1
|
Seluk L, Davis AE, Rhoads S, Wechsler ME. Novel asthma treatments: Advancing beyond approved novel step-up therapies for asthma. Ann Allergy Asthma Immunol 2025; 134:9-18. [PMID: 39393433 DOI: 10.1016/j.anai.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Over the past 2 decades, the management of severe asthma has shifted from relying on inhaled corticosteroids and bronchodilators to more precise, targeted approaches. Monoclonal antibodies designed to address specific molecular pathways in asthma have transformed care for patients with severe asthma. Because therapy targeting IgE became the first biologic developed for allergic asthma in 2003, monoclonal antibodies targeting interleukin (IL)-5, IL-5 receptor, IL-4/-13 receptor, and thymic stromal lymphopoietin have been approved for treating difficult-to-treat asthma, improving symptoms, reducing exacerbations, and reducing oral corticosteroid dosing. Despite these advances, many patients continue to experience asthma exacerbations and symptoms and fail to achieve remission. To address this, pharmaceutical companies and researchers are exploring novel therapies targeting different aspects of asthma pathophysiology, including cytokines, enzymes, and cellular pathways. Innovative treatments such as inhaled biologics, ultra-long-acting biologics, and combination biologics are in development. New molecular targets, such as Bruton tyrosine kinase, OX-40 ligand, and Janus kinase, offer promise for addressing unmet needs in asthma care. Although many therapies have failed to get approval for use because of a lack of efficacy, trial design, or toxicity, these experiments still provide insights into asthma's underlying mechanisms. The future of asthma management looks promising, with emerging therapies aiming to improve patient outcomes. The challenge will lie in identifying the right therapy for each patient and developing personalized treatment strategies.
Collapse
Affiliation(s)
- Lior Seluk
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado
| | - Andrea E Davis
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, The Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Rhoads
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, The Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael E Wechsler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado.
| |
Collapse
|
2
|
Zhang BB, Harrison K, Zhong Y, Maxwell JWC, Ford DJ, Calvey LP, So SS, Peterson FC, Volkman BF, Stone MJ, Bhusal RP, Kulkarni SS, Payne RJ. Discovery of Selective Cyclic d-Sulfopeptide Ligands of the Chemokine CCL22 via Mirror-Image mRNA Display with Genetic Reprogramming. J Am Chem Soc 2024; 146:34253-34259. [PMID: 39629944 DOI: 10.1021/jacs.4c12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Chemokines are small proteins involved in recruiting leukocytes to sites of inflammation via interactions with specific cell surface receptors. CCL22 is a chemokine known to play a critical role in inflammatory diseases such as atopic dermatitis and asthma; inhibition of this chemokine therefore represents an attractive therapeutic strategy. Herein, we describe the discovery of cyclic d-sulfopeptide inhibitors of CCL22 identified through mirror-image mRNA display with genetic reprogramming. Chemical synthesis of mirror-image d-CCL22 enabled screening of a cyclic peptide library comprised of all l-amino acids, with reprogramming of l-sulfotyrosine to mimic the presence of this post-translational modification on native chemokine receptors. Enriched macrocyclic peptides were prepared in their mirror-image d-form and assessed for binding against native l-CCL22. The most potent ligand, a plasma-stable d-cyclic peptide bearing four d-sulfotyrosine residues, exhibited nanomolar affinity for CCL22, high selectivity over other chemokines, and nanomolar inhibition of CCL22 signaling through CCR4. This work highlights the vast potential of mirror-image mRNA display technology for discovering proteolytically stable d-peptide inhibitors of protein-protein interactions relevant across a range of therapeutic indications.
