1
|
Robert T, Henrard G, Tassignon B, Serez A, De Winter J, Dugourd P, Cornil J, Chirot F, Gerbaux P. Back Isomerization Kinetics of Molecular Photoswitches: Complementary Insights from Liquid Chromatography and Ion Mobility Measurements. Anal Chem 2025. [PMID: 40279466 DOI: 10.1021/acs.analchem.5c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Storing solar energy in chemical bonds through the reversible isomerization of UV-vis absorbing molecules offers a promising approach to energy storage. These molecules form high-energy photoisomers, which can store energy if kinetically protected by a significant activation barrier against spontaneous thermal back-isomerization. In this study, we compare the back-isomerization kinetic parameters (ΔH‡ and ΔS‡) of model azobenzene-based photoswitches in solution with those obtained in the gas phase using an original tandem ion mobility mass spectrometer. Our findings show that the activation enthalpy is well-reproduced from the solution phase to the gas phase, whereas the activation entropy is significantly affected by the absence of solvent, revealing further different relaxation mechanisms.
Collapse
Affiliation(s)
- Thomas Robert
- Organic Synthesis and Mass Spectrometry laboratory, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| | - Gwendal Henrard
- Organic Synthesis and Mass Spectrometry laboratory, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
- Laboratory for Chemistry of Novel Materials, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| | - Benjamin Tassignon
- Organic Synthesis and Mass Spectrometry laboratory, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
- Laboratory for Chemistry of Novel Materials, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| | - Ari Serez
- Organic Synthesis and Mass Spectrometry laboratory, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
- Laboratory for Chemistry of Novel Materials, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry laboratory, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| | - Philippe Dugourd
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| | - Fabien Chirot
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry laboratory, University of Mons, UMONS, 23 Place du Parc, B-7000Mons, Belgium
| |
Collapse
|
2
|
Liang R, Yuan B, Zhang F, Feng W. Azopyridine Polymers in Organic Phase Change Materials for High Energy Density Photothermal Storage and Controlled Release. Angew Chem Int Ed Engl 2025; 64:e202419165. [PMID: 39564601 DOI: 10.1002/anie.202419165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Azo-compounds molecules and phase change materials offer potential applications for sustainable energy systems through the storage and controllable release photochemical and phase change energy. Developing novel and highly efficient Azo-based solar thermal fuels (STFs) for photothermal energy storage and synergistic cooperation with organic phase change materials present significant challenges. Herein, three types of (ortho-, meta-, and para-) azopyridine polymers hinged with flexible alkyl chain are synthesized, in which meta-azopyridine polymer exhibits striking photothermal storage capacity of 430 J/g, providing a feasibility solution for developing high energy density Azo-based STFs. Furthermore, a stable two-phase hybrid system was innovatively constructed by combining the meta-azopyridine polymer with organic phase change materials leveraging hydrogen bonds and van der Waals interactions to collectively harness phase change energy and photothermal energy. The organic phase change material not only supplies additional phase change latent heat but also serves as a solvent, offering abundant free volume for the photo-induced isomerization of the azopyridine chromophores, which successfully circumvents the low charging efficiency in the condensed state and reliance on solvent-assisted charging in traditional Azo-based STFs. This study demonstrates the energy distribution and utilization for household consumers and the photothermal-assisted insulation strategy, achieving more extensive potential implementation for STFs.
Collapse
Affiliation(s)
- Rihui Liang
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
| | - Bo Yuan
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
| | - Fei Zhang
- Institute of Flexible Electronics Technology of, Tsinghua University, Zhejiang, 314000, China
| | - Wei Feng
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
- Tianjin University, School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072, China
| |
Collapse
|
3
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Yang Y, Huang S, Ma Y, Yi J, Jiang Y, Chang X, Li Q. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35623-35634. [PMID: 35916069 DOI: 10.1021/acsami.2c07870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of liquid and photoliquefiable azobenzene (Azo) derivatives (Azo-Cn-Br) have been synthesized for molecular solar thermal fuels. Each of the liquid and photoliquefiable azo derivatives shows a high degree of isomerization, a fast isomerization rate, a long half-life, an appropriate energy storage density, and a solvent-free "charging" and "discharging" process. The photoliquefied azo derivatives can isomerize upon UV light irradiation at low temperatures to give the "UV-charged" azo ones. Therefore, the phase transition enthalpy is stored simultaneously along with the isomerization enthalpy. The "UV-charged" azo derivatives are capable of releasing heat under the manipulation of blue light.
