1
|
Casciaro C, Hamada H, Bloise E, Matthews SG. The paternal contribution to shaping the health of future generations. Trends Endocrinol Metab 2025; 36:459-471. [PMID: 39562264 DOI: 10.1016/j.tem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Paternal health and exposure to adverse environments in the period prior to conception have a profound impact on future generations. Adversities such as stress, diet, and toxicants influence offspring health. Emerging evidence indicates that epigenetic mechanisms including noncoding RNA, DNA methylation, and chromatin remodelling mediate these effects. Preclinical studies have contributed to advancing mechanistic understanding in the field; however, human research is limited and primarily observational. Here, we discuss the evidence linking paternal to offspring health and advocate for further research in this area, which may ultimately inform policy and healthcare guidelines to improve paternal preconception health and offspring outcomes.
Collapse
Affiliation(s)
| | - Hirotaka Hamada
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kim B, Kostaki A, Matthews SG. Conserved DNA methylation signatures in the prefrontal cortex of female newborn and juvenile guinea pigs following antenatal betamethasone exposure. J Neuroendocrinol 2025; 37:e13499. [PMID: 39924870 PMCID: PMC11975801 DOI: 10.1111/jne.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
Antenatal corticosteroids (ACS) improve perinatal survival when there is a risk of preterm birth. Although evidence suggests an increased risk of developing neurobehavioural disorders in exposed offspring, the mechanisms involved remain largely unknown. Here, we investigated the DNA methylation patterns in the prefrontal cortex (PFC) of ACS-exposed guinea pig offspring. We hypothesized that differential methylation will be evident at both newborn and juvenile ages. In two separate cohorts, pregnant guinea pigs were administered a subcutaneous injection of saline or betamethasone (1 mg/kg) on gestational days 50/51 to mimic a single course of ACS. The gDNA was isolated from the PFC of term-born female offspring on postnatal day 1 (PND1, n = 7/group) and PND14 (n = 6-7/group) to identify differentially methylated CpG sites (DMCs) using reduced representative bisulphite sequencing. In the PND1 PFC, 1521 DMCs, annotating 144 genes were identified following ACS. Identified genes are involved in pathways regulating 'developmental cellular process'. In the PND14 PFC, 776 DMCs representing 46 genes were identified and enriched in 'synaptic signalling' pathways. Though no individual DMCs were identified at both PND1 and PND14, differential methylation was consistently observed at the binding sites of transcription factors PLAGL1, TFAP2C, ZNF263 and SP1 at both ages. We have established that ACS exposure leads to altered DNA methylation in the PFC of guinea pig offspring at both newborn and juvenile ages. Notably, a unique methylation signature was consistently observed at four key transcription factor binding sites at both post-natal time points. These changes may predispose the development of altered neurobehavioural phenotypes that have been described in ACS-exposed offspring.
Collapse
Affiliation(s)
- Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Lunenfeld‐Tanenbaum Research InstituteSinai Health SystemTorontoOntarioCanada
| | - Alice Kostaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Stephen G. Matthews
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
- Lunenfeld‐Tanenbaum Research InstituteSinai Health SystemTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Adeline Dorothy PD, Rajan KE. Prenatal maternal life adversity impacts on learning and memory in offspring: implication to transgenerational epigenetic inheritance. Front Neurosci 2025; 19:1518046. [PMID: 40018363 PMCID: PMC11865043 DOI: 10.3389/fnins.2025.1518046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Maternal stress exposure during pregnancy is known to affect offspring behavior, including learning and memory. We hypothesized that maternal stress-induced changes transmit this effect through maternal line mediated transgenerational epigenetic inheritance. To test our hypothesis, pregnant rats (F0) were undisturbed (Control, Ctrl)/exposed to social stress during gestational days (GD) 16-18 (PMS)/exposed to social stress and treated with oxytocin during GD-16 to 18 (PMS+OXT). Subsequently, F1 female offspring from Ctrl, PMS, and PMS+OXT were mated with Ctrl F1 males to examine maternal line mediated transgenerational impacts. Female animals (F1 and F2) were subjected to behavioral test and the levels of global H3K4me2/H3K4me3 methylation, methylation in the CRH promoter, expression of Crh, Crh receptors (Crhr1, Crhr2), and BDNF were determined. It was found that prenatal maternal stress (PMS) reduced reference and working memory in F1 and F2 offspring, increased global and specific H3K4me2, H3K4me3 methylation in the CRH promoter, expression of Crh, Crh receptors, and corticosterone (CORT), and down-regulated the expression of pro-and mature BDNF by differentially regulating Bdnf transcripts III, IV and VI in the amygdala. Oxytocin exposure reduced PMS-induced global and specific H3K4me2/3 changes, which repressed the expression of Crh, Crh receptors, reduced CORT levels, up-regulated the expression of pro-BDNF and mature BDNF, and improved memory in F1 and F2 offspring. Collectively, our study revealed that PMS reduced reference and working memory performance in F1 and F2 offspring through maternal line transgenerational inheritance of H3K4me2, H3K4me3 methylation, and associated mechanisms that regulate BDNF expression and synaptic plasticity.
Collapse
Affiliation(s)
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
4
|
Martinez ME, Karaczyn A, Wu Z, Bennett CA, Matoin KL, Daigle HM, Hernandez A. Transgenerational epigenetic self-memory of Dio3 dosage is associated with Meg3 methylation and altered growth trajectories and neonatal hormones. Epigenetics 2024; 19:2376948. [PMID: 38991122 PMCID: PMC11244338 DOI: 10.1080/15592294.2024.2376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (Dio3) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated Dio3 total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic Dio3 expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the Dlk1-Dio3 imprinted domain, including increased methylation in Meg3 and altered foetal brain expression of other genes of the Dlk1-Dio3 imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone in utero. Our results provide a novel paradigm of epigenetic self-memory by which Dio3 gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of Dio3 expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Aldona Karaczyn
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Christian A. Bennett
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Kassey L. Matoin
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Heather M. Daigle
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Kim B, Kostaki A, McClymont S, Matthews SG. Identification of a DNA methylation signature in whole blood of newborn guinea pigs and human neonates following antenatal betamethasone exposure. Transl Psychiatry 2024; 14:465. [PMID: 39511158 PMCID: PMC11543945 DOI: 10.1038/s41398-024-03175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Antenatal corticosteroids (ACS) are administered where there is risk of preterm birth to promote fetal lung development and improve perinatal survival. However, treatment may be associated with increased risk of developing neurobehavioural disorders. We have recently identified that ACS results in significant changes to DNA methylation patterns in the newborn and juvenile prefrontal cortex (PFC) of exposed guinea pig offspring. Methylation changes at transcription factor binding sites (TFBS) for PLAGL1, TFAP2C, ZNF263, and SP1 were consistently noted at both post-natal stages, suggesting a long-lasting signature of ACS exposure. In this study, we determined if comparable methylation changes are also present in the newborn blood of ACS-exposed guinea pig offspring, as this would determine whether blood methylation patterns may be used as a peripheral biomarker of changes in the brain. Pregnant guinea pigs were treated with saline or betamethasone (1 mg/kg) on gestational days 50/51. gDNA from whole blood of term-born offspring on post-natal day (PND) 1 was used for reduced representation bisulfite sequencing. Overall, 1677 differentially methylated CpG sites (DMCs) were identified in response to ACS. While no specific DMCs identified in the blood overlapped with those previously reported in the PFC of PND1 offspring, significant differential methylation at TFBSs for PLAGL1, TFAP2C, EGR1, ZNF263, and SP1 was persistently observed. Furthermore, re-examination of our previously reported data of DMCs in human neonatal blood following ACS identified the presence of this same TFBS signature in human infants, suggesting the potential for clinical translation of our epigenomic data.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sarah McClymont
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Van Zundert SKM, Van Rossem L, Mirzaian M, Willemsen SP, Voskamp LW, Bastiaansen WAP, Nikpayam D, Griffioen PH, Schilleman WF, Koning AHJ, Van Den Berg SAA, Rousian M, Van Schaik RHN, Steegers-Theunissen RPM. The impact of maternal vulnerability on stress biomarkers and first-trimester growth: the Rotterdam Periconceptional Cohort (Predict Study). Hum Reprod 2024; 39:2423-2433. [PMID: 39298717 PMCID: PMC11532602 DOI: 10.1093/humrep/deae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
STUDY QUESTION Is the degree of maternal vulnerability positively associated with stress biomarkers (stress hormones, C-reactive protein, tryptophan metabolites, and one-carbon metabolites), and does long-term exposure to stress hormones reduce first-trimester growth? SUMMARY ANSWER The maternal vulnerability risk score is positively associated with concentrations of hair cortisol and cortisone and negatively with tryptophan, while higher hair cortisol concentrations are associated with reduced first-trimester growth without mediation of tryptophan. WHAT IS KNOWN ALREADY A high degree of maternal vulnerability during the periconception period is associated with impaired first-trimester growth and pregnancy complications, with consequences for long-term health of the child and future life course. However, due to the challenges of early identification of vulnerable women, the uptake of periconception care is low in this target group. STUDY DESIGN, SIZE, DURATION Between June 2022 and June 2023, this study was conducted in a sub-cohort of 160 pregnant women participating in the Rotterdam Periconceptional Cohort (Predict Study), an ongoing prospective tertiary hospital-based cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS One hundred and thirty-two women with ongoing pregnancies and available stress biomarker data were included in the analysis. Data on periconceptional social, lifestyle, and medical risk factors were collected via self-administered questionnaires, and these factors were used for the development of a composite maternal vulnerability risk score. Stress biomarkers, including stress hormones (hair cortisol and cortisone) and inflammatory and oxidative stress biomarkers (C-reactive protein, total homocysteine, and tryptophan metabolites) were determined in the first trimester of pregnancy. First-trimester growth was assessed by crown-rump length (CRL) and embryonic volume (EV) measurements at 7, 9, and 11 weeks gestation by making use of an artificial intelligence algorithm and virtual reality techniques using 3D ultrasound data sets. The associations between the maternal vulnerability risk score and stress biomarkers were identified using linear regression models, and between stress hormones and CRL- and EV-trajectories using mixed models. A mediation analysis was performed to assess the contribution of tryptophan. All associations were adjusted for potential confounders, which were identified using a data-driven approach. Several sensitivity analyses were performed to check the robustness of the findings. MAIN RESULTS AND THE ROLE OF CHANCE The maternal vulnerability risk score was positively associated with concentrations of hair cortisol and cortisone (pg/mg) (β = 0.366, 95% CI = 0.010-0.722; β = 0.897, 95% CI = 0.102-1.691, respectively), and negatively with tryptophan concentrations (µmol/L) (β = -1.637, 95% CI = -2.693 to -0.582). No associations revealed for C-reactive protein and total homocysteine. Higher hair cortisol concentrations were associated with reduced EV-trajectories (3√EV: β = -0.010, 95% CI = -0.017 to -0.002), while no associations were found with CRL-trajectories. Mediation by tryptophan was not shown. LIMITATIONS, REASONS FOR CAUTION Residual confounding cannot be ruled out, and the external validity may be limited due to the study's single-center observational design in a tertiary hospital. WIDER IMPLICATIONS OF THE FINDINGS There is mounting evidence that a high degree of maternal vulnerability negatively affects maternal and perinatal health, and that of the future life course. The results of our study emphasize the need to identify highly vulnerable women as early as possible, at least before conception. Our findings suggest that the chronic stress response and alterations of the maternal tryptophan metabolism are involved in maternal vulnerability, affecting first-trimester growth, with potential impact on the long-term health of the offspring. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Departments of Obstetrics and Gynecology and Clinical Chemistry of the Erasmus MC, University Medical Center, Rotterdam, the Netherlands, and the Junior Award granted by the De Snoo-van 't Hoogerhuijs Foundation in March 2022. There are no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sofie K M Van Zundert
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lenie Van Rossem
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lotte W Voskamp
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Wietske A P Bastiaansen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Biomedical Imaging Group Rotterdam, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Darya Nikpayam
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Wim F Schilleman
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sjoerd A A Van Den Berg
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ron H N Van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
7
|
Vyushina AV, Pritvorova AV, Pivina SG, Ordyan NE. Transgenerational effect of prenatal stress on behavior and lipid peroxidation in brain structures of female rats during the estral cycle. Vavilovskii Zhurnal Genet Selektsii 2024; 28:387-397. [PMID: 39027128 PMCID: PMC11253015 DOI: 10.18699/vjgb-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/19/2023] [Accepted: 02/09/2023] [Indexed: 07/20/2024] Open
Abstract
The effect of stress in pregnant female Wistar rats on the behavior and lipid peroxidation (LP) in the neocortex, hippocampus and hypothalamus in the female F2 generation during the ovarian cycle was investigated. We subjected pregnant females to daily 1-hour immobilization stress from the 15th to the 19th days of pregnancy. Further, family groups were formed from prenatally stressed and control male and female rats of the F1 generation: group 1, the control female and male; group 2, the control female and the prenatally stressed male; group 3, the prenatally stressed female and the control male; group 4, the prenatally stressed female and male. The females of the F2 generation born from these couples were selected into four experimental groups in accordance with the family group. At the age of 3 months, behavior of rats was studied in the "open field" test in two stages of the ovarian cycle - estrus and diestrus. After 7-10 days, the rats were decapitated and the neocortex, hypothalamus and hippocampus were selected to determine the level of diene and triene conjugates, Schiff bases and the degree of lipid oxidation (Klein index). In F2 females with one prenatally stressed parent, there was no interstage difference in locomotor-exploratory activity and anxiety. If both F1 parents were prenatally stressed, female F2 rats retained interstage differences similar to the control pattern, while their locomotor-exploratory activity and time spent in the center of an "open field" decreased in absolute values. In the neocortex of F2 females in groups with prenatally stressed mothers, the level of primary LP products decreased and the level of Schiff bases increased in the estrus stage. In the hippocampus of F2 females in the groups with prenatally stressed fathers, the level of Schiff bases decreased in the estrus stage, and the level of primary LP products increased in group 2 and decreased in group 4. In the hypothalamus of F2 females in the groups with prenatally stressed mothers, the level of Schiff bases increased in the estrus stage and decreased in the diestrus; in addition, in group 3, the level of primary LP products in the estrus stage increased. Thus, we demonstrated the influence of prenatal stress of both F1 mother and F1 father on the behavior and the level of LP in the neocortex, hippocampus and hypothalamus in female rats of the F2 generation in estrus and diestrus.
Collapse
Affiliation(s)
- A V Vyushina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Pritvorova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - S G Pivina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N E Ordyan
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Ninan K, Murphy KE, Asztalos EV, Jiang Y, Huszti E, Matthews SG, Santaguida P, Mukerji A, McDonald SD. The Impact of Infant Sex on Multiple Courses versus a Single Course of Antenatal Corticosteroids: A Secondary Analysis of a Randomized Controlled Trial. Am J Perinatol 2024; 41:e2919-e2926. [PMID: 37935374 DOI: 10.1055/s-0043-1776348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Animal literature has suggested that the impact of antenatal corticosteroids (ACS) may vary by infant sex. Our objective was to assess the impact of infant sex on the use of multiple courses versus a single course of ACS and perinatal outcomes. STUDY DESIGN We conducted a secondary analysis of the Multiple Courses of Antenatal Corticosteroids for Preterm Birth trial, which randomly allocated pregnant people to multiple courses versus a single course of ACS. Our primary outcome was a composite of perinatal mortality or clinically significant neonatal morbidity (including neonatal death, stillbirth, severe respiratory distress syndrome, intraventricular hemorrhage [grade III or IV], cystic periventricular leukomalacia, and necrotizing enterocolitis [stage II or III]). Secondary outcomes included individual components of the primary outcome as well as anthropometric measures. Baseline characteristics were compared between participants who received multiple courses versus a single course of ACS. An interaction between exposure to ACS and infant sex was assessed for significance and multivariable regression analyses were conducted with adjustment for predefined covariates, when feasible. RESULTS Data on 2,300 infants were analyzed. The interaction term between treatment status (multiple courses vs. a single course of ACS) and infant sex was not significant for the primary outcome (p = 0.86), nor for any of the secondary outcomes (p > 0.05). CONCLUSION Infant sex did not modify the association between exposure to ACS and perinatal outcomes including perinatal mortality or neonatal morbidity or anthropometric outcomes. However, animal literature indicates that sex-specific differences after exposure to ACS may emerge over time and thus investigating long-term sex-specific outcomes warrants further attention. KEY POINTS · We explored the impact of infant sex on perinatal outcomes after multiple versus a single course of ACS.. · Infant sex was not a significant effect modifier of ACS exposure and perinatal outcomes.. · Animal literature indicates that sex-specific differences after ACS exposure may emerge over time.. · Further investigation of long-term sex-specific outcomes is warranted..
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Kellie E Murphy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth V Asztalos
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Yidi Jiang
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Pasqualina Santaguida
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Amit Mukerji
- Division of Neonatology, Department of Pediatrics, McMaster University, Ontario, Canada
| | - Sarah D McDonald
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Burgess DJ, Cuffe JSM. Sowing the seeds of stress: maternal exposure to synthetic glucocorticoids impacts sperm miRNA for generations. J Physiol 2024; 602:1875-1876. [PMID: 38631284 DOI: 10.1113/jp286280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Affiliation(s)
- D J Burgess
- School of Biomedical Science, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - J S M Cuffe
- School of Biomedical Science, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Hamada H, Casciaro C, Moisiadis VG, Constantinof A, Kostaki A, Matthews SG. Prenatal maternal glucocorticoid exposure modifies sperm miRNA profiles across multiple generations in the guinea-pig. J Physiol 2024; 602:2127-2139. [PMID: 38285002 DOI: 10.1113/jp284942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
Maternal stress and glucocorticoid exposure during pregnancy have multigenerational effects on neuroendocrine function and behaviours in offspring. Importantly, effects are transmitted through the paternal lineage. Altered phenotypes are associated with profound differences in transcription and DNA methylation in the brain. In the present study, we hypothesized that maternal prenatal synthetic glucocorticoid (sGC) exposure in the F0 pregnancy will result in differences in miRNA levels in testes germ cells and sperm across multiple generations, and that these changes will associate with modified microRNA (miRNA) profiles and gene expression in the prefrontal cortex (PFC) of subsequent generations. Pregnant guinea-pigs (F0) were treated with multiple courses of the sGC betamethasone (Beta) (1 mg kg-1; gestational days 40, 41, 50, 51, 60 and 61) in late gestation. miRNA levels were assessed in testes germ cells and in F2 PFC using the GeneChip miRNA 4.0 Array and candidate miRNA measured in epididymal sperm by quantitative real-time PCR. Maternal Beta exposure did not alter miRNA levels in germ cells derived from the testes of adult male offspring. However, there were significant differences in the levels of four candidate miRNAs in the sperm of F1 and F2 adult males. There were no changes in miRNA levels in the PFC of juvenile F2 female offspring. The present study has identified that maternal Beta exposure leads to altered miRNA levels in sperm that are apparent for at least two generations. The fact that differences were confined to epididymal sperm suggests that the intergenerational effects of Beta may target the epididymis. KEY POINTS: Paternal glucocorticoid exposure prior to conception leads to profound epigenetic changes in the brain and somatic tissues in offspring, and microRNAs (miRNAs) in sperm may mediate these changes. We show that there were significant differences in the miRNA profile of epididymal sperm in two generations following prenatal glucocorticoid exposure that were not observed in germ cells derived from the testes. The epididymis is a probable target for intergenerational programming. The effects of prenatal glucocorticoid treatment may span multiple generations.