Collapse
Affiliation(s)
- Belinda B Zhang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yichen Zhong
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Ford
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam P Calvey
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean S So
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Protein Foundry, LLC, 662 94th Place, Milwaukee, Wisconsin 53214, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Protein Foundry, LLC, 662 94th Place, Milwaukee, Wisconsin 53214, United States
| | - Martin J Stone
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Zhou ZR, Fang SB, Liu XQ, Li CG, Xie YC, He BX, Sun Q, Tian T, Deng XH, Fu QL. Serum amyloid A1 induced dysfunction of airway macrophages via CD36 pathway in allergic airway inflammation. Int Immunopharmacol 2024; 142:113081. [PMID: 39244902 DOI: 10.1016/j.intimp.2024.113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Previous studies showed that serum amyloid A (SAA) and macrophages were associated with allergic airway inflammation. However, the interaction between SAA1 and macrophages in allergic airway inflammation remains to be further elucidated. In this study, the levels of SAA1 were measured in nasal tissues from patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), house dust mite (HDM)-treated BEAS-2B cells and the tissues of mice of HDM-induced allergic airway inflammation. Human monocytes-derived macrophages and mouse bone marrow-derived macrophages (BMDMs) were exposed to SAA1, and CCL17 and the other M1/M2-related factors were evaluated using RT-PCR and/or ELISA. To test the effects of SAA1-treated BMDMs on chemotaxis and differentiation of CD4+ T cells, number of migrated cells and the levels of Th1 and Th2 were measured using flow cytometry. SAA1 receptors were examined in BMDMs and lung macrophages of model mice. CD36 neutralizing antibody was applied to explore the mechanisms of SAA1 in regulating BMDMs using RT-PCR and/or ELISA. We found that SAA1 was expressed in epithelial cells, and was increased in the nasal tissues of patients with eosinophilic CRSwNP and HDM-treated BEAS-2B- cells as well as the bronchoalveolar lavage fluid and lung tissues of mice exposed to HDM. We also found that the level of CCL17 was increased in M2 macrophages, more CD4+ T cells were recruited and proportion of Th2 was increased after the treatment of SAA1. The treatment of CD36 neutralizing antibody decreased CCL17 level in SAA1-treated M2 BMDMs. In summary, our results showed that SAA1 was increased in allergic airway inflammation, and the administration of SAA1 upregulated the expression of CCL17 in M2 macrophages via CD36 and promoted the chemotaxis of CD4+ T cells and differentiation of Th2. It may provide a new therapeutic strategy that could mediate allergic airway inflammation via suppressing SAA1 to reduce recruitment of CD4+ T cells and activation of Th2.
Collapse
Affiliation(s)
- Zhi-Rou Zhou
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Ying-Chun Xie
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Qi Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Tian Tian
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Zheng Y, Han F, Wu Z, Wang B, Chen X, Boulouis C, Jiang Y, Ho A, He D, Sia WR, Mak JYW, Fairlie DP, Wang LF, Sandberg JK, Lobie PE, Ma S, Leeansyah E. MAIT cell activation and recruitment in inflammation and tissue damage in acute appendicitis. SCIENCE ADVANCES 2024; 10:eadn6331. [PMID: 38865451 PMCID: PMC11168461 DOI: 10.1126/sciadv.adn6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bingjie Wang
- Department of Pediatric Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yuebin Jiang
- Department of Pathology, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Zengarini C, Guglielmo A, Mussi M, Motta G, Agostinelli C, Sabattini E, Piraccini BM, Pileri A. A Narrative Review of the State of the Art of CCR4-Based Therapies in Cutaneous T-Cell Lymphomas: Focus on Mogamulizumab and Future Treatments. Antibodies (Basel) 2024; 13:32. [PMID: 38804300 PMCID: PMC11130839 DOI: 10.3390/antib13020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The CCR4 receptor is a pivotal target in cutaneous T-cell lymphoma (CTCL) therapy due to its role in impairing immune responses against malignant T-cells and expression profiles. Monoclonal antibodies like mogamulizumab effectively bind to CCR4, reducing tumour burden and enhancing patient outcomes by inhibiting the receptor's interaction with ligands, thereby hindering malignant T-cell migration and survival. Combining CCR4 antibodies with chemotherapy, radiation, and other drugs is being explored for synergistic effects. Additionally, small-molecular inhibitors, old pharmacological agents interacting with CCR4, and CAR-T therapies are under investigation. Challenges include drug resistance, off-target effects, and patient selection, addressed through ongoing trials refining protocols and identifying biomarkers. Despite advancements, real-life data for most of the emerging treatments are needed to temper expectations. In conclusion, CCR4-targeted therapies show promise for CTCL management, but challenges persist. Continued research aims to optimise treatments, enhance outcomes, and transform CTCL management. This review aims to elucidate the biological rationale and the several agents under various stages of development and clinical evaluation with the actual known data.
Collapse
Affiliation(s)
- Corrado Zengarini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alba Guglielmo
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Martina Mussi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Division of Haematopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Division of Haematopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Division of Haematopathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Bianca Maria Piraccini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (C.Z.)