Collapse
Affiliation(s)
- Yajing Yang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanduo Ma
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jie Yi
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yuchun Jiang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaohong Chang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
5
|
Kerckhoffs A, Bo Z, Penty SE, Duarte F, Langton MJ. Red-shifted tetra- ortho-halo-azobenzenes for photo-regulated transmembrane anion transport. Org Biomol Chem 2021; 19:9058-9067. [PMID: 34617944 DOI: 10.1039/d1ob01457a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo-responsive synthetic ion transporters are of interest as tools for studying transmembrane transport processes and have potential applications as targeted therapeutics, due to the possibility of spatiotemporal control and wavelength-dependent function. Here we report the synthesis of novel symmetric and non-symmetric red-shifted tetra-ortho-chloro- and tetra-ortho-fluoro azobenzenes, bearing pendant amine functionality. Functionalisation of the photo-switchable scaffolds with squaramide hydrogen bond donors enabled the preparation of a family of anion receptors, which act as photo-regulated transmembrane chloride transporters in response to green or red light. The subtle effects of chlorine/fluorine substitution, meta/para positioning of the anion receptors, and the use of more flexible linkers are explored. NMR titration experiments on the structurally diverse photo-switchable receptors reveal cooperative binding of chloride in the Z, but not E isomer, by the two squaramide binding sites. These results are supported by molecular dynamics simulations in explicit solvent and model membranes. We show that this intramolecular anion recognition leads to effective switching of transport activity in lipid bilayer membranes, in which optimal Z isomer activity is achieved using a combination of fluorine substitution and para-methylene spacer units.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Zonghua Bo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Samuel E Penty
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
6
|
Bokare A, Arif J, Erogbogbo F. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2211. [PMID: 34578524 PMCID: PMC8467028 DOI: 10.3390/nano11092211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Graphene represents a new generation of materials which exhibit unique physicochemical properties such as high electron mobility, tunable optics, a large surface to volume ratio, and robust mechanical strength. These properties make graphene an ideal candidate for various optoelectronic, photonics, and sensing applications. In recent years, numerous efforts have been focused on azobenzene polymers (AZO-polymers) as photochromic molecular switches and thermal sensors because of their light-induced conformations and surface-relief structures. However, these polymers often exhibit drawbacks such as low photon storage lifetime and energy density. Additionally, AZO-polymers tend to aggregate even at moderate doping levels, which is detrimental to their optical response. These issues can be alleviated by incorporating graphene derivatives (GDs) into AZO-polymers to form orderly arranged molecules. GDs such as graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs) can modulate the optical response, energy density, and photon storage capacity of these composites. Moreover, they have the potential to prevent aggregation and increase the mechanical strength of the azobenzene complexes. This review article summarizes and assesses literature on various strategies that may be used to incorporate GDs into azobenzene complexes. The review begins with a detailed analysis of structures and properties of GDs and azobenzene complexes. Then, important aspects of GD-azobenzene composites are discussed, including: (1) synthesis methods for GD-azobenzene composites, (2) structure and physicochemical properties of GD-azobenzene composites, (3) characterization techniques employed to analyze GD-azobenzene composites, and most importantly, (4) applications of these composites in various photonics and thermal devices. Finally, a conclusion and future scope are given to discuss remaining challenges facing GD-azobenzene composites in functional science engineering.