Collapse
Affiliation(s)
- Hirotaka Hamada
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christopher Casciaro
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Vasilis G Moisiadis
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Constantinof
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Alisa Kostaki
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada
| |
Collapse
|
11
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. eLife 2024; 12:RP90164. [PMID: 38226689 PMCID: PMC10945581 DOI: 10.7554/elife.90164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
12
|
Jones SL, De Braga V, Caccese C, Lew J, Elgbeili G, Castellanos-Ryan N, Parent S, Muckle G, Herba CM, Fraser WD, Ducharme S, Barnwell J, Trasler J, Séguin JR, Nguyen TV, Montreuil TC. Prenatal paternal anxiety symptoms predict child DHEA levels and internalizing symptoms during adrenarche. Front Behav Neurosci 2024; 17:1217846. [PMID: 38239262 PMCID: PMC10794355 DOI: 10.3389/fnbeh.2023.1217846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction This study examined (1) whether measures of paternal anxious and depressive symptoms collected prenatally and during a follow-up assessment when the child was in middle childhood, predict child neuroendocrine outcomes, and (2) whether neuroendocrine outcomes are intermediate factors between paternal mental health and child cognitive/behavioral outcomes. Middle childhood coincides with increased autonomy as the child transitions into grade school, and with adrenarche, as the maturing adrenal gland increases secretion of dehydroepiandrosterone (DHEA) and its sulfated metabolite (DHEA-S), hormones that are implicated in corticolimbic development which regulate emotions and cognition. Methods Participants were recruited from a subsample of a large prospective birth cohort study (3D study). We conducted a follow-up study when children were 6-8 years old (N = 61 families, 36 boys, 25 girls). Parental symptoms of anxiety, stress and depression were assessed via validated self-report questionnaires: prenatally using an in-house anxiety questionnaire, the Perceived Stress Scale (PSS) and the Center for Epidemiologic Studies Depression (CES-D), and at the follow up, using the Beck Anxiety and Beck Depression Inventories. Children provided salivary hormone samples, and their pituitary gland volume was measured from structural Magnetic Resonance Imaging (MRI) scans. Child behaviors were measured using the Strengths and Difficulties Questionnaire and cognitive outcomes using the WISC-V. Multiple regression analyses were used to test whether paternal mental health symptoms assessed prenatally and during childhood are associated with child neuroendocrine outcomes, adjusting for maternal mental health and child sex. Indirect-effect models assessed whether neuroendocrine factors are important intermediates that link paternal mental health and cognitive/behavioral outcomes. Results (1) Fathers' prenatal anxiety symptoms predicted lower DHEA levels in the children, but not pituitary volume. (2) Higher prenatal paternal anxiety symptoms predicted higher child internalizing symptoms via an indirect pathway of lower child DHEA. No associations were detected between paternal anxiety symptoms measured in childhood, and neuroendocrine outcomes. No child sex differences were detected on any measure. Conclusion These results highlight the often-overlooked role of paternal factors during pregnancy on child development, suggesting that paternal prenatal anxiety symptoms are associated with child neuroendocrine function and in turn internalizing symptoms that manifest at least up to middle childhood.
Collapse
Affiliation(s)
- Sherri Lee Jones
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Psychiatry, Douglas Research Center, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Victoria De Braga
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- School of Medicine, McGill University, Montreal, QC, Canada
| | - Christina Caccese
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jimin Lew
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Guillaume Elgbeili
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Psychiatry, Douglas Research Center, Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Sophie Parent
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
| | - Gina Muckle
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, School of Psychology, Laval University, Québec, QC, Canada
| | - Catherine M. Herba
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - William D. Fraser
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, Centre de Recherche du CHU de Sherbrooke, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Ducharme
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Douglas Research Center, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Julia Barnwell
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Human Genetics and Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jacquetta Trasler
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Human Genetics and Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean R. Séguin
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Université de Montréal, Montreal, QC, Canada
| | - Tuong-Vi Nguyen
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Reproductive Psychiatry Program, McGill University Health Centre, Departments of Psychiatry and Obstetrics and Gynecology, Montreal, QC, Canada
| | - Tina C. Montreuil
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Educational and Counselling Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
He Z, Zhang J, Chen Y, Ai C, Gong X, Xu D, Wang H. Transgenerational inheritance of adrenal steroidogenesis inhibition induced by prenatal dexamethasone exposure and its intrauterine mechanism. Cell Commun Signal 2023; 21:294. [PMID: 37853416 PMCID: PMC10585925 DOI: 10.1186/s12964-023-01303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Adrenal gland is the synthesis and secretion organ of glucocorticoid, which is crucial to fetal development and postnatal fate. Recently, we found that prenatal dexamethasone exposure (PDE) could cause adrenal dysfunction in offspring rats, but its multigenerational genetic effects and related mechanisms have not been reported. METHODS The PDE rat model was established, and female filial generation 1 (F1) rats mate with wild males to produce the F2, the same way for the F3. Three generation rats were sacrificed for the related detection. SW-13 cells were used to clarify the epigenetic molecular mechanism. RESULTS This study confirmed that PDE could activate fetal adrenal glucocorticoid receptor (GR). The activated GR, on the one hand, up-regulated Let-7b (in human cells) to inhibit steroidogenic acute regulatory protein (StAR) expression directly; on the other hand, down-regulated CCCTC binding factor (CTCF) and up-regulated DNA methyltransferase 3a/3b (Dnmt3a/3b), resulting in H19 hypermethylation and low expression. The decreased interaction of H19 and let-7 can further inhibit adrenal steroidogenesis. Additionally, oocytes transmitted the expression change of H19/let-7c axis to the next generation rats. Due to its genetic stability, F2 generation oocytes indirectly exposed to dexamethasone also inhibited H19 expression, which could be inherited to the F3 generation. CONCLUSIONS This cascade effect of CTCF/H19/Let-7c ultimately resulted in the transgenerational inheritance of adrenal steroidogenesis inhibition of PDE offspring. This study deepens the understanding of the intrauterine origin of adrenal developmental toxicity, and it will provide evidence for the systematic analysis of the transgenerational inheritance effect of acquired traits induced by PDE. Video Abstract.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
14
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547215. [PMID: 37425891 PMCID: PMC10327205 DOI: 10.1101/2023.06.30.547215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A. Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mariko H. Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, Zhang S, Jiang T, Wang T, Yao B, Wang H, Xu D. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B 2023; 13:3708-3727. [PMID: 37719378 PMCID: PMC10501875 DOI: 10.1016/j.apsb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons. Here we explored how gestational exposure to dexamethasone, a synthetic glucocorticoid commonly used in clinical practice, has lasting effects on offspring's learning and memory. Adult offspring rats of prenatal dexamethasone exposure (PDE) displayed significant impairments in novelty recognition and spatial learning memory, with some phenotypes maintained transgenerationally. PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations, and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory, but these changes failed to carry over to offspring of F5 and F7 generations. Mechanistically, altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission, which might be related to oocyte-specific high expression and transmission of miR-133a-3p. Together, PDE affects hippocampal excitatory synaptic transmission, with lasting consequences across generations, and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.
Collapse
Affiliation(s)
- Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lulu Xie
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Baozhen Yao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
16
|
Zhou A, Ryan J. Biological Embedding of Early-Life Adversity and a Scoping Review of the Evidence for Intergenerational Epigenetic Transmission of Stress and Trauma in Humans. Genes (Basel) 2023; 14:1639. [PMID: 37628690 PMCID: PMC10454883 DOI: 10.3390/genes14081639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Severe or chronic stress and trauma can have a detrimental impact on health. Evidence suggests that early-life adversity can become biologically embedded and has the potential to influence health outcomes decades later. Epigenetics is one mechanism that has been implicated in these long-lasting effects. Observational studies in humans indicate that the effects of stress could even persist across generations, although whether or not epigenetic mechanisms are involved remains under debate. Here, we provide an overview of studies in animals and humans that demonstrate the effects of early-life stress on DNA methylation, one of the most widely studied epigenetic mechanisms, and summarize findings from animal models demonstrating the involvement of epigenetics in the transmission of stress across generations. We then describe the results of a scoping review to determine the extent to which the terms intergenerational or transgenerational have been used in human studies investigating the transmission of trauma and stress via epigenetic mechanisms. We end with a discussion of key areas for future research to advance understanding of the role of epigenetics in the legacy effects of stress and trauma.