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Lupancu TJ, Eivazitork M, Hamilton JA, Achuthan AA, Lee KMC. CCL17/TARC in autoimmunity and inflammation-not just a T-cell chemokine. Immunol Cell Biol 2023; 101:600-609. [PMID: 36975092 DOI: 10.1111/imcb.12644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.
Collapse
Affiliation(s)
- Tanya J Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Dragan P, Merski M, Wiśniewski S, Sanmukh SG, Latek D. Chemokine Receptors-Structure-Based Virtual Screening Assisted by Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15020516. [PMID: 36839838 PMCID: PMC9965785 DOI: 10.3390/pharmaceutics15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.
Collapse
|
8
|
Li Y, Yu H, Feng J. Role of chemokine-like factor 1 as an inflammatory marker in diseases. Front Immunol 2023; 14:1085154. [PMID: 36865551 PMCID: PMC9971601 DOI: 10.3389/fimmu.2023.1085154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Immunoinflammatory mechanisms have been incrementally found to be involved in the pathogenesis of multiple diseases, with chemokines being the main drivers of immune cell infiltration in the inflammatory response. Chemokine-like factor 1 (CKLF1), a novel chemokine, is highly expressed in the human peripheral blood leukocytes and exerts broad-spectrum chemotactic and pro-proliferative effects by activating multiple downstream signaling pathways upon binding to its functional receptors. Furthermore, the relationship between CKLF1 overexpression and various systemic diseases has been demonstrated in both in vivo and in vitro experiments. In this context, it is promising that clarifying the downstream mechanism of CKLF1 and identifying its upstream regulatory sites can yield new strategies for targeted therapeutics of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Yutong Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
10
|
Costain AH, Phythian-Adams AT, Colombo SAP, Marley AK, Owusu C, Cook PC, Brown SL, Webb LM, Lundie RJ, Borger JG, Smits HH, Berriman M, MacDonald AS. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol 2022; 13:906338. [PMID: 35958580 PMCID: PMC9362740 DOI: 10.3389/fimmu.2022.906338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a disease of global significance, with severity and pathology directly related to how the host responds to infection. The immunological narrative of schistosomiasis has been constructed through decades of study, with researchers often focussing on isolated time points, cell types and tissue sites of interest. However, the field currently lacks a comprehensive and up-to-date understanding of the immune trajectory of schistosomiasis over infection and across multiple tissue sites. We have defined schistosome-elicited immune responses at several distinct stages of the parasite lifecycle, in three tissue sites affected by infection: the liver, spleen, and mesenteric lymph nodes. Additionally, by performing RNA-seq on the livers of schistosome infected mice, we have generated novel transcriptomic insight into the development of schistosome-associated liver pathology and fibrosis across the breadth of infection. Through depletion of CD11c+ cells during peak stages of schistosome-driven inflammation, we have revealed a critical role for CD11c+ cells in the co-ordination and regulation of Th2 inflammation during infection. Our data provide an updated and high-resolution account of how host immune responses evolve over the course of murine schistosomiasis, underscoring the significance of CD11c+ cells in dictating host immunopathology against this important helminth infection.
Collapse
Affiliation(s)
- Alice H. Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Stefano A. P. Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angela K. Marley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christian Owusu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter C. Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sheila L. Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Lauren M. Webb
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Immunology, University of Washington, Seattle, WA, United States
| | | | | | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Lewis BW, Ford ML, Khan AQ, Walum J, Britt RD. Chronic Allergen Challenge Induces Corticosteroid Insensitivity With Persistent Airway Remodeling and Type 2 Inflammation. Front Pharmacol 2022; 13:855247. [PMID: 35479312 PMCID: PMC9035517 DOI: 10.3389/fphar.2022.855247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2-high severe asthma is described as a distinct endotype with Th2 inflammation, high eosinophil lung infiltration, impaired lung function, and reduced corticosteroid sensitivity. While the inflammatory milieu is similar to mild asthma, patients with type 2-high severe asthma likely have underlying mechanisms that sustain asthma pathophysiology despite corticosteroid treatments. Acute and chronic allergen models induce robust type 2 inflammatory responses, however differences in corticosteroid sensitivity remains poorly understood. In the present study, we sensitized and challenged mice with ovalbumin (OVA; acute model) or mixed allergens (MA; chronic model). Corticosteroid sensitivity was assessed by administering vehicle, 1, or 3 mg/kg fluticasone propionate (FP) and examining key asthmatic features such as airway inflammation, remodeling, hyperresponsiveness, and antioxidant capacity. Both acute and chronic allergen exposure exhibited enhanced AHR, immune cell infiltration, airway inflammation, and remodeling, but corticosteroids were unable to fully alleviate inflammation, AHR, and airway smooth muscle mass in MA-challenged mice. While there were no differences in antioxidant capacity, persistent IL-4+ Th2 cell population suggests the MA model induces type 2 inflammation that is insensitive to corticosteroids. Our data indicate that chronic allergen exposure is associated with more persistent type 2 immune responses and corticosteroid insensitivity. Understanding differences between acute and chronic allergen models could unlock underlying mechanisms related to type 2-high severe asthma.