Collapse
Affiliation(s)
| | | | - Folarin Erogbogbo
- Department of Biomedical Engineering, San José State University, 1 Washington Square, San José, CA 95112, USA; (A.B.); (J.A.)
| |
Collapse
|
7
|
Lee DC, Guye KN, Paranji RK, Lachowski K, Pozzo LD, Ginger DS, Pun SH. Dual-Stimuli Responsive Single-Chain Polymer Folding via Intrachain Complexation of Tetramethoxyazobenzene and β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10126-10134. [PMID: 34369796 DOI: 10.1021/acs.langmuir.1c01442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We synthesize and characterize a triblock polymer with asymmetric tetramethoxyazobenzene (TMAB) and β-cyclodextrin functionalization, taking advantage of the well-characterized azobenzene derivative-cyclodextrin inclusion complex to promote photoresponsive, self-contained folding of the polymer in an aqueous system. We use 1H NMR to show the reversibility of (E)-to-(Z) and (Z)-to-(E) TMAB photoisomerization, and evaluate the thermal stability of (Z)-TMAB and the comparatively rapid acid-catalyzed thermal (Z)-to-(E) isomerization. Important for its potential use as a functional material, we show the photoisomerization cyclability of the polymeric TMAB chromophore and calculate isomerization quantum yields by extinction spectroscopy. To verify self-inclusion of the polymeric TMAB and cyclodextrin, we use two-dimensional 1H NOESY NMR data to show proximity of TMAB and cyclodextrin in the (E)-state only; however, (Z)-TMAB is not locally correlated with cyclodextrin. Finally, the observed decrease in photoisomerization quantum yield for the dual-functionalized polymer compared to the isolated chromophore in an aqueous solution confirms TMAB and β-cyclodextrin not only are in proximity to one another, but also form the inclusion complex.
Collapse
Affiliation(s)
- Daniel C Lee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rajan K Paranji
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kacper Lachowski
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H Pun
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Xu X, Wu B, Zhang P, Xing Y, Shi K, Fang W, Yu H, Wang G. Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22655-22663. [PMID: 33970599 DOI: 10.1021/acsami.1c05163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar thermal fuels offer a closed cycle and a renewable energy storage strategy by harvesting photon energy within the chemical conformations of molecules and retrieving energy by an induced release of heat. However, the majority of reports are limited to the ultraviolet light storage, which potentially interferes with the surrounding environment and reduces the material lifetime. Here, we present a novel arylazopyrazole (AAP)-containing dendrimer that not only addresses the hindrance of visible light storage for solar thermal fuels but also exhibits outstanding performances of abundant energy conversion and stable storage, which are attributed to the substantial absorbance in visible wavelengths of para-thiomethyl-substituted AAP groups and the stability of cis isomers, respectively. The energy density of the dendrimer fuel after efficiently harvesting blue light (405 nm) is as high as 0.14 MJ kg-1 (67 kJ mol-1), and the storage half-life of the fabricated dendrimer film can reach up to 12.9 days. Moreover, the heat release of the dendrimer film can be triggered by different stimuli (light and heat). The dendrimer film displays a 6.5 °C temperature difference between trans isomers and cis isomers during green light irradiation. Our work provides a fascinating avenue to fabricate visible light storage solar thermal fuels and unlocks the possibility of developing natural sunlight storage in the future.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Co., Ltd., Hangzhou 310051, China
| | - Ke Shi
- Hangzhou Greenda Electronic Materials Co., Ltd., Hangzhou 310051, China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Co., Ltd., Hangzhou 310051, China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
9
|
