1
|
Salvatore MM, Maione A, Buonanno A, Guida M, Andolfi A, Salvatore F, Galdiero E. Biological activities, biosynthetic capacity and metabolic interactions of lactic acid bacteria and yeast strains from traditional home-made kefir. Food Chem 2025; 470:142657. [PMID: 39756085 DOI: 10.1016/j.foodchem.2024.142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Given the widespread industrial and domestic use of probiotic blends based on combinations of lactic acid bacteria (LAB) and yeasts to produce fermented foods or beverages that are supposed to provide health benefits, this study aimed to generate knowledge and concepts on biologically relevant activities, metabolism and metabolic interactions in yeast/LAB communities. For this, the postbiotic capabilities of three probiotic candidates, including two lactic acid bacteria (i.e., Lactococcus lactis subsp. hordniae and Lactococcus lactis subsp. lactis) and the yeast Pichia kudriavzevii, isolated from a traditional home-made kefir, were explored combining an assortment of bioassays with a GC-MS footprint metabolomic strategy. Cell-free supernatants from cultures showed antimicrobial/antioxidant activity and inhibited biofilm formation by Salmonella sp. Several bioactive secondary metabolites (including tyrosol, phenylethyl alcohol, 2,3-butanediol, erythritol, tryptophol, putrescine, cadaverine, 3-phenyllactate, 2-hydroxyisocaproate) were detected which may contribute to the odor and flavour of the fermented products and their effects on human body.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Angela Maione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Annalisa Buonanno
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, (NA), Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, (NA), Italy
| | - Francesco Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
2
|
Xie R, Wu X, Hu J, Chen W, Zhao K, Li H, Chen L, Du H, Liu Y, Zhang J. Insights into the Metabolite Differentiation Mechanism Between Chinese Dry-Cured Fatty Ham and Lean Ham Through UPLC-MS/MS-Based Untargeted Metabolomics. Foods 2025; 14:505. [PMID: 39942098 PMCID: PMC11816373 DOI: 10.3390/foods14030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
To understand the impact and mechanism of removing fat and skin tissue on the nutritional metabolism of Chinese dry cured ham, the differential metabolites (DMs) profile between lean ham (LH) and fatty ham (FH) was explored though untargeted metabolomics based on UPLC-MS/MS. The results showed significant differences of the metabolite profiles between FH and LH. A total of 450 defined metabolites were detected, and 266 metabolites among them had significantly different abundances between the two hams, mainly including organic acids and derivatives, and lipids and lipid-like molecules, as well as organoheterocyclic compounds. Furthermore, 131 metabolites were identified as DMs, among which 101 and 30 DMs showed remarkably higher contents in FH and LH, respectively. The further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that DMs can be mostly enriched in the pathways of ABC transporters, amino acid biosynthesis, protein digestion and absorption, aminoacyl-tRNA biosynthesis, and 2-oxocarboxylic acid metabolism. Moreover, the metabolic network of DMs revealed that the prominent DMs in FH, such as 9(S)-HODE, 9,10-EpOME, 13-Oxo-ODE, L-palmitoyl carnitine, and D-fructose, were primarily involved in the endogenous oxidation and degradation of fat and glycogen. Nevertheless, the dominant DMs in LH, such as 2-isopropylmalic acid, indolelactic acid, and hydroxyisocaproic acid, were mainly the microbial metabolites of amino acids and derivates. These findings could help us understand how fat-deficiency affects the nutritional metabolism of Chinese dry-cured hams from a metabolic perspective.
Collapse
Affiliation(s)
- Ruoyu Xie
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Xiaoli Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Jun Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Wenxuan Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Ke Zhao
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Huanhuan Li
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Lihong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Jin Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| |
Collapse
|
3
|
Zhao Y, Liu R, Mu Y, Lv M, Xing J, Zheng L, Aihaiti A, Wang L. Study on the Mechanisms of Flavor Compound Changes During the Lactic Fermentation Process of Peach and Apricot Mixed Juice. Foods 2024; 13:3835. [PMID: 39682906 DOI: 10.3390/foods13233835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This study employed headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and liquid chromatography-mass spectrometry (LC-MS) for non-targeted metabolomics analyses to examine the impact of mixed fermentation with various lactic acid bacteria (LAB) on the flavor compounds and metabolites of peach and apricot mixed juice (PAMJ), specifically focusing on the alterations of volatile compounds and non-volatile metabolites, as well as their metabolic pathways during the fermentation process. A total of 185 volatiles were identified using HS-SPME-GC-MS analysis, revealing significant differential metabolites, including eugenol, benzaldehyde, and γ-decalactone etc. The results indicated that lactic fermentation significantly enhanced the overall flavor of the juice toward the end of the fermentation process. In the interim, untargeted metabolomics utilizing LC-MS identified 1846 divergent metabolites, with 564 exhibiting up-regulation and 1282 demonstrating down-regulation. The metabolic pathway study performed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed significant changes in the metabolic levels of amino acids and saccharides after the lactic fermentation of PAMJ. Primarily associated with amino acid metabolism and starch and sucrose metabolism pathways. This work establishes a theoretical foundation for advancing fermented fruit juices with superior quality.
Collapse
Affiliation(s)
- Yao Zhao
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ruoqing Liu
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ying Mu
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Mingshan Lv
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jun Xing
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Li Zheng
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | | | - Liang Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
4
|
Oh HM, Lee JH, Choi A, Yang SH, Shin GH, Kang SG, Cho JC, Kim HJ, Kwon KK. Effect of Light Regime on Candidatus Puniceispirillum marinum IMCC1322 in Nutrient-Replete Conditions. J Microbiol Biotechnol 2024; 35:e2410034. [PMID: 39809517 PMCID: PMC11813361 DOI: 10.4014/jmb.2410.10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Previous studies showed no improvement in bacterial biomass for Candidatus Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322. Light regimes affected IMCC1322 cultures in stationary/death phases, where cellular ATP levels ranged from 0.0331 to 1.74 mM, with ATP/cell ranging from 13.9 to 367 zeptomoles. In nutrient-depleted conditions, strain IMCC1322 may suffer from excessive protons generated by proteorhodopsin under light conditions. IMCC1322 may tolerate excessive periplasmic protons through ATP-dependent proton pumping and protonation of augmented amino acids. Meanwhile, acid stress could also be mitigated by refining membrane permeability through unsaturation and cyclopropanation of phospholipids. Oceanic bacteria such as IMCC1322 and SAR11 preferred anaplerotic TCA cycles over glycolysis and rely on the Entner-Doudoroff (ED) pathway for growth. Although ATP generation is less efficient in the ED pathway, it offers advantages during rapid growth owing to its strong thermodynamic driving force. The metabolism of IMCC1322 favors gluconeogenesis over glycolysis, aligning with the metabolism of SAR11 reported in previous studies. However, the additional light-driven, PR-dependent ATP synthesis in IMCC1322 is expected to be insufficient to support protein turnover after the log phase, as well as in nutrient-limited conditions. Stable isotope measurements showed no significant differences in the inorganic carbon assimilation between constant light and constant dark cultures in late log phase.
