1
|
OuYang L, Lin Z, He X, Sun J, Liao J, Liao Y, Xie X, Hu W, Zeng R, Tao R, Liu M, Sun Y, Mi B, Liu G. Conductive Hydrogel Inspires Neutrophil Extracellular Traps to Combat Bacterial Infections in Wounds. ACS NANO 2025; 19:9868-9884. [PMID: 40029999 PMCID: PMC11924340 DOI: 10.1021/acsnano.4c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 03/19/2025]
Abstract
Thetreatment of infected wounds is currently a major challenge in clinical medicine, and enhancing antimicrobial and angiogenic capacity is one of the most common strategies. However, the current treatment makes it difficult to balance the antimicrobial effect in the early stage and the angiogenic effect in the later stages of wound healing, leading to an increased rate of poor prognosis. Here, we present a nanoconductive hydrogel EF@S-HGM, consisting of HGM with ECGS, FMLP, and SWCNT. The host-guest supramolecular macromolecule (HGM) hydrogel is biocompatible and can be injected in situ in the wound. The endothelial cell growth factor (ECGS) accelerates vascular remodeling and repairs wounds by promoting the proliferation of endothelial cells. N-Formyl-Met-Leu-Phe (FMLP) recruits neutrophils and increases the antimicrobial capacity. Single-walled carbon nanotubes (SWCNT) make the hydrogel conductive, enabling the hydrogel to utilize the endogenous electric field in the wound to recruit multiple kinds of cells. In addition, we found that the EF@S-HGM hydrogel activates the glucocorticoid receptor senescence pathway and promotes the formation of NET, which enhances the antimicrobial effect. As tissue-engineered skin, the conductive hydrogel EF@S-HGM is a promising material for regenerative medicine that may provide a potential option for the treatment and care of infected wounds and significantly improve patient outcomes and prognosis.
Collapse
Affiliation(s)
- Lizhi OuYang
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ze Lin
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xi He
- Union
Hospital, Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department
of Rheumatology, Renji Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jiaqi Sun
- Union
Hospital, Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiewen Liao
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuheng Liao
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xudong Xie
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Weixian Hu
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ruiyin Zeng
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ranyang Tao
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department
of Surgery, Prince of Wales Hospital, The
Chinese University of Hong Kong, Hong Kong 999077, China
| | - Mengfei Liu
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yun Sun
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Bobin Mi
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Guohui Liu
- Department
of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
2
|
Liang W, Bai Y, Zhang H, Mo Y, Li X, Huang J, Lei Y, Gao F, Dong M, Li S, Liang J. Identification and Analysis of Potential Biomarkers Associated with Neutrophil Extracellular Traps in Cervicitis. Biochem Genet 2024:10.1007/s10528-024-10919-x. [PMID: 39419909 DOI: 10.1007/s10528-024-10919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024]
Abstract
Early diagnosis of cervicitis is important. Previous studies have found that neutrophil extracellular traps (NETs) play pro-inflammatory and anti-inflammatory roles in many diseases, suggesting that they may be involved in the inflammation of the uterine cervix and NETs-related genes may serve as biomarkers of cervicitis. However, what NETs-related genes are associated with cervicitis remains to be determined. Transcriptome analysis was performed using samples of exfoliated cervical cells from 15 patients with cervicitis and 15 patients without cervicitis as the control group. First, the intersection of differentially expressed genes (DEGs) and neutrophil extracellular trap-related genes (NETRGs) were taken to obtain genes, followed by functional enrichment analysis. We obtained hub genes through two machine learning algorithms. We then performed Artificial Neural Network (ANN) and nomogram construction, confusion matrix, receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Moreover, we constructed ceRNA network, mRNA-transcription factor (TF) network, and hub genes-drug network. We obtained 19 intersecting genes by intersecting 1398 DEGs and 136 NETRGs. 5 hub genes were obtained through 2 machine learning algorithms, namely PKM, ATG7, CTSG, RIPK3, and ENO1. Confusion matrix and ROC curve evaluation ANN model showed high accuracy and stability. A nomogram containing the 5 hub genes was established to assess the disease rate in patients. The correlation analysis revealed that the expression of ATG7 was synergistic with RIPK3. The GSEA showed that most of the hub genes were related to ECM receptor interactions. It was predicted that the ceRNA network contained 2 hub genes, 3 targeted miRNAs, and 27 targeted lnRNAs, and that 5 mRNAs were regulated by 28 TFs. In addition, 36 small molecule drugs that target hub genes may improve the treatment of cervicitis. In this study, five hub genes (PKM, ATG7, CTSG, RIPK3, ENO1) provided new directions for the diagnosis and treatment of patients with cervicitis.
Collapse
Affiliation(s)
- Wantao Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanyuan Bai
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Hua Zhang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yan Mo
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Xiufang Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Junming Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yangliu Lei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Fangping Gao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Mengmeng Dong
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Shan Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Juan Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
3
|
Chiang HJ, Peng HH, Weng KF, Hsiung KC, Liang CY, Kuo SL, Ojcius DM, Young JDE, Shih SR. Mineralo-organic particles inhibit influenza A virus infection by targeting viral hemagglutinin activity. Nanomedicine (Lond) 2024; 19:2375-2390. [PMID: 39320315 PMCID: PMC11492690 DOI: 10.1080/17435889.2024.2403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: Mineralo-organic particles, naturally present in human body fluids, participate in ectopic calcification and inflammatory diseases. These particles coexist with influenza A virus (IAV) in the same microenvironment during viral infection. Our objective was to investigate the functional consequences of the potential interactions between these particles and the virions.Materials & methods: We used in vitro models, including electron microscopy, fluorescence microscopy, hemagglutination assay and viral infection assays to examine the interactions.Results: Mineralo-organic particles bind to IAV virions through interactions involving particle-bound fetuin-A and mineral content, effectively engaging viral hemagglutinin. These interactions result in hindered viral infection.Conclusion: These findings uncover the novel interactions between mineralo-organic particles and IAV, highlighting the impact of virus microenvironment complexity.
Collapse
Affiliation(s)
- Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Chinese Medicine Obstetrics & Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA94305, USA
| | - Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chieh-Yu Liang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO63110, USA
| | - Shun-Li Kuo
- Division of Chinese Medicine Obstetrics & Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - David M. Ojcius
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan, 33302, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA94103, USA
| | | | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan, 33303, Taiwan
| |
Collapse
|
4
|
Rhodes JD, Devaraj A, Robledo-Avila F, Balu S, Mashburn-Warren L, Buzzo JR, Partida-Sanchez S, Bakaletz LO, Goodman SD. Noninflammatory 97-amino acid High Mobility Group Box 1 derived polypeptide disrupts and prevents diverse biofilms. EBioMedicine 2024; 107:105304. [PMID: 39182358 PMCID: PMC11385066 DOI: 10.1016/j.ebiom.2024.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bacterial biofilm communities are embedded in a protective extracellular matrix comprised of various components, with its' integrity largely owed to a 3-dimensional lattice of extracellular DNA (eDNA) interconnected by Holliday Junction (HJ)-like structures and stabilised by the ubiquitous eubacterial DNABII family of DNA-binding architectural proteins. We recently showed that the host innate immune effector High Mobility Group Box 1 (HMGB1) protein possesses extracellular anti-biofilm activity by destabilising these HJ-like structures, resulting in release of biofilm-resident bacteria into a vulnerable state. Herein, we showed that HMGB1's anti-biofilm activity was completely contained within a contiguous 97 amino acid region that retained DNA-binding activity, called 'mB Box-97'. METHODS We engineered a synthetic version of this 97-mer and introduced a single amino acid change which lacked any post-translational modifications, and tested its activity independently and in combination with a humanised monoclonal antibody that disrupts biofilms by the distinct mechanism of DNABII protein sequestration. FINDINGS mB Box-97 disrupted and prevented biofilms, including those formed by the ESKAPEE pathogens, and importantly reduced measurable proinflammatory activity normally associated with HMGB1 in a murine lung infection model. INTERPRETATION Herein, we discuss the value of targeting the ubiquitous eDNA-dependent matrix of biofilms via mB Box-97 used singly or in a dual host-augmenting/pathogen-targeted cocktail to resolve bacterial biofilm infections. FUNDING This work was supported by NIH/NIDCD R01DC011818 to L.O.B. and S.D.G. and NIH/NIAID R01AI155501 to S.D.G.
