1
|
Merhi R, Boniface K, Seneschal J. Unveiling the Unseen: Exploring Cellular Dynamics in Nonlesional Vitiligo Skin. J Invest Dermatol 2025:S0022-202X(25)00128-9. [PMID: 40261227 DOI: 10.1016/j.jid.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 04/24/2025]
Abstract
Vitiligo is a multifactorial disease involving genetic predispositions, intrinsic melanocyte abnormalities, and deregulated immune response. Recent studies show nonlesional skin involvement. Nonlesional melanocytes display mitochondrial dysfunction and increased oxidative stress affecting their adhesion and function and contribute to immune activation. Keratinocytes and fibroblasts display structural and functional abnormalities impairing melanocyte support and differentiation. They also contribute to the altered immune response by secreting proinflammatory chemokines. Despite immune cell infiltration, nonlesional skin remains clinically unaffected, suggesting that regulatory mechanisms maintain immune activation at a subclinical level. This review provides an overview of the cellular alterations in vitiligo nonlesional skin.
Collapse
Affiliation(s)
- Ribal Merhi
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Katia Boniface
- CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Julien Seneschal
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, Bordeaux, France.
| |
Collapse
|
2
|
Paganelli A, Papaccio F, Picardo M, Bellei B. Metabolic anomalies in vitiligo: a new frontier for drug repurposing strategies. Front Pharmacol 2025; 16:1546836. [PMID: 40303919 PMCID: PMC12037623 DOI: 10.3389/fphar.2025.1546836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Vitiligo is a chronic autoimmune condition characterized by the destruction of melanocytes, leading to patchy loss of skin depigmentation. Although its precise cause remains unclear, recent evidence suggests that metabolic disturbances, particularly oxidative stress and mitochondrial dysfunction, may play a significant role in the pathogenesis of the disease. Oxidative stress is thought to damage melanocytes and trigger inflammatory responses, culminating in melanocyte immune-mediate destruction. Additionally, patients with vitiligo often exhibit extra-cutaneous metabolic abnormalities such as abnormal glucose metabolism, dyslipidemia, high fasting plasma glucose levels, high blood pressure, out of range C-peptide and low biological antioxidant capacity, suggesting a potential link between metabolic impairment and vitiligo development. This implies that the loss of functional melanocytes mirrors a more general systemic targetable dysfunction. Notably, therapies targeting metabolic pathways, particularly those involving mitochondrial metabolism, such as the peroxisome proliferator-activated nuclear receptor γ (PPARγ) agonists, are currently being investigated as potential treatments for vitiligo. PPARγ activation restores mitochondrial membrane potential, mitochondrial DNA copy number and, consequently, ATP production. Moreover, PPARγ agonists counteract oxidative stress, reduce inflammation, inhibit apoptosis, and maintain fatty acid metabolism, in addition to the well-known capability to enhance insulin sensitivity. Additionally, increasing evidence of a strong relationship between metabolic alterations and vitiligo pathogenesis suggests a role for other approved anti-diabetic treatments, like metformin and fibrates, in vitiligo treatment. Taken together, these data support the use of approaches alternative to traditional immune-suppressive treatments for the treatment of vitiligo.
Collapse
Affiliation(s)
| | - Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- IDI-IRCCS Istituto Dermopatico dell’Immacolata, Rome, Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Caputo S, Papaccio F, Marrapodi R, Lopez G, Iacovelli P, Pacifico A, Migliano E, Cota C, Di Nardo A, Picardo M, Bellei B. Defective Intracellular Insulin/IGF-1 Signaling Elucidates the Link Between Metabolic Defect and Autoimmunity in Vitiligo. Cells 2025; 14:565. [PMID: 40277891 PMCID: PMC12025416 DOI: 10.3390/cells14080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Vitiligo is featured by the manifestation of white maculae and primarily results from inflammatory/immune-selective aggression to melanocytes. The trigger mechanism leading to the activation of resident immune cells in the skin still lacks a molecular description. There is growing evidence linking altered mitochondrial metabolism to vitiligo, suggesting that an underlying metabolic defect may enable a direct activation of the immune system. Recent evidence demonstrated the association of vitiligo with disorders related to systemic metabolism, including insulin resistance (IR) and lipid disarrangements. However, IR, defined as a cellular defect in the insulin-mediated control of glucose metabolism, and its possible role in vitiligo pathogenesis has not been proven yet. Methods: In this study, we compared the Ins/IGF-1 intracellular signaling of dermal and epidermal cells isolated from non-lesional vitiligo skin to that belonging to cells obtained from healthy donors. Results: We demonstrated that due to the intensified glucose uptake, S6, and insulin receptor substrate 1 (IRS1) chronic phosphorylation, their inducibilities were downsized, a condition that coincides with the definition of insulin resistance at the cellular level. Correspondingly, the mitogenic and metabolic activities normally provoked by Ins/IGF-1 exposure resulted in significantly compromised vitiligo cells (p ≤ 0.05). Besides all the vitiligo-derived skin cells manifesting an energetic disequilibrium consisting of a low ATP, catabolic processes activation, and chronic oxidative stress, the functional consequences of this state appear amplified in the keratinocyte lineage. Conclusion: The presented data argue for insulin and IGF-1 resistance collocating dysfunctional glucose metabolism in the mechanisms of vitiligo pathogenesis. In vitiligo keratinocytes, the intrinsic impairment of intracellular metabolic activities, particularly when associated with stimulation with Ins/IGF-1, converges into an aberrant pro-inflammatory phenotype that may initiate immune cell recruitment.
Collapse
Affiliation(s)
- Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Ramona Marrapodi
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Gianluca Lopez
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Paolo Iacovelli
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (P.I.)
| | - Alessia Pacifico
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (P.I.)
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| | - Mauro Picardo
- Istituto Dermopatico dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.C.); (F.P.); (R.M.); (G.L.); (A.D.N.)