Collapse
Affiliation(s)
- Brandon W. Lewis
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Maria L. Ford
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joshua Walum
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rodney D. Britt Jr,
| |
Collapse
|
12
|
Alluri SR, Higashi Y, Kil KE. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021; 26:molecules26175174. [PMID: 34500609 PMCID: PMC8434599 DOI: 10.3390/molecules26175174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.
Collapse
Affiliation(s)
- Santosh R. Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
| | - Yusuke Higashi
- Department of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-884-7885
| |
Collapse
|
13
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
15
|
Cai X, Deng J, Ming Q, Cai H, Chen Z. Chemokine-like factor 1: A promising therapeutic target in human diseases. Exp Biol Med (Maywood) 2020; 245:1518-1528. [PMID: 32715782 DOI: 10.1177/1535370220945225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPACT STATEMENT CKLF1, a recently identified chemokine, has been reported by a number of studies to play important roles in quite many diseases. However, the potential pathways that CKLF1 may be involved are not manifested well yet. In our review, we showed the basic molecular structure and major functions of this novel chemokine, and implication in human diseases, such as tumors. To attract more attention, we summarized its signaling pathways and clearly present them in a set of figures. With the overview of the experimental trial of CKLF1-targeting medicines in animal models, we hope to provide a few important insights about CKLF1 to both medical researchers and pharmacy.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingwen Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qianqian Ming
- Department of Drug Discovery, 25301Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Huiqiang Cai
- Department of Clinical Medicine, University of Aarhus, Aarhus N 8200, Denmark
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
16
|
Bogacka J, Popiolek-Barczyk K, Pawlik K, Ciechanowska A, Makuch W, Rojewska E, Dobrogowski J, Przeklasa-Muszynska A, Mika J. CCR4 antagonist (C021) influences the level of nociceptive factors and enhances the analgesic potency of morphine in a rat model of neuropathic pain. Eur J Pharmacol 2020; 880:173166. [PMID: 32407723 DOI: 10.1016/j.ejphar.2020.173166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a chronic condition which significantly reduces the quality of life and serious clinical issue that is in general resistant to available therapies. Therefore looking for new analgesics is still critical issue. Recent, studies have indicated that chemokine signaling pathways are crucial for the development of neuropathy; however, the role of CC chemokine receptor 4 (CCR4) in this process has not yet been studied. Therefore, the aim of our research was to investigate the influence of C021 (a CCR4 antagonist) and CCR4 CC chemokine ligands 17 and 22 (CCL17 and CCL22) on the development of hypersensitivity and the effectiveness of morphine induced analgesia in naive animals and/or animals exposed to chronic constriction injury (CCI) of the sciatic nerve. Firstly, we demonstrated that the intrathecal administration of CCL17 and CCL22 induced pain-related behavior in naive mice. Secondly, we revealed that the intrathecal injection of C021 significantly reduced CCI-induced hypersensitivity after nerve injury. In parallel, C021 reduced microglia/macrophages activation and the level of some pronociceptive interleukins (IL-1beta; IL-18) in the spinal cord 8 days after CCI. Moreover, C021 not only attenuated mechanical and thermal hypersensitivity but also enhanced the analgesic properties of morphine. Our research indicates that CCR4 ligands might be important factors in the early stages of neuropathy, when we observe intense microglia/macrophages activation. Moreover, pharmacological blockade of CCR4 may serve as a potential new target for better understanding the mechanisms of neuropathic pain development.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
17
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
18
|
Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:429-440. [PMID: 32037107 PMCID: PMC7569362 DOI: 10.1016/j.jaip.2019.11.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
Allergic asthma is defined as asthma associated with sensitization to aeroallergens, which leads to asthma symptoms and airway inflammation. Allergic asthma is the most common asthma phenotype. The onset of allergic asthma is most often in childhood and is usually accompanied by other comorbidities including atopic dermatitis and allergic rhinitis. It is often persistent although there is a wide variation in disease severity. It is a TH2-driven process. Biomarkers have been identified to distinguish patients with allergic asthma, particularly serum IgE levels, tests to indicate sensitization to aeroallergens such as specific IgE or skin prick test positivity, blood and sputum eosinophil levels, fraction of exhaled nitric oxide, and periostin. Treatments for allergic asthma include environmental control measures, allergen immunotherapy, and glucocorticoids. Biologics, targeting the TH2 pathway, have been shown to be effective in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Thomas Casale
- Division of Allergy and Immunology, University of South Florida Health Morsani College of Medicine, Tampa, Fla
| | - Adnan Custovic
- Respiratory Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wanda Phipatanakul
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
19
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
20
|