Collapse
Affiliation(s)
- Jaime D Rhodes
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Sabarathnam Balu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Liu T, Li Q, Jin Q, Yang L, Mao H, Qu P, Guo J, Zhang B, Ma F, Wang Y, Peng L, Li P, Zhan Y. Targeting HMGB1: A Potential Therapeutic Strategy for Chronic Kidney Disease. Int J Biol Sci 2023; 19:5020-5035. [PMID: 37781525 PMCID: PMC10539693 DOI: 10.7150/ijbs.87964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a member of a highly conserved high-mobility group protein present in all cell types. HMGB1 plays multiple roles both inside and outside the cell, depending on its subcellular localization, context, and post-translational modifications. HMGB1 is also associated with the progression of various diseases. Particularly, HMGB1 plays a critical role in CKD progression and prognosis. HMGB1 participates in multiple key events in CKD progression by activating downstream signals, including renal inflammation, the onset of persistent fibrosis, renal aging, AKI-to-CKD transition, and important cardiovascular complications. More importantly, HMGB1 plays a distinct role in the chronic pathophysiology of kidney disease, which differs from that in acute lesions. This review describes the regulatory role of HMGB1 in renal homeostasis and summarizes how HMGB1 affects CKD progression and prognosis. Finally, some promising therapeutic strategies for the targeted inhibition of HMGB1 in improving CKD are summarized. Although the application of HMGB1 as a therapeutic target in CKD faces some challenges, a more in-depth understanding of the intracellular and extracellular regulatory mechanisms of HMGB1 that underly the occurrence and progression of CKD might render HMGB1 an attractive therapeutic target for CKD.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Zhang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Drzewiecka B, Przekora A, Dobko D, Kozera A, Krać K, Nguyen Ngoc D, Fernández-De la Cruz E, Wessely-Szponder J. Analysis of In Vitro Leukocyte Responses to Biomaterials in the Presence of Antimicrobial Porcine Neutrophil Extract (AMPNE). MATERIALS (BASEL, SWITZERLAND) 2023; 16:5691. [PMID: 37629982 PMCID: PMC10456664 DOI: 10.3390/ma16165691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Implant insertion can evoke excessive inflammation which disrupts the healing process and potentially leads to complications such as implant rejection. Neutrophils and macrophages play a vital role in the early inflammatory phase of tissue repair, necessitating the study of cellular responses in host-implant interactions. In order to deepen the knowledge about these interactions, the response of neutrophils and macrophages to contact with selected biomaterials was examined in vitro on the basis of secretory response as well as reactive oxygen species/reactive nitrogen species (ROS/RNS) generation. Porcine neutrophils exposed to hydroxyapatite (HA) released more enzymes and generated higher levels of ROS/RNS compared to the control group. The addition of AMPNE diminished these responses. Although the results from porcine cells can provide valuable preliminary data, further validation using human cells or clinical studies would be necessary to fully extrapolate the findings to human medicine. Our study revealed that human neutrophils after contact of with HA increased the production of nitric oxide (NO) (10.00 ± 0.08 vs. control group 3.0 ± 0.11 µM, p < 0.05), while HAP or FAP did not elicit a significant response. Human macrophages cultured with HA produced more superoxide and NO, while HAP or FAP had a minimal effect, and curdlan reduced ROS/RNS generation. The addition of AMPNE to cultures with all biomaterials, except curdlan, reduced neutrophil activity, regardless of the peptides' origin. These results highlight the potential of antimicrobial peptides in modulating excessive biomaterial/host cell reactions involving neutrophils and macrophages, enhancing our understanding of immune reactions, and suggesting that AMPNE could regulate leukocyte response during implantation.
Collapse
Affiliation(s)
- Beata Drzewiecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (B.D.); (D.N.N.)
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Dominika Dobko
- Students Research Group of Veterinary Analysts, Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.D.); (A.K.); (K.K.)
| | - Aleksandra Kozera
- Students Research Group of Veterinary Analysts, Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.D.); (A.K.); (K.K.)
| | - Katarzyna Krać
- Students Research Group of Veterinary Analysts, Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.D.); (A.K.); (K.K.)
| | - Dominika Nguyen Ngoc
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (B.D.); (D.N.N.)
| | - Eric Fernández-De la Cruz
- Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (B.D.); (D.N.N.)
| |
Collapse
|
7
|
Thakur M, Junho CVC, Bernhard SM, Schindewolf M, Noels H, Döring Y. NETs-Induced Thrombosis Impacts on Cardiovascular and Chronic Kidney Disease. Circ Res 2023; 132:933-949. [PMID: 37053273 PMCID: PMC10377271 DOI: 10.1161/circresaha.123.321750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Arterial and venous thrombosis constitute a major source of morbidity and mortality worldwide. Association between thrombotic complications and cardiovascular and other chronic inflammatory diseases are well described. Inflammation and subsequent initiation of thrombotic events, termed immunothrombosis, also receive growing attention but are still incompletely understood. Nevertheless, the clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is evident by an increased risk of thrombosis and cardiovascular events in patients with inflammatory or infectious diseases. Proinflammatory mediators released from platelets, complement activation, and the formation of NETs (neutrophil extracellular traps) initiate and foster immunothrombosis. In this review, we highlight and discuss prominent and emerging interrelationships and functions between NETs and other mediators in immunothrombosis in cardiovascular disease. Also, with patients with chronic kidney disease suffering from increased cardiovascular and thrombotic risk, we summarize current knowledge on neutrophil phenotype, function, and NET formation in chronic kidney disease. In addition, we elaborate on therapeutic targeting of NETs-induced immunothrombosis. A better understanding of the functional relevance of antithrombotic mediators which do not increase bleeding risk may provide opportunities for successful therapeutic interventions to reduce thrombotic risk beyond current treatment options.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Germany (C.V.C.J., H.N.)
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Germany (C.V.C.J., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (H.N.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany (Y.D.)
| |
Collapse
|
8
|
Shang B, Cui H, Xie R, Wu J, Shi H, Bi X, Feng L, Shou J. Neutrophil extracellular traps primed intercellular communication in cancer progression as a promising therapeutic target. Biomark Res 2023; 11:24. [PMID: 36859358 PMCID: PMC9977644 DOI: 10.1186/s40364-023-00463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
In addition to the anti-infection response, neutrophils are linked to tumor progression through the secretion of inflammation components and neutrophil extracellular traps (NETs) formation. NET is a web-like structure constituted by a chromatin scaffold coated with specific nuclear and cytoplasmic proteins, such as histone and granule peptides. Increasing evidence has demonstrated that NETs are favorable factors to promote tumor growth, invasion, migration, and immunosuppression. However, the cell-cell interaction between NETs and other cells (tumor cells and immune cells) is complicated and poorly studied. This work is the first review to focus on the intercellular communication mediated by NETs in cancer. We summarized the complex cell-cell interaction between NETs and other cells in the tumor microenvironment. We also address the significance of NETs as both prognostic/predictive biomarkers and molecular targets for cancer therapy. Moreover, we presented a comprehensive landscape of cancer immunity, improving the therapeutic efficacy for advanced cancer in the future.
Collapse
Affiliation(s)
- Bingqing Shang
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Honglei Cui
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Ruiyang Xie
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Jie Wu
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Hongzhe Shi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Xingang Bi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Lin Feng
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China.
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, PR, China.
| |
Collapse
|
9
|
Mo Y, Chen K. Review: The role of HMGB1 in spinal cord injury. Front Immunol 2023; 13:1094925. [PMID: 36713448 PMCID: PMC9877301 DOI: 10.3389/fimmu.2022.1094925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
High mobility group box 1 (HMGB1) has dual functions as a nonhistone nucleoprotein and an extracellular inflammatory cytokine. In the resting state, HMGB1 is mainly located in the nucleus and regulates key nuclear activities. After spinal cord injury, HMGB1 is rapidly expressed by neurons, microglia and ependymal cells, and it is either actively or passively released into the extracellular matrix and blood circulation; furthermore, it also participates in the pathophysiological process of spinal cord injury. HMGB1 can regulate the activation of M1 microglia, exacerbate the inflammatory response, and regulate the expression of inflammatory factors through Rage and TLR2/4, resulting in neuronal death. However, some studies have shown that HMGB1 is beneficial for the survival, regeneration and differentiation of neurons and that it promotes the recovery of motor function. This article reviews the specific timing of secretion and translocation, the release mechanism and the role of HMGB1 in spinal cord injury. Furthermore, the role and mechanism of HMGB1 in spinal cord injury and, the challenges that still need to be addressed are identified, and this work will provide a basis for future studies.