Hisham S, Muhamad Sarih N, Tajuddin HA, Zainal Abidin ZH, Abdullah Z. Unraveling the surface properties of PMMA/azobenzene blends as coating films with photoreversible surface polarity. RSC Adv 2021; 11:15428-15437. [PMID: 35424049 PMCID: PMC8698230 DOI: 10.1039/d1ra01192h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Various reports demonstrated that azobenzene derivatives are the chromophore of choice in photoresponsive surfaces showing reversible surface polarity. Hitherto the surface study of coating films based on polymer/azobenzene blends using contact angle measurements remained unexplored. To provide insight into the surface polarity of polymer/dye blend films, poly(methyl methacrylate) (PMMA) blends containing photoresponsive 4-hydroxy-4′-methylazobenzene (AZO1) and 4,4′-dimethylazobenzene (AZO2) as coating films on clear glass substrates are investigated in this work. Contact angle measurements were carried out to unravel the role of substituents in the surface polarity and the orientation of chromophores in the coating matrices before and after UV light (λmax = 365 nm) irradiation. Changes in water contact angles measured on the PMMA/azobenzene coating films indicated that the surface polarity is reversible as the chromophores underwent reversible trans–cis isomerisation. It has been revealed that the repeated trans–cis isomerisation led to the random reorientation and arrangement of chromophores in PMMA/AZO1 coating films. Then, to indicate the possibility of the disruption of interfacial interactions due to the repeated trans–cis isomerisation processes, as a proof of concept experiment, it is shown that the commercial acrylic-based pressure-sensitive sticker which adhered strongly to the PMMA/AZO1(13) coating film is peeled off from the coating surface after being subjected to a cycle of UV light irradiation for 12 hours, followed by dark conditions for another 12 hours within 14 days. The proof of concept study will lead to more development of smart photoresponsive coating films using simple polymer/dye blends. A repeated trans–cis isomerisation led to the random reorientation and arrangement of chromophores in PMMA/azobenzene blends as coating films.![]()
Collapse
Affiliation(s)
- Shameer Hisham
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674240
| | - Norazilawati Muhamad Sarih
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674240
| | - Hairul Anuar Tajuddin
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674240
| | - Zul Hazrin Zainal Abidin
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Zanariah Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674240
| |
Collapse
|
10
|
Mori DI, Schurr MJ, Nair DP. Selective Inhibition of Streptococci Biofilm Growth via a Hydroxylated Azobenzene Coating. ADVANCED MATERIALS INTERFACES 2020; 7:1902149. [PMID: 33575161 PMCID: PMC7872137 DOI: 10.1002/admi.201902149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 06/12/2023]
Abstract
Strategies to engineer surfaces that can enable the selective inhibition of bacterial pathogens while preserving beneficial microbes can serve as tools to precisely edit the microbiome. In the oral microbiome, this selectivity is crucial in preventing the proliferation of cariogenic species such as Streptococcus mutans (S. mutans). In this communication, coatings consisting of a covalently tethered hydroxylated azobenzene (OH-AAZO) on glassy acrylic resins are studied and characterized for their ability to selectively prevent the attachment and growth of oral Streptococci biofilms. The coating applied on the surface of glassy resins inhibits the growth and proliferation of cariogenic S. mutans and S. oralis biofilms while A. actinomycetemcomitans, S. aureus, and E. coli biofilms are unaffected by the coating . The antibacterial effect is characterized as a function of both the OH-AAZO concentration in the coatings (≥50 mg mL-1) and the structure of the monomer in the coating. Preliminary mechanistic results suggest that the targeted bactericidal effect against Streptococci species is caused by a disruption of membrane ion potential, inducing cell death.