| |
Collapse
|
4
|
Kuriakose BB. Beyond skin deep: exploring the complex molecular mechanisms and holistic management strategies of vitiligo. Arch Dermatol Res 2025; 317:685. [PMID: 40198440 DOI: 10.1007/s00403-025-04162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
Vitiligo is a multifactorial skin disorder characterized by the progressive loss of pigmentation due to the destruction of melanocytes, affecting 0.5-2% of the global population. This condition not only impacts physical appearance but also has profound psychosocial effects on patients. In this review, various aspects of vitiligo are explored, including its clinical forms, epidemiology, and underlying mechanisms. Advances in research have identified key molecular pathways, such as Wnt/β-Catenin, JAK-STAT, and AhR signaling, which are essential for melanocyte survival and immune regulation. These pathways provide valuable insights into the disease's progression and potential treatment targets. Furthermore, the role of microbial imbalances in the gut and skin microbiomes, stress-related factors, and nutritional deficiencies in influencing the onset and progression of vitiligo is investigated. The potential of herbal treatments to stimulate repigmentation is also discussed. By presenting a comprehensive overview, this review aims to deepen the understanding of vitiligo's complex pathology and foster the development of effective therapeutic strategies to enhance patient care.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Golubnitschaja O, Sargheini N, Bastert J. Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. EPMA J 2025; 16:1-15. [PMID: 39991093 PMCID: PMC11842662 DOI: 10.1007/s13167-025-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Association of both intrinsic and extrinsic risk factors leading to accelerated skin ageing is reflected in excessive ROS production and ir/reversible mitochondrial injury and burnout, as abundantly demonstrated by accumulating research data. Due to the critical role of mitochondrial stress in the pathophysiology of skin ageing and disorders, maintained (primary care) and restored (secondary care) mitochondrial health, rejuvenation and homoeostasis are considered the most effective holistic approach to advance dermatological treatments based on systemic health-supportive and stimulating measures. Per evidence, an effective skin anti-ageing protection, wound healing and scarring quality - all strongly depend on the sustainable mitochondrial functionality and well-balanced homoeostasis. The latter can be objectively measured and, if necessary, restored in a systemic manner by pre- and rehabilitation algorithms tailored to individualised patient profiles. The entire spectrum of corresponding innovations in the area includes natural and systemic skin rejuvenation, aesthetic and reconstructive medicine, sustainable skin protection and targeted treatments of skin disorders. Contextually, mitochondria-centric dermatology is instrumental for advanced 3PM-guided approach which makes a good use of predictive multi-level diagnostics and targeted protection of skin against both - the health-to-disease transition and progression of relevant disorders. Cost-effective targeted protection and new treatment avenues focused on sustainable mitochondrial health and physiologic homoeostasis are proposed in the article including in-depth analysis of patient cases and exemplified 3PM-guided care with detailed mechanisms and corresponding expert recommendations presented.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Janine Bastert
- Private Dermatological Clinic, Kirchheimer Str. 71, 70619 Stuttgart, Germany
| |
Collapse
|
6
|
Xu X, Lu X, Zheng Y, Xie Y, Lai W. Cytosolic mtDNA-cGAS-STING axis mediates melanocytes pyroptosis to promote CD8 + T-cell activation in vitiligo. J Dermatol Sci 2025; 117:61-70. [PMID: 39904676 DOI: 10.1016/j.jdermsci.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The cGAS-STING axis, a DNA sensor pathway, has recently emerged as a key hub in sensing stress signals and initiating the immune cascade in several diseases. However, its role in the pathogenesis of vitiligo remains unclear. OBJECTIVE To explore the pathogenic role of the cGAS-STING axis in linking oxidative stress and CD8+ T-cell-mediated anti-melanocytic immunity in vitiligo. METHODS The expression status of the cGAS-STING axis and cytosolic mtDNA were evaluated in the oxidatively stressed epidermal cells and vitiligo perilesional skin, respectively. Then, we investigated the activation of cGAS-STING axis in mtDNA-treated melanocytes, and the influence of cGAS or STING silencing on mtDNA-induced melanocytes pyroptosis. Finally, the paracrine effects of melanocytes pyroptosis on CD8+ T cell activation were explored. RESULTS We initially demonstrated that the cGAS-STING axis in melanocytes was highly susceptible to oxidative stress and activated in the vitiliginous melanocytes of perilesional skin, accompanied by enhanced cytosolic mtDNA accumulation. Our mechanistic in vitro experiments confirmed that oxidative stress-induced mitochondrial damage in epidermal cells led to cytosolic mtDNA accumulation, which served as a trigger in activating the cGAS-STING axis in melanocytes. Furthermore, the cytosolic mtDNA-cGAS-STING axis was verified to mediate melanocytes pyroptosis. More importantly, we found that IL-1β and IL-18 produced by pyroptotic melanocytes promoted the activation of CD8+ T cells from patients with vitiligo. CONCLUSION The present study confirmed that the cytosolic mtDNA-cGAS-STING axis of melanocytes played an important role in oxidative stress-triggered CD8+ T-cell response, providing novel insights into mechanisms underlying vitiligo onset.
Collapse
Affiliation(s)
- Xinya Xu
- Department of Dermatology, The Third Affiliated Hospital of Sun, Yat-sen University, Guangzhou, China
| | - Xinhua Lu
- Department of Neurosurgery, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Yue Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, The Third Affiliated Hospital of Sun, Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun, Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2025; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
8
|
Tulic MK, Kovacs D, Bastonini E, Briganti S, Passeron T, Picardo M. Focusing on the Dark Side of the Moon: Involvement of the Nonlesional Skin in Vitiligo. J Invest Dermatol 2024:S0022-202X(24)02886-0. [PMID: 39708041 DOI: 10.1016/j.jid.2024.10.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 12/23/2024]
Abstract
Research over the last decade has revealed that the normally pigmented skin of patients with vitiligo is not normal at all, as evidenced by alterations in cutaneous morphology and modifications in cellular and metabolic functions that ultimately drive immune activation against melanocytes. Furthermore, nonlesional skin is in a state of subclinical inflammation until triggered by internal and/or external exposomal events. Therefore, targeting early processes that drive immune dysregulation in normally pigmented skin may avoid or reduce melanocyte loss. Thus, shifting the focus to nonlesional skin may prevent the appearance of clinical manifestations of the disease rather than treating the lesions.
Collapse
Affiliation(s)
- Meri K Tulic
- Team 12, University of Cote d'Azur, INSERM U1065, Mediterranean Centre for Molecular Medicine, Nice, France.
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Thierry Passeron
- Team 12, University of Cote d'Azur, INSERM U1065, Mediterranean Centre for Molecular Medicine, Nice, France; Dermatology Department, University Hospital (CHU), University of Cote d'Azur, Nice, France
| | - Mauro Picardo
- Immaculate Institute of Dermatopathology and Scientific Institute of Recovery, Hospitalisation and Cure (IDI-IRCCS), Rome, Italy
| |
Collapse
|
9
|
Matarrese P, Puglisi R, Mattia G, Samela T, Abeni D, Malorni W. An Overview of the Biological Complexity of Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3193670. [PMID: 39735711 PMCID: PMC11671640 DOI: 10.1155/omcl/3193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role. The aim of this work was thus to review some of the fine cellular mechanisms involved in the etiopathogenesis of vitiligo, mainly focusing on the nonimmunological ones, extensively highlighted elsewhere. We took into consideration, in addition to oxidative stress, both the cause and the hallmark of the pathology, some less investigated aspects such as the role of epigenetic factors, e.g., microRNAs, of receptors of catecholamines, and the more recently recognized role of the mitochondria. Sex differences associated with vitiligo have also been investigated starting from sex hormones and the receptors through which they exert their influence. From literature analysis, a picture seems to emerge in which vitiligo can be considered not just a melanocyte-affecting disease but a systemic pathology that compromises the homeostasis of a complex tissue such as the skin, in which different cell types reside playing multifaceted physiological roles for the entire organism. The exact sequence of cellular and subcellular events associated with vitiligo is still a matter of debate. However, the knowledge of the individual biological factors implicated in vitiligo could help physicians to highlight useful innovative markers of progression and provide, in the long run, new targets for more tailored treatments based on individual manifestations of the disease.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Tonia Samela
- Clinical Psychology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore (UCSC), Rome, Italy
| |
Collapse
|
10
|
Papaccio F, Ottaviani M, Truglio M, D'Arino A, Caputo S, Pacifico A, Iacovelli P, Di Nardo A, Picardo M, Bellei B. Markers of Metabolic Abnormalities in Vitiligo Patients. Int J Mol Sci 2024; 25:10201. [PMID: 39337683 PMCID: PMC11432710 DOI: 10.3390/ijms251810201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
While vitiligo is primarily caused by melanocyte deficiency or dysfunction, recent studies have revealed a notable prevalence of metabolic syndrome (MetS) among patients with vitiligo. This suggests shared pathogenic features between the two conditions. Individuals with vitiligo often exhibit variations in triglyceride levels, cholesterol, and blood pressure, which are also affected in MetS. Given the similarities in their underlying mechanisms, genetic factors, pro-inflammatory signalling pathways, and increased oxidative stress, this study aims to highlight the common traits between vitiligo and metabolic systemic disorders. Serum analyses confirmed increased low-density lipoprotein (LDL) levels in patients with vitiligo, compared to physiological values. In addition, we reported significant decreases in folate and vitamin D (Vit D) levels. Oxidative stress is one of the underlying causes of the development of metabolic syndromes and is related to the advancement of skin diseases. This study found high levels of inflammatory cytokines, such as interleukin-6 (IL-6) and chemokine 10 (CXCL10), which are markers of inflammation and disease progression. The accumulation of insulin growth factor binding proteins 5 (IGFBP5) and advanced glycation end products (AGEs) entailed in atherosclerosis and diabetes onset, respectively, were also disclosed in vitiligo. In addition, the blood-associated activity of the antioxidant enzymes catalase (Cat) and superoxide dismutase (SOD) was impaired. Moreover, the plasma fatty acid (FAs) profile analysis showed an alteration in composition and specific estimated activities of FAs biosynthetic enzymes resembling MetS development, resulting in an imbalance towards pro-inflammatory n6-series FAs. These results revealed a systemic metabolic alteration in vitiligo patients that could be considered a new target for developing a more effective therapeutic approach.