Collapse
|
10
|
Zhao Z, Pan Z, Zhang S, Ma G, Zhang W, Song J, Wang Y, Kong L, Du G. Neutrophil extracellular traps: A novel target for the treatment of stroke. Pharmacol Ther 2023; 241:108328. [PMID: 36481433 DOI: 10.1016/j.pharmthera.2022.108328] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a threatening cerebrovascular disease caused by thrombus with high morbidity and mortality rates. Neutrophils are the first to be recruited in the brain after stroke, which aggravate brain injury through multiple mechanisms. Neutrophil extracellular traps (NETs), as a novel regulatory mechanism of neutrophils, can trap bacteria and secret antimicrobial molecules, thereby degrading pathogenic factors and killing bacteria. However, NETs also exacerbate certain non-infectious diseases by activating autoimmune or inflammatory responses. NETs have been found to play important roles in the pathological process of stroke in recent years. In this review, the mechanisms of NETs formation, the physiological roles of NETs, and the dynamic changes of NETs after stroke are summarized. NETs participate in stroke through various mechanisms. NETs promote the coagulation cascade and interact with platelets to induce thrombosis. tPA induces the degranulation of neutrophils to form NETs, leading to hemorrhagic transformation and thrombolytic resistance. NETs aggravate stroke by mediating inflammation, atherosclerosis and vascular injury. In addition, the regulation of NETs in stroke, the potential of NETs as biomarker and the treatment of stroke targeting NETs are discussed. The increasing evidences suggest that NETs may be a potential target for stroke treatment. Inhibition of NETs formation or promotion of NETs degradation plays protective effects in stroke. However, how to avoid the adverse effects of NETs-targeted therapy deserves further study. In summary, this review provides a reference for the pathogenesis, drug targets, biomarkers and drug development of NETs in stroke.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis. Int J Mol Sci 2022; 23:ijms232214013. [PMID: 36430491 PMCID: PMC9694523 DOI: 10.3390/ijms232214013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Neutrophils are involved in the development of endometritis, but it remains unknown how neutrophils induce inflammation and tissue damage. Neutrophil extracellular traps (NETs) clear invading pathogens during infection but induce pyroptosis, leading to inflammation and tissue damage. Thus, our objective was to investigate whether NETs participate in bovine endometrial epithelial cell (BEEC) pyroptosis during endometritis. To confirm this, NETs and caspase-1/4; apoptosis-associated speck-like protein containing a caspase-recruitment domain(ASC); nod-like receptor protein-3 (NLRP3); and gasdermin D N-terminal (GSDMD-N), TNF-a, IL-1β, IL-6, and IL-18 in endometrial tissue were detected. Pathological section and vaginal discharge smears were performed to visually determine endometritis in the uterus. BEECs were stimulated with NETs to induce pyroptosis, which was treated with DNase I against pyroptosis. Caspase-1/4, ASC, NLRP3, GSDMD-N, TNF-a, IL-1β, IL-6, and IL-18 in BEECs were analyzed in endometrial tissue. The results showed that NET formation, as well as pyroptosis-related proteins and proinflammatory, cytokines were elevated in the endometrial tissue of cows with endometritis. Pathological sections and vaginal discharge smears showed increased neutrophils and plasma cells in the uterus, as well as tissue congestion. In BEECs, NETs increased the level of pyroptosis-related proteins and proinflammatory cytokines and were diminished by DNase I. In summary NETs participate BEEC pyroptosis during endometritis in dairy cows.
Collapse
|
12
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
13
|
Wang X, Mayorga-Flores M, Bien KG, Bailey AO, Iwahara J. DNA-mediated proteolysis by neutrophil elastase enhances binding activities of the HMGB1 protein. J Biol Chem 2022; 298:102577. [DOI: 10.1016/j.jbc.2022.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
14
|
Mikhalchik E, Basyreva LY, Gusev SA, Panasenko OM, Klinov DV, Barinov NA, Morozova OV, Moscalets AP, Maltseva LN, Filatova LY, Pronkin EA, Bespyatykh JA, Balabushevich NG. Activation of Neutrophils by Mucin–Vaterite Microparticles. Int J Mol Sci 2022; 23:ijms231810579. [PMID: 36142492 PMCID: PMC9501559 DOI: 10.3390/ijms231810579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite–mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of −1 ± 1 mV and −7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL−1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1β, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1–10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin–vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Correspondence: ; Tel.: +7-4-99-2464352
| | - Liliya Yu. Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Sergey A. Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Nikolay A. Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga V. Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- National Research Center of Epidemiology and Microbiology of N.F. Gamaleya, 123098 Moscow, Russia
| | - Alexander P. Moscalets
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Liliya N. Maltseva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lyubov Yu. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniy A. Pronkin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Julia A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | | |
Collapse
|
15
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
16
|
Mikhalchik EV, Ivanov VA, Borodina IV, Pobeguts OV, Smirnov IP, Gorudko IV, Grigorieva DV, Boychenko OP, Moskalets AP, Klinov DV, Panasenko OM, Filatova LY, Kirzhanova EA, Balabushevich NG. Neutrophil Activation by Mineral Microparticles Coated with Methylglyoxal-Glycated Albumin. Int J Mol Sci 2022; 23:ijms23147840. [PMID: 35887188 PMCID: PMC9321525 DOI: 10.3390/ijms23147840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Correspondence: ; Tel.: +7-499-2464352
| | - Victor A. Ivanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Borodina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Igor P. Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Olga P. Boychenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Alexander P. Moskalets
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Luboff Y. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Ekaterina A. Kirzhanova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Nadezhda G. Balabushevich
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| |
Collapse
|
17
|
Liu ML, Lyu X, Werth VP. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J 2022; 289:3954-3966. [PMID: 34042290 PMCID: PMC9107956 DOI: 10.1111/febs.16036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Neutrophils are the most abundant circulating white blood cells and one of the major cell types of the innate immune system. Neutrophil extracellular traps (NETs) are a result of the extracellular release of nuclear chromatin from the ruptured nuclear envelope and plasma membrane. The externalized chromatin is an ancient defense weapon for animals to entrap and kill microorganisms in the extracellular milieu, thus protecting animals ranging from lower invertebrates to higher vertebrates. Although the externalized chromatin has the advantage of acting as anti-infective to protect against infections, extracellular chromatin might be problematic in higher vertebrate animals as they have an adaptive immune system that can trigger further immune or autoimmune responses. NETs and their associated nuclear and/or cytoplasmic components may induce sterile inflammation, immune, and autoimmune responses, leading to various human diseases. Though important in human pathophysiology, the cellular and molecular mechanisms of NET formation (also called NETosis) are not well understood. Given that nuclear chromatin forms the backbone of NETs, the nucleus is the root of the nuclear DNA extracellular traps. Thus, nuclear chromatin decondensation, along with the rupture of nuclear envelope and plasma membrane, is required for nuclear chromatin extracellular release and NET formation. So far, most of the literature focuses on certain signaling pathways, which are involved in NET formation but without explanation of cellular events and morphological changes described above. Here, we have summarized emerging evidence and discuss new mechanistic understanding, with our perspectives, in NET formation in neutrophils.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Lyu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Victoria P. Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Block H, Rossaint J, Zarbock A. The Fatal Circle of NETs and NET-Associated DAMPs Contributing to Organ Dysfunction. Cells 2022; 11:1919. [PMID: 35741047 PMCID: PMC9222025 DOI: 10.3390/cells11121919] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens or sterile injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory responses, comprising the generation of cytokines or chemokines, which further induce immune cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs) is part of it and was originally attributed to the capture and elimination of pathogens. In the last decade studies revealed a detrimental role of NETs during several diseases, often correlated with an exaggerated immune response. Overwhelming inflammation in single organs can induce remote organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce NET formation, as well as NET components known to act as DAMPs, generating a putative fatal circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.
Collapse
Affiliation(s)
| | | | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (H.B.); (J.R.)
| |
Collapse
|
19
|
Seifert A, Tylek T, Blum C, Hemmelmann N, Böttcher B, Gbureck U, Groll J. Calcium phosphate-based biomaterials trigger human macrophages to release extracellular traps. Biomaterials 2022; 285:121521. [PMID: 35523018 DOI: 10.1016/j.biomaterials.2022.121521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
Abstract
As central part of the innate immune response, immune cells fight against invaders through various mechanisms, such as the release of extracellular traps (ETs). While this mechanism is mainly known for neutrophils in biomaterial contact, the release of macrophage extracellular traps (METs) in response to biomaterials has not yet been reported. An important application area for biomaterials is bone, where healing of defects of a critical size requires the implantation of grafts, which are often composed of calcium phosphates (CaPs). In this study, the response of human monocyte-derived macrophages in vitro to two different CaPs (α-tricalcium phosphate (α-TCP) and calcium deficient hydroxyapatite (CDHA)) as well as different pore structures was investigated. Scaffolds with anisotropic porosity were prepared by directional freezing, while samples with isotropic pore structure served as reference. It was revealed that ETs are released by human monocyte-derived macrophages in direct or indirect contact with CaP scaffolds. This was caused by mineral nanoparticles formed during incubation of α-TCP samples in culture medium supplemented with human platelet lysate, with an anisotropic pore structure attenuating MET formation. METs were significantly less pronounced or absent in association with CDHA samples. It was furthermore demonstrated that MET formation was accompanied by an increase in pro-inflammatory cytokines. Thus, this study provided the first evidence that macrophages are capable of releasing ETs in response to biomaterials.