Collapse
Affiliation(s)
- Hyun-Myung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan 48547, Republic of Korea
| | - Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul 07804, Republic of Korea
| | - Ahyoung Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung-Hyun Yang
- Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | | | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Jang-Cheon Cho
- Division of Biology and Ocean Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48547, Republic of Korea
| | | |
Collapse
|
5
|
Hwang CH, Kim SH, Lee CH. Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota. J Microbiol Biotechnol 2024; 34:1314-1321. [PMID: 38938006 PMCID: PMC11239411 DOI: 10.4014/jmb.2404.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024]
Abstract
Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dosedependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.
Collapse
Affiliation(s)
- Chan Hyuk Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Tata A, Massaro A, Miano B, Petrin S, Antonelli P, Peruzzo A, Pezzuto A, Favretti M, Bragolusi M, Zacometti C, Losasso C, Piro R. A Snapshot, Using a Multi-Omic Approach, of the Metabolic Cross-Talk and the Dynamics of the Resident Microbiota in Ripening Cheese Inoculated with Listeria innocua. Foods 2024; 13:1912. [PMID: 38928853 PMCID: PMC11203185 DOI: 10.3390/foods13121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Raw milk cheeses harbor complex microbial communities. Some of these microorganisms are technologically essential, but undesirable microorganisms can also be present. While most of the microbial dynamics and cross-talking studies involving interaction between food-derived bacteria have been carried out on agar plates in laboratory-controlled conditions, the present study evaluated the modulation of the resident microbiota and the changes of metabolite production directly in ripening raw milk cheese inoculated with Listeria innocua strains. Using a proxy of the pathogenic Listeria monocytogenes, we aimed to establish the key microbiota players and chemical signals that characterize Latteria raw milk cheese over 60 days of ripening time. The microbiota of both the control and Listeria-inoculated cheeses was analyzed using 16S rRNA targeted amplicon sequencing, while direct analysis in real time mass spectrometry (DART-HRMS) was applied to investigate the differences in the metabolic profiles of the cheeses. The diversity analysis showed the same microbial diversity trend in both the control cheese and the inoculated cheese, while the taxonomic analysis highlighted the most representative genera of bacteria in both the control and inoculated cheese: Lactobacillus and Streptococcus. On the other hand, the metabolic fingerprints revealed that the complex interactions between resident microbiota and L. innocua were governed by continuously changing chemical signals. Changes in the amounts of small organic acids, hydroxyl fatty acids, and antimicrobial compounds, including pyroglutamic acid, hydroxy-isocaproic acid, malic acid, phenyllactic acid, and lactic acid, were observed over time in the L. innocua-inoculated cheese. In cheese that was inoculated with L. innocua, Streptococcus was significantly correlated with the volatile compounds carboxylbenzaldheyde and cyclohexanecarboxylic acid, while Lactobacillus was positively correlated with some volatile and flavor compounds (cyclohexanecarboxylic acid, pyroxidal acid, aminobenzoic acid, and vanillic acid). Therefore, we determined the metabolic markers that characterize a raw milk cheese inoculated with L. innocua, the changes in these markers with the ripening time, and the positive correlation of flavor and volatile compounds with the resident microbiota. This multi-omics approach could suggest innovative food safety strategies based on the enhanced management of undesirable microorganisms by means of strain selection in raw matrices and the addition of specific antimicrobial metabolites to prevent the growth of undesirable microorganisms.
Collapse
Affiliation(s)
- Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (C.Z.); (R.P.)
| | - Andrea Massaro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (C.Z.); (R.P.)
| | - Brunella Miano
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (C.Z.); (R.P.)
| | - Sara Petrin
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 35020 Legnaro, Italy; (S.P.); (P.A.); (A.P.); (C.L.)
| | - Pietro Antonelli
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 35020 Legnaro, Italy; (S.P.); (P.A.); (A.P.); (C.L.)
| | - Arianna Peruzzo
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 35020 Legnaro, Italy; (S.P.); (P.A.); (A.P.); (C.L.)
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Pezzuto
- Laboratory of Hygiene and Safety of the Food Chain, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 35020 Legnaro, Italy; (A.P.); (M.F.)
| | - Michela Favretti
- Laboratory of Hygiene and Safety of the Food Chain, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 35020 Legnaro, Italy; (A.P.); (M.F.)
| | - Marco Bragolusi
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (C.Z.); (R.P.)
| | - Carmela Zacometti
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (C.Z.); (R.P.)
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 35020 Legnaro, Italy; (S.P.); (P.A.); (A.P.); (C.L.)
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy; (A.M.); (B.M.); (M.B.); (C.Z.); (R.P.)
| |
Collapse
|
7
|
Luo Y, Tang R, Qiu H, Song A. Widely targeted metabolomics-based analysis of the impact of L. plantarum and L. paracasei fermentation on rosa roxburghii Tratt juice. Int J Food Microbiol 2024; 417:110686. [PMID: 38593553 DOI: 10.1016/j.ijfoodmicro.2024.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Rosa roxburghii Tratt fruits (RRT) exhibit extremely high nutritional and medicinal properties due to its unique phytochemical composition. Probiotic fermentation is a common method of processing fruits. Variations in the non-volatile metabolites and bioactivities of RRT juice caused by different lactobacilli are not well understood. Therefore, we aimed to profile the non-volatile components and investigate the impact of L. plantarum fermentation (LP) and L. paracasei fermentation (LC) on RRT juice (the control, CG). There were both similarities and differences in the effects of LP and LC on RRT juice. Both of the two strains significantly increased the content of total phenolic, total flavonoid, and some bioactive compounds such as 2-hydroxyisocaproic acid, hydroxytyrosol and indole-3-lactic acid in RRT juice. Interestingly, compared with L. paracasei, L. plantarum showed better ability to increase the content of total phenolic and these valuable compounds, as well as certain bioactivities. The antioxidant capacity and α-glucosidase inhibitory activity of RRT juice were notably enhanced after the fermentations, whereas its cholesterol esterase inhibitory activity was reduced significantly. Moreover, a total of 1466 metabolites were identified in the unfermented and fermented RRT juices. There were 278, 251 and 134 differential metabolites in LP vs CG, LC vs CG, LC vs LP, respectively, most of which were upregulated. The key differential metabolites were classified into amino acids and their derivatives, organic acids, nucleotides and their analogues, phenolic acids and alkaloids, which can serve as potential markers for authentication and discrimination between the unfermented and lactobacilli fermented RRT juice samples. The KEGG enrichment analysis uncovered that metabolic pathways, purine metabolism, nucleotide metabolism and ABC transporters contributed mainly to the formation of unique composition of fermented RRT juice. These results provide good coverage of the metabolome of RRT juice in both unfermented and fermented forms and also provide a reference for future research on the processing of RRT or other fruits.