Collapse
Affiliation(s)
- Aoshuang Zhou
- Division of Epidemiology, Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
17
|
Escher J, Yan W, Rissman EF, Wang HLV, Hernandez A, Corces VG. Beyond Genes: Germline Disruption in the Etiology of Autism Spectrum Disorders. J Autism Dev Disord 2022; 52:4608-4624. [PMID: 34596807 PMCID: PMC9035896 DOI: 10.1007/s10803-021-05304-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/31/2023]
Abstract
Investigations into the etiology of autism spectrum disorders have been largely confined to two realms: variations in DNA sequence and somatic developmental exposures. Here we suggest a third route-disruption of the germline epigenome induced by exogenous toxicants during a parent's gamete development. Similar to cases of germline mutation, these molecular perturbations may produce dysregulated transcription of brain-related genes during fetal and early development, resulting in abnormal neurobehavioral phenotypes in offspring. Many types of exposures may have these impacts, and here we discuss examples of anesthetic gases, tobacco components, synthetic steroids, and valproic acid. Alterations in parental germline could help explain some unsolved phenomena of autism, including increased prevalence, missing heritability, skewed sex ratio, and heterogeneity of neurobiology and behavior.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA, USA.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
18
|
Laugesen K, Sørensen HT, Jørgensen JOL, Petersen I. In utero exposure to glucocorticoids and risk of anxiety and depression in childhood or adolescence. Psychoneuroendocrinology 2022; 141:105766. [PMID: 35447494 DOI: 10.1016/j.psyneuen.2022.105766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Glucocorticoid use is prevalent in pregnant women, but whether in utero exposure impacts mental health in the offspring has not been fully explored. The aim of this study was to investigate if in utero exposure to synthetic glucocorticoids increases the risk of anxiety and depression in childhood or adolescence. The study was conducted as a nationwide cohort study, including negative control exposure analyses and a sibling design to optimize control of confounding. The study population comprised 1,275,909 children born in 1996-2015 in Denmark (median follow-up of 13 years). Exposure was divided into systemic and local glucocorticoid exposure, levels of cumulative dose, generic type and according to trimester of exposure. The comparison cohort was children without exposure born to maternal never-users. Negative control exposures included children without glucocorticoid exposure born to: maternal users of non-steroidal anti-inflammatory drugs or immunotherapy during pregnancy, maternal former users of systemic glucocorticoids, maternal users of systemic glucocorticoids in the postnatal period, and fathers who were prescribed glucocorticoids. The sibling design compared siblings with and without exposure. 9307 (0.7%) children were exposed to systemic glucocorticoids and 116,389 (9.1%) children were exposed to local glucocorticoids. High-dose systemic glucocorticoids (≥500 mg prednisolone equivalents) increased the risk of anxiety compared to the comparison cohort [aIRR 1.79 (95% CI: 1.36-2.37), cumulative risk 16% vs. 7.8% by age 20]. A similar result was found for depression [aIRR 1.45 (95% CI: 0.80-2.63), cumulative risk 3.6% vs. 2.6% by age 20]. The association with anxiety was consistent in the sibling design [aIRR 1.83 (95% CI: 1.03-3.66), exposed siblings (≥ 500 mg) vs. unexposed]. Sex did not modify the associations. Negative control exposure analyses indicated robustness towards confounding from genetics and family environment. No association was found with low doses of systemic exposure or local use. In conclusion, potential adverse mental health effects of in utero exposure to high-dose glucocorticoids merit clinical attention.
Collapse
Affiliation(s)
- Kristina Laugesen
- Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Olof Palmes Allé 43-45, 8200 Aarhus, Denmark.
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Olof Palmes Allé 43-45, 8200 Aarhus, Denmark.
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark.
| | - Irene Petersen
- Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Olof Palmes Allé 43-45, 8200 Aarhus, Denmark; Department of Primary Care and Population Health, University College London, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
19
|
Fowden AL, Vaughan OR, Murray AJ, Forhead AJ. Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients 2022; 14:nu14112304. [PMID: 35684104 PMCID: PMC9182938 DOI: 10.3390/nu14112304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids have an important role in development of the metabolic phenotype in utero. They act as environmental and maturational signals in adapting feto-placental metabolism to maximize the chances of survival both before and at birth. They influence placental nutrient handling and fetal metabolic processes to support fetal growth, fuel storage and energy production with respect to nutrient availability. More specifically, they regulate the transport, utilization and production of a range of nutrients by the feto-placental tissues that enables greater metabolic flexibility in utero while minimizing any further drain on maternal resources during periods of stress. Near term, the natural rise in fetal glucocorticoid concentrations also stimulates key metabolic adaptations that prepare tissues for the new energy demanding functions after birth. Glucocorticoids, therefore, have a central role in the metabolic communication between the mother, placenta and fetus that optimizes offspring metabolic phenotype for survival to reproductive age. This review discusses the effects of maternal and fetal glucocorticoids on the supply and utilization of nutrients by the feto-placental tissues with particular emphasis on studies using quantitative methods to assess metabolism in rodents and sheep in vivo during late pregnancy. It considers the routes of glucocorticoid overexposure in utero, including experimental administration of synthetic glucocorticoids, and the mechanisms by which these hormones control feto-placental metabolism at the molecular, cellular and systems levels. It also briefly examines the consequences of intrauterine glucocorticoid overexposure for postnatal metabolic health and the generational inheritance of metabolic phenotype.
Collapse
Affiliation(s)
- Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Correspondence:
| | - Owen R. Vaughan
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK;
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
20
|
Asztalos EV, Murphy KE, Matthews SG. A Growing Dilemma: Antenatal Corticosteroids and Long-Term Consequences. Am J Perinatol 2022; 39:592-600. [PMID: 33053595 DOI: 10.1055/s-0040-1718573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A single course of synthetic antenatal corticosteroids is standard care for women considered to be at risk for preterm birth before 34 weeks of gestation. While the intended target is the fetal lung, the fetal brain contains remarkably high levels of glucocorticoid receptors in structures critical in the regulation of behavior and endocrine function. Negative programming signals may occur which can lead to permanent maladaptive changes and predispose the infant/child to an increased risk in physical, mental, and developmental disorders. METHODS Framed around these areas of concerns for physical, mental, and developmental disorders, this narrative review drew on studies (animal and clinical), evaluating the long-term effects of antenatal corticosteroids to present the case that a more targeted approach to the use of antenatal corticosteroids for the betterment of the fetus urgently needed. RESULTS Studies raised concerns about the potential negative long-term consequences, especially for the exposed fetus who was born beyond the period of the greatest benefit from antenatal corticosteroids. The long-term consequences are more subtle in nature and usually manifest later in life, often beyond the scope of most clinical trials. CONCLUSION Continued research is needed to identify sufficient safety data, both short term and long term. Caution in the use of antenatal corticosteroids should be exercised while additional work is undertaken to optimize dosing strategies and better identify women at risk of preterm birth prior to administration of antenatal corticosteroids. KEY POINTS · A single-course ACS is a remarkable therapy with substantial benefits.. · There is a potential of long-term neurodevelopmental consequences in the ACS-exposed fetus.. · There is a need to improve dosing strategies and identification of appropriate at risk women..
Collapse
Affiliation(s)
- Elizabeth V Asztalos
- Department of Newborn and Developmental Paediatrics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Kellie E Murphy
- Department of Obstetrics and Gynecology, Sinai Health Systems, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Kim B, Sasaki A, Murphy K, Matthews SG. DNA methylation signatures in human neonatal blood following maternal antenatal corticosteroid treatment. Transl Psychiatry 2022; 12:132. [PMID: 35354798 PMCID: PMC8967826 DOI: 10.1038/s41398-022-01902-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal corticosteroids (ACS) are used to treat women at risk of preterm birth to improve neonatal survival. Though affected children may be at long-term risk of neurobehavioural disorders, the driving mechanisms remain unknown. Animal studies have shown that ACS exposure can lead to overlapping changes in DNA methylation between the blood and the brain, identifying gene pathways for neurodevelopment, which highlights the potential to examine peripheral blood as a surrogate for inaccessible human brain tissue. We hypothesized that differential methylation will be identified in blood of term-born neonates following ACS. Mother-infant dyads that received ACS were retrospectively identified through the Ontario Birth Study at Sinai Health Complex and matched to untreated controls for maternal age, BMI, parity and foetal sex (n = 14/group). Genome-wide methylation differences were examined at single-nucleotide resolution in DNA extracted from dried bloodspot cards using reduced representative bisulfite sequencing approaches. 505 differentially methylated CpG sites (DMCs) were identified, wherein 231 were hypermethylated and 274 were hypomethylated. These sites were annotated to 219 genes, of which USP48, SH3PXD2A, NTM, CAMK2N2, MAP6D1 were five of the top ten genes with known neurological function. Collectively, the set of hypermethylated genes were enriched for pathways of transcription regulation, while pathways of proteasome activity were enriched among the set of hypomethylated genes. This study is the first to identify DNA methylation changes in human neonatal blood following ACS. Understanding the epigenetic changes that occur in response to ACS will support future investigations to delineate the effects of prenatal glucocorticoid exposure on human development.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Aya Sasaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kellie Murphy
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Eng ME, Bloise E, Matthews SG. Fetal glucocorticoid exposure leads to sex-specific changes in drug-transporter function at the blood-brain barrier in juvenile guinea pigs. FASEB J 2022; 36:e22245. [PMID: 35262963 PMCID: PMC9311705 DOI: 10.1096/fj.202101552rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Antenatal synthetic glucocorticoids (sGCs) are a life‐saving treatment in managing pre‐term birth. However, off‐target effects of sGCs can impact blood‐brain barrier (BBB) drug transporters essential for fetal brain protection, including P‐glycoprotein (P‐gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex‐dependent manner. Thus, the objective of this study was to determine the long‐term impact of a single or multiple courses of betamethasone on P‐gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post‐natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P‐gp/Abcb1 and BCRP/Abcg2. P‐gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P‐gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P‐gp function in males compared to females (p = .055). Reduced P‐gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P‐gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.