Collapse
Affiliation(s)
- Annika Seifert
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Tina Tylek
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Carina Blum
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Naomi Hemmelmann
- Biocenter and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany.
| |
Collapse
|
20
|
Huang Z, Zhang H, Fu X, Han L, Zhang H, Zhang L, Zhao J, Xiao D, Li H, Li P. Autophagy-driven neutrophil extracellular traps: The dawn of sepsis. Pathol Res Pract 2022; 234:153896. [PMID: 35462228 DOI: 10.1016/j.prp.2022.153896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Sepsis is a systemic inflammatory syndrome caused by infection disorders. The core mechanism of sepsis is immune dysfunction. Neutrophils are the most abundant circulating white blood cells, which play a crucial role in mediating the innate immune response. Previous studies have shown that an effective way to treat sepsis is through the regulation of neutrophil functions. Autophagy, a highly conserved degradation process, is responsible for removing denatured proteins or damaged organelles within cells and protecting cells from external stimuli. It is a key homeostasis process that promotes neutrophil function and differentiation. Autophagy has been shown to be closely associated with inflammation and immunity. Neutrophils, the first line of innate immunity, migrate to inflammatory sites upon their activation. Neutrophil-mediated autophagy may participate in the clinical course of sepsis. In this review, we summarized and analyzed the latest research findings on the changes in neutrophil external traps during sepsis, the regulatory role of autophagy in neutrophil, and the potential application of autophagy-driven NETs in sepsis, so as to guide clinical treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haodong Zhang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haidan Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Danyang Xiao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyao Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
21
|
Rudloff S, Jahnen-Dechent W, Huynh-Do U. Tissue chaperoning—the expanded functions of fetuin-A beyond inhibition of systemic calcification. Pflugers Arch 2022; 474:949-962. [PMID: 35403906 PMCID: PMC8995415 DOI: 10.1007/s00424-022-02688-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
AbstractTraditionally, fetuin-A embodies the prototype anti-calcification protein in the blood, preventing cardiovascular calcification. Low serum fetuin-A is generally associated with mineralization dysbalance and enhanced mortality in end stage renal disease. Recent evidence indicates that fetuin-A is a crucial factor moderating tissue inflammation and fibrosis, as well as a systemic indicator of acute inflammatory disease. Here, the expanded function of fetuin-A is discussed in the context of mineralization and inflammation biology. Unbalanced depletion of fetuin-A in this context may be the critical event, triggering a vicious cycle of progressive calcification, inflammation, and tissue injury. Hence, we designate fetuin-A as tissue chaperone and propose the potential use of exogenous fetuin-A as prophylactic agent or emergency treatment in conditions that are associated with acute depletion of endogenous protein.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen, University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|
22
|
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med 2022; 54:91-102. [PMID: 35217834 PMCID: PMC8894452 DOI: 10.1038/s12276-022-00736-w] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage. A nuclear protein that gets released after cell death or is actively secreted by immune cells offers a promising therapeutic target for treating diseases linked to excessive inflammation. Daolin Tang from the University of Texas Southwestern Medical Center in Dallas, USA, and colleagues review how cellular stresses can trigger the accumulation of HMGB1, a type of alarm signal protein that promotes the recruitment and activation of inflammation-promoting immune cells. The researchers discuss various mechanisms that drive both passive and active release of HMGB1 into the space around cells. These processes, which include enzymatic modifications of the HMGB1 protein, cell–cell interactions and molecular pathways of cell death, could be targeted by drugs to lessen tissue damage and inflammatory disease caused by HMGB1-induced immune responses
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Physical attributes of salivary calcium particles and their interaction with gingival epithelium. Biomed J 2021; 44:686-693. [PMID: 35166207 PMCID: PMC8847823 DOI: 10.1016/j.bj.2020.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background The formation of dental plaque and its involvement in the pathogenesis of periodontitis is a topic of intense interest given the high prevalence of periodontitis in humans. Even though calcium-based particles play an active role in both dental plaque formation and periodontitis, few publications describe the physical-chemical properties of these particles. Methods Saliva samples were collected from healthy volunteers. From these samples, saliva-derived particles were isolated and stained for calcium using calcein or Fluo-4. The salivary particles were also subjected to characterization by flow cytometry and immunoblotting. Internalization of calcein-labeled salivary particles by gingival epithelial cells was visualized by confocal microscopy. Results We found that calcium-based salivary particles from healthy volunteers varied greatly in size but were enriched in particles of sizes at or greater than 1.5 μm. Immunoblotting analysis of the salivary particles identified several proteins including albumin, fetuin-A, and statherin, which have been found in calcium phosphate particles from other tissues or are known to modulate calcium homeostasis in saliva. In addition, calcium particles were internalized by both gingival epithelial cells and monocyte-derived macrophages. Conclusion Salivary calcium particles were enriched in the micrometer range, internalized by gingival epithelial cells, and contain albumin, fetuin-A and statherin, regulators of particle formation. These characteristics of the calcium-based salivary particles and their biological activities provide a basis for further studies to understand the molecular basis for pathogenesis of periodontitis.
Collapse
|
24
|
Development of Alkaline Reduced Water Using High-Temperature-Roasted Mineral Salt and Its Antioxidative Effect in RAW 264.7 Murine Macrophage Cell Line. Processes (Basel) 2021. [DOI: 10.3390/pr9111928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress (OS) plays an important role in many diseases, and its excessive increase affects human health. Although the antioxidant effect of sea salt can be strengthened through special processing, it is scarcely studied. This study confirmed the antioxidative effect of high-temperature roasted mineral salt (HtRMS) produced through repeated roasting of sea salt at high temperature in a ceramic vessel. The dissolved HtRMS exhibited properties such as high alkalinity, rich mineral content, and a high concentration of hydrogen (H2). To detect the antioxidative effect of HtRMS, OS was induced in RAW 264.7 murine macrophage cells with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS), and then treated with HtRMS solution at different concentrations (0.1, 1, and 10%). Cell viability, reactive oxygen species (ROS), nitric oxide (NO), and antioxidant enzymes such as catalase (CAT) and glutathione peroxidase (GPx), Ca2+, and mitogen-activated protein kinase (MAPK) pathway-related proteins (p-p38, p-JNK, and p-ERK) were measured. OS was significantly induced by treatment with H2O2 and LPS (p < 0.001). After treatment with HtRMS, cell viability and GPx activities significantly increased and ROS, NO, Ca2+, and CAT significantly decreased in a concentration-dependent manner compared to H2O2 and LPS-only groups, which was not observed in tap water (TW)-treated groups. Similarly, p-p38, p-JNK, and p-ERK levels significantly decreased in a concentration-dependent manner in HtRMS groups compared to both H2O2 and LPS-only groups; however, those in TW groups did not exhibit significant differences compared to H2O2 and LPS-only groups. In conclusion, our results suggest that HtRMS may have antioxidant potential by regulating the MAPK signaling pathway.
Collapse
|
25
|
Kummarapurugu AB, Zheng S, Ma J, Ghosh S, Hawkridge A, Voynow JA. Neutrophil Elastase Triggers the Release of Macrophage Extracellular Traps: Relevance to CF. Am J Respir Cell Mol Biol 2021; 66:76-85. [PMID: 34597246 DOI: 10.1165/rcmb.2020-0410oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil extracellular traps increase cystic fibrosis (CF) airway inflammation. We hypothesized that macrophage exposure to neutrophil elastase (NE) would trigger the release of macrophage extracellular traps (METs), a novel mechanism to augment NE-induced airway inflammation in CF. To test whether human blood monocyte derived macrophages (hBMDM) from CF and non-CF subjects take up proteolytically active NE resulting in clipping of chromatin binding proteins and the release of METs. Human BMDM from CF and non-CF subjects were treated with FITC-NE to determine NE localization. Intracellular NE activity was determined by DQ-elastin assay. MET DNA release was detected by Pico-green for hBMDM, and visualized by confocal microscopy for hBMDM, and for alveolar macrophages harvested from intratracheal NE-exposed Cftr-null and wild-type littermate mice. Immunofluorescence assays for histone citrullination and western analyses for histone clipping were performed. FITC-NE was localized to cytoplasmic and nuclear domains, and NE retained proteolytic activity in hBMDM. NE (100 to 500 nM) significantly increased extracellular DNA release from hBMDM. NE activated MET release by confocal microscopy in hBMDM, and in alveolar macrophages from Cftr-null and Cftr wild-type mice. NE-triggered MET release was associated with H3 citrullination and partial cleavage of Histone H3 but not H4. Exposure to NE caused release of METs from both CF and non-CF hBMDM in vitro and murine alveolar macrophages in vivo. MET release was associated with NE-activated H3 clipping, a mechanism associated with chromatin decondensation, a prerequisite for METs.