Collapse
Affiliation(s)
- Dylan I Mori
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Gerkman MA, Gibson RSL, Calbo J, Shi Y, Fuchter MJ, Han GGD. Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C. J Am Chem Soc 2020; 142:8688-8695. [DOI: 10.1021/jacs.0c00374] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihael A. Gerkman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Rosina S. L. Gibson
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - Joaquín Calbo
- Instituto de Ciencia Molecular, Universidad de Valencia, 46890 Paterna, Spain
| | - Yuran Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Matthew J. Fuchter
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - Grace G. D. Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
12
|
Kolodzeiski E, Amirjalayer S. Atomistic Insight Into the Host-Guest Interaction of a Photoresponsive Metal-Organic Framework. Chemistry 2020; 26:1263-1268. [PMID: 31802550 PMCID: PMC7027908 DOI: 10.1002/chem.201905139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal-organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches InstitutWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| | - Saeed Amirjalayer
- Physikalisches InstitutWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| |
Collapse
|
13
|
Mehta CH, Narayan R, Aithal G, Pandiyan S, Bhat P, Dengale S, Shah A, Nayak UY, Garg S. Molecular simulation driven experiment for formulation of fixed dose combination of Darunavir and Ritonavir as anti-HIV nanosuspension. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Petersen AU, Hofmann AI, Fillols M, Mansø M, Jevric M, Wang Z, Sumby CJ, Müller C, Moth‐Poulsen K. Solar Energy Storage by Molecular Norbornadiene-Quadricyclane Photoswitches: Polymer Film Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900367. [PMID: 31380172 PMCID: PMC6662068 DOI: 10.1002/advs.201900367] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/03/2019] [Indexed: 06/10/2023]
Abstract
Devices that can capture and convert sunlight into stored chemical energy are attractive candidates for future energy technologies. A general challenge is to combine efficient solar energy capture with high energy densities and energy storage time into a processable composite for device application. Here, norbornadiene (NBD)-quadricyclane (QC) molecular photoswitches are embedded into polymer matrices, with possible applications in energy storing coatings. The NBD-QC photoswitches that are capable of absorbing sunlight with estimated solar energy storage efficiencies of up to 3.8% combined with attractive energy storage densities of up to 0.48 MJ kg-1. The combination of donor and acceptor units leads to an improved solar spectrum match with an onset of absorption of up to 529 nm and a lifetime (t 1/2) of up to 10 months. The NBD-QC systems with properties matched to a daily energy storage cycle are further investigated in the solid state by embedding the molecules into a series of polymer matrices revealing that polystyrene is the preferred choice of matrix. These polymer devices, which can absorb sunlight and over a daily cycle release the energy as heat, are investigated for their cyclability, showing multicycle reusability with limited degradation that might allow them to be applied as window laminates.
Collapse
Affiliation(s)
- Anne Ugleholdt Petersen
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| | - Anna I. Hofmann
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| | - Méritxell Fillols
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| | - Mads Mansø
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen ØDenmark
| | - Martyn Jevric
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| | - Zhihang Wang
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| | | | - Christian Müller
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| | - Kasper Moth‐Poulsen
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologySE‐412 96GothenburgSweden
| |
Collapse
|
15
|
Sun C, Wang C, Boulatov R. Applications of Photoswitches in the Storage of Solar Energy. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900030] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cai‐Li Sun
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD United Kingdom
| | - Chenxu Wang
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD United Kingdom
| | - Roman Boulatov
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD United Kingdom
| |
Collapse
|
16
|
Hiremath SM, Suvitha A, Patil NR, Hiremath CS, Khemalapure SS, Pattanayak SK, Negalurmath VS, Obelannavar K, Armaković SJ, Armaković S. Synthesis of 5-(5-methyl-benzofuran-3-ylmethyl)-3H- [1, 3, 4] oxadiazole-2-thione and investigation of its spectroscopic, reactivity, optoelectronic and drug likeness properties by combined computational and experimental approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:95-110. [PMID: 30015034 DOI: 10.1016/j.saa.2018.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 05/07/2023]
Abstract
This paper reports the synthesis of 5-(5-methyl-benzofuran-3-ylmethyl)-3H- [1, 3, 4] oxadiazole-2-thione (5MBOT) and characterization by FT-IR, FT-Raman, 1H NMR, 13C NMR and UV spectral studies. The density functional theory (DFT) calculations have been executed for the 5MBOT using B3LYP/6-31++G (d, p) basis set. The fundamental modes of the vibrations were designated by the potential energy distribution (PED), and the computed and experimental values support each other. The 1H NMR and 13C NMR chemical shifts of 5MBOT were estimated by gauge-including atomic orbitals (GIAO) method and compared with the experimental chemical shifts. The UV-Vis method used to study the visible absorption maxima (λmax) by using Time-Dependent DFT. Further, the Mulliken population analysis (MPA), natural population analysis (NPA) charges, thermodynamic properties at different temperatures were presented. The calculated HOMO and LUMO energies show that charge transfer within the molecule. The natural bonds orbital (NBO) also computed. Optoelectronic properties have been carried out by combination of DFT calculations and molecular dynamics (MD) simulations, in order to assess the potential of this structure for applications in organic electronics. Further, the study encompassed calculations of reorganization energies for holes and electrons and charge transfer rates. DFT calculations have been also used in order to identify locations possibly sensitive towards the autoxidation mechanism, which correlates between bond dissociation energy for hydrogen abstraction and the mechanism. The MD simulations have been used to understand interaction of 5MBOT with water molecules. Molecular docking studies reveals the antifungal activity of 5MBOT may be due to hydrogen bonding and hydrophobic interactions with different antifungal proteins.