Collapse
Affiliation(s)
- Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Andrea D'Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Alessia Pacifico
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Paolo Iacovelli
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Picardo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
11
|
Wu Y, Yang Y, Lin Y, Ding Y, Liu Z, Xiang L, Picardo M, Zhang C. Emerging Role of Fibroblasts in Vitiligo: A Formerly Underestimated Rising Star. J Invest Dermatol 2024; 144:1696-1706. [PMID: 38493384 DOI: 10.1016/j.jid.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
Vitiligo is a disfiguring depigmentation disorder characterized by loss of melanocytes. Although numerous studies have been conducted on the pathogenesis of vitiligo, the underlying mechanisms remain unclear. Although most studies have focused on melanocytes and keratinocytes, growing evidence suggests the involvement of dermal fibroblasts, residing deeper in the skin. This review aims to elucidate the role of fibroblasts in both the physiological regulation of skin pigmentation and their pathological contribution to depigmentation, with the goal of shedding light on the involvement of fibroblasts in vitiligo. The topics covered in this review include alterations in the secretome, premature senescence, autophagy dysfunction, abnormal extracellular matrix, autoimmunity, and metabolic changes.
Collapse
Affiliation(s)
- Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata (IDI)- Istituto di Ricovero e Cura a Carattere Scientifico (RCCS), Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Luo Y, Bollag WB. The Role of PGC-1α in Aging Skin Barrier Function. Cells 2024; 13:1135. [PMID: 38994987 PMCID: PMC11240425 DOI: 10.3390/cells13131135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Natarelli N, Gahoonia N, Aflatooni S, Bhatia S, Sivamani RK. Dermatologic Manifestations of Mitochondrial Dysfunction: A Review of the Literature. Int J Mol Sci 2024; 25:3303. [PMID: 38542277 PMCID: PMC10970650 DOI: 10.3390/ijms25063303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Mitochondria are eukaryotic cellular organelles that function in energy metabolism, ROS production, and programmed cell death. Cutaneous epithelial and hair follicle dermal papilla cells are energy-rich cells that thereby may be affected by mitochondrial dysfunction and DNA mutation accumulation. In this review, we aimed to summarize the medical literature assessing dermatologic conditions and outcomes associated with mitochondrial dysfunction. A search of PubMed and Embase was performed with subsequent handsearching to retrieve additional relevant articles. Mitochondrial DNA (mtDNA) deletions, mutation accumulation, and damage are associated with phenotypic signs of cutaneous aging, hair loss, and impaired wound healing. In addition, several dermatologic conditions are associated with aberrant mitochondrial activity, such as systemic lupus erythematosus, psoriasis, vitiligo, and atopic dermatitis. Mouse model studies have better established causality between mitochondrial damage and dermatologic outcomes, with some depicting reversibility upon restoration of mitochondrial function. Mitochondrial function mediates a variety of dermatologic conditions, and mitochondrial components may be a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Nimrit Gahoonia
- College of Osteopathic Medicine, Touro University, 1310 Club Dr, Vallejo, CA 94592, USA;
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (N.N.); (S.A.)
| | - Sahibjot Bhatia
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
| | - Raja K. Sivamani
- College of Medicine, California Northstate University, 9700 W Taron Dr, Elk Grove, CA 95757, USA;
- Integrative Skin Science and Research, 1495 River Park Drive, Sacramento, CA 95819, USA
- Pacific Skin Institute, 1495 River Park Dr Suite 200, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, 3301 C St #1400, Sacramento, CA 95816, USA
| |
Collapse
|
14
|
Lin Y, Ding Y, Wu Y, Yang Y, Liu Z, Xiang L, Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp Dermatol 2024; 33:e14856. [PMID: 37338012 DOI: 10.1111/exd.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Vitiligo is an acquired depigmentary disorder characterized by the depletion of melanocytes in the skin. Mitochondria shoulder multiple functions in cells, such as production of ATP, maintenance of redox balance, initiation of inflammation and regulation of cell death. Increasing evidence has implicated the involvement of mitochondria in the pathogenesis of vitiligo. Mitochondria alteration will cause the abnormalities of mitochondria functions mentioned above, ultimately leading to melanocyte loss through various cell death modes. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in mitochondrial homeostasis, and the downregulation of Nrf2 in vitiligo may correlate with mitochondria damage, making both mitochondria and Nrf2 promising targets in treatment of vitiligo. In this review, we aim to discuss the alterations of mitochondria and its role in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yi Lin
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
15
|
Yang RL, Chen SY, Fu SP, Zhao DZ, Wan WH, Yang K, Lei W, Yang Y, Zhang Q, Zhang T. Antioxidant mechanisms of mesenchymal stem cells and their therapeutic potential in vitiligo. Front Cell Dev Biol 2023; 11:1293101. [PMID: 38178870 PMCID: PMC10764575 DOI: 10.3389/fcell.2023.1293101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Vitiligo is a skin pigmentation disorder caused by melanocyte damage or abnormal function. Reac-tive oxygen species Reactive oxygen species can cause oxidative stress damage to melanocytes, which in turn induces vitiligo. Traditional treatments such as phototherapy, drugs, and other methods of treatment are long and result in frequent recurrences. Currently, mesenchymal stem cells (MSCs) are widely used in the research of various disease treatments due to their excellent paracrine effects, making them a promising immunoregulatory and tissue repair strategy. Furthermore, an increasing body of evi-dence suggests that utilizing the paracrine functions of MSCs can downregulate oxidative stress in the testes, liver, kidneys, and other affected organs in animal models of certain diseases. Addition-ally, MSCs can help create a microenvironment that promotes tissue repair and regeneration in are-as with oxidative stress damage, improving the disordered state of the injured site. In this article, we review the pathogenesis of oxidative stress in vitiligo and promising strategies for its treatment.
Collapse
Affiliation(s)
- Rui-lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Si-yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei-hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kang Yang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Lei
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ying Yang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
17
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
18
|
Chang WL, Ko CH. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications. Cells 2023; 12:cells12060936. [PMID: 36980277 PMCID: PMC10047323 DOI: 10.3390/cells12060936] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Vitiligo is an autoimmune skin disorder caused by dysfunctional pigment-producing melanocytes which are attacked by immune cells. Oxidative stress is considered to play a crucial role in activating consequent autoimmune responses related to vitiligo. Melanin synthesis by melanocytes is the main intracellular stressor, producing reactive oxygen species (ROS). Under normal physiological conditions, the antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) pathway functions as a crucial mediator for cells to resist oxidative stress. In pathological situations, such as with antioxidant defects or under inflammation, ROS accumulate and cause cell damage. Herein, we summarize events at the cellular level under excessive ROS in vitiligo and highlight exposure to melanocyte-specific antigens that trigger immune responses. Such responses lead to functional impairment and the death of melanocytes, which sequentially increase melanocyte cytotoxicity through both innate and adaptive immunity. This report provides new perspectives and advances our understanding of interrelationships between oxidative stress and autoimmunity in the pathogenesis of vitiligo. We describe progress with targeted antioxidant therapy, with the aim of providing potential therapeutic approaches.