Collapse
Affiliation(s)
- Apparao B Kummarapurugu
- Children's Hospital of Richmond at Virginia Commonwealth University, 480853, Pediatric Pulmonology, Richmond, Virginia, United States;
| | - Shuo Zheng
- Children's Hospital of Richmond at VCU, 480853, Pediatric Pulmonology, Richmond, Virginia, United States
| | - Jonathan Ma
- Virginia Commonwealth University Department of Pediatrics, 466504, Richmond, Virginia, United States
| | - Shobha Ghosh
- Virginia Commonwealth University Department of Internal Medicine, 122693, Richmond, Virginia, United States
| | - Adam Hawkridge
- Virginia Commonwealth University School of Pharmacy, 15535, Richmond, Virginia, United States
| | - Judith A Voynow
- Children's Hospital of Richmond at VCU, 480853, Division of Pediatric Pulmonology, Richmond, Virginia, United States
| |
Collapse
|
26
|
Devaraj A, Novotny LA, Robledo-Avila FH, Buzzo JR, Mashburn-Warren L, Jurcisek JA, Tjokro NO, Partida-Sanchez S, Bakaletz LO, Goodman SD. The extracellular innate-immune effector HMGB1 limits pathogenic bacterial biofilm proliferation. J Clin Invest 2021; 131:e140527. [PMID: 34396989 DOI: 10.1172/jci140527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Herein, we describe an extracellular function of the vertebrate high-mobility group box 1 protein (HMGB1) in the proliferation of bacterial biofilms. Within host cells, HMGB1 functions as a DNA architectural protein, similar to the ubiquitous DNABII family of bacterial proteins; despite that, these proteins share no amino acid sequence identity. Extracellularly, HMGB1 induces a proinflammatory immune response, whereas the DNABII proteins stabilize the extracellular DNA-dependent matrix that maintains bacterial biofilms. We showed that when both proteins converged on extracellular DNA within bacterial biofilms, HMGB1, unlike the DNABII proteins, disrupted biofilms both in vitro (including the high-priority ESKAPEE pathogens) and in vivo in 2 distinct animal models, albeit with induction of a strong inflammatory response that we attenuated by a single engineered amino acid change. We propose a model where extracellular HMGB1 balances the degree of induced inflammation and biofilm containment without excessive release of biofilm-resident bacteria.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Frank H Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Natalia O Tjokro
- Division of Periodontology, Diagnostic Sciences, and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Morris G, Bortolasci CC, Puri BK, Marx W, O'Neil A, Athan E, Walder K, Berk M, Olive L, Carvalho AF, Maes M. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021; 144:155593. [PMID: 34074585 PMCID: PMC8149193 DOI: 10.1016/j.cyto.2021.155593] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
An analysis of published data appertaining to the cytokine storms of COVID-19, H1N1 influenza, cytokine release syndrome (CRS), and macrophage activation syndrome (MAS) reveals many common immunological and biochemical abnormalities. These include evidence of a hyperactive coagulation system with elevated D-dimer and ferritin levels, disseminated intravascular coagulopathy (DIC) and microthrombi coupled with an activated and highly permeable vascular endothelium. Common immune abnormalities include progressive hypercytokinemia with elevated levels of TNF-α, interleukin (IL)-6, and IL-1β, proinflammatory chemokines, activated macrophages and increased levels of nuclear factor kappa beta (NFκB). Inflammasome activation and release of damage associated molecular patterns (DAMPs) is common to COVID-19, H1N1, and MAS but does not appear to be a feature of CRS. Elevated levels of IL-18 are detected in patients with COVID-19 and MAS but have not been reported in patients with H1N1 influenza and CRS. Elevated interferon-γ is common to H1N1, MAS, and CRS but levels of this molecule appear to be depressed in patients with COVID-19. CD4+ T, CD8+ and NK lymphocytes are involved in the pathophysiology of CRS, MAS, and possibly H1N1 but are reduced in number and dysfunctional in COVID-19. Additional elements underpinning the pathophysiology of cytokine storms include Inflammasome activity and DAMPs. Treatment with anakinra may theoretically offer an avenue to positively manipulate the range of biochemical and immune abnormalities reported in COVID-19 and thought to underpin the pathophysiology of cytokine storms beyond those manipulated via the use of, canakinumab, Jak inhibitors or tocilizumab. Thus, despite the relative success of tocilizumab in reducing mortality in COVID-19 patients already on dexamethasone and promising results with Baricitinib, the combination of anakinra in combination with dexamethasone offers the theoretical prospect of further improvements in patient survival. However, there is currently an absence of trial of evidence in favour or contravening this proposition. Accordingly, a large well powered blinded prospective randomised controlled trial (RCT) to test this hypothesis is recommended.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australi
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, School of Psychology, Geelong, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
28
|
Volmari A, Foelsch K, Zierz E, Yan K, Qi M, Bartels K, Kondratowicz S, Boettcher M, Reimers D, Nishibori M, Liu K, Schwabe RF, Lohse AW, Huber S, Mittruecker HW, Huebener P. Leukocyte-Derived High-Mobility Group Box 1 Governs Hepatic Immune Responses to Listeria monocytogenes. Hepatol Commun 2021; 5:2104-2120. [PMID: 34558858 PMCID: PMC8631102 DOI: 10.1002/hep4.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/08/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a nucleoprotein with proinflammatory functions following cellular release during tissue damage. Moreover, antibody-mediated HMGB1 neutralization alleviates lipopolysaccharide (LPS)-induced shock, suggesting a role for HMGB1 as a superordinate therapeutic target for inflammatory and infectious diseases. Recent genetic studies have indicated cell-intrinsic functions of HMGB1 in phagocytes as critical elements of immune responses to infections, yet the role of extracellular HMGB1 signaling in this context remains elusive. We performed antibody-mediated and genetic HMGB1 deletion studies accompanied by in vitro experiments to discern context-dependent cellular sources and functions of extracellular HMGB1 during murine bloodstream infection with Listeria monocytogenes. Antibody-mediated neutralization of extracellular HMGB1 favors bacterial dissemination and hepatic inflammation in mice. Hepatocyte HMGB1, a key driver of postnecrotic inflammation in the liver, does not affect Listeria-induced inflammation or mortality. While we confirm that leukocyte HMGB1 deficiency effectuates disseminated listeriosis, we observed no evidence of dysfunctional autophagy, xenophagy, intracellular bacterial degradation, or inflammatory gene induction in primary HMGB1-deficient phagocytes or altered immune responses to LPS administration. Instead, we demonstrate that mice devoid of leukocyte HMGB1 exhibit impaired hepatic recruitment of inflammatory monocytes early during listeriosis, resulting in alterations of the transcriptional hepatic immune response and insufficient control of bacterial dissemination. Bone marrow chimera indicate that HMGB1 from both liver-resident and circulating immune cells contributes to effective pathogen control. Conclusion: Leukocyte-derived extracellular HMGB1 is a critical cofactor in the immunologic control of bloodstream listeriosis. HMGB1 neutralization strategies preclude an efficient host immune response against Listeria.
Collapse
Affiliation(s)
- Annika Volmari
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Foelsch
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Zierz
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Yan
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karlotta Bartels
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Kondratowicz
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Boettcher
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Reimers
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ansgar W Lohse
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter Huebener
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Viana IMDO, Roussel S, Defrêne J, Lima EM, Barabé F, Bertrand N. Innate and adaptive immune responses toward nanomedicines. Acta Pharm Sin B 2021; 11:852-870. [PMID: 33747756 PMCID: PMC7955583 DOI: 10.1016/j.apsb.2021.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Since the commercialization of the first liposomes used for drug delivery, Doxil/Caelyx® and Myocet®, tremendous progress has been made in understanding interactions between nanomedicines and biological systems. Fundamental work at the interface of engineering and medicine has allowed nanomedicines to deliver therapeutic small molecules and nucleic acids more efficiently. While nanomedicines are used in oncology for immunotherapy or to deliver combinations of cytotoxics, the clinical successes of gene silencing approaches like patisiran lipid complexes (Onpattro®) have paved the way for a variety of therapies beyond cancer. In parallel, the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the potential of mRNA vaccines to develop immunization strategies at unprecedented speed. To rationally design therapeutic and vaccines, chemists, materials scientists, and drug delivery experts need to better understand how nanotechnologies interact with the immune system. This review presents a comprehensive overview of the innate and adaptative immune systems and emphasizes the intricate mechanisms through which nanomedicines interact with these biological functions.