Collapse
Affiliation(s)
- Margaret Elizabeth Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Han H, Xiao H, Wu Z, Liu L, Chen M, Gu H, Wang H, Chen L. The miR-98-3p/JAG1/Notch1 axis mediates the multigenerational inheritance of osteopenia caused by maternal dexamethasone exposure in female rat offspring. Exp Mol Med 2022; 54:298-308. [PMID: 35332257 PMCID: PMC8979986 DOI: 10.1038/s12276-022-00743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
As a synthetic glucocorticoid, dexamethasone is widely used to treat potential premature delivery and related diseases. Our previous studies have shown that prenatal dexamethasone exposure (PDE) can cause bone dysplasia and susceptibility to osteoporosis in female rat offspring. However, whether the effect of PDE on bone development can be extended to the third generation (F3 generation) and its multigenerational mechanism of inheritance have not been reported. In this study, we found that PDE delayed fetal bone development and reduced adult bone mass in female rat offspring of the F1 generation, and this effect of low bone mass caused by PDE even continued to the F2 and F3 generations. Furthermore, we found that PDE increases the expression of miR-98-3p but decreases JAG1/Notch1 signaling in the bone tissue of female fetal rats. Moreover, the expression changes of miR-98-3p/JAG1/Notch1 caused by PDE continued from the F1 to F3 adult offspring. Furthermore, the expression levels of miR-98-3p in oocytes of the F1 and F2 generations were increased. We also confirmed that dexamethasone upregulates the expression of miR-98-3p in vitro and shows targeted inhibition of JAG1/Notch1 signaling, leading to poor osteogenic differentiation of bone marrow mesenchymal stem cells. In conclusion, maternal dexamethasone exposure caused low bone mass in female rat offspring with a multigenerational inheritance effect, the mechanism of which is related to the inhibition of JAG1/Notch1 signaling caused by the continuous upregulation of miR-98-3p expression in bone tissues transmitted by F2 and F3 oocytes.
Collapse
Affiliation(s)
- Hui Han
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
24
|
Laugesen K, Sørensen HT, Jorgensen JOL, Petersen I. Prenatal exposure to glucocorticoids and the prevalence of overweight or obesity in childhood. Eur J Endocrinol 2022; 186:429-440. [PMID: 35104239 PMCID: PMC8942335 DOI: 10.1530/eje-21-0846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Prenatal exposure to excess cortisol can affect postnatal metabolic health by epigenetic mechanisms. We aimed to investigate if prenatal exposure to pharmacological glucocorticoids increases the risk of overweight/obesity in childhood. DESIGN A nationwide population registry-based cohort study. METHODS We identified 383 877 children born in Denmark (2007-2012), who underwent routine anthropometric evaluation at 5-8 years of age. Prenatal exposure to glucocorticoids was divided into systemic and topical glucocorticoids, cumulative systemic dose, and use by trimester. The comparison cohort included children without exposure, born to maternal never-users. Negative control exposures were used to investigate confounding from an underlying disease or unmeasured characteristics. Such exposures included children without glucocorticoid exposure born to maternal users of non-steroidal anti-inflammatory drugs or immunotherapy during pregnancy, maternal former users of glucocorticoids, or paternal users of glucocorticoids during the pregnancy of their partner. We estimated sex-stratified adjusted prevalence ratios (aPR) of overweight/obesity at 5-8 years of age, as epigenetic modifications have shown to be sex-specific. RESULTS In the study, 21 246 (11%) boys and 27 851 (15%) girls were overweight/obese at 5-8 years of age. Overall, neither systemic nor topical glucocorticoids were associated with overweight/obesity. In boys, high-dose systemic glucocorticoids was associated with higher prevalence of overweight/obesity vs the comparison cohort (aPR: 1.41 (95% CI: 1.07-1.86), prevalence: 16% vs 11%). Negative control exposures indicated robustness to confounding. CONCLUSION Overweight/obesity might be an adverse effect of prenatal exposure to high-dose systemic glucocorticoids in boys. We found no association for neither prenatal exposure to lower doses of systemic nor topical glucocorticoids. These results merit clinical attention.
Collapse
Affiliation(s)
- Kristina Laugesen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence should be addressed to K Laugesen;
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Otto L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Irene Petersen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Primary Care and Population Health, University College London, London, UK
| |
Collapse
|
25
|
Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders. Front Genet 2022; 13:831221. [PMID: 35242170 PMCID: PMC8886225 DOI: 10.3389/fgene.2022.831221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairments in social reciprocity and communication, restrictive interests, and repetitive behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and environmental risk factors, whose interactions can be studied through epigenetic mechanisms such as DNA methylation. While various parental factors are known to increase risk for ASD, several studies have indicated that grandparental and great-grandparental factors may also contribute. In animal studies, gestational exposure to certain environmental factors, such as insecticides, medications, and social stress, increases risk for altered behavioral phenotypes in multiple subsequent generations. Changes in DNA methylation, gene expression, and chromatin accessibility often accompany these altered behavioral phenotypes, with changes often appearing in genes that are important for neurodevelopment or have been previously implicated in ASD. One hypothesized mechanism for these phenotypic and methylation changes includes the transmission of DNA methylation marks at individual chromosomal loci from parent to offspring and beyond, called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes in the parental generation may confer risk from the original grandparental exposure to risk for ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require further research, the potential for multigenerational epigenetics assessments of ASD risk has implications for precision medicine as the field attempts to address the variable etiology and clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review, we discuss the promise of multigenerational DNA methylation investigations in understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Julia S Mouat
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Jobe AH. Neonatal Network Data Based‒Associations Based on Large Numbers that May Be Spurious. J Pediatr 2021; 235:18-19. [PMID: 33862024 DOI: 10.1016/j.jpeds.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Alan H Jobe
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH.
| |
Collapse
|
27
|
Carvalho LS, Brito HM, Lukoyanova EA, Maia GH, Sarkisyan D, Nosova O, Zhang M, Lukoyanov N, Bakalkin G. Unilateral brain injury to pregnant rats induces asymmetric neurological deficits in the offspring. Eur J Neurosci 2021; 53:3621-3633. [PMID: 33884684 DOI: 10.1111/ejn.15243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
Effects of environmental factors may be transmitted to the following generation, and cause neuropsychiatric disorders including depression, anxiety, and posttraumatic stress disorder in the offspring. Enhanced synaptic plasticity induced by environmental enrichment may be also transmitted. We here test the hypothesis that the effects of brain injury in pregnant animals may produce neurological deficits in the offspring. Unilateral brain injury (UBI) by ablation of the hindlimb sensorimotor cortex in pregnant rats resulted in the development of hindlimb postural asymmetry (HL-PA), and impairment of balance and coordination in beam walking test in the offspring. The offspring of rats with the left UBI exhibited HL-PA before and after spinal cord transection with the contralesional (i.e., right) hindlimb flexion. The right UBI caused the offspring to develop HL-PA that however was cryptic and not-lateralized; it was evident only after spinalization, and was characterized by similar occurrence of the ipsi- and contralesional hindlimb flexion. The HL-PA persisted after spinalization suggesting that the asymmetry was encoded in lumbar spinal neurocircuits that control hindlimb muscles. Balance and coordination were affected by the right UBI but not the left UBI. Thus, the effects of a unilateral brain lesion in pregnant animals may be intergenerationally transmitted, and this process may depend on the side of brain injury. The results suggest the existence of left-right side-specific mechanisms that mediate transmission of the lateralized effects of brain trauma from mother to fetus.
