko Kaifuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Chika Shimobori
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Chihiro Yamada
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Seiichi Iizuka
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Mitsue Nishiyama
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| | - Toru Kono
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Masahiro Yamamoto
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ami, Ibaraki 300-1192, Japan
| |
Collapse
|
47
|
Jung DR, Yoo HY, Kim MJ, Singh V, Park SH, Jeong M, Park BJ, Shin JH. Comparative analysis of scalp and gut microbiome in androgenetic alopecia: A Korean cross-sectional study. Front Microbiol 2022; 13:1076242. [PMID: 36578576 PMCID: PMC9791053 DOI: 10.3389/fmicb.2022.1076242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Androgenetic alopecia (AGA) is a non-scarring and progressive form of hair loss occurring in both men and women. Although genetic predisposition and sex steroid hormones are the main causes, many factors remain unknown, and various extrinsic factors can negatively affect the lifespan of hair. We investigated skin-gut axis microorganisms as potential exogenous factors causing AGA, through comparative analyses of the scalp and gut microbiome in individuals with and without AGA in a Korean cohort. Using 16S rRNA gene sequencing, we characterized the scalp and gut microbiomes of 141 individuals divided into groups by sex and presence of AGA. Alpha diversity indices in the scalp microbiome were generally higher in individuals with AGA than in healthy controls. These indices showed a strong negative correlation with scalp-inhabitant bacteria (Cutibacterium and Staphylococcus), indicating that the appearance of non-inhabitant bacteria increases as hair loss progresses. No significant differences in diversity were observed between the gut microbiomes. However, bacterial functional differences, such as bile acid synthesis and bacterial invasion of epithelial cells, which are related to intestinal homeostasis, were observed. The networks of the scalp and gut microbiome were more complex and denser with higher values of the network topology statistic coefficient values (i.e., transitivity, density, and degree centrality) and more unique associations in individuals with AGA than in healthy controls. Our findings reveal a link between skin-gut microorganisms and AGA, indicating the former's potential involvement in the latter's development. Additionally, these results provide evidence for the development of cosmetics and therapeutics using microorganisms and metabolites involved in AGA.
Collapse
Affiliation(s)
- Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Hye-Young Yoo
- Skin and Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, South Korea
| | - Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sung-Ha Park
- Skin and Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, South Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byoung-Jun Park
- Skin and Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, South Korea,*Correspondence: Byoung-Jun Park,
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea,Department of Integrative Biotechnology, Kyungpook National University, Daegu, South Korea,NGS Core Facility, Kyungpook National University, Daegu, South Korea,Jae-Ho Shin,
| |
Collapse
|
48
|
Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 2022; 20:707-720. [PMID: 35906422 DOI: 10.1038/s41579-022-00768-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Associations between age and the human microbiota are robust and reproducible. The microbial composition at several body sites can predict human chronological age relatively accurately. Although it is largely unknown why specific microorganisms are more abundant at certain ages, human microbiota research has elucidated a series of microbial community transformations that occur between birth and death. In this Review, we explore microbial succession in the healthy human microbiota from the cradle to the grave. We discuss the stages from primary succession at birth, to disruptions by disease or antibiotic use, to microbial expansion at death. We address how these successions differ by body site and by domain (bacteria, fungi or viruses). We also review experimental tools that microbiota researchers use to conduct this work. Finally, we discuss future directions for studying the microbiota's relationship with age, including designing consistent, well-powered, longitudinal studies, performing robust statistical analyses and improving characterization of non-bacterial microorganisms.
Collapse
Affiliation(s)
- Cameron Martino
- Department of Paediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Hazel Dilmore
- Department of Paediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
| | - Zachary M Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dilip Jeste
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Paediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Webster SE, Vos D, Rothstein TL, Holodick NE. Modulation of microbiome diversity and cytokine expression is influenced in a sex-dependent manner during aging. FRONTIERS IN MICROBIOMES 2022; 1:994464. [PMID: 37426084 PMCID: PMC10328149 DOI: 10.3389/frmbi.2022.994464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The microbiome and immune system have a unique interplay, which influences homeostasis within the organism. Both the microbiome and immune system play important roles in health and diseases of the aged including development of cancer, autoimmune disorders, and susceptibility to infection. Various groups have demonstrated divergent changes in the gut microbiota during aging, yet the compounding factor of biological sex within the context of aging remains incompletely understood, and little is known about the effect of housing location in the composition of gut microbiota in the context of both sex and age. To better understand the roles of sex, aging, and location in influencing the gut microbiome, we obtained normal healthy BALB/cByJ mice from a single source and aged male and female mice in two different geographical locations. The 16S rRNA was analyzed from fecal samples of these mice and cytokine levels were measured from serum.16S rRNA microbiome analysis indicated that both age and sex play a role in microbiome composition, whereas location plays a lesser role in the diversity present. Interestingly, microbiome changes occurred with alterations in serum expression of several different cytokines including IL-10 and IL-6, which were also both differentially regulated in context to sex and aging. We found both IL-10 and IL-6 play a role in the constitutive expression of pSTAT-3 in CD5+ B-1 cells, which are known to regulate the microbiome. Additionally, significant correlations were found between cytokine expression and significantly abundant microbes. Based on these results, we conclude aging mice undergo sex-associated alterations in the gut microbiome and have a distinct cytokine profile. Further, there is significant interplay between B-1 cells and the microbiome which is influenced by aging in a sex-dependent manner. Together, these results illustrate the complex interrelationship among sex, aging, immunity, housing location, and the gut microbiome.
Collapse
Affiliation(s)
- Sarah E. Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Duncan Vos
- Division of Epidemiology and Biostatics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L. Rothstein
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Nichol E. Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
50
|
Acne Vulgaris, Atopic Dermatitis and Rosacea: The Role of the Skin Microbiota-A Review. Biomedicines 2022; 10:biomedicines10102523. [PMID: 36289784 PMCID: PMC9599554 DOI: 10.3390/biomedicines10102523] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The skin harbors a huge number of different microorganisms such as bacteria, fungi and viruses, and it acts as a protective shield to prevent the invasion of pathogens and to maintain the health of the commensal microbiota. Several studies, in fact, have shown the importance of the skin microbiota for healthy skin. However, this balance can be altered by intrinsic and extrinsic factors, leading to the development of skin disease, such as acne vulgaris (AV), atopic dermatitis (AD) and rosacea(RS). Although these diseases are widespread and affect both adolescents and adults, the scientific correlation between these disorders and the skin microbiota and physiological parameters (TEWL, hydration and lipid composition) is still unclear. This review aims to investigate the current literature regarding the correlation between the skin microbiota and its imbalance underlying microbiological aspects, how the skin microbiota changes over the course of the disease and the current possible treatments. The following reported studies show a general imbalance of the bacterial flora. For this reason, more in-depth studies are necessary to explore the different subspecies and strains involved in all three diseases.
Collapse
|