Collapse
|
30
|
High-mobility group box protein-1 induces acute pancreatitis through activation of neutrophil extracellular trap and subsequent production of IL-1β. Life Sci 2021; 286:119231. [PMID: 33600865 DOI: 10.1016/j.lfs.2021.119231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of this study is to evaluate acute pancreatitis (AP)-associated NET activation mediated by a novel inflammatory mediator (high-mobility group box protein-1 [HMGB1]) and proinflammatory cytokine responses. METHODS In this study, primary neutrophils, monocytes, and monocytic cell line Thp-1-derived macrophages were isolated and treated with HMGB1, lipopolysaccharide (LPS), adenosine triphosphate (ATP), and ATP + ATP inhibitor. The effects of HMGB1, ATP, and deoxyribonuclease (DNAse) were then examined for their in vivo effects using a newly established AP mouse model. RESULTS The mRNA and protein levels of inflammasome and interleukin IL-1β in cells, blood, and pancreatic tissues were examined. Within-cell nuclear DNA signal, cell-free DNA concentration, and pancreatic tissue damage were investigated. Our study showed that HMGB1 triggers NET formation in neutrophils and promotes the activation of inflammasome complexes (the NLR family, pyrin domain containing 3, and NLRP3; ASC; and caspase-1); therefore, the production of IL-1β is induced in human monocytes/macrophages. HMGB1 and NET cooperatively stimulate IL-1β processing in macrophages. Furthermore, the AP mouse model confirmed these HMGB1-mediated molecular mechanisms in vivo and indicated that HMGB1 is required for NET activation. CONCLUSIONS We found that NET inhibition reverses HMGB1-stimulated inflammasome activation and IL-1β production. HMGB1 thus leads to pancreatic injury through the activation of NET and subsequently induces IL-1β processing from neutrophils to pancreatic tissues. These findings demonstrate that HMGB1 and NET are new therapeutic targets for inflammation suppression in severe AP.
Collapse
|
31
|
Agrawal I, Sharma N, Saxena S, Arvind S, Chakraborty D, Chakraborty DB, Jha D, Ghatak S, Epari S, Gupta T, Jha S. Dopamine induces functional extracellular traps in microglia. iScience 2021; 24:101968. [PMID: 33458617 PMCID: PMC7797945 DOI: 10.1016/j.isci.2020.101968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA) plays many roles in the brain, especially in movement, motivation, and reinforcement of behavior; however, its role in regulating innate immunity is not clear. Here, we show that DA can induce DNA-based extracellular traps in primary, adult, human microglia and BV2 microglia cell line. These DNA-based extracellular traps are formed independent of reactive oxygen species, actin polymerization, and cell death. These traps are functional and capture fluorescein (FITC)-tagged Escherichia coli even when reactive oxygen species production or actin polymerization is inhibited. We show that microglial extracellular traps are present in Glioblastoma multiforme. This is crucial because Glioblastoma multiforme cells are known to secrete DA. Our findings demonstrate that DA plays a significant role in sterile neuro-inflammation by inducing microglia extracellular traps. Dopamine induces ETs in BV2 microglia and primary adult human microglia Induced traps are independent of ROS, cell death, and actin polymerization Microglia ETs are functional and can trap E. coli Microglia ETs are also present in Glioblastoma multiforme
Collapse
Affiliation(s)
- Ishan Agrawal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Nidhi Sharma
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India.,Karolinska Institute and Scilifelab, Stockholm, Sweden
| | - Shivanjali Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - S Arvind
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Debayani Chakraborty
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Debarati Bhunia Chakraborty
- Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Deepak Jha
- Department of Neurosurgery, All India Institute of Medical Sciences Jodhpur, Jodhpur, 342005 Rajasthan, India
| | - Surajit Ghatak
- Department of Anatomy, All India Institute of Medical Sciences Jodhpur, Jodhpur, 342005 Rajasthan, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012 Maharashtra, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital, Mumbai, 400012, Maharashtra, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
32
|
Jiao L, Dai T, Zhong S, Jin M, Sun P, Zhou Q. Vibrio parahaemolyticus Infection Influenced Trace Element Homeostasis, Impaired Antioxidant Function, and Induced Inflammation Response in Litopenaeus vannamei. Biol Trace Elem Res 2021; 199:329-337. [PMID: 32198646 DOI: 10.1007/s12011-020-02120-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) caused huge diseases and economic losses in shrimp aquaculture. Understanding the infection mechanism might help develop new strategies for controlling pathogen outbreak. Redistribution of trace element homeostasis, accompanied by impairment of antioxidant status and immune response, was observed during various infections. Accordingly, we hypothesized that V. parahaemolyticus infection might influence trace element homeostasis, impair antioxidant function, and induce inflammation response in shrimp. In the present study, the aim of this study was to investigate the influence of V. parahaemolyticus infection on trace element homeostasis, antioxidant status, and inflammation response in Litopenaeus vannamei (L. vannamei). The results showed that compared with the control group, V. parahaemolyticus infection significantly increased (P < 0.05) intestinal V. parahaemolyticus number, serum copper (Cu) concentration at 24, 48, and 72 h and significantly increased (P < 0.05) serum zinc (Zn), iron (Fe), and manganese (Mn) concentrations at 24 h but decreased (P < 0.05) at 72 h. The intestinal gene expressions of metal transporters ZIP13, CTR1, and MT1 were significantly decreased at 24, 48, and 72 h, and DMT1 was significantly decreased at 48 h and 72 h in the infection group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were suppressed at 48 h and 72 h, and the malondialdehyde (MDA) content was increased at 24, 48, and 72 h in the infection group; the pro-inflammatory genes including necrosis factor-α (TNF-α), lipopolysaccharide-induced TNF-α factor (LITAF), and Ras-related protein Rab6A (RAB6A) were significantly upregulated at 48 and 72 h in the infection group. These results suggest that V. parahaemolyticus infection influenced trace element homeostasis, impaired antioxidant function, and induced inflammation response in L. vannamei, which might help understand the infection mechanism. The results provide a better understanding of the L. vannamei and V. parahaemolyticus interactions and may deliver the basis for further research in preventing the bacterial diseases.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Sunqian Zhong
- Ningbo Economic Technical Development Area Bolun Marine Surveyors Office, Ningbo, 315800, People's Republic of China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
33
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|
34
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho AF, Maes M, Walder K, Berk M. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci 2020; 258:118166. [PMID: 32739471 PMCID: PMC7392886 DOI: 10.1016/j.lfs.2020.118166] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 and culminating in the development of ARDS. The innate immune response to infection of type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes are associated with activation of vascular endothelial cells and thence the recruitment of highly toxic neutrophils and inflammatory activated platelets into the alveolar space. Activated vascular endothelial cells become a source of proinflammatory cytokines and reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases neutrophil recruitment, activation priming and extraversion of these immune cells into inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the development of a procoagulant and proinflammatory environment. The contribution to ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C. Bortolasci
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia,Corresponding author at: IMPACT – the Institute for Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3218, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Barwon Health, Geelong, Australia
| | - Andre F. Carvalho
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, University of Toronto, Toronto, Canada,Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
35
|
Ectopic calcification and formation of mineralo-organic particles in arteries of diabetic subjects. Sci Rep 2020; 10:8545. [PMID: 32444654 PMCID: PMC7244712 DOI: 10.1038/s41598-020-65276-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Vascular calcification occurs in various diseases including atherosclerosis, chronic kidney disease and type 2 diabetes but the mechanism underlying mineral deposition remains incompletely understood. Here we examined lower limb arteries of type 2 diabetes subjects for the presence of ectopic calcification and mineral particles using histology, electron microscopy and spectroscopy analyses. While arteries of healthy controls showed no calcification following von Kossa staining, arteries from 83% of diabetic individuals examined (19/23) revealed microscopic mineral deposits, mainly within the tunica media. Mineralo-organic particles containing calcium phosphate and proteins such as albumin, fetuin-A and apolipoprotein-A1 were detected in calcified arteries. Ectopic calcification and mineralo-organic particles were observed in a majority of diabetic patients and predominantly in arteries showing hyperplasia. While a low number of subjects was examined and information about disease severity and patient characteristics is lacking, these calcifications and mineralo-organic particles may represent signs of tissue dysfunction.