Collapse
Affiliation(s)
- Sudhir M Hiremath
- Department of Physics, V.T.U. Regional Research Centre, Belagavi 590 018, Karnataka, India
| | - A Suvitha
- Department of Physics, C.M.R. Institute of Technology, Bangalore 560 037, Karnataka, India
| | - Ninganagouda R Patil
- Department of Physics, B.V.B. College of Engineering and Technology, Hubballi 580 031, Karnataka, India.
| | - Chidanandayya S Hiremath
- Department of Physics, S.K. Arts and H.S.K. Science Institute, Hubballi 580 031, Karnataka, India.
| | - Seema S Khemalapure
- Department of Physics, KLE Dr. M.S. Sheshagiri College of Engineering and Technology, Belagavi 590008, Karnataka, India
| | | | | | - Kotresh Obelannavar
- Department of Chemistry, Karnataka Science College, Dharwad 580 001, Karnataka, India
| | - Sanja J Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
| | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg D. Obradovića 4, 21000 Novi Sad, Serbia
| |
Collapse
|
17
|
Dong L, Feng Y, Wang L, Feng W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem Soc Rev 2018; 47:7339-7368. [PMID: 30168543 DOI: 10.1039/c8cs00470f] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of renewable energy technologies has been a significant area of research amongst scientists with the aim of attaining a sustainable world society. Solar thermal fuels that can capture, convert, store, and release solar energy in the form of heat through reversible photoisomerization of molecular photoswitches such as azobenzene derivatives are currently in the limelight of research. Herein, we provide a state-of-the-art account on the recent advancements in solar thermal fuels based on azobenzene photoswitches. We begin with an overview on the importance of azobenzene-based solar thermal fuels and their fundamentals. Then, we highlight the recent advances in diverse azobenzene materials for solar thermal fuels such as pure azobenzene derivatives, nanocarbon-templated azobenzene, and polymer-templated azobenzene. The basic design concepts of these advanced solar energy storage materials are discussed, and their promising applications are highlighted. We then introduce the recent endeavors in the molecular design of azobenzene derivatives toward efficient solar thermal fuels, and conclude with new perspectives on the future scope, opportunities and challenges. It is expected that continuous pioneering research involving scientists and engineers from diverse technological backgrounds could trigger the rapid advancement of this important interdisciplinary field, which embraces chemistry, physics, engineering, nanoscience, nanotechnology, materials science, polymer science, etc.
Collapse
Affiliation(s)
- Liqi Dong
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | |
Collapse
|
18
|
Mansø M, Tebikachew BE, Moth-Poulsen K, Nielsen MB. Heteroaryl-linked norbornadiene dimers with redshifted absorptions. Org Biomol Chem 2018; 16:5585-5590. [DOI: 10.1039/c8ob01470a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The longest-wavelength absorption maximum of norbornadiene dimers with potential for molecular solar thermal systems can be finely tuned by varying the electronic nature of a heteroaryl spacer.
Collapse
Affiliation(s)
- Mads Mansø
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen Ø
- Denmark
- Department of Chemistry and Chemical Engineering
| | | | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
- Sweden
| | | |
Collapse
|