Collapse
Affiliation(s)
- You Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Ruling Tang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Han Qiu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Angxin Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
8
|
Yun YR, Lee JE. Kimchi attenuates endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice. Nutr Res 2024; 124:43-54. [PMID: 38367426 DOI: 10.1016/j.nutres.2024.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Kimchi is a traditional fermented food that contains abundant nutrients and functional ingredients with various health benefits. We previously reported that kimchi active components suppress hepatic steatosis caused by endoplasmic reticulum (ER) stress in vitro and in vivo. Therefore, we assessed the effect of kimchi on the inhibition of hepatic steatosis caused by ER stress in HepG2 cells and C57BL/6N mice to verify the hypothesis that kimchi may potentially inhibit nonalcoholic fatty liver disease. We investigated the effect of kimchi on cell viability and triglyceride concentrations in cells and on lipid profile, lipid accumulation, and expression of related genes in cells and mice with hepatic steatosis. A mechanistic study was also performed using the liver X receptor α agonist T0901317 and the AMP-activated protein kinase agonist AICAR. Kimchi was noncytotoxic and effectively reduced triglyceride concentrations and suppressed hepatic steatosis-related gene expression in cells and mice. Additionally, kimchi recovered weight loss, lowered the serum and liver tissue lipid profiles, suppressed lipid accumulation, and reduced the effects of T0901317 and AICAR on lipogenic gene expression in tunicamycin-treated mice. Our results highlight that kimchi could prevent hepatic steatosis caused by ER stress in cells and mice.
Collapse
Affiliation(s)
- Ye-Rang Yun
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea.
| | - Ji-Eun Lee
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
9
|
Jung S, Hwang IM, Lee JH. Temperature impact on microbial and metabolic profiles in kimchi fermentation. Heliyon 2024; 10:e27174. [PMID: 38468946 PMCID: PMC10926072 DOI: 10.1016/j.heliyon.2024.e27174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Kimchi is a traditional Korean fermented food and harbors diverse bacteria. Therefore, proper temperature management contributes to the fermentation and preservation of kimchi. In this study, we explored fermentation temperature influences the bacterial composition and metabolite variations in kimchi, employing pyrosequencing for bacterial community analysis and mass spectrometry for metabolite profiling. Elevated temperatures within the range of 10-15 °C had a significant impact on the community of lactic acid bacteria (LAB) compared to 4 °C, leading to increased bacterial diversity and richness. We observed a significant increase in Lactiplantibacillus plantarum and Latilactobacillus sakei, alongside a reduction in Lactococcus lactis, during fermentation at 10-15 °C. These changes occurred within a similar pH range across different kimchi fermentation periods. We performed a liquid extraction via the acetonitrile method, which involved the collection of kimchi samples, and performed LC-MS analysis. Our analysis revealed approximately 5000 metabolites. Notably, we observed a significant increase in metabolite counts, with 3048 metabolites increasing at 10 °C and 2853 metabolites exhibiting a similar trend at 15 °C. Metabolite analysis showed an increase in lactic and succinic acid with increased glucose and sucrose consumption at 10 and 15 °C. These results indicated that elevated temperatures significantly influenced the glycolysis and tricarboxylic acid cycle, leading to increased acidity during the fermentation process. These findings show the crucial role played by temperature in controlling the fermentation process, thereby influencing the bacterial succession and the resulting flavor and taste of the product. Therefore, proper temperature management can effectively control kimchi fermentation and yield the desired sensory properties.
Collapse
Affiliation(s)
- Sera Jung
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| |
Collapse
|
10
|
Jang HY, Kim MJ, Jeong JY, Hwang IM, Lee JH. Exploring the influence of garlic on microbial diversity and metabolite dynamics during kimchi fermentation. Heliyon 2024; 10:e24919. [PMID: 38312694 PMCID: PMC10835354 DOI: 10.1016/j.heliyon.2024.e24919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Garlic (Allium sativum) is a key ingredient in Korean cuisine, particularly in the preparation of kimchi, contributing to its flavor and taste. Garlic has been a potential resource for lactic acid bacteria (LAB) in kimchi. However, the mechanism by which it influences microbial diversity and metabolite production is unclear. This study investigated the effect of garlic on the bacterial composition of and metabolite changes in kimchi. To achieve this, four separate batches of kimchi were prepared with varying garlic concentrations (w/w): 0 %, 1 %, 2 %, and 4 %, and the bacterial communities and metabolite production were monitored. In the early stages of fermentation, the count of LAB, operational taxonomic units (OTUs), and Shannon index increased linearly with the increase in garlic content. This indicated that garlic is a rich resource and contributes to the diversity of LAB during kimchi fermentation. Compared with the kimchi samples with a lower garlic content, those with a high garlic content (≥2 %) exhibited increased abundance of Lactobacillus and Leuconostoc as well as noticeable differences in functional diversity, including carbohydrate, amino acid, and energy metabolisms. Correlation analysis between sugars, organic acids, and predominant LAB in the garlic-containing kimchi samples suggested that in kimchi samples with high garlic content, LAB played a significant role in the fermentation process by metabolizing sugars and producing organic acids. Overall, this study demonstrated that the addition of garlic has a positive impact on the bacterial diversity and metabolite production during kimchi fermentation, potentially affecting the fermentation process and flavor profile of kimchi.
Collapse
Affiliation(s)
- Ha-Young Jang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
11
|
Lee JS, Min JW, Gye SB, Kim YW, Kang HC, Choi YS, Seo WS, Lee BY. Suppression of UVB-Induced MMP-1 Expression in Human Skin Fibroblasts Using Lysate of Lactobacillus iners Derived from Korean Women's Skin in Their Twenties. Curr Issues Mol Biol 2024; 46:513-526. [PMID: 38248335 PMCID: PMC10814086 DOI: 10.3390/cimb46010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.