Collapse
Affiliation(s)
- Wei-Ling Chang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Hsiang Ko
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
19
|
Wang J, Pan Y, Wei G, Mao H, Liu R, He Y. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss. Redox Rep 2022; 27:193-199. [PMID: 36154894 PMCID: PMC9518600 DOI: 10.1080/13510002.2022.2123864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The pathogenesis of vitiligo remains unclear. In this review, we comprehensively describe the role of damage associated molecular patterns (DAMPs) during vitiligo pathogenesis. METHODS Published papers on vitiligo, oxidative stress and DAMPs were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS Oxidative stress may be an important inducer of vitiligo. At high oxidative stress levels, damage-associated molecular patterns (DAMPs) are released from keratinocytes or melanocytes in the skin and induce downstream immune responses during vitiligo. Treatment regimens targeting DAMPs can effectively improve disease severity. DISCUSSION DAMPs play key roles in initiating host defenses against danger signals, deteriorating the condition of vitiligo. DAMP levels in serum and skin may be used as biomarkers to indicate vitiligo activity and prognosis. Targeted therapies, incorporating HMGB1, Hsp70, and IL-15 could significantly improve disease etiology. Thus, novel strategies could be identified for vitiligo treatment by targeting DAMPs.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Guangmin Wei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Yuanmin He Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
20
|
Papaccio F, Bellei B, Ottaviani M, D’Arino A, Truglio M, Caputo S, Cigliana G, Sciuto L, Migliano E, Pacifico A, Iacovelli P, Picardo M. A Possible Modulator of Vitiligo Metabolic Impairment: Rethinking a PPARγ Agonist. Cells 2022; 11:cells11223583. [PMID: 36429011 PMCID: PMC9688513 DOI: 10.3390/cells11223583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disease wherein derangements in multiple pathways determine the loss of functional melanocytes. Since its pathogenesis is not yet completely understood, vitiligo lacks a definitive safe and efficacious treatment. At present, different therapies are available; however, each modality has its baggage of disadvantages and side effects. Recently we have described several metabolic abnormalities in cells from pigmented skin of vitiligo patients, including alterations of glucose metabolism. Therefore, we conducted a study to evaluate the effect of Pioglitazone (PGZ), a Peroxisome proliferator-activated receptor-γ (PPARγ) agonist, on cells from pigmented vitiligo skin. We treated vitiligo melanocytes and fibroblasts with low doses of PGZ and evaluated the effects on mitochondrial alterations, previously reported by our and other groups. Treatment with PGZ significantly increased mRNA and protein levels of several anaerobic glycolytic enzymes, without increasing glucose consumption. The PGZ administration fully restored the metabolic network, replacing mitochondrial membrane potential and mitochondrial DNA (mtDNA) copy number. These effects, together with a significant increase in ATP content and a decrease in reactive oxygen species (ROS) production, provide strong evidence of an overall improvement of mitochondria bioenergetics in vitiligo cells. Moreover, the expression of HMGB1, Hsp70, defined as a part of DAMPs, and PD-L1 were significantly reduced. In addition, PGZ likely reverts premature senescence phenotype. In summary, the results outline a novel mode of action of Pioglitazone, which may turn out to be relevant to the development of effective new vitiligo therapeutic strategies.
Collapse
Affiliation(s)
- Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (F.P.); (M.P.)
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Andrea D’Arino
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Silvia Caputo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giovanni Cigliana
- Clinical Pathology Unit, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Lorenzo Sciuto
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Emilia Migliano
- Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Alessia Pacifico
- Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Paolo Iacovelli
- Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (F.P.); (M.P.)
| |
Collapse
|
21
|
Lyu C, Sun Y. Immunometabolism in the pathogenesis of vitiligo. Front Immunol 2022; 13:1055958. [PMID: 36439174 PMCID: PMC9684661 DOI: 10.3389/fimmu.2022.1055958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Vitiligo is a common depigmenting skin disorder characterized by the selective loss of melanocytes. Autoimmunity, genetic, environmental, and biochemical etiology have been proposed in vitiligo pathogenesis. However, the exact molecular mechanisms of vitiligo development and progression are unclear, particularly for immunometabolism. Sporadic studies have suggested mitochondrial dysfunction, enhanced oxidative stress, and specific defects in other metabolic pathways can promote dysregulation of innate and adaptive immune responses in vitiligo. These abnormalities appear to be driven by genetic and epigenetic factors modulated by stochastic events. In addition, glucose and lipid abnormalities in metabolism have been associated with vitiligo. Specific skin cell populations are also involved in the critical role of dysregulation of metabolic pathways, including melanocytes, keratinocytes, and tissue-resident memory T cells in vitiligo pathogenesis. Novel therapeutic treatments are also raised based on the abnormalities of immunometabolism. This review summarizes the current knowledge on immunometabolism reprogramming in the pathogenesis of vitiligo and novel treatment options.
Collapse
|
22
|
Regenerative Medicine-Based Treatment for Vitiligo: An Overview. Biomedicines 2022; 10:biomedicines10112744. [DOI: 10.3390/biomedicines10112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disorder with an important effect on the self-esteem and social life of patients. It is the commonest acquired depigmentation disorder characterized by the development of white macules resulting from the selective loss of epidermal melanocytes. The pathophysiology is complex and involves genetic predisposition, environmental factors, oxidative stress, intrinsic metabolic dysfunctions, and abnormal inflammatory/immune responses. Although several therapeutic options have been proposed to stabilize the disease by stopping the depigmentation process and inducing durable repigmentation, no specific cure has yet been defined, and the long-term persistence of repigmentation is unpredictable. Recently, due to the progressive loss of functional melanocytes associated with failure to spontaneously recover pigmentation, several different cell-based and cell-free regenerative approaches have been suggested to treat vitiligo. This review gives an overview of clinical and preclinical evidence for innovative regenerative approaches for vitiligo patients.
Collapse
|
23
|
Wei G, Pan Y, Wang J, Xiong X, He Y, Xu J. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives. Clin Cosmet Investig Dermatol 2022; 15:2177-2186. [PMID: 36267690 PMCID: PMC9576603 DOI: 10.2147/ccid.s381432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Vitiligo is a chronic depigmenting disorder of the skin and mucosa caused by the destruction of epidermal melanocytes. Although the exact mechanism has not been elucidated, studies have shown that oxidative stress plays an important role in the pathogenesis of vitiligo. High mobility group box protein B1 (HMGB1) is a major nonhistone protein and an extracellular proinflammatory or chemotactic molecule that is actively secreted or passively released by necrotic cells. Recent data showed that HMGB1 is overexpressed in both blood and lesional specimens from vitiligo patients. Moreover, oxidative stress triggers the release of HMGB1 from keratinocytes and melanocytes, indicating that HMGB1 may participate in the pathological process of vitiligo. Overall, this review mainly focuses on the role of HMGB1 in the potential mechanisms underlying vitiligo depigmentation under oxidative stress. In this review, we hope to provide new insights into vitiligo pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Guangmin Wei
- Department of Dermatology, Medical Center Hospital of Qionglai City, Qionglai, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
24
|
Kovacs D, Bastonini E, Briganti S, Ottaviani M, D’Arino A, Truglio M, Sciuto L, Zaccarini M, Pacifico A, Cota C, Iacovelli P, Picardo M. Altered epidermal proliferation, differentiation, and lipid composition: Novel key elements in the vitiligo puzzle. SCIENCE ADVANCES 2022; 8:eabn9299. [PMID: 36054352 PMCID: PMC10848961 DOI: 10.1126/sciadv.abn9299] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Vitiligo is an acquired skin depigmentation disease involving multiple pathogenetic mechanisms, which ultimately direct cytotoxic CD8+ cells to destroy melanocytes. Abnormalities have been described in several cells even in pigmented skin as an expression of a functional inherited defect. Keratinocytes regulate skin homeostasis by the assembly of a proper skin barrier and releasing and responding to cytokines and growth factors. Alterations in epidermal proliferation, differentiation, and lipid composition as triggers for immune response activation in vitiligo have not yet been investigated. By applying cellular and lipidomic approaches, we revealed a deregulated keratinocyte differentiation with altered lipid composition, associated with impaired energy metabolism and increased glycolytic enzyme expression. Vitiligo keratinocytes secreted inflammatory mediators, which further increased following mild mechanical stress, thus evidencing immune activation. These findings identify intrinsic alterations of the nonlesional epidermis, which can be the prime instigator of the local inflammatory milieu that stimulates immune responses targeting melanocytes.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Andrea D’Arino
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Lorenzo Sciuto
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Alessia Pacifico
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Paolo Iacovelli
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
25
|
Vinardell MP, Maddaleno AS, Mitjans M. Melanogenesis and Hypopigmentation: The Case of Vitiligo. Indian J Dermatol 2022; 67:524-530. [PMID: 36865864 PMCID: PMC9971791 DOI: 10.4103/ijd.ijd_1067_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Melanocytes are highly specialized dendritic cells that synthesize and store melanin in subcellular organelles called melanosomes, before transfer to keratinocytes. Melanin is a complex pigment that provides colour and photoprotection to the skin, hair and eyes. The process of synthesis of melanin is called melanogenesis and is regulated by various mechanisms and factors such as genetic, environmental and endocrine factors. The knowledge of the pigmentation process is important to understand hypopigmentation disorders such as vitiligo and also to design adequate treatments. In the present work, we review the signalling pathways involved in vitiligo. Finally, current therapies and treatments including topical, oral and phototherapies are discussed and described, emphasizing future therapies based on different pigmentation mechanisms.