Collapse
Affiliation(s)
- Liliana S Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Helena M Brito
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Elena A Lukoyanova
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Gisela H Maia
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Escher J. How Family Histories Can Inform Research About Germ Cell Exposures: The Example of Autism. Biol Reprod 2021; 105:767-773. [PMID: 33959752 DOI: 10.1093/biolre/ioab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Throughout the scientific literature, heritable traits are routinely presumed to be genetic in origin. However, as emerging evidence from the realms of genetic toxicology and epigenomics demonstrate, heritability may be better understood as encompassing not only DNA sequence passed down through generations, but also disruptions to the parental germ cells causing de novo mutations or epigenetic alterations, with subsequent shifts in gene expression and functions in offspring. The Beyond Genes conference highlighted advances in understanding these aspects at molecular, experimental and epidemiological levels. In this commentary I suggest that future research on this topic could be inspired by collecting parents' germ cell exposure histories, with particular attention to cases of families with multiple children suffering idiopathic disorders. In so doing I focus on the endpoint of autism spectrum disorders (ASD). Rates of this serious neurodevelopment disability have climbed around the world, a growing crisis that cannot be explained by diagnostic shifts. ASD's strong heritability has prompted a research program largely focused on DNA sequencing to locate rare and common variants, but decades of this gene-focused research have revealed surprisingly little about the molecular origins of the disorder. Based on my experience as the mother of two children with idiopathic autism, and as a research philanthropist and autism advocate, I suggest ways researchers might probe parental germ cell exposure histories to develop new hypotheses that may ultimately reveal sources of non-genetic heritability in a subset of idiopathic heritable pathologies.
Collapse
|
29
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
30
|
Jobe AH, Schmidt AF. Chapter for antenatal steroids - Treatment drift for a potent therapy with unknown long-term safety seminars in fetal and neonatal medicine. Semin Fetal Neonatal Med 2021; 26:101231. [PMID: 33773951 DOI: 10.1016/j.siny.2021.101231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter on therapeutic drift with antenatal steroids will make the case that this pilar of treatment to improve the outcomes of preterm infants, despite multiple Randomized Control Trials (RCTs) and meta-analysis, has multiple gaps in solid clinical data to support any expanded use of Antenatal Corticosteroids (ACS). A basic problem is that agents used for ACS have never been evaluated to minimize fetal exposures. Based on the premise that all drug exposure to the fetus should be minimized and only used when necessary, ACS is a potent developmental modulator that has never been evaluated to minimize the dose and duration of fetal exposure. The use of ACS is expanding to late preterm infants where the benefit is modest, to elective C-sections, and periviable fetuses, with minimal RCT data of long-term benefit. Relevant animal experiments demonstrate that much lower doses will induce lung maturation in sheep and primates. Another area of drift in the use of ACS is based on the assumption that the old RCT data accurately predict the magnitude of benefit when ACS is used today with entirely different OB and neonatal care strategies to improve outcomes. We do not have data that demonstrate the effectiveness of ACS in very low resource environments, where most of the preterm mortality occurs. The final concern is the risk of ACS to the infant and child. Short-term risks are minimal but dysmaturation effects of ACS on multiple organ systems (lung, heart, brain, and kidney) may result in disease presentation in later life.
Collapse
Affiliation(s)
- Alan H Jobe
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| | - Augusto F Schmidt
- The University of Miami, Miller School of Medicine, Coral Gables, FL, 33124, USA.
| |
Collapse
|
31
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
32
|
miRNA320a-3p/RUNX2 signal programming mediates the transgenerational inheritance of inhibited ovarian estrogen synthesis in female offspring rats induced by prenatal dexamethasone exposure. Pharmacol Res 2021; 165:105435. [PMID: 33485996 DOI: 10.1016/j.phrs.2021.105435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Our previous studies found that prenatal dexamethasone exposure could cause abnormal follicular development in fetal rats. This study intends to observe the transgenerational inheritance effects of ovarian estrogen inhibition in offspring exposed to dexamethasone (0.2 mg/kg • d) from gestational day 9 (GD9) to GD20 in Wistar rats, and explore the intrauterine programming mechanisms. Prenatal dexamethasone exposure reduced the expression of ovarian cytochrome P450 aromatase (P450arom), the level of serum estradiol (E2) and the number of primordial follicles, while increased the number of atresia follicles before and after birth in F1 offspring rats. At the same time, the expression of miRNA320a-3p in F1 ovaries was down-regulated, and RUNX2 expression increased significantly. These changes were continued to F2 and F3 generations, accompanied by consistently down-regulated miRNA320a-3p expression in oocyte of F1 and F2 adult offspring. In vitro, fetal rat ovaries and KGN human ovarian granulosa cells were treated with dexamethasone. It showed that dexamethasone decreased miRNA320a-3p and P450arom expression, as well as E2 synthesis, and increased RUNX2 expression. All these effects could be reversed by the GR antagonist RU486. The overexpression of miRNA320a-3p in vitro could also reverse the effects of dexamethasone on RUNX2, P450arom, and E2 levels. The dual-luciferase reporter gene experiment further confirmed the direct targeted regulation of miRNA320a-3p on RUNX2. These results indicate that prenatal dexamethasone exposure induces ovarian E2 synthesis inhibition mediated by the GR/miRNA320a-3p/RUNX2/P450arom cascade signal in fetal rat ovary, which has transgenerational inheritance effects and may related to the inhibited miRNA320a-3p expression in oocyte.
Collapse
|
33
|
DNA methylome signatures of prenatal exposure to synthetic glucocorticoids in hippocampus and peripheral whole blood of female guinea pigs in early life. Transl Psychiatry 2021; 11:63. [PMID: 33462183 PMCID: PMC7813870 DOI: 10.1038/s41398-020-01186-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Synthetic glucocorticoids (sGC) are administered to women at risk of preterm delivery, approximately 10% of all pregnancies. In animal models, offspring exposed to elevated glucocorticoids, either by administration of sGC or endogenous glucocorticoids as a result of maternal stress, show increased risk of developing behavioral, endocrine, and metabolic dysregulation. DNA methylation may play a critical role in long-lasting programming of gene regulation underlying these phenotypes. However, peripheral tissues such as blood are often the only accessible source of DNA for epigenetic analyses in humans. Here, we examined the hypothesis that prenatal sGC administration alters DNA methylation signatures in guinea pig offspring hippocampus and whole blood. We compared these signatures across the two tissue types to assess epigenetic biomarkers of common molecular pathways affected by sGC exposure. Guinea pigs were treated with sGC or saline in late gestation. Genome-wide modifications of DNA methylation were analyzed at single nucleotide resolution using reduced representation bisulfite sequencing in juvenile female offspring. Results indicate that there are tissue-specific as well as common methylation signatures of prenatal sGC exposure. Over 90% of the common methylation signatures associated with sGC exposure showed the same directionality of change in methylation. Among differentially methylated genes, 134 were modified in both hippocampus and blood, of which 61 showed methylation changes at identical CpG sites. Gene pathway analyses indicated that prenatal sGC exposure alters the methylation status of gene clusters involved in brain development. These data indicate concordance across tissues of epigenetic programming in response to alterations in glucocorticoid signaling.
Collapse
|
34
|
Hellmann JK, Carlson ER, Bell AM. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific. J Anim Ecol 2020; 89:2800-2812. [PMID: 33191513 PMCID: PMC7902365 DOI: 10.1111/1365-2656.13365] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Transgenerational plasticity (TGP) occurs when the environment encountered by one generation (F0) alters the phenotypes of one or more future generations (e.g. F1 and F2). Sex selective TGP, via specific lineages or to only male or female descendants, has been underexplored in natural systems, and may be adaptive if it allows past generations to fine-tune the phenotypes of future generations in response to sex-specific life-history strategies. We sought to understand if exposing males to predation risk can influence grandoffspring via sperm in three-spined stickleback Gasterosteus aculeatus. We specifically tested the hypothesis that grandparental effects are transmitted in a sex-specific way down the male lineage, from paternal grandfathers to F2 males. We reared F1 offspring of unexposed and predator-exposed F0 males under 'control' conditions and used them to generate F2s with control grandfathers, a predator-exposed maternal grandfather (i.e. predator-exposed F0 males to F1 daughters to F2s), a predator-exposed paternal grandfather (i.e. predator-exposed F0 males to F1 sons to F2s) or two predator-exposed grandfathers. We then assayed male and female F2s for a variety of traits related to antipredator defence. We found little evidence that transgenerational effects were mediated to only male descendants via the paternal lineage. Instead, grandpaternal effects depended on lineage and were mediated largely across sexes, from F1 males to F2 females and from F1 females to F2 males. When their paternal grandfather was exposed to predation risk, female F2s were heavier and showed a reduced change in behaviour in response to a simulated predator attack relative to grandoffspring of control, unexposed grandparents. In contrast, male F2s showed reduced antipredator behaviour when their maternal grandfather was exposed to predation risk. However, these patterns were only evident when one grandfather, but not both grandfathers, was exposed to predation risk, suggesting the potential for non-additive interactions across lineages. If sex-specific and lineage effects are common, then grandparental effects are likely underestimated in the literature. These results draw attention to the importance of sex-selective inheritance of environmental effects and raise new questions about the proximate and ultimate causes of selective transmission across generations.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Erika R Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
35
|
Fitzgerald E, Hor K, Drake AJ. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum Dev 2020; 150:105190. [PMID: 32948364 PMCID: PMC7481314 DOI: 10.1016/j.earlhumdev.2020.105190] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kahyee Hor
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
36
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
37
|
Ninan K, Morfaw F, Murphy KE, Beyene J, McDonald SD. Neonatal and Maternal Outcomes of Lower Versus Standard Doses of Antenatal Corticosteroids for Women at Risk of Preterm Delivery: A Systematic Review of Randomized Controlled Trials. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 43:74-81. [PMID: 32660867 DOI: 10.1016/j.jogc.2020.02.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Our objective was to systematically review randomized and quasi-randomized trials on the neonatal and maternal effects of lower doses of antenatal corticosteroids (<24 mg of betamethasone or dexamethasone) compared with standard double doses of antenatal corticosteroids (24 mg of betamethasone or dexamethasone) administered to women at risk of preterm delivery. DATA SOURCES Medline, Embase, CINAHL, Web of Science, Cochrane CENTRAL, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and the Australia New Zealand Clinical Trials Registry were searched from inception to December 8, 2019. STUDY SELECTION A total of 2401 titles, abstracts, and protocols were independently screened by two reviewers, and subsequently 113 full-text articles were reviewed. DATA EXTRACTION Our primary outcomes were perinatal death and severe respiratory distress syndrome. DATA SYNTHESIS We identified one large in-progress trial comparing 11.4 mg versus 22.8 mg betamethasone and one published randomized controlled trial that compared a lower dose of dexamethasone (16 mg) to a standard dose of betamethasone (24 mg). The only relevant data from the published trial suggests minor changes in fetal heart rate variability between baseline and 24- to 48-hour follow-up between the two groups. Data for other outcomes had to be excluded due to the administration of weekly courses of antenatal corticosteroids. CONCLUSIONS Randomized trial data comparing lower doses of antenatal corticosteroids to standard double doses are scarce. Given concerns regarding current antenatal corticosteroids dosing patterns, there is an urgent need for randomized controlled trials examining lower versus standard double doses of antenatal corticosteroids.