Collapse
Affiliation(s)
- Jin-Sung Lee
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- R&D Complex, Kolmar Korea, 61, 8-gil, Heolleung-ro, Seocho-gu, Seoul 06800, Republic of Korea; (S.-B.G.); (Y.-W.K.)
| | - Jin-Woo Min
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (J.-W.M.); (H.-C.K.)
| | - Seong-Bong Gye
- R&D Complex, Kolmar Korea, 61, 8-gil, Heolleung-ro, Seocho-gu, Seoul 06800, Republic of Korea; (S.-B.G.); (Y.-W.K.)
| | - Yong-Woo Kim
- R&D Complex, Kolmar Korea, 61, 8-gil, Heolleung-ro, Seocho-gu, Seoul 06800, Republic of Korea; (S.-B.G.); (Y.-W.K.)
| | - Hee-Cheol Kang
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (J.-W.M.); (H.-C.K.)
| | - Yoon-Seo Choi
- Graduate School-Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Won-Sang Seo
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (J.-W.M.); (H.-C.K.)
| | - Bun-Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
12
|
Fugaban JII, Jung ES, Todorov SD, Holzapfel WH. Evaluation of Antifungal Metabolites Produced by Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2023; 15:1447-1463. [PMID: 36227534 DOI: 10.1007/s12602-022-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to select and characterize lactic acid bacteria (LAB) with potential antifungal activities against the filamentous fungi Alternaria alternata ATCC MYA-4642, Aspergillus flavus KACC 45470, Aspergillus niger KACC 42589, Cladosporium sphaerospermum ATCC MYA-4645, Penicillium chrysogenum ATCC MYA-4644, and Penicillium expansum KACC 40815. Initial screening of the antifungal activity has identified six LAB strains belonging to the genera Enterococcus and Leuconostoc, selected by their antagonistic activities against at least three of the filamentous fungi in the test panel. Preliminary prediction of bioactive compounds was carried out to narrow down the possible identity of the antagonistic metabolites produced by the studied LAB. Furthermore, metabolic profiles were assessed and used as a basis for the identification of key metabolites based on VIP scores and PCA plot scores. Key metabolites were identified to be β-phenyllactic acid, ⍺-hydroxyisobutyric acid, 1,3-butanediol, phenethylamine, and benzoic acid. Individual assessment of each metabolic compound against the test panel showed specificity inhibitory patterns; yet, combinations between them only showed additive, but not synergetic effects. The pH neutralization significantly reduced the antifungal activity of the cell-free supernatant (CFS), but no bioactive compounds were found to be stable in high temperatures and pressure. This study will be beneficial as an additional building block on the existing knowledge and future antifungal application of LAB produced metabolites. Furthermore, this study also provides a new bio-preservative perspective on unexplored antifungal metabolites produced by LAB as biocontrol agents.
Collapse
Affiliation(s)
- Joanna Ivy Irorita Fugaban
- ProBacLab Laboratory, Department of Advanced Convergence, Handong Global University, Handong-ro, Heunghae-eup, Gyeong-buk, Pohang, 37554, Republic of Korea
- Current address: National Food Institute, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark
| | - Eun Sung Jung
- HEMPharma Inc., 77, Changnyong-daero 256 Beon-gil, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab Laboratory, Department of Advanced Convergence, Handong Global University, Handong-ro, Heunghae-eup, Gyeong-buk, Pohang, 37554, Republic of Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Wilhelm Heinrich Holzapfel
- ProBacLab Laboratory, Department of Advanced Convergence, Handong Global University, Handong-ro, Heunghae-eup, Gyeong-buk, Pohang, 37554, Republic of Korea
| |
Collapse
|
13
|
Huffman J, Drouin P, Renaud JB, Dunière L, LaPointe G. Farm management practices and season dependent factors affect the microbial community and chemical profile of corn and grass-legume silages of farms in Ontario, Québec, and Northern New York. Front Microbiol 2023; 14:1214915. [PMID: 37538849 PMCID: PMC10394519 DOI: 10.3389/fmicb.2023.1214915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
The effects of farm management practices and seasonal variation on the microbial community and chemical composition of corn and grass-legume silage are largely understudied due to the advantages of controlled mini-silo experiments. This study aims to investigate the effects that some key farm factors (use of an inoculant, farm region, and bunker or tower silo) and seasonal variations have on corn and grass-legume silage from farms across Ontario, Quebec, and New York. The silage was either treated with a commercial inoculant (Lallemand Biotal Buchneri 500® or Chr Hansen SiloSolve FC®) or left untreated. The bacterial communities of silage were compared to those of raw bulk tank milk from the same farm to determine if they were similarly affected by management practices or seasonal variations. Family level analysis of the 16S rRNA V3-V4 gene amplicon bacterial community, the ITS1 amplicon fungal community, NMR water soluble metabolome, and mycotoxin LC-MS were performed on silage over a two-year period. Chemical compounds associated with the use of inoculants in corn and grass-legume silage were higher in inoculated corn (acetate, propane-1,2-diol, γ-aminobutyrate; p < 0.001) and grass-legume (propionate; p = 0.011). However, there was no significant difference in the relative abundance (RA) of Lactobacillaceae in either silage type. Leuconostocaceae was higher in non-inoculated corn (p < 0.001) and grass-legume (p < 0.001) silage than in inoculated silage. Tower silos had higher RA of Leuconostocaceae (p < 0.001) and higher pH (p < 0.001) in corn and grass-legume silage. The one farm that used liquid manure with no other fertilizer type had higher RA of Clostridiaceae (p = 0.045) and other rumen/fecal (p < 0.006) bacteria in grass-legume silage than all other farms. Seasonal variation affected most of the key silage microbial families, however the trends were rarely visible across both years. Few trends in microbial variation could be observed in both silage and bulk tank milk: two farms had higher Moraxellaceae (p < 0.001) in milk and either corn or grass-legume silage. In farms using an inoculant, lower Staphylococcaceae was observed in the raw bulk tank milk.
Collapse
Affiliation(s)
- Jesse Huffman
- Department of Food Science, Dairy at Guelph, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | - Justin B. Renaud
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Center, Ottawa, ON, Canada
| | | | - Gisèle LaPointe
- Department of Food Science, Dairy at Guelph, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Jang HY, Kim MJ, Bae M, Hwang IM, Lee JH. Transcriptional analysis of the molecular mechanism underlying the response of Lactiplantibacillus plantarum to lactic acid stress conditions. Heliyon 2023; 9:e16520. [PMID: 37303574 PMCID: PMC10250755 DOI: 10.1016/j.heliyon.2023.e16520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Lactic acid bacteria (LAB) present various benefits to humans; they play key roles in the fermentation of food and as probiotics. Acidic conditions are common to both LAB in the intestinal tract as well as fermented foods. Lactiplantibacillus plantarum is a facultative homofermentative bacterium, and lactic acid is the end metabolite of glycolysis. To characterize how L. plantarum responds to lactic acid, we investigated its transcriptome following treatment with hydrochloride (HCl) or dl-lactic acid at an early stage of growth. Bacterial growth was more attenuated in the presence of lactic acid than in the presence of HCl at the same pH range. Bacterial transcriptome analysis showed that the expression of 67 genes was significantly altered (log2FC > 2 or < 2). A total of 31 genes were up- or downregulated under both conditions: 19 genes in the presence of HCl and 17 genes in the presence of dl-lactic acid. The fatty acid synthesis-related genes were upregulated in both acidic conditions, whereas the lactate racemization-related gene (lar) was only upregulated following treatment with dl-lactic acid. In particular, lar expression increased following l-lactic acid treatment but did not increase following HCl or d-lactic acid treatment. Expression of lar and production of d-lactic acid were investigated with malic and acetic acid; the results revealed a higher expression of lar and production of d-lactic acid in the presence of malic acid than that in the presence of acetic acid.