Collapse
Affiliation(s)
- M. Pilar Vinardell
- From the Department Biochemistry and Physiology of the Universitat de Barcelona, Spain
| | | | - Montserrat Mitjans
- From the Department Biochemistry and Physiology of the Universitat de Barcelona, Spain
| |
Collapse
|
26
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
27
|
de França E, dos Santos RVT, Baptista LC, Da Silva MAR, Fukushima AR, Hirota VB, Martins RA, Caperuto EC. Potential Role of Chronic Physical Exercise as a Treatment in the Development of Vitiligo. Front Physiol 2022; 13:843784. [PMID: 35360245 PMCID: PMC8960951 DOI: 10.3389/fphys.2022.843784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Vitiligo is an autoimmune disease characterized by progressive skin depigmentation and the appearance of white patches throughout the body caused by significant apoptosis of epidermal melanocytes. Despite not causing any physical pain, vitiligo can originate several psychosocial disorders, drastically reducing patients' quality of life. Emerging evidence has shown that vitiligo is associated with several genetic polymorphisms related to auto-reactivity from the immune system to melanocytes. Melanocytes from vitiligo patients suffer from excess reactive oxygen species (ROS) produced by defective mitochondria besides a poor endogenous antioxidant system (EAS). This redox imbalance results in dramatic melanocyte oxidative stress (OS), causing significant damage in proteins, lipid membranes, and DNA. The damaged melanocytes secret damage-associated molecular pattern (DAMPs), inducing and increasing inflammatory gene expression response that ultimately leads to melanocytes apoptosis. Vitiligo severity has been also associated with increasing the prevalence and incidence of metabolic syndrome (MetS) or associated disorders such as insulin resistance and hypercholesterolemia. Thus, suggesting that in genetically predisposed individuals, the environmental context that triggers MetS (i.e., sedentary lifestyle) may also be an important trigger for the development and severity of vitiligo disease. This paper will discuss the relationship between the immune system and epidermal melanocytes and their interplay with the redox system. Based on state-of-the-art evidence from the vitiligo research, physical exercise (PE) immunology, and redox system literature, we will also propose chronic PE as a potential therapeutic strategy to treat and prevent vitiligo disease progression. We will present evidence that chronic PE can change the balance of inflammatory to an anti-inflammatory state, improve both EAS and the mitochondrial structure and function (resulting in the decrease of OS). Finally, we will highlight clinically relevant markers that can be analyzed in a new research avenue to test the potential applicability of chronic PE in vitiligo disease.
Collapse
Affiliation(s)
- Elias de França
- Human Movement Laboratory, São Judas University, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Liliana C. Baptista
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL United States
- Targeted Exercise, Microbiome and Aging Laboratory, University of Alabama, Birmingham, AL United States
| | - Marco A. R. Da Silva
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Department of Physical Education, Universidade da Amazônia, Belém, Brazil
| | - André R. Fukushima
- Centro Universitário das Américas – FAM, São Paulo, Brazil
- Faculdade de Ciências da Saúde – IGESP – FASIG, São Paulo, Brazil
| | | | - Raul A. Martins
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
28
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
29
|
The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8498472. [PMID: 35103096 PMCID: PMC8800607 DOI: 10.1155/2022/8498472] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Vitiligo is a common chronic acquired pigmentation disorder characterized by loss of pigmentation. Among various hypotheses proposed for the pathogenesis of vitiligo, oxidative stress-induced immune response that ultimately leads to melanocyte death remains most widely accepted. Oxidative stress which causes elevated levels of reactive oxygen species (ROS) can lead to dysfunction of molecules and organelles, triggering further immune response, and ultimately melanocyte death. In recent years, a variety of cell death modes have been studied, including apoptosis, autophagy and autophagic cell death, ferroptosis, and other novel modes of death, which will be discussed in this review in detail. Oxidative stress is also strongly linked to these modes of death. Under oxidative stress, ROS could induce autophagy by activating the Nrf2 antioxidant pathway of melanocytes. However, persistent stimulation of ROS might eventually lead to excessive activation of Nrf2 antioxidant pathway, which in turn will inactivate autophagy. Moreover, ferroptosis may be triggered by oxidative-related transcriptional production, including ARE, the positive feedback loop related to p62, and the reduced activity and expression of GPX4. Therefore, it is reasonable to infer that these modes of death are involved in the oxidative stress response, and that oxidative stress also acts as an initiator for various modes of death through some complex mechanisms. In this study, we aim to summarize the role of oxidative stress in vitiligo and discuss the corresponding mechanisms of interaction between various modes of cell death and oxidative stress. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of vitiligo.
Collapse
|
30
|
D’Arino A, Picardo M, Truglio M, Pacifico A, Iacovelli P. Metabolic Comorbidities in Vitiligo: A Brief Review and Report of New Data from a Single-Center Experience. Int J Mol Sci 2021; 22:ijms22168820. [PMID: 34445526 PMCID: PMC8396221 DOI: 10.3390/ijms22168820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Among disorders of pigmentation, vitiligo is the most common, with an estimated prevalence between 0.5% and 1%. The disease has gathered increased attention in the most recent years, leading to a better understanding of the disease’s pathophysiology and its implications and to the development of newer therapeutic strategies. A better, more integrated approach is already in use for other chronic inflammatory dermatological diseases such as psoriasis, for which metabolic comorbidities are well-established and part of the routine clinical evaluation. The pathogenesis of these might be linked to cytokines which also play a role in vitiligo pathogenesis, such as IL-1, IL-6, TNF-α, and possibly IL-17. Following the reports of intrinsic metabolic alterations reported by our group, in this brief review, we analyze the available data on metabolic comorbidities in vitiligo, accompanied by our single-center experience. Increased awareness of the metabolic aspects of vitiligo is crucial to improving patient care.
Collapse
Affiliation(s)
- Andrea D’Arino
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.D.); (M.T.)
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.D.); (M.T.)