Pejoski D, Ballester M, Auderset F, Vono M, Christensen D, Andersen P, Lambert PH, Siegrist CA. Site-Specific DC Surface Signatures Influence CD4 + T Cell Co-stimulation and Lung-Homing. Front Immunol 2019; 10:1650. [PMID: 31396211 PMCID: PMC6668556 DOI: 10.3389/fimmu.2019.01650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
Dendritic cells (DCs) that drain the gut and skin are known to favor the establishment of T cell populations that home to the original site of DC-antigen (Ag) encounter by providing soluble “imprinting” signals to T cells in the lymph node (LN). To study the induction of lung T cell-trafficking, we used a protein-adjuvant murine intranasal and intramuscular immunization model to compare in vivo-activated Ag+ DCs in the lung and muscle-draining LNs. Higher frequencies of Ag+ CD11b+ DCs were observed in lung-draining mediastinal LNs (MedLN) compared to muscle-draining inguinal LNs (ILN). Ag+ CD11b+ MedLN DCs were qualitatively superior at priming CD4+ T cells, which then expressed CD49a and CXCR3, and preferentially trafficked into the lung parenchyma. CD11b+ DCs from the MedLN expressed higher levels of surface podoplanin, Trem4, GL7, and the known co-stimulatory molecules CD80, CD86, and CD24. Blockade of specific MedLN DC molecules or the use of sorted DC and T cell co-cultures demonstrated that DC surface phenotype influences the ability to prime T cells that then home to the lung. Thus, the density of dLN Ag+ DCs, and DC surface molecule signatures are factors that can influence the output and differentiation of lung-homing CD4+ T cells.
Collapse
Affiliation(s)
- David Pejoski
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie Ballester
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Floriane Auderset
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria Vono
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Paul-Henri Lambert
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,World Health Organization Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Jackson JJ, Ketcham JM, Younai A, Abraham B, Biannic B, Beck HP, Bui MHT, Chian D, Cutler G, Diokno R, Hu DX, Jacobson S, Karbarz E, Kassner PD, Marshall L, McKinnell J, Meleza C, Okal A, Pookot D, Reilly MK, Robles O, Shunatona HP, Talay O, Walker JR, Wadsworth A, Wustrow DJ, Zibinsky M. Discovery of a Potent and Selective CCR4 Antagonist That Inhibits Treg Trafficking into the Tumor Microenvironment. J Med Chem 2019; 62:6190-6213. [DOI: 10.1021/acs.jmedchem.9b00506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffrey J. Jackson
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - John M. Ketcham
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Ashkaan Younai
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Betty Abraham
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Berenger Biannic
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Hilary P. Beck
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Minna H. T. Bui
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - David Chian
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Gene Cutler
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Raymond Diokno
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Dennis X. Hu
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Scott Jacobson
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Emily Karbarz
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Paul D. Kassner
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Lisa Marshall
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Jenny McKinnell
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Cesar Meleza
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Abood Okal
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Deepa Pookot
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Maureen K. Reilly
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Omar Robles
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Hunter P. Shunatona
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Oezcan Talay
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - James R. Walker
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Angela Wadsworth
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - David J. Wustrow
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Mikhail Zibinsky
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Kerscher B, Barlow JL, Rana BM, Jolin HE, Gogoi M, Bartholomew MA, Jhamb D, Pandey A, Tough DF, van Oosterhout AJM, McKenzie ANJ. BET Bromodomain Inhibitor iBET151 Impedes Human ILC2 Activation and Prevents Experimental Allergic Lung Inflammation. Front Immunol 2019; 10:678. [PMID: 31024538 PMCID: PMC6465521 DOI: 10.3389/fimmu.2019.00678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) increase in frequency in eczema and allergic asthma patients, and thus represent a new therapeutic target cell for type-2 immune-mediated disease. The bromodomain and extra-terminal (BET) protein family of epigenetic regulators are known to support the expression of cell cycle and pro-inflammatory genes during type-1 inflammation, but have not been evaluated in type-2 immune responses. We isolated human ILC2 and examined the capacity of the BET protein inhibitor, iBET151, to modulate human ILC2 activation following IL-33 stimulation. iBET151 profoundly blocked expression of genes critical for type-2 immunity, including type-2 cytokines, cell surface receptors and transcriptional regulators of ILC2 differentiation and activation. Furthermore, in vivo administration of iBET151 during experimental mouse models of allergic lung inflammation potently inhibited lung inflammation and airways resistance in response to cytokine or allergen exposure. Thus, iBET151 effectively prevents human ILC2 activation and dampens type-2 immune responses.