Collapse
|
15
|
Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van den Abbeele P. HMOs Exert Marked Bifidogenic Effects on Children's Gut Microbiota Ex Vivo, Due to Age-Related Bifidobacterium Species Composition. Nutrients 2023; 15:1701. [PMID: 37049541 PMCID: PMC10097135 DOI: 10.3390/nu15071701] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Prebiotics are substrates that are selectively utilized by host microorganisms, thus conferring a health benefit. There is a growing awareness that interpersonal and age-dependent differences in gut microbiota composition impact prebiotic effects. Due to the interest in using human milk oligosaccharides (HMOs) beyond infancy, this study evaluated how HMOs [2'Fucosyllactose (2'FL), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL), 6'Sialyllactose (6'SL)] and blends thereof affect the microbiota of 6-year-old children (n = 6) and adults (n = 6), compared to prebiotics inulin (IN) and fructooligosaccharides (FOS). The ex vivo SIFR® technology was used, given its demonstrated predictivity in clinical findings. First, HMOs and HMO blends seemed to maintain a higher α-diversity compared to FOS/IN. Further, while 2'FL/LNnT were bifidogenic for both age groups, 3'SL/6'SL and FOS/IN were exclusively bifidogenic for children and adults, respectively. This originated from age-related differences in microbiota composition because while 3'SL/6'SL stimulated B. pseudocatenulatum (abundant in children), FOS/IN enhanced B. adolescentis (abundant in adults). Moreover, all treatments significantly increased acetate, propionate and butyrate (only in adults) with product- and age-dependent differences. Among the HMOs, 6'SL specifically stimulated propionate (linked to Bacteroides fragilis in children and Phocaeicola massiliensis in adults), while LNnT stimulated butyrate (linked to Anaerobutyricum hallii in adults). Indole-3-lactic acid and 3-phenyllactic acid (linked to immune health) and gamma-aminobutyric acid (linked to gut-brain axis) were most profoundly stimulated by 2'FL and HMO blends in both children and adults, correlating with specific Bifidobacteriaceae. Finally, 2'FL/LNnT increased melatonin in children, while 3'SL remarkably increased folic acid in adults. Overall, age-dependent differences in microbiota composition greatly impacted prebiotic outcomes, advocating for the development of age-specific nutritional supplements. HMOs were shown to be promising modulators in the adult, and particularly the children's microbiota. The observed HMO-specific effects, likely originating from their structural heterogeneity, suggest that blends of different HMOs could maximize treatment effects.
Collapse
Affiliation(s)
- Danica Bajic
- Glycom A/S-DSM Nutritional Products Ltd., Kogle Allé 4, 2970 Hørsholm, Denmark
| | - Frank Wiens
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Eva Wintergerst
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | | |
Collapse
|
16
|
Koistinen VM, Hedberg M, Shi L, Johansson A, Savolainen O, Lehtonen M, Aura A, Hanhineva K, Landberg R. Metabolite Pattern Derived from Lactiplantibacillus plantarum-Fermented Rye Foods and In Vitro Gut Fermentation Synergistically Inhibits Bacterial Growth. Mol Nutr Food Res 2022; 66:e2101096. [PMID: 35960594 PMCID: PMC9787878 DOI: 10.1002/mnfr.202101096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/30/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Fermentation improves many food characteristics using microbes, such as lactic acid bacteria (LAB). Recent studies suggest fermentation may also enhance the health properties, but mechanistic evidence is lacking. The study aims to identify a metabolite pattern reproducibly produced during sourdough and in vitro colonic fermentation of various whole-grain rye products and how it affects the growth of bacterial species of potential importance to health and disease. METHODS AND RESULTS The study uses Lactiplantibacillus plantarum DSMZ 13890 strain, previously shown to favor rye as its substrate. Using LC-MS metabolomics, the study finds seven microbial metabolites commonly produced during the fermentations, including dihydroferulic acid, dihydrocaffeic acid, and five amino acid metabolites, and stronger inhibition is achieved when exposing the bacteria to a mixture of the metabolites in vitro compared to individual compound exposures. CONCLUSION The study suggests that metabolites produced by LAB may synergistically modulate the local microbial ecology, such as in the gut. This could provide new hypotheses on how fermented foods influence human health via diet-microbiota interactions.
Collapse
Affiliation(s)
- Ville M. Koistinen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Food Chemistry and Food Development Unit, Department of BiochemistryUniversity of TurkuTurkuTurku20014Finland,Afekta Technologies Ltd.Kuopio70210Finland
| | - Maria Hedberg
- Department of Odontology/Oral MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Lin Shi
- Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden,College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'an710119China
| | - Anders Johansson
- Department of Odontology/Oral MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Otto Savolainen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Marko Lehtonen
- School of PharmacyUniversity of Eastern FinlandKuopio70211Finland
| | - Anna‐Marja Aura
- VTT Technical Research Centre of Finland Ltd.Espoo02044Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Food Chemistry and Food Development Unit, Department of BiochemistryUniversity of TurkuTurkuTurku20014Finland,Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| |
Collapse
|
17
|
Development and metabolic profiling of a postbiotic complex exhibiting antibacterial activity against skin microorganisms and anti-inflammatory effect on human keratinocytes. Food Sci Biotechnol 2022; 31:1325-1334. [PMID: 35992320 PMCID: PMC9385932 DOI: 10.1007/s10068-022-01123-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022] Open
Abstract
Beyond probiotics, the interest in the application of postbiotics to various fields has been growing. We aimed to develop a novel postbiotic complex (PC) with antibacterial and anti-inflammatory properties. Through antibacterial activity testing against Staphylococcus aureus or Cutibacterium acnes, a PC [a mixture of cell-free supernatants (postbiotics) from probiotic Lactobacillus helveticus (HY7801) and Lactococcus lactis (HY449)] was developed. Anti-inflammatory activity of the PC was investigated using HaCaT keratinocytes treated with S. aureus or C. acnes. PC significantly decreased IL-8 levels and increased hyaluronic acid levels in HaCaT cells cultured with S. aureus or C. acnes. GC-MS based metabolic profiling suggested 2-hydroxyisocaproic acid, hypoxanthine, succinic acid, ornithine, and γ-aminobutyric acid as potential contributing metabolites for the antibacterial and anti-inflammatory effects of PC. The PC developed in this study could be utilized in food, cosmetics, and pharmaceutical products as an alternative or complementary resources of probiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01123-x.