- Correspondence: ; Tel.: +39-0652666257
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.D.); (M.T.)
| | - Alessia Pacifico
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.P.); (P.I.)
| | - Paolo Iacovelli
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.P.); (P.I.)
| |
Collapse
|
31
|
Molinari F, Feraco A, Mirabilii S, Saladini S, Sansone L, Vernucci E, Tomaselli G, Marzolla V, Rotili D, Russo MA, Ricciardi MR, Tafuri A, Mai A, Caprio M, Tafani M, Armani A. SIRT5 Inhibition Induces Brown Fat-Like Phenotype in 3T3-L1 Preadipocytes. Cells 2021; 10:cells10051126. [PMID: 34066961 PMCID: PMC8148511 DOI: 10.3390/cells10051126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Brown adipose tissue (BAT) activity plays a key role in regulating systemic energy. The activation of BAT results in increased energy expenditure, making this tissue an attractive pharmacological target for therapies against obesity and type 2 diabetes. Sirtuin 5 (SIRT5) affects BAT function by regulating adipogenic transcription factor expression and mitochondrial respiration. We analyzed the expression of SIRT5 in the different adipose depots of mice. We treated 3T3-L1 preadipocytes and mouse primary preadipocyte cultures with the SIRT5 inhibitor MC3482 and investigated the effects of this compound on adipose differentiation and function. The administration of MC3482 during the early stages of differentiation promoted the expression of brown adipocyte and mitochondrial biogenesis markers. Upon treatment with MC3482, 3T3-L1 adipocytes showed an increased activation of the AMP-activated protein kinase (AMPK), which is known to stimulate brown adipocyte differentiation. This effect was paralleled by an increase in autophagic/mitophagic flux and a reduction in lipid droplet size, mediated by a higher lipolytic rate. Of note, MC3482 increased the expression and the activity of adipose triglyceride lipase, without modulating hormone-sensitive lipase. Our findings reveal that SIRT5 inhibition stimulates brown adipogenesis in vitro, supporting this approach as a strategy to stimulate BAT and counteract obesity.
Collapse
Affiliation(s)
- Francesca Molinari
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
| | - Simone Mirabilii
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Serena Saladini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Luigi Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
| | - Enza Vernucci
- Department of Cardiovascular, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giada Tomaselli
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Matteo A. Russo
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
- MEBIC Consortium, San Raffaele Rome Open University, 00166 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
- Hematology, “Sant’ Andrea” University Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
32
|
Boniface K, Passeron T, Seneschal J, Tulic MK. Targeting Innate Immunity to Combat Cutaneous Stress: The Vitiligo Perspective. Front Immunol 2021; 12:613056. [PMID: 33936032 PMCID: PMC8079779 DOI: 10.3389/fimmu.2021.613056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple factors are involved in the process leading to melanocyte loss in vitiligo including environmental triggers, genetic polymorphisms, metabolic alterations, and autoimmunity. This review aims to highlight current knowledge on how danger signals released by stressed epidermal cells in a predisposed patient can trigger the innate immune system and initiate a cascade of events leading to an autoreactive immune response, ultimately contributing to melanocyte disappearance in vitiligo. We will explore the genetic data available, the specific role of damage-associated-molecular patterns, and pattern-recognition receptors, as well as the cellular players involved in the innate immune response. Finally, the relevance of therapeutic strategies targeting this pathway to improve this inflammatory and autoimmune condition is also discussed.
Collapse
Affiliation(s)
- Katia Boniface
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France
| | - Thierry Passeron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France.,Côte d'Azur University, Department of Dermatology, CHU Nice, Nice, France
| | - Julien Seneschal
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Meri K Tulic
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France
| |
Collapse
|
33
|
Singh M, Mansuri MS, Kadam A, Palit SP, Dwivedi M, Laddha NC, Begum R. Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine 2021; 140:155432. [PMID: 33517195 DOI: 10.1016/j.cyto.2021.155432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a major mediator of inflammation and its increased levels have been analyzed in vitiligo patients. Vitiligo is a depigmentary skin disarray caused due to disapperance of functional melanocytes. The aim of the study was to investigate the role of TNF-α in melanocyte biology, analyzing candidate molecules of melanocytes and immune homeostasis. Our results showed increased TNF-α transcripts in vitiligenous lesional and non-lesional skin. Melanocytes upon exogenous stimulation with TNF-α exhibited a significant reduction in cell viability with elevated cellular and mitochondrial ROS and compromised complex I activity. Moreover, we observed a reduction in melanin content via shedding of dendrites, down-regulation of MITF-M, TYR and up-regulation of TNFR1, IL6, ICAM1 expression, whereas TNFR2 levels remain unaltered. TNF-α exposure stimulated cell apoptosis at 48 h and autophagy at 12 h, elevating ATG12 and BECN1 transcripts. Our novel findings establish the functional link between autophagy and melanocyte destruction. Overall, our study suggests a key function of TNF-α in melanocyte homeostasis and autoimmune vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Sayantani P Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Naresh C Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India.
| |
Collapse
|
34
|
Bastonini E, Kovacs D, Raffa S, Delle Macchie M, Pacifico A, Iacovelli P, Torrisi MR, Picardo M. A protective role for autophagy in vitiligo. Cell Death Dis 2021; 12:318. [PMID: 33767135 PMCID: PMC7994839 DOI: 10.1038/s41419-021-03592-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
A growing number of studies supports the existence of a dynamic interplay between energetic metabolism and autophagy, whose induction represents an adaptive response against several stress conditions. Autophagy is an evolutionarily conserved and a highly orchestrated catabolic recycling process that guarantees cellular homeostasis. To date, the exact role of autophagy in vitiligo pathogenesis is still not clear. Here, we provide the first evidence that autophagy occurs in melanocytes and fibroblasts from non-lesional skin of vitiligo patients, as a result of metabolic surveillance response. More precisely, this study is the first to reveal that induction of autophagy exerts a protective role against the intrinsic metabolic stress and attempts to antagonize degenerative processes in normal appearing vitiligo skin, where melanocytes and fibroblasts are already prone to premature senescence.
Collapse
Affiliation(s)
- Emanuela Bastonini
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Daniela Kovacs
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Salvatore Raffa
- Ultrastructural Pathology Lab., Medical Genetics and Advanced Cellular Diagnostics Unit, Sant'Andrea University Hospital & Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marina Delle Macchie
- Ultrastructural Pathology Lab., Medical Genetics and Advanced Cellular Diagnostics Unit, Sant'Andrea University Hospital & Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessia Pacifico
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Paolo Iacovelli
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Rosaria Torrisi
- Ultrastructural Pathology Lab., Medical Genetics and Advanced Cellular Diagnostics Unit, Sant'Andrea University Hospital & Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| |
Collapse
|
35
|
Analysis of Matched Skin and Gut Microbiome of Patients with Vitiligo Reveals Deep Skin Dysbiosis: Link with Mitochondrial and Immune Changes. J Invest Dermatol 2021; 141:2280-2290. [PMID: 33771527 DOI: 10.1016/j.jid.2021.01.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune disease characterized by patchy, white skin owing to melanocyte loss. Commensal cutaneous or gut dysbiosis has been linked to various dermatological disorders. In this study, we studied the skin and gut microbiota of patients with vitiligo compared with those of healthy controls. We obtained swabs and biopsies from both lesional and nonlesional skin as well as stool and blood samples from each individual. We detected reduced richness and diversity of microbiota in the stools of subjects with vitiligo compared with the stools of the controls (P < 0.01). Skin swabs had greater α-diversity than biopsies (P < 0.001); swabs from lesional sites were primarily depleted of Staphylococcus compared with those from nonlesional sites (P < 0.02). Sampling deeper layers from the same patients showed differences in both α- and β-diversity between samples with decreased richness and distribution of species (P < 0.01) in the lesional site. Biopsy microbiota from the lesional skin had distinct microbiota composition, which was depleted of protective Bifidobacterium and Bacteroides but was enriched in Proteobacteria, Streptococcus, Mycoplasma, and mtDNA (P < 0.001); the latter increased in the same patients with heightened innate immunity and stress markers in their blood (P < 0.05). These data describe vitiligo-specific cutaneous and gut microbiota and a link between skin dysbiosis, mitochondrial damage, and immunity in patients with vitiligo.