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON
| | - Frederick Morfaw
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON
| | - Kellie E Murphy
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON
| | - Joseph Beyene
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON
| | - Sarah D McDonald
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON; Department of Radiology, McMaster University, Hamilton, ON.
| |
Collapse
|
38
|
A heretical view: rather than a solely placental protective function, placental 11β hydroxysteroid dehydrogenase 2 also provides substrate for fetal peripheral cortisol synthesis in obese pregnant ewes. J Dev Orig Health Dis 2020; 12:94-100. [PMID: 32151296 DOI: 10.1017/s2040174420000112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exposure to glucocorticoid levels higher than appropriate for current developmental stages induces offspring metabolic dysfunction. Overfed/obese (OB) ewes and their fetuses display elevated blood cortisol, while fetal Adrenocorticotropic hormone (ACTH) remains unchanged. We hypothesized that OB pregnancies would show increased placental 11β hydroxysteroid dehydrogenase 2 (11β-HSD2) that converts maternal cortisol to fetal cortisone as it crosses the placenta and increased 11β-HSD system components responsible for peripheral tissue cortisol production, providing a mechanism for ACTH-independent increase in circulating fetal cortisol. Control ewes ate 100% National Research Council recommendations (CON) and OB ewes ate 150% CON diet from 60 days before conception until necropsy at day 135 gestation. At necropsy, maternal jugular and umbilical venous blood, fetal liver, perirenal fat, and cotyledonary tissues were harvested. Maternal plasma cortisol and fetal cortisol and cortisone were measured. Fetal liver, perirenal fat, cotyledonary 11β-HSD1, hexose-6-phosphate dehydrogenase (H6PD), and 11β-HSD2 protein abundance were determined by Western blot. Maternal plasma cortisol, fetal plasma cortisol, and cortisone were higher in OB vs. CON (p < 0.01). 11β-HSD2 protein was greater (p < 0.05) in OB cotyledonary tissue than CON. 11β-HSD1 abundance increased (p < 0.05) in OB vs. CON fetal liver and perirenal fat. Fetal H6PD, an 11β-HSD1 cofactor, also increased (p < 0.05) in OB vs. CON perirenal fat and tended to be elevated in OB liver (p < 0.10). Our data provide evidence for increased 11β-HSD system components responsible for peripheral tissue cortisol production in fetal liver and adipose tissue, thereby providing a mechanism for an ACTH-independent increase in circulating fetal cortisol in OB fetuses.
Collapse
|
39
|
Hrabalkova L, Takahashi T, Kemp MW, Stock SJ. Antenatal Corticosteroids for Fetal Lung Maturity - Too Much of a Good Thing? Curr Pharm Des 2020; 25:593-600. [PMID: 30914016 DOI: 10.2174/1381612825666190326143814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Between 5-15% of babies are born prematurely worldwide, with preterm birth defined as delivery before 37 completed weeks of pregnancy (term is at 40 weeks of gestation). Women at risk of preterm birth receive antenatal corticosteroids as part of standard care to accelerate fetal lung maturation and thus improve neonatal outcomes in the event of delivery. As a consequence of this treatment, the entire fetal organ system is exposed to the administered corticosteroids. The implications of this exposure, particularly the long-term impacts on offspring health, are poorly understood. AIMS This review will consider the origins of antenatal corticosteroid treatment and variations in current clinical practices surrounding the treatment. The limitations in the evidence base supporting the use of antenatal corticosteroids and the evidence of potential harm to offspring are also summarised. RESULTS Little has been done to optimise the dose and formulation of antenatal corticosteroid treatment since the first clinical trial in 1972. International guidelines for the use of the treatment lack clarity regarding the recommended type of corticosteroid and the gestational window of treatment administration. Furthermore, clinical trials cited in the most recent Cochrane Review have limitations which should be taken into account when considering the use of antenatal corticosteroids in clinical practice. Lastly, there is limited evidence regarding the long-term effects on the different fetal organ systems exposed in utero, particularly when the timing of corticosteroid administration is sub-optimal. CONCLUSION Further investigations are urgently needed to determine the most safe and effective treatment regimen for antenatal corticosteroids, particularly regarding the type of corticosteroid and optimal gestational window of administration. A clear consensus on the use of this common treatment could maximise the benefits and minimise potential harms to offspring.
Collapse
Affiliation(s)
- Lenka Hrabalkova
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Matthew W Kemp
- Tohoku University Hospital, Sendai, Miyagi, Japan.,Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Adams RCM, Smith C. In utero Exposure to Maternal Chronic Inflammation Transfers a Pro-Inflammatory Profile to Generation F2 via Sex-Specific Mechanisms. Front Immunol 2020; 11:48. [PMID: 32117231 PMCID: PMC7031653 DOI: 10.3389/fimmu.2020.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
Abstract
Generational transfer of maladaptations in offspring have been reported to persist for multiple generations in conditions of chronic inflammation, metabolic and psychological stress. Thus, the current study aimed to expand our understanding of the nature, potential sex specificity, and transgenerational plasticity of inflammatory maladaptations resulting from maternal chronic inflammation. Briefly, F1 and F2 generations of offspring from C57/BL/6 dams exposed to a modified maternal periconception systemic inflammation (MSPI) protocol were profiled in terms of leukocyte and splenocyte counts and cytokine responses, as well as glucocorticoid sensitivity. Overall, F1 male and female LPS groups presented with glucocorticoid hypersensitivity (with elevated corticosterone and increased leukocyte glucocorticoid receptor levels) along with a pro-inflammatory phenotype, which carried over to the F2 generation. The transfer of inflammatory and glucocorticoid responsiveness from F1 to F2 is evident, with heritability of this phenotype in F2. The findings suggest that maternal (F0) perinatal chronic inflammation resulted in glucocorticoid dysregulation and a resultant pro-inflammatory phenotype, which is transferred in the maternal lineage but seems to affect male offspring to a greater extent. Of further interest, upregulation of IL-1β cytokine responses is reported in female offspring only. The cumulative maladaptation reported in F2 offspring when both F1 parents were affected by maternal LPS exposure is suggestive of immune senescence. Given the potential impact of current results and the lack of sex-specific investigations, more research in this context is urgently required.
Collapse
Affiliation(s)
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
41
|
Jobe AH. Antenatal Corticosteroids-A Concern for Lifelong Outcomes. J Pediatr 2020; 217:184-188. [PMID: 31606149 DOI: 10.1016/j.jpeds.2019.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH.
| |
Collapse
|
42
|
Escher J, Ford LD. General anesthesia, germ cells and the missing heritability of autism: an urgent need for research. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa007. [PMID: 32704384 PMCID: PMC7368377 DOI: 10.1093/eep/dvaa007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Agents of general anesthesia (GA) are commonly employed in surgical, dental and diagnostic procedures to effectuate global suppression of the nervous system, but in addition to somatic targets, the subject's germ cells-from the embryonic primordial stage to the mature gametes-may likewise be exposed. Although GA is generally considered safe for most patients, evidence has accumulated that various compounds, in particular the synthetic volatile anesthetic gases (SVAGs) such as sevoflurane, can exert neurotoxic, genotoxic and epigenotoxic effects, with adverse consequences for cellular and genomic function in both somatic and germline cells. The purpose of this paper is to review the evidence demonstrating that GA, and in particular, SVAGs, may in some circumstances adversely impact the molecular program of germ cells, resulting in brain and behavioral pathology in the progeny born of the exposed cells. Further, we exhort the medical and scientific communities to undertake comprehensive experimental and epidemiological research programs to address this critical gap in risk assessment.