Collapse
|
18
|
Zheng S, Wu W, Zhang Y, Hu P, Li J, Jiang J. Improvement of tomato sour soup fermentation by
Lacticaseibacillus casei
H1
addition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shasha Zheng
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Wenyan Wu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Yulong Zhang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Ping Hu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Juan Li
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Jingzhu Jiang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| |
Collapse
|
19
|
Fu J, Liu J, Wen X, Zhang G, Cai J, Qiao Z, An Z, Zheng J, Li L. Unique Probiotic Properties and Bioactive Metabolites of Saccharomyces boulardii. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09953-1. [PMID: 35608794 DOI: 10.1007/s12602-022-09953-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Saccharomyces boulardii (S. boulardii) is a probiotic and is widely used to improve the nutritional and functional value of food. This study aimed to compare the probiotic properties of S. boulardii and Saccharomyces cerevisiae. A series of in vitro probiotic experiments was performed, including simulated gastrointestinal digestion, bile salt tolerance, hydrophobicity, self-aggregation, and antioxidant and antibacterial properties. Self-aggregation and hydrophobic properties of S. boulardii were relatively poor, but they showed high tolerance, antioxidant properties, and broad antibacterial properties. In addition, non-targeted metabolomics was used to comprehensively analyze the active metabolites of S. boulardii and the metabolic differences between S. boulardii and S. cerevisiae were compared. Saccharomyces boulardii produced many bioactive metabolites, which generally showed antioxidant, antibacterial, antitumor, anti-inflammatory, and other properties. In contrast to S. cerevisiae, S. boulardii produced phenyllactic acid and 2-hydroxyisocaproic acid. There were also significant differences in their metabolic pathways. These results may be of great significance in the medical and food industries and provide a basis for understanding the metabolism of S. boulardii. It also shows that metabolomics is an effective and novel method for screening microbial functional metabolites and identifying functional differences between similar microorganisms.
Collapse
Affiliation(s)
- JunJie Fu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Jun Liu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - XuePing Wen
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Guirong Zhang
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Ji Cai
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Zongwei Qiao
- Wuliangye Yibin Co, Ltd, 150, Yibin, 644000, China
| | - Zheming An
- Wuliangye Yibin Co, Ltd, 150, Yibin, 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co, Ltd, 150, Yibin, 644000, China
| | - Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
20
|
Antibacterial efficacy and possible mechanism of action of 2-hydroxyisocaproic acid (HICA). PLoS One 2022; 17:e0266406. [PMID: 35363830 PMCID: PMC8975099 DOI: 10.1371/journal.pone.0266406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The exploitation of natural antimicrobial compounds that can be used in food preservation has been fast tracked by the development of antimicrobial resistance to existing antimicrobials and the increasing consumer demand for natural food preservatives. 2-hydroxyisocaproic acid (HICA) is a natural compound produced through the leucine degradation pathway and is produced in humans and by certain microorganisms such as lactic acid bacteria and Clostridium species. The present study investigated the antibacterial efficacy of HICA against some important bacteria associated with food quality and safety and provided some insights into its possible antimicrobial mechanisms against bacteria. The results revealed that HICA was effective in inhibiting the growth of tested Gram-positive and Gram-negative bacteria including a multi-drug resistant P. aeruginosa strain in this study. The underlying mechanism was investigated by measuring the cell membrane integrity, membrane permeability, membrane depolarisation, and morphological and ultrastructural changes after HICA treatment in bacterial cells. The evidence supports that HICA exerts its activity via penetration of the bacterial cell membranes, thereby causing depolarisation, rupture of membranes, subsequent leakage of cellular contents and cell death. The current study suggests that HICA has potential to be used as an antibacterial agent against food spoilage and food-borne pathogenic bacteria, targeting the bacterial cell envelope.
Collapse
|
21
|
Loh LX, Ng DHJ, Toh M, Lu Y, Liu SQ. Targeted and Nontargeted Metabolomics of Amino Acids and Bioactive Metabolites in Probiotic-Fermented Unhopped Beers Using Liquid Chromatography High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14024-14036. [PMID: 34734707 DOI: 10.1021/acs.jafc.1c03992] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Beer is one of the most popular beverages in the world. The increased popularity of craft beers has led to the development of unique beers that are alcohol-free, gluten-free, low calorie, or with functional properties through fermentation with probiotic microorganisms. In this study, functional unhopped beers were evaluated by utilizing probiotics (Lacticaseibacillus paracasei Lpc-37 and ibSium Saccharomyces cerevisiae CNCM I-3856) as starter cultures. The metabolites produced by probiotics were investigated using a nontargeted metabolomics approach and identified against metabolomics databases (Kyoto Encyclopedia of Genes and Genomes (KEGG), Human Metabolome Database (HMDB), Yeast Metabolome Database (YMDB), METLIN tandem mass spectrometry (MS/MS)). Derivatives of branched-chain (leucine) and aromatic amino acids (phenylalanine, tryptophan, and tyrosine) were enriched (one-way analysis of variance (ANOVA) p < 0.05) in probiotic-fermented unhopped beers, especially tryptophan metabolites. In addition, the synergistic effects of yeast-lactic acid bacteria (LAB) interactions led to further enrichment of higher acids such as (S)-(-)-2-hydroxyisocaproic acid, phenyllactic acid, hydroxyphenyllactic acid, and indolelactic acid. The potential pathways for the formation of novel bioactive tryptophan metabolites (indole and indoleacrylic acid) by LAB were elucidated. Altogether, probiotic LAB-fermented unhopped beer showed the highest antioxidant capacity and total phenolic content. This work provides the basis for the discovery of bioactive metabolites in probiotic-fermented foods.