Collapse
|
36
|
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev 2021; 41:1138-1166. [PMID: 33200838 PMCID: PMC7983894 DOI: 10.1002/med.21754] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune depigment disease results from extensive melanocytes destruction. The destruction of melanocyte is thought to be of multifactorial causation. Genome-wide associated studies have identified single-nucleotide polymorphisms in a panel of susceptible loci as risk factors in melanocyte death. But vitiligo onset can't be solely attributed to a susceptive genetic background. Oxidative stress triggered by elevated levels of reactive oxygen species accounts for melanocytic molecular and organelle dysfunction, a minority of melanocyte demise, and melanocyte-specific antigens exposure. Of note, the self-responsive immune function directly contributes to the bulk of melanocyte deaths in vitiligo. The aberrantly heightened innate immunity, type-1-skewed T helper, and incompetent regulatory T cells tip the balance toward autoreaction and CD8+ cytotoxic T lymphocytes finally execute the killing of melanocytes, possibly alarmed by resident memory T cells. In addition to the well-established apoptosis and necrosis, we discuss several death modalities like oxeiptosis, ferroptosis, and necroptosis that are probably employed in melanocyte destruction. This review focuses on the various mechanisms of melanocytic death in vitiligo pathogenesis to demonstrate a panorama of that. We hope to provide new insights into vitiligo pathogenesis and treatment strategies by the review.
Collapse
Affiliation(s)
- Jianru Chen
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Shuli Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Chunying Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
37
|
Plaza-Rojas L, Guevara-Patiño JA. The Role of the NKG2D in Vitiligo. Front Immunol 2021; 12:624131. [PMID: 33717132 PMCID: PMC7952755 DOI: 10.3389/fimmu.2021.624131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.
Collapse
Affiliation(s)
- Lourdes Plaza-Rojas
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | | |
Collapse
|
38
|
Villavicencio KM, Ahmed N, Harris ML, Singh KK. Mitochondrial DNA-depleter mouse as a model to study human pigmentary skin disorders. Pigment Cell Melanoma Res 2021; 34:179-187. [PMID: 33448673 DOI: 10.1111/pcmr.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023]
Abstract
Pigmentation abnormalities are reported in the spectrum of phenotypes associated with aging and in patients with mitochondrial DNA depletion syndrome (MDS). Yet, a relevant animal model that mimics these effects and would allow us to evaluate the detrimental aspects of mtDNA depletion on melanocyte function has not been described. Here, we characterize the pigmentary changes observed in the ears of a mtDNA-depleter mouse, which phenotypically includes accentuation of the peri-adnexal pseudonetwork, patchy hyper- and hypopigmentation, and reticular pigmentation. Histologically, these mice show increased epidermal pigmentation with patchy distribution, along with increased and highly dendritic melanocytes. These mtDNA-depleter mice mimic aspects of the cutaneous, pigmentary changes observed in humans with age-related senile lentigines as well as MDS. We suggest that this mouse model can serve as a novel resource for future interrogations of how mitochondrial dysfunction contributes to pigmentary skin disorders. The mtDNA-depleter mouse model also serves as a useful tool to identify novel agents capable of treating pigmentary changes associated with age-related mitochondrial dysfunction in humans.
Collapse
Affiliation(s)
| | - Noha Ahmed
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Dermatology, Zagazig University, Zagazig, Egypt
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Gasier HG, Dohl J, Suliman HB, Piantadosi CA, Yu T. Skeletal muscle mitochondrial fragmentation and impaired bioenergetics from nutrient overload are prevented by carbon monoxide. Am J Physiol Cell Physiol 2020; 319:C746-C756. [PMID: 32845721 DOI: 10.1152/ajpcell.00016.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nutrient excess increases skeletal muscle oxidant production and mitochondrial fragmentation that may result in impaired mitochondrial function, a hallmark of skeletal muscle insulin resistance. This led us to explore whether an endogenous gas molecule, carbon monoxide (CO), which is thought to prevent weight gain and metabolic dysfunction in mice consuming high-fat diets, alters mitochondrial morphology and respiration in C2C12 myoblasts exposed to high glucose (15.6 mM) and high fat (250 µM BSA-palmitate) (HGHF). Also, skeletal muscle mitochondrial morphology, distribution, respiration, and energy expenditure were examined in obese resistant (OR) and obese prone (OP) rats that consumed a high-fat and high-sucrose diet for 10 wk with or without intermittent low-dose inhaled CO and/or exercise training. In cells exposed to HGHF, superoxide production, mitochondrial membrane potential (ΔΨm), mitochondrial fission regulatory protein dynamin-related protein 1 (Drp1) and mitochondrial fragmentation increased, while mitochondrial respiratory capacity was reduced. CO decreased HGHF-induced superoxide production, Drp1 protein levels and mitochondrial fragmentation, maintained ΔΨm, and increased mitochondrial respiratory capacity. In comparison with lean OR rats, OP rats had smaller skeletal muscle mitochondria that contained disorganized cristae, a normal mitochondrial distribution, but reduced citrate synthase protein expression, normal respiratory responses, and a lower energy expenditure. The combination of inhaled CO and exercise produced the greatest effect on mitochondrial morphology, increasing ADP-stimulated respiration in the presence of pyruvate, and preventing a decline in resting energy expenditure. These data support a therapeutic role for CO and exercise in preserving mitochondrial morphology and respiration during metabolic overload.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jacob Dohl
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
40
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
41
|
Grover R, Burse SA, Shankrit S, Aggarwal A, Kirty K, Narta K, Srivastav R, Ray AK, Malik G, Vats A, Motiani RK, Thukral L, Roy SS, Bhattacharya S, Sharma R, Natarajan K, Mukerji M, Pandey R, Gokhale RS, Natarajan VT. Myg1 exonuclease couples the nuclear and mitochondrial translational programs through RNA processing. Nucleic Acids Res 2019; 47:5852-5866. [PMID: 31081026 PMCID: PMC6582341 DOI: 10.1093/nar/gkz371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 01/25/2023] Open
Abstract
Semi-autonomous functioning of mitochondria in eukaryotic cell necessitates coordination with nucleus. Several RNA species fine-tune mitochondrial processes by synchronizing with the nuclear program, however the involved components remain enigmatic. In this study, we identify a widely conserved dually localized protein Myg1, and establish its role as a 3′-5′ RNA exonuclease. We employ mouse melanoma cells, and knockout of the Myg1 ortholog in Saccharomyces cerevisiae with complementation using human Myg1 to decipher the conserved role of Myg1 in selective RNA processing. Localization of Myg1 to nucleolus and mitochondrial matrix was studied through imaging and confirmed by sub-cellular fractionation studies. We developed Silexoseqencing, a methodology to map the RNAse trail at single-nucleotide resolution, and identified in situ cleavage by Myg1 on specific transcripts in the two organelles. In nucleolus, Myg1 processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, Myg1 processes 3′-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins. We provide a molecular link to the possible involvement of Myg1 in chronic depigmenting disorder vitiligo. Our study identifies a key component involved in regulating spatially segregated organellar RNA processing and establishes the evolutionarily conserved ribonuclease as a coordinator of nucleo-mitochondrial crosstalk.
