1
|
Donohue ME, Lamb A, Absangba AE, Noromalala E, Weisenbeck DR, Stumpf RM, Wright PC. Why Didn't the Sifaka Cross the Road? Divergence of Propithecus edwardsi Gut Microbiomes Across Geographic Barriers in Ranomafana National Park, Madagascar. Am J Primatol 2025; 87:e23732. [PMID: 39905243 PMCID: PMC11794673 DOI: 10.1002/ajp.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
This study uses a biogeographic framework to identify patterns of gut microbiome divergence in an endangered lemur species endemic to Madagascar's southeastern rainforests, the Milne-Edwards's sifaka (Propithecus edwardsi). Specifically, we tested the effects of (1) geographic barriers, (2) habitat disturbance, and (3) geographic distance on gut microbiome alpha and beta diversity. We selected 10 social groups from 4 sites in Ranomafana National Park with varied histories of selective logging. Sites were spaced between 4 and 17 km apart falling on either side of two parallel barriers to animal movement: the Namorona River and the RN25 highway. Using 16S rRNA metabarcoding, we found the greatest beta diversity differentiation to occur between social groups, with significant divisions on opposite sides of geographic barriers (road/river). Habitat disturbance had the most significant effect on alpha diversity, though, contrary to many other studies, disturbance was associated with higher microbial species richness. Without biomedical context, it is unclear whether microbiome differences observed herein are neutral, adaptive, or maladaptive. However, microbiome divergence associated with the road/river may be a symptom of reduced host gene flow, warranting further investigation and perhaps conservation action (e.g., construction of wildlife bridges). Finally, this work demonstrates that significant microbiome variation can accrue over small sampling areas, lending new insight into host-microbe-environmental interactions.
Collapse
Affiliation(s)
- Mariah E. Donohue
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Biological SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | - Alicia Lamb
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNew YorkUSA
- The Wild CenterTupper LakeNew YorkUSA
| | - Abigail E. Absangba
- Department of AnthropologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
| | - Eliette Noromalala
- Anthropobiologie et Développement DurableUniversité AntananarivoAntananarivoMarylandUSA
- Department of AnthropologyThe University of Texas at AustinAustinTexasUSA
| | | | - Rebecca M. Stumpf
- Department of AnthropologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Patricia C. Wright
- Centre ValBio Research StationFianarantsoaMarylandUSA
- Department of AnthropologyStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
2
|
Finnegan PM, Garber PA, McKenney AC, Bicca-Marques JC, De la Fuente MF, Abreu F, Souto A, Schiel N, Amato KR, Mallott EK. Group membership, not diet, structures the composition and functional potential of the gut microbiome in a wild primate. mSphere 2024; 9:e0023324. [PMID: 38940510 PMCID: PMC11288025 DOI: 10.1128/msphere.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
The gut microbiome has the potential to buffer temporal variations in resource availability and consumption, which may play a key role in the ability of animals to adapt to a broad range of habitats. We investigated the temporal composition and function of the gut microbiomes of wild common marmosets (Callithrix jacchus) exploiting a hot, dry environment-Caatinga-in northeastern Brazil. We collected fecal samples during two time periods (July-August and February-March) for 2 years from marmosets belonging to eight social groups. We used 16S rRNA gene amplicon sequencing, metagenomic sequencing, and butyrate RT-qPCR to assess changes in the composition and potential function of their gut microbiomes. Additionally, we identified the plant, invertebrate, and vertebrate components of the marmosets' diet via DNA metabarcoding. Invertebrate, but not plant or vertebrate, consumption varied across the year. However, gut microbiome composition and potential function did not markedly vary across study periods or as a function of diet composition. Instead, the gut microbiome differed markedly in both composition and potential function across marmosets residing in different social groups. We highlight the likely role of factors, such as behavior, residence, and environmental heterogeneity, in modulating the structure of the gut microbiome. IMPORTANCE In a highly socially cohesive and cooperative primate, group membership more strongly predicts gut microbiome composition and function than diet.