Collapse
|
36
|
Bhattarai N, Korhonen E, Toppila M, Koskela A, Kaarniranta K, Mysore Y, Kauppinen A. Resvega Alleviates Hydroquinone-Induced Oxidative Stress in ARPE-19 Cells. Int J Mol Sci 2020; 21:ijms21062066. [PMID: 32192228 PMCID: PMC7139575 DOI: 10.3390/ijms21062066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells maintain homeostasis at the retina and they are under continuous oxidative stress. Cigarette smoke is a prominent environmental risk factor for age-related macular degeneration (AMD), which further increases the oxidant load in retinal tissues. In this study, we measured oxidative stress and inflammatory markers upon cigarette smoke-derived hydroquinone exposure on human ARPE-19 cells. In addition, we studied the effects of commercial Resvega product on hydroquinone-induced oxidative stress. Previously, it was observed that Resvega induces autophagy during impaired protein clearance in ARPE-19 cells, for which it has the potential to alleviate pro-inflammatory pathways. Cell viability was determined while using the lactate dehydrogenase (LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and the cytokine levels were measured using the enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) production were measured using the 2',7'-dichlorofluorescin diacetate (H2DCFDA) probe. Hydroquinone compromised the cell viability and increased ROS production in ARPE-19 cells. Resvega significantly improved cell viability upon hydroquinone exposure and reduced the release of interleukin (IL)-8 and monocytic chemoattractant protein (MCP)-1 from RPE cells. Resvega, N-acetyl-cysteine (NAC) and aminopyrrolidine-2,4-dicarboxylic acid (APDC) alleviated hydroquinone-induced ROS production in RPE cells. Collectively, our results indicate that hydroquinone induces cytotoxicity and increases oxidative stress through NADPH oxidase activity in RPE cells, and resveratrol-containing Resvega products prevent those adverse effects.
Collapse
Affiliation(s)
- Niina Bhattarai
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
- Correspondence: (N.B.); (A.K); Tel.: +358-44-9830424 (N.B.); +358-40-3553216 (A.K.)
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
- Department of Clinical Chemistry, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.K.); (K.K.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.K.); (K.K.)
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Yashavanthi Mysore
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
- Correspondence: (N.B.); (A.K); Tel.: +358-44-9830424 (N.B.); +358-40-3553216 (A.K.)
| |
Collapse
|
37
|
Duvvuri B, Pachman LM, Morgan G, Khojah AM, Klein-Gitelman M, Curran ML, Doty S, Lood C. Neutrophil Extracellular Traps in Tissue and Periphery in Juvenile Dermatomyositis. Arthritis Rheumatol 2020; 72:348-358. [PMID: 31403247 DOI: 10.1002/art.41078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Neutrophils are key immune cells participating in host defense through several mechanisms, including the formation of neutrophil extracellular traps (NETs). This study was undertaken to investigate the role of neutrophils in juvenile dermatomyositis (JDM). METHODS Electron microscopy was used to identify neutrophils in tissue. NETs were also imaged using fluorescence microscopy and quantified using a myeloperoxidase-DNA enzyme-linked immunosorbent assay (ELISA) in plasma obtained from healthy children (n = 20), disease controls (n = 29), JDM patients (n = 66), and JDM patients with history of calcifications (n = 20). Clinical data included disease activity scores and complement C4 levels. Levels of immune complexes (ICs) and calprotectin were analyzed using ELISA. RESULTS Using electron microscopy, neutrophils were found to infiltrate affected muscle tissue, engulfing deposited calcium crystals. Uptake of the crystals led to neutrophil activation (P < 0.01) and subsequent phosphatidylinositol 3-kinase- and NADPH oxidase-dependent but peptidylarginine deiminase 4-independent formation of NETs, which contained mitochondrial DNA (P < 0.05), as confirmed in vivo (P < 0.001) and in vitro (P < 0.01). Peripheral NET levels were associated with calcinosis (P = 0.01), ICs (P = 0.008), and interleukin-8 levels (P = 0.004). Children with JDM had impaired NET clearance (P = 0.01), associated with autoantibody profiles including melanoma differentiation-associated protein 5 (P = 0.005), and depressed complement C4 levels (r = -0.72, P = 0.002). Furthermore, children with JDM showed evidence of neutrophil activation, with elevated levels of peroxidase activity (P = 0.02) and calprotectin (P < 0.01), which were associated with disease activity (P = 0.007), and dyslipidemia (odds ratio 4.7, P < 0.05). CONCLUSION We found novel mechanisms of both calcium crystal-mediated neutrophil activation and cell death in JDM pathophysiology. Targeting this pathway may reduce the frequency and extent of calcinosis, as well as prevent long-term development of comorbidities, including atherosclerosis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Cure JM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gabrielle Morgan
- Cure JM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amer M Khojah
- Cure JM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marisa Klein-Gitelman
- Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Stephen Doty
- Hospital for Special Surgery, New York, New York
| | | |
Collapse
|
38
|
Shrestha S, Lee JM, Hong CW. Autophagy in neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:1-10. [PMID: 31908569 PMCID: PMC6940497 DOI: 10.4196/kjpp.2020.24.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
39
|
Zhang Y, Zhu R, Liu D, Gong M, Hu W, Yi Q, Zhang J. Tetracycline attenuates calcifying nanoparticles-induced renal epithelial injury through suppression of inflammation, oxidative stress, and apoptosis in rat models. Transl Androl Urol 2019; 8:619-630. [PMID: 32038958 DOI: 10.21037/tau.2019.11.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Calcifying nanoparticles (CNPs) has been associated with the occurrence and development of kidney stones, but the exact mechanism is not clear. This study aimed to establish a rat model of CNP-induced renal epithelial injury and assess the efficacy of tetracycline in preventing this injury. Methods Kidney stones from patients after percutaneous nephrolithotomy (PCNL) were collected to isolate and culture CNPs. Thirty Sprague-Dawley rats were divided into three groups: the sham group (G1), the CNP group (G2), and the CNP + tetracycline group (G3). Rats in G2 and G3 were given an intravenous injection of CNPs via the tail vein, while rats in G1 were given saline. Meanwhile, rats in G3 were given tetracycline by gavage twice a day at a dose of 25 mg/kg. After 8 weeks, the 24-h urine of all rats was collected, and all rats were sacrificed to obtain blood and kidneys. Results The results revealed that in G2, activities of antioxidant enzymes such as superoxide dismutase and catalase were significantly lower than those in G1, while malondialdehyde activity in G2 was significantly higher than that in G1 and both of them were inhibited by tetracycline co-treatment in G3. CNPs significantly increased expression of inflammatory cytokines, including monocyte chemotactic protein 1 and interleukin 6, which were largely alleviated in G3. CNPs significantly increased TUNEL-positive cells and the apoptosis activity of Bcl2-associated X protein but decreased B-cell lymphoma-2 level compared with that in G1, and was limited by tetracycline co-treatment in G3. Furthermore, CNPs led to notable renal tubular epithelial cell damage, hyaline cast formation, desquamation, swelling, vacuolization in histology, all of which were alleviated by tetracycline. Conclusions Tetracycline can attenuate CNP-induced renal epithelial injury through suppression of inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Dong Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Min Gong
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Wei Hu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qingtong Yi
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jie Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
40
|
Mallah K, Quanico J, Raffo-Romero A, Cardon T, Aboulouard S, Devos D, Kobeissy F, Zibara K, Salzet M, Fournier I. Mapping Spatiotemporal Microproteomics Landscape in Experimental Model of Traumatic Brain Injury Unveils a link to Parkinson's Disease. Mol Cell Proteomics 2019; 18:1669-1682. [PMID: 31204315 PMCID: PMC6683007 DOI: 10.1074/mcp.ra119.001604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major health concerns with no clinically-approved FDA drug available for therapeutic intervention. Several genomics and neuroproteomics studies have been employed to decipher the underlying pathological mechanisms involved that can serve as potential neurotherapeutic targets and unveil a possible underlying relation of TBI to other secondary neurological disorders. In this work, we present a novel high throughput systems biology approach using a spatially resolved microproteomics platform conducted on different brain regions in an experimental rat model of moderate of controlled cortical injury (CCI) at a temporal pattern postinjury (1 day, 3 days, 7 days, and 10 days). Mapping the spatiotemporal landscape of signature markers in TBI revealed an overexpression of major protein families known to be implicated in Parkinson's disease (PD) such as GPR158, HGMB1, synaptotagmin and glutamate decarboxylase in the ipsilateral substantia nigra. In silico bioinformatics docking experiments indicated the potential correlation between TBI and PD through alpha-synuclein. In an in vitro model, stimulation with palmitoylcarnitine triggered an inflammatory response in macrophages and a regeneration processes in astrocytes which also further confirmed the in vivo TBI proteomics data. Taken together, this is the first study to assess the microproteomics landscape in TBI, mainly in the substantia nigra, thus revealing a potential predisposition for PD or Parkinsonism post-TBI.