Collapse
Affiliation(s)
- Li Xuan Loh
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Daniel H J Ng
- International Food and Water Research Centre, Waters Corporation, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore 117528, Singapore
| | - Mingzhan Toh
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, Jiangsu, China
| |
Collapse
|
22
|
Fan X, Bai Y, Fan TP, Zheng X, Cai Y. A single point mutation engineering for changing the substrate specificity of d-lactate dehydrogenase from Lactobacillus fermentum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Sakko M, Rautemaa-Richardson R, Sakko S, Richardson M, Sorsa T. Antibacterial Activity of 2-Hydroxyisocaproic Acid (HICA) Against Obligate Anaerobic Bacterial Species Associated With Periodontal Disease. Microbiol Insights 2021; 14:11786361211050086. [PMID: 34707364 PMCID: PMC8543563 DOI: 10.1177/11786361211050086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
Topical antiseptics are used to assist and further increase the effect of mechanical biofilm eradication and to potentially prevent new biofilm formation in periodontal treatment. This is of importance in treatment-resistant infections with 10% prevalence of all periodontitis cases to avoid the need for antibiotic therapy. The purpose of this study was to evaluate the antimicrobial activity of DL-2-hydroxyisocaproic acid on human pathogenic obligate anaerobic bacteria related to periodontitis. In this study antimicrobial activity of 2-hydroxyisocaproic acid was observed against 14 bacterial reference strains and clinical isolates of obligate anaerobic bacterial species using a microdilution method in 1.25 to 160 mg/mL concentrations of 2-hydroxyisocaproic acid. The 11 strains of bacteria included in this study are typically associated with periodontal disease; Porphyromonas gingivalis, Fusobacterium nucleatum, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Parvimonas micra. Three strains of Cutibacterium acnes, normally associated with skin diseases, were tested for comparison. 90% inhibitory concentration was determined at 48 hours and minimum bactericidal concentration was determined after 72 hours incubation. The 2-hydroxyisocaproic acid was bactericidal at ⩾160 mg/mL for all isolates tested. The reference strain of T. forsythia, and the reference strain and the clinical isolates of C. acnes were the most tolerant ones. The reference strains and clinical isolates of F. nucleatum and A. actinomycetemcomitans were killed at ⩾40 mg/mL concentration. In conclusion, topical use of 2-hydroxyisocaproic acid could eventually be a well-tolerated and useful method in the therapy of patients with difficult-to-treat periodontal disease or other superficial infections to avoid unnecessary antibiotic use and the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Marjut Sakko
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Riina Rautemaa-Richardson
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Department of Infectious Diseases, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Samuli Sakko
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Malcolm Richardson
- Mycology Reference Centre Manchester, ECMM Excellence Centre of Medical Mycology, Manchester University NHS Foundation Trust, Manchester, UK.,Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland.,Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
24
|
Comparison of Quality Characteristics of Commercial Kimchi Manufactured in Korea, China, and the United States. Foods 2021; 10:foods10102488. [PMID: 34681538 PMCID: PMC8535366 DOI: 10.3390/foods10102488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023] Open
Abstract
Recently, kimchi has been recognized as a healthy food worldwide, prompting increased interest in its health benefits and quality characteristics. Although commercial kimchi is manufactured in various countries, little is known about quality differences between the kimchi from different countries. To clarify differences in quality characteristics, minerals, free sugars, organic acids, free amino acids, and volatile compounds, commercial kimchi manufactured in Korea, China, and the United States were investigated. The composition of the microbial community and antioxidant activity were compared. Mineral and free sugar contents were high in Korean commercial kimchi, while the organic acid content was relatively low. The free amino acid content was markedly higher in Korean kimchi than that in kimchi manufactured in China and the United States. In addition, the volatile compound content differed between the kimchi produced in different countries. Considering the microbial communities, Leuconostoc and Weissella were more abundant in commercial kimchi from Korea than that from China or the United States. Commercial kimchi in Korea showed the highest antioxidant activity. These results support the high quality and antioxidant activity of commercial kimchi manufactured in Korea, emphasizing its importance in the global kimchi industry.
Collapse
|
25
|
Christensen IB, Vedel C, Clausen ML, Kjærulff S, Agner T, Nielsen DS. Targeted Screening of Lactic Acid Bacteria With Antibacterial Activity Toward Staphylococcus aureus Clonal Complex Type 1 Associated With Atopic Dermatitis. Front Microbiol 2021; 12:733847. [PMID: 34603263 PMCID: PMC8486014 DOI: 10.3389/fmicb.2021.733847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease characterized by an epidermal barrier impairment, as well as a Th2/Th22-skewed immune response, both favoring skin colonization with Staphylococcus aureus. Colonization is strongly related to severity of the disease, and a reduction of S. aureus has been found to alleviate symptoms. Lactic acid bacteria (LAB) produce antimicrobial compounds such as organic acids and bacteriocins and are widely used as probiotics. The aim of this study was to isolate LAB and screen for antibacterial effect specifically toward S. aureus clonal complex type 1. A total of 680 LAB were isolated from fermented vegetables and swab samples from healthy volunteers (vaginal, stool and skin). Screening for antibacterial activity toward S. aureus, narrowed the field of isolates down to four LAB strains with high antibacterial activity. The activity varied according to the specific LAB strain and the origin of the strain. The results suggested different modes of action, including co-aggregation, expression of bacteriocins and production of specific organic acids. However, the ability to acidify the surroundings appeared as the main effect behind inhibition of S. aureus. Broth microdilution assays showed a significant reduction of S. aureus growth when using down to 10% cell free supernatant (CFS). Our results underline the use of specific living LAB or their CFS as potential future treatment strategies to reduce S. aureus colonization of AD skin.
Collapse
Affiliation(s)
- Ida B Christensen
- Lactobio A/S, Copenhagen, Denmark.,Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Maja-Lisa Clausen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Tove Agner
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021; 10:foods10092148. [PMID: 34574257 PMCID: PMC8465840 DOI: 10.3390/foods10092148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have been used for various food fermentations for thousands of years. Recently, LAB are receiving increased attention due to their great potential as probiotics for man and animals, and also as cell factories for producing enzymes, antibodies, vitamins, exopolysaccharides, and various feedstocks. LAB are safe organisms with GRAS (generally recognized as safe) status and possess relatively simple metabolic pathways easily subjected to modifications. However, relatively few studies have been carried out on LAB inhabiting plants compared to dairy LAB. Kimchi is a Korean traditional fermented vegetable, and its fermentation is carried out by LAB inhabiting plant raw materials of kimchi. Kimchi represents a model food with low pH and is fermented at low temperatures and in anaerobic environments. LAB have been adjusting to kimchi environments, and produce various metabolites such as bacteriocins, γ-aminobutyric acid, ornithine, exopolysaccharides, mannitol, etc. as products of metabolic efforts to adjust to the environments. The metabolites also contribute to the known health-promoting effects of kimchi. Due to the recent progress in multi-omics technologies, identification of genes and gene products responsible for the synthesis of functional metabolites becomes easier than before. With the aid of tools of metabolic engineering and synthetic biology, it can be envisioned that LAB strains producing valuable metabolites in large quantities will be constructed and used as starters for foods and probiotics for improving human health. Such LAB strains can also be useful as production hosts for value-added products for food, feed, and pharmaceutical industries. In this review, recent findings on the selected metabolites produced by kimchi LAB are discussed, and the potentials of metabolites will be mentioned.
Collapse
|
27
|
Sumi K, Sakuda M, Munakata K, Nakamura K, Ashida K. α-Hydroxyisocaproic Acid Decreases Protein Synthesis but Attenuates TNFα/IFNγ Co-Exposure-Induced Protein Degradation and Myotube Atrophy via Suppression of iNOS and IL-6 in Murine C2C12 Myotube. Nutrients 2021; 13:nu13072391. [PMID: 34371902 PMCID: PMC8308709 DOI: 10.3390/nu13072391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
There is ongoing debate as to whether or not α-hydroxyisocaproic acid (HICA) positively regulates skeletal muscle protein synthesis resulting in the gain or maintenance of skeletal muscle. We investigated the effects of HICA on mouse C2C12 myotubes under normal conditions and during cachexia induced by co-exposure to TNFα and IFNγ. The phosphorylation of AMPK or ERK1/2 was significantly altered 30 min after HICA treatment under normal conditions. The basal protein synthesis rates measured by a deuterium-labeling method were significantly lowered by the HICA treatment under normal and cachexic conditions. Conversely, myotube atrophy induced by TNFα/IFNγ co-exposure was significantly improved by the HICA pretreatment, and this improvement was accompanied by the inhibition of iNOS expression and IL-6 production. Moreover, HICA also suppressed the TNFα/IFNγ co-exposure-induced secretion of 3-methylhistidine. These results demonstrated that HICA decreases basal protein synthesis under normal or cachexic conditions; however, HICA might attenuate skeletal muscle atrophy via maintaining a low level of protein degradation under cachexic conditions.