Collapse
Affiliation(s)
- Ritika Grover
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| | - Shaunak A Burse
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| | - Shambhavi Shankrit
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Ayush Aggarwal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| | - Kritika Kirty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kiran Narta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajpal Srivastav
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Ashwini Kumar Ray
- School of environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Malik
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Archana Vats
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajender K Motiani
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Sudha Bhattacharya
- School of environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | | | - Mitali Mukerji
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| |
Collapse
|
42
|
Stout R, Birch-Machin M. Mitochondria's Role in Skin Ageing. BIOLOGY 2019; 8:E29. [PMID: 31083540 PMCID: PMC6627661 DOI: 10.3390/biology8020029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products.
Collapse
Affiliation(s)
- Roisin Stout
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mark Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
43
|
Yi X, Guo W, Shi Q, Yang Y, Zhang W, Chen X, Kang P, Chen J, Cui T, Ma J, Wang H, Guo S, Chang Y, Liu L, Jian Z, Wang L, Xiao Q, Li S, Gao T, Li C. SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo. Am J Cancer Res 2019; 9:1614-1633. [PMID: 31037127 PMCID: PMC6485185 DOI: 10.7150/thno.30398] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysregulation has been implicated in oxidative stress-induced melanocyte destruction in vitiligo. However, the molecular mechanism underlying this process is merely investigated. Given the prominent role of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase Sirtuin3 (SIRT3) in sustaining mitochondrial dynamics and homeostasis and that SIRT3 expression and activity can be influenced by oxidative stress-related signaling, we wondered whether SIRT3 could play an important role in vitiligo melanocyte degeneration by regulating mitochondrial dynamics. Methods: We initially testified SIRT3 expression and activity in normal and vitiligo melanocytes via PCR, immunoblotting and immunofluorescence assays. Then, cell apoptosis, mitochondrial function and mitochondrial dynamics after SIRT3 intervention were analyzed by flow cytometry, immunoblotting, confocal laser microscopy, transmission electron microscopy and oxphos activity assays. Chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), immunoblotting and immunofluorescence assays were performed to clarify the upstream regulatory mechanism of SIRT3. Finally, the effect of honokiol on protecting melanocytes and the underlying mechanism were investigated via flow cytometry and immunoblotting analysis. Results: We first found that the expression and the activity of SIRT3 were significantly impaired in vitiligo melanocytes both in vitro and in vivo. Then, SIRT3 deficiency led to more melanocyte apoptosis by inducing severe mitochondrial dysfunction and cytochrome c release to cytoplasm, with Optic atrophy 1 (OPA1)-mediated mitochondrial dynamics remodeling involved in. Moreover, potentiated carbonylation and dampened peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) activation accounted for SIRT3 dysregulation in vitiligo melanocytes. Finally, we proved that honokiol could prevent melanocyte apoptosis under oxidative stress by activating SIRT3-OPA1 axis. Conclusions: Overall, we demonstrate that SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo, and honokiol is promising in preventing oxidative stress-induced vitiligo melanocyte apoptosis.
Collapse
|
44
|
Ali AT, Boehme L, Carbajosa G, Seitan VC, Small KS, Hodgkinson A. Nuclear genetic regulation of the human mitochondrial transcriptome. eLife 2019; 8:e41927. [PMID: 30775970 PMCID: PMC6420317 DOI: 10.7554/elife.41927] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.
Collapse
Affiliation(s)
- Aminah T Ali
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Lena Boehme
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Guillermo Carbajosa
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Vlad C Seitan
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, School of Life Course SciencesKing’s College LondonLondonUnited Kingdom
| | - Alan Hodgkinson
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
45
|
Allavena G, Del Bello B, Tini P, Volpi N, Valacchi G, Miracco C, Pirtoli L, Maellaro E. Trehalose inhibits cell proliferation and amplifies long‐term temozolomide‐ and radiation‐induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence. J Cell Physiol 2018; 234:11708-11721. [DOI: 10.1002/jcp.27838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Giulia Allavena
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| | - Barbara Del Bello
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| | - Paolo Tini
- Unit of Radiation Oncology, University Hospital of Siena Siena Italy
- Sbarro Health Research Organization, Temple University Philadelphia Pennsylvania
| | - Nila Volpi
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
- Department of Animal Sciences Plants for Human Health Institute, NC State University Kannapolis North Carolina
| | - Clelia Miracco
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
- Unit of Pathological Anatomy, University Hospital of Siena Siena Italy
| | - Luigi Pirtoli
- Unit of Radiation Oncology, University Hospital of Siena Siena Italy
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
- Department of Biology College of Science and Technology, Temple University Philadelphia Pennsylvania
| | - Emilia Maellaro
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| |
Collapse
|
46
|
Kundu RV, Mhlaba JM, Rangel SM, Le Poole IC. The convergence theory for vitiligo: A reappraisal. Exp Dermatol 2018; 28:647-655. [PMID: 29704874 DOI: 10.1111/exd.13677] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Vitiligo is characterized by progressive loss of skin pigmentation. The search for aetiologic factors has led to the biochemical, the neurologic and the autoimmune theory. The convergence theory was then proposed several years ago to incorporate existing theories of vitiligo development into a single overview of vitiligo aetiology. The viewpoint that vitiligo is not caused only by predisposing mutations, or only by melanocytes responding to chemical/radiation exposure, or only by hyperreactive T cells, but rather results from a combination of aetiologic factors that impact melanocyte viability, has certainly stood the test of time. New findings have since informed the description of progressive depigmentation. Understanding the relative importance of such aetiologic factors combined with a careful selection of the most targetable pathways will continue to drive the next phase in vitiligo research: the development of effective therapeutics. In that arena, it is likewise important to acknowledge that pathways affected in some patients may not be altered in others. Taken together, the convergence theory continues to provide a comprehensive viewpoint of vitiligo aetiology. The theory serves to intertwine aetiologic pathways and will help to define pathways amenable to disease intervention in individual patients.
Collapse
Affiliation(s)
- Roopal V Kundu
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Julia M Mhlaba
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA.,Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
47
|
Vaccaro M, Irrera N, Cutroneo G, Rizzo G, Vaccaro F, Anastasi GP, Borgia F, Cannavò SP, Altavilla D, Squadrito F. Differential Expression of Nitric Oxide Synthase Isoforms nNOS and iNOS in Patients with Non-Segmental Generalized Vitiligo. Int J Mol Sci 2017; 18:ijms18122533. [PMID: 29186858 PMCID: PMC5751136 DOI: 10.3390/ijms18122533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is involved in several biological processes, but its role in human melanogenesis is still not well understood. Exposure to UVA and UVB induces nitric oxide production in keratinocytes and melanocytes through the activation of constitutive nitric oxide synthase, increasing tyrosinase activity and melanin synthesis, whereas inducible nitric oxide synthase over expression might be involved in hypopigmentary disorders. The aim of this study was to evaluate whether inducible nitric oxide synthase and neuronal nitric oxide synthase expression were modified in vitiligo skin compared to healthy controls. Skin biopsies were obtained from inflammatory/lesional and white/lesional skin in 12 patients with active, non-segmental vitiligo; site-matched biopsies of normal skin from eight patients were used as controls. Nitric oxide synthase isoforms expression was evaluated by confocal laser scanning microscopy and Western Blot analysis. Inducible nitric oxide synthase expression was significantly increased in inflammatory/lesional skin compared to healthy skin; melanocytes showed a moderate neuronal nitric oxide synthase expression in white/lesional skin, demonstrating that metabolic function still goes on. The obtained data demonstrated that vitiligo lesions were characterized by modifications of nitric oxide synthase isoforms, thus confirming the hypothesis that nitric oxide imbalance is involved in vitiligo and supporting the idea that nitric oxide synthase inhibitors might be used as a possible therapeutic approach for the management of vitiligo.
Collapse
Affiliation(s)
- Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Giuseppina Cutroneo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Giuseppina Rizzo
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Federico Vaccaro
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Giuseppe P Anastasi
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Serafinella P Cannavò
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| |
Collapse
|