Collapse
Affiliation(s)
- Khalil Mallah
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; §ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Jusal Quanico
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Antonella Raffo-Romero
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Tristan Cardon
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Soulaimane Aboulouard
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - David Devos
- ¶Department of Neurology, Expert center for Parkinson's disease, Department of Pharmacology, University of Lille, CHU LILLE, INSERM UMR_S 1171, LICEND, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- §ER045, PRASE, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Michel Salzet
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| | - Isabelle Fournier
- ‡Université de Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| |
Collapse
|
41
|
Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-Extracellular Traps, Cell-Free DNA, and Immunothrombosis in Companion Animals: A Review. Vet Pathol 2019; 57:6-23. [PMID: 31342866 DOI: 10.1177/0300985819861721] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunothrombosis is a potentially beneficial physiological process that aids innate immunity and host defense against pathogen invasion. However, this process can also be damaging when it occurs to excess or in critical blood vessels. Formation of extracellular traps by leukocytes, particularly neutrophils, is central to our understanding of immunothrombosis. In addition to degranulation and phagocytosis, extracellular traps are the third mechanism by which neutrophils combat potential pathogens. These traps consist of extracellular DNA decorated with bactericidal cellular proteins, including elastase, myeloperoxidase, and cathepsins. Neutrophils can release these structures as part of a controlled cell-death process or via a process termed vital NETosis that enables the cells to extrude DNA but remain viable. There is accumulating evidence that NETosis occurs in companion animals, including dogs, horses, and cats, and that it actively contributes to pathogenesis. Numerous studies have been published detailing various methods for identification and quantification of extracellular trap formation, including cell-free DNA, measurements of histones and proteins such as high-mobility group box-1, and techniques involving microscopy and flow cytometry. Here, we outline the present understanding of these phenomena and the mechanisms of extracellular trap formation. We critically review the data regarding measurement of NETosis in companion animals, summarize the existing literature on NETosis in veterinary species, and speculate on what therapeutic options these insights might present to clinicians in the future.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Unity Jeffery
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ronald H L Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
42
|
Wu CY, Martel J, Young JD. Comprehensive organic profiling of biological particles derived from blood. Sci Rep 2018; 8:11310. [PMID: 30054526 PMCID: PMC6063858 DOI: 10.1038/s41598-018-29573-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 01/19/2023] Open
Abstract
Mineral nanoparticles form in physiological and pathological processes occurring in the human body. The calcium phosphate mineral phase of the particles has affinity for proteins and lipids, but the complete profiling of the organic molecules that bind to the particles has not been described in detail. We report here a comprehensive analysis of organic components found in mineralo-organic particles derived from body fluids. Based on biological staining, fluorescent tagging, proteomics and metabolomics, our results indicate that the mineral particles bind to proteins, amino acids, carbohydrates, polysaccharides, phospholipids, fatty acids, DNA and low molecular weight metabolites. These results can be used to study the formation and effects of mineralo-organic particles in biological fluids.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan.
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
43
|
Bai J, Wang XH, Zhang CJ, Huang J, Müller WEG. Lanthanum-containing bioparticles are associated with the influence of lanthanum on high phosphate mediated bone marrow stromal cells viability. Biometals 2018; 31:771-784. [DOI: 10.1007/s10534-018-0121-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/17/2018] [Indexed: 12/26/2022]
|
44
|
Li Y, Cao X, Liu Y, Zhao Y, Herrmann M. Neutrophil Extracellular Traps Formation and Aggregation Orchestrate Induction and Resolution of Sterile Crystal-Mediated Inflammation. Front Immunol 2018; 9:1559. [PMID: 30034398 PMCID: PMC6043642 DOI: 10.3389/fimmu.2018.01559] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) to immobilize pathogens represents a novel antimicrobial strategy of the immune system. The microcrystals related to human diseases are classified into endogenous microcrystals, including monosodium urate (MSU), calcium pyrophosphate dihydrate, calcium carbonate, calcium phosphate, calcium oxalate, cholesterol, and exogenous material like crystals from silica. Although microcrystals possess distinct compositions and shapes, they have a common characteristic: they stimulate neutrophils to release NETs. In low and high densities, neutrophils form NETs and aggregated NETs (aggNETs) that reportedly orchestrate the initiation and resolution of sterile crystal-mediated inflammation, respectively. Here, we summarize the different roles of NETs and aggNETs stimulated by the crystals mentioned above in related inflammatory reactions. The NETosis-derived products may represent a potential therapeutic target in crystal-mediated diseases.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Cao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Martel J, Wu CY, Peng HH, Young JD. Mineralo-organic nanoparticles in health and disease: an overview of recent findings. Nanomedicine (Lond) 2018; 13:1787-1793. [DOI: 10.2217/nnm-2018-0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We observed earlier that mineralo-organic nanoparticles form in human body fluids when the concentrations of calcium, carbonate and phosphate exceed saturation. The particles have been shown to represent mineral precursors in developing bones and teeth as well as in ectopic calcification and kidney stones. Recent studies suggest that the mineral particles may also be involved in other physiological processes, including immune tolerance against the gut microbiota and food antigens. We review here the involvement of mineralo-organic nanoparticles in physiological and pathological processes and discuss recent findings that reveal novel and unexpected roles for these particles in the human body.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Laboratory Animal Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Laboratory of Cellular Physiology & Immunology, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
46
|
Tsunezumi J, Sugiura H, Oinam L, Ali A, Thang BQ, Sada A, Yamashiro Y, Kuro-O M, Yanagisawa H. Fibulin-7, a heparin binding matricellular protein, promotes renal tubular calcification in mice. Matrix Biol 2018; 74:5-20. [PMID: 29730503 DOI: 10.1016/j.matbio.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Ectopic calcification occurs during development of chronic kidney disease and has a negative impact on long-term prognosis. The precise molecular mechanism and prevention strategies, however, are not established. Fibulin-7 (Fbln7) is a matricellular protein structurally similar to elastogenic short fibulins, shown to bind dental mesenchymal cells and heparin. Here, we report that Fbln7 is highly expressed in renal tubular epithelium in the adult kidney and mediates renal calcification in mice. In vitro analysis revealed that Fbln7 bound heparin at the N-terminal coiled-coil domain. In Fbln7-expressing CHO-K1 cells, exogenous heparin increased the release of Fbln7 into conditioned media in a dose-dependent manner. This heparin-induced Fbln7 release was abrogated in CHO-745 cells lacking heparan sulfate proteoglycan or in CHO-K1 cells expressing the Fbln7 mutant lacking the N-terminal coiled-coil domain, suggesting that Fbln7 was tethered to pericellular matrix via this domain. Interestingly, Fbln7 knockout (Fbln7-/-) mice were protected from renal tubular calcification induced by high phosphate diet. Mechanistically, Fbln7 bound artificial calcium phosphate particles (aCPP) implicated in calcification and renal inflammation. Binding was decreased significantly in Fbln7-/- primary kidney cells relative to wild-type cells. Further, overexpression of Fbln7 increased binding to aCPP. Addition of heparin reduced binding between aCPP and wild-type cells to levels of Fbln7-/- cells. Taken together, our study suggests that Fbln7 is a local mediator of calcium deposition and that releasing Fbln7 from the cell surface by heparin/heparin derivatives or Fbln7 inhibitory antibodies may provide a novel strategy to prevent ectopic calcification in vivo.
Collapse
Affiliation(s)
- Jun Tsunezumi
- Department of Medicine, Division of Nephrology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hidekazu Sugiura
- Fourth Department of Internal Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan; Department of Nephrology, Division of Medicine, Saiseikai Kurihashi Hospital, Saitama 349-1105, Japan
| | - Lalhaba Oinam
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 305-8577, Japan
| | - Aktar Ali
- Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bui Quoc Thang
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
47
|
NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2018; 16:19-27. [PMID: 29572545 DOI: 10.1038/s41423-018-0024-0] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
NETosis is a regulated form of neutrophil cell death that contributes to the host defense against pathogens and was linked to various diseases soon after its first description in 2004. During NETosis, neutrophils release neutrophil extracellular traps (NETs), which can capture and kill bacteria and other pathogens to prevent them from spreading. Although substantial progress has been made in our understanding of NETosis, the precise mechanism underlying NETosis is still a matter of debate. Research continues to elucidate the molecular pathways involved in NETosis. In recent years, interactions with the complement and coagulation systems have become increasingly apparent. Activated complement proteins can stimulate NET formation, and NETs, in turn, can serve as a platform for complement activation. In addition, NETs can act as a scaffold for thrombus formation during coagulation. While crosstalk between the coagulation and complement systems has been previously described, NETosis appears to be a third important player in this consortium to protect the host against pathogens. This review summarizes our current knowledge on the mutual interactions between NETosis, the complement system and the coagulation system, with an emerging description of their complex triangular relationship.
Collapse
|