Collapse
Affiliation(s)
- Bernhard Kerscher
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Batika M Rana
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Helen E Jolin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michelle A Bartholomew
- Allergic Inflammation DPU, Respiratory Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Deepali Jhamb
- Computational Biology, GSK R&D, Collegeville, PA, United States
| | - Ashutosh Pandey
- Computational Biology, GSK R&D, Collegeville, PA, United States
| | - David F Tough
- Epigenetics DPU, Immunoinflammation Therapy Area Unit, Glaxo Smith Kline, Medicines Research Centre, Stevenage, United Kingdom
| | - Antoon J M van Oosterhout
- Allergic Inflammation DPU, Respiratory Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
23
|
Galvão-Filho B, de Castro JT, Figueiredo MM, Rosmaninho CG, Antonelli LRDV, Gazzinelli RT. The emergence of pathogenic TNF/iNOS producing dendritic cells (Tip-DCs) in a malaria model of acute respiratory distress syndrome (ARDS) is dependent on CCR4. Mucosal Immunol 2019; 12:312-322. [PMID: 30337650 PMCID: PMC6375779 DOI: 10.1038/s41385-018-0093-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) and acute lung injury (ALI) are complications that cause lung damage and often leads to death. The MA-ARDS/ALI is associated with a Type 1 inflammatory response mediated by T lymphocytes and IFN-γ. Here, we used the Plasmodium berghei NK65 (PbN)-induced MA-ALI/ARDS model that resembles human disease and confirmed that lung CD4+ and CD8+ T cells predominantly expressed Tbet and IFN-γ. Surprisingly, we found that development of MA-ALI/ARDS was dependent on functional CCR4, known to mediate the recruitment of Th2 lymphocytes and regulatory T cells. However, in this Type 1 inflammation-ARDS model, CCR4 was not involved in the recruitment of T lymphocytes, but was required for the emergence of TNF-α/iNOS producing dendritic cells (Tip-DCs) in the lungs. In contrast, recruitment of Tip-DCs and development of MA-ALI/ARDS were not altered in CCR2-/- mice. Importantly, we showed that NOS2-/- mice are resistant to PbN-induced lung damage, indicating that reactive nitrogen species produced by Tip-DCs play an essential role in inducing MA-ARDS/ALI. Lastly, our experiments suggest that production of IFN-γ primarily by CD8+ T cells is required for inducing Tip-DCs differentiation in the lungs and the development of MA-ALI/ARDS model.
Collapse
Affiliation(s)
- Bruno Galvão-Filho
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Júlia Teixeira de Castro
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Maria Marta Figueiredo
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Claudio Gonçalves Rosmaninho
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto Rene Rachou, FIOCRUZ-MG, 30190-002, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil,Department of Medicine, University of Massachusetts Medical School, 01605, Worcester, MA, USA,Plataforma de Medicinal Translacional-Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, Chung S, Karpurapu M, Park GY, Christman JW, Ballinger MN. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 2019; 4:124710. [PMID: 30668546 PMCID: PMC6478424 DOI: 10.1172/jci.insight.124710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA-challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment, which resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.
Collapse
Affiliation(s)
- Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Brenda F. Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Derrick Herman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Adam Streicher
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Joshua A. Englert
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Gye Young Park
- Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W. Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Megan N. Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| |
Collapse
|