Collapse
|
28
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
29
|
Jung S, An H, Lee JH. Red pepper powder is an essential factor for ornithine production in kimchi fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Characterization of transcriptional response of Lactobacillus plantarum under acidic conditions provides insight into bacterial adaptation in fermentative environments. Sci Rep 2020; 10:19203. [PMID: 33154427 PMCID: PMC7645587 DOI: 10.1038/s41598-020-76171-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Lactic acid bacteria (LAB) play an important role in kimchi fermentation by metabolizing raw materials into diverse metabolites. Bacterial adaptation is therefore a crucial element of fermentation. In this study, we investigated the transcriptional changes of Lactobacillus plantarum under acidic conditions to evaluate the elements of bacterial adaptation critical for fermentation. Differentially expressed genes (DEGs) have shown that transport function is primarily affected by acidic conditions. Five of the 13 significantly down-regulated genes and 7 of the 25 significantly up-regulated genes were found to have transport-related functions. We quantified the intracellular leucine content of bacteria grown at different pH ranges, determining that optimal bacterial leucine transport could be controlled by acidity during fermentation. Inhibition of L. plantarum growth was investigated and compared with other LAB at a pH range of 6.2–5.0. Interestingly, valinomycin inhibited L. plantarum growth from pH 6.2 to 5.0. This showed that L. plantarum had a wider range of transport functions than other LAB. These results suggested that L. plantarum had robust transport functions, and that this was the crucial factor for bacterial adaptation during fermentation.
Collapse
|
31
|
Zhao G, Kuang G, Li J, Hadiatullah H, Chen Z, Wang X, Yao Y, Pan ZH, Wang Y. Characterization of aldehydes and hydroxy acids as the main contribution to the traditional Chinese rose vinegar by flavor and taste analyses. Food Res Int 2020; 129:108879. [DOI: 10.1016/j.foodres.2019.108879] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/23/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022]
|
32
|
Jung S, Hwang H, Lee JH. Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Consumption of a Leuconostoc holzapfelii-enriched synbiotic beverage alters the composition of the microbiota and microbial extracellular vesicles. Exp Mol Med 2019; 51:1-11. [PMID: 31371728 PMCID: PMC6802649 DOI: 10.1038/s12276-019-0288-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Synbiotics, the combination of probiotics and prebiotics, are known to confer health benefits via intestinal microbiota modulation. However, significant intestinal microbiota alterations can be difficult to determine in intervention studies based on solely bacterial stool metagenomic analysis. Intestinal microbiota constituents secrete 20-200-nm-sized extracellular vesicles (EVs) containing microbial DNA, proteins, and lipids that are distributed throughout the body, providing an alternative target for microbiota metagenomic analysis. Here, we determined the impact of a synbiotic beverage enriched with the kimchi-derived bacterium Leuconostoc holzapfelii (L. holzapfelii) on the intestinal microbiota and local and circulatory microbiota-derived EV composition of healthy Korean adults. We isolated microbial DNA from stool bacteria, stool EVs, and urinary EVs and conducted next-generation sequencing of the 16S rDNA V3-V4 regions before and after synbiotic consumption. The species diversity of circulating urinary EVs was significantly increased after synbiotic consumption, while stool bacterial and EV diversity remained unchanged. Furthermore, we found that while a single genus was decreased among the stool bacteria constituents, stool EVs and urinary EVs showed significant alterations in four and eight genera, respectively. Blood chemistry assays revealed that synbiotic consumption significantly lowered aspartate aminotransferase (AST) serum levels, particularly in subjects with starting levels above the normal range (>40 UI/L). In conclusion, the L. holzapfelii-enriched synbiotic beverage greatly altered serum AST levels and microbial EV composition in urine and stool, while only minor changes were observed in the gut microbiota composition. Based on these findings, we suggest the potential use of microbiota-derived EVs as surrogate markers in future predictive diagnosis studies.
Collapse
|
34
|
Lee HM, Yang JS, Lee HW, Hwang IM, Hwang YS, You SY, Ha JH, Kim SH. Simultaneous Determination of Preservatives, Artificial Sweeteners, and Synthetic Dyes in Kimchi by Ultra-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (UPLC-ESI-MS/MS). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1612906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hee Min Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji-Su Yang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hae-Won Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - In Min Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ye Seul Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Su-Yeon You
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Sung Hyun Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, Republic of Korea
| |
Collapse
|
35
|
Characterization of Arginine Catabolism by Lactic Acid Bacteria Isolated from Kimchi. Molecules 2018; 23:molecules23113049. [PMID: 30469432 PMCID: PMC6278497 DOI: 10.3390/molecules23113049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
Kimchi fermentation depends on diverse lactic acid bacteria, which convert raw materials into numerous metabolites that contribute to the taste of food. Amino acids and saccharides are important primary metabolites. Arginine is nearly exhausted during kimchi fermentation, whereas the concentrations of other amino acids are reported not to increase or decrease dramatically. These phenomena could imply that arginine is an important nutritional component among the amino acids during kimchi fermentation. In this study, we investigated the arginine-catabolism pathway of seven lactic acid bacteria isolated from kimchi and evaluated the products of arginine catabolism (citrulline and ornithine) associated with the bacteria. The arginine content dramatically decreased in cultures of Lactobacillus brevis and Weissella confusa from 300 μg/mL of arginine to 0.14 ± 0.19 and 1.3 ± 0.01 μg/mL, respectively, after 6 h of cultivation. Citrulline and ornithine production by L. brevis and W. confusa showed a pattern that was consistent with arginine catabolism. Interestingly, Pediococcus pentosaceus, Lactobacillus plantarum, Leuconostoc mesenteroides, and Leuconostoc lactis did not show increased citrulline levels after arginine was added. The ornithine contents were higher in all bacteria except for L. lactis after adding arginine to the culture. These results were consistent with the absence of the arginine deiminase gene among the lactic acid bacteria. Arginine consumption and ornithine production were monitored and compared with lactic acid bacteria by metagenomics analysis, which showed that the increment of ornithine production correlated positively with lactic acid bacteria growth.
Collapse
|