Collapse
Affiliation(s)
- Jill Escher
- Correspondence address. Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA 95126, USA. E-mail:
| | | |
Collapse
|
43
|
Constantinof A, Boureau L, Moisiadis VG, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Results in Changes in Gene Transcription and DNA Methylation in the Female Juvenile Guinea Pig Hippocampus Across Three Generations. Sci Rep 2019; 9:18211. [PMID: 31796763 PMCID: PMC6890750 DOI: 10.1038/s41598-019-54456-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Synthetic glucocorticoids (sGC) are administered to women at risk for pre-term delivery, to mature the fetal lung and decrease neonatal morbidity. sGC also profoundly affect the fetal brain. The hippocampus expresses high levels of glucocorticoid (GR) and mineralocorticoid receptor (MR), and its development is affected by elevated fetal glucocorticoid levels. Antenatal sGC results in neuroendocrine and behavioral changes that persist in three generations of female guinea pig offspring of the paternal lineage. We hypothesized that antenatal sGC results in transgenerational changes in gene expression that correlate with changes in DNA methylation. We used RNASeq and capture probe bisulfite sequencing to investigate the transcriptomic and epigenomic effects of antenatal sGC exposure in the hippocampus of three generations of juvenile female offspring from the paternal lineage. Antenatal sGC exposure (F0 pregnancy) resulted in generation-specific changes in hippocampal gene transcription and DNA methylation. Significant changes in individual CpG methylation occurred in RNApol II binding regions of small non-coding RNA (snRNA) genes, which implicates alternative splicing as a mechanism involved in transgenerational transmission of the effects of antenatal sGC. This study provides novel perspectives on the mechanisms involved in transgenerational transmission and highlights the importance of human studies to determine the longer-term effects of antenatal sGC on hippocampal-related function.
Collapse
Affiliation(s)
- Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Lisa Boureau
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G1X5, Canada.
| |
Collapse
|
44
|
Kumagai Y, Kemp MW, Yaegashi N, Saito M. Contemporary Challenges and Developments: Antenatal Corticosteroid Therapy. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2019. [DOI: 10.1007/s13669-019-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|
46
|
Adams RCM, Smith C. Chronic Gestational Inflammation: Transfer of Maternal Adaptation over Two Generations of Progeny. Mediators Inflamm 2019; 2019:9160941. [PMID: 31582905 PMCID: PMC6754931 DOI: 10.1155/2019/9160941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Changes in the in utero environment result in generational transfer of maladapted physiology in the context of conditions such as stress, obesity, and anxiety. Given the significant contribution of noncommunicable diseases-which are characterised by chronic inflammation-to population mortality, the potential for chronic maternal inflammation mediating foetal programming is a growing concern. The extent of generational transfer in terms of immune functionality and leukocyte glucocorticoid sensitivity was investigated over two generations of offspring (F1 and F2) in a model of chronic LPS-induced maternal inflammation in C57/BL/6 mice. Maternal inflammation resulted in glucocorticoid hypersensitivity (increased glucocorticoid receptor expression levels) in the majority of leukocyte subpopulations in both F1 and F2 offspring. Furthermore, splenocytes stimulated with LPS in vitro exhibited exacerbated inflammatory cytokine responses, which were even more prominent in F2 than F1; this effect could be ascribed to NLRP3 inflammasome hyperactivity in F1 but not F2. Current data illustrates that parental chronic inflammation may mediate the inflammatory profile in offspring, potentially propagating a maladapted proinflammatory phenotype in subsequent generations.
Collapse
Affiliation(s)
- R. C. M. Adams
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
- Fluorescence Microscopy Unit, Central Analytical Facilities, Stellenbosch University, South Africa
| | - C. Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
| |
Collapse
|
47
|
Abstract
Antenatal corticosteroids (ACS) are sporadically used in low and middle income countries (LMIC), although their use is considered by the World Health Organization (WHO) as essential for decreasing infant mortality. Presently the WHO recommends the use of ACS only when gestational age is known, delivery is imminent, and the delivery will be in a facility that can provide care for the mother and the infant. We review uncertainties about ACS in high income countries that are underappreciated for anticipating their effectiveness in LMIC. We discuss the implications of a large RCT that evaluated the use of ACS in LMIC and found no benefit for presumed preterm infants and increased mortality in larger infants. The treatment schedules for ACS have not been optimized and more is now known about how to improve treatment strategies to hopefully decrease risks such as neonatal hypoglycemia in LMIC. The benefits from ACS may depend on the patient populations and health care environment in which the therapy is used. Further trials are needed to evaluate the safety and efficacy of ACS in LMIC.
Collapse
Affiliation(s)
- Alan H Jobe
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45248, USA; University of Western Australia, Perth, Australia.
| | - Matthew W Kemp
- University of Western Australia, Perth, Australia; Tohoku University Hospital, Sendai, Japan; Murdock University, Perth, Australia
| | - Beena Kamath-Rayne
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45248, USA
| | | |
Collapse
|
48
|
Császár-Nagy N, Kapócs G, Bókkon I. Classic psychedelics: the special role of the visual system. Rev Neurosci 2019; 30:651-669. [PMID: 30939118 DOI: 10.1515/revneuro-2018-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
Here, we briefly overview the various aspects of classic serotonergic hallucinogens reported by a number of studies. One of the key hypotheses of our paper is that the visual effects of psychedelics might play a key role in resetting fears. Namely, we especially focus on visual processes because they are among the most prominent features of hallucinogen-induced hallucinations. We hypothesize that our brain has an ancient visual-based (preverbal) intrinsic cognitive process that, during the transient inhibition of top-down convergent and abstract thinking (mediated by the prefrontal cortex) by psychedelics, can neutralize emotional fears of unconscious and conscious life experiences from the past. In these processes, the decreased functional integrity of the self-referencing processes of the default mode network, the modified multisensory integration (linked to bodily self-consciousness and self-awareness), and the modified amygdala activity may also play key roles. Moreover, the emotional reset (elimination of stress-related emotions) by psychedelics may induce psychological changes and overwrite the stress-related neuroepigenetic information of past unconscious and conscious emotional fears.
Collapse
Affiliation(s)
- Noemi Császár-Nagy
- National University of Public Services, Budapest, Hungary.,Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - Gábor Kapócs
- Saint John Hospital, Budapest, Hungary.,Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - István Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary.,Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| |
Collapse
|
49
|
Matthews SG, McGowan PO. Developmental programming of the HPA axis and related behaviours: epigenetic mechanisms. J Endocrinol 2019; 242:T69-T79. [PMID: 30917340 DOI: 10.1530/joe-19-0057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
It has been approximately 30 years since the seminal discoveries of David Barker and his colleagues, and research is beginning to unravel the mechanisms that underlie developmental programming. The early environment of the embryo, foetus and newborn have been clearly linked to altered hypothalamic-pituitary-adrenal (HPA) function and related behaviours through the juvenile period and into adulthood. A number of recent studies have shown that these effects can pass across multiple generations. The HPA axis is highly responsive to the environment, impacts both central and peripheral systems and is critical to health in a wide variety of contexts. Mechanistic studies in animals are linking early exposures to adversity with changes in gene regulatory mechanisms, including modifications of DNA methylation and altered levels of miRNA. Similar associations are emerging from recent human studies. These findings suggest that epigenetic mechanisms represent a fundamental link between adverse early environments and developmental programming of later disease. The underlying biological mechanisms that connect the perinatal environment with modified long-term health outcomes represent an intensive area of research. Indeed, opportunities for early interventions must identify the relevant environmental factors and their molecular targets. This new knowledge will likely assist in the identification of individuals who are at risk of developing poor outcomes and for whom early intervention is most effective.
Collapse
Affiliation(s)
- Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Departments of Obstetrics & Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick O McGowan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Scarborough, Ontario, Canada
- Department of Cell and Systems Biology, Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Escher J, Robotti S. Pregnancy drugs, fetal germline epigenome, and risks for next-generation pathology: A call to action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:445-454. [PMID: 30891817 DOI: 10.1002/em.22288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/09/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Drugs taken during pregnancy can affect three generations at once: the gestating woman (F0), her exposed fetus (F1), and the fetal germ cells that confer heritable information for the grandchildren (F2). Unfortunately, despite growing evidence for connections between F0 drug exposures and F2 pathology, current approaches to risk assessment overlook this important dimension of risk. In this commentary, we argue that the unique molecular vulnerabilities of the fetal germline, particularly with regard to global epigenomic reprogramming, combined with empirical evidence for F2 effects of F1 in utero drug and other exposures, should change the way we consider potential long-term consequences of pregnancy drugs and alter toxicology's standard somatic paradigm. Specifically, we (1) suggest that pregnancy drugs common in the postwar decades should be investigated as potential contributors to the "missing heritability" of many pathologies now surging in prevalence; (2) call for inclusion of fetal germline risks in pregnancy drug safety assessment; and (3) highlight the need for intensified research to ascertain generational impacts of diethylstilbestrol, a vanguard question of human germline toxicity. Only by fully addressing this important dimension of transplacental exposure can we responsibly evaluate safety of drug exposures during pregnancy and convey the full scope of risks, while also retrospectively comprehending the generational legacy of recent history's unprecedented glut of evolutionarily novel intrauterine exposures. Environ. Mol. Mutagen. 60:445-454, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, San Jose, California
| | | |
Collapse
|