Collapse
Affiliation(s)
- Peter M. Finnegan
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Paul A. Garber
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Anna C. McKenney
- Department of Natural Sciences, Parkland College, Champaign, Illinois, USA
| | - Júlio César Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católicado Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Filipa Abreu
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Vafaei S, Mirzaie V, Baghalishahi M, Mousanejad E, Nematollahi-mahani SN. Effects of crocin on the enhancement of in vitro neurogenesis: Involvement of Notch and CREB/BDNF signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:914-922. [PMID: 38800026 PMCID: PMC11127084 DOI: 10.22038/ijbms.2024.76308.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/30/2023] [Indexed: 05/29/2024]
Abstract
Objectives Adult neurogenesis, the process of generating new neurons, continues throughout life. Unfortunately, this process is insufficient in pathological conditions and needs to be promoted. Crocin, the active component of saffron, affects neurogenesis in vivo and in vitro. We aimed to investigate the enhancing effects of crocin on the neurogenesis of adipose-derived mesenchymal stem cells in the presence of retinoic acid, as well as the molecular pathways involved. Materials and Methods Differentiation capacities and stemness potential of harvested ADSCs were evaluated by differentiating into osteocytes and adipocytes, and expression of mesenchymal CD markers by flow cytometry. The optimum dose of crocin was assessed with an MTT assay. Crocin, retinoic acid, CREB/BDNF, and Notch inhibitors and their combination were added to the culture medium. Jag1, Hes1, Notch, and BDNF gene expression were analyzed by RT-PCR on days 7, 14, and 21, while CREB, DCX, SOX2, and NeuN expression were analyzed by immunofluorescence. Results Expression of mesenchymal CD markers as well as adipogenic and osteogenic differentiation confirmed the origin and properties of ADSCs. The optimal dose of crocin was 1 mM. Crocin significantly (P<0.05) increased, while inhibitors (DATP&Naphthol) significantly (P<0.05) decreased Jag1, Hes1, Notch, and BDNF expression. Immunofluorescent assessments showed that expression of DCX, BDNF, NeuN, and Sox2 proteins increased significantly (P<0.05) after crocin administration and decreased significantly (P<0.05) after inhibitor administration. Conclusion Crocin can be used as an enhancer for neural differentiation of MSCs in vitro in the presence of retinoic acid. The mechanism is proposed through Notch and CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Shayan Vafaei
- Department of Anatomical Science, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vida Mirzaie
- Department of Anatomical Science, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Baghalishahi
- Department of Anatomical Science, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elahe Mousanejad
- Department of Anatomical Science, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-mahani
- Department of Anatomical Science, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Kerman Neuroscience Research Center (KNRC), Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Afzal Research Institute (NGO), Kerman, Iran
| |
Collapse
|
4
|
Ma R, Feng L, Wu P, Liu Y, Ren HM, Li SW, Tang L, Zhong CB, Han D, Zhang WB, Tang JY, Zhou XQ, Jiang WD. A new insight on copper: Promotion of collagen synthesis and myofiber growth and development in juvenile grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:22-33. [PMID: 37771856 PMCID: PMC10522946 DOI: 10.1016/j.aninu.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 09/30/2023]
Abstract
Copper (Cu) is a trace element, essential for fish growth. In the current study, in addition to growth performance, we first explored the effects of Cu on collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella). A total of 1080 fish (11.16 ± 0.01 g) were randomly divided into 6 treatments (3 replicates per treatment) to receive five doses of organic Cu, which were Cu citrate (CuCit) at 0.99 (basal diet), 2.19, 4.06, 6.15, and 8.07 mg/kg, and one dose of inorganic Cu (CuSO4·5H2O at 3.15 mg/kg), for 9 weeks. The results showed appropriate Cu level (4.06 mg/kg) enhanced growth performance, improved nutritional Cu status, and downregulated Cu-transporting ATPase 1 mRNA levels in the hepatopancreas, intestine, and muscle of juvenile grass carp. Meanwhile, collagen content in fish muscle was increased after Cu intake, which was probably due to the following pathways: (1) activating CTGF/TGF-β1/Smads signaling pathway to regulate collagen transcription; (2) upregulating of La ribonucleoprotein domain family 6 (LARP6) mRNA levels to regulate translation initiation; (3) increasing proline hydroxylase, lysine hydroxylase, and lysine oxidase activities to regulate posttranslational modifications. In addition, optimal Cu group increased myofiber diameters and the frequency of myofibers with diameter >50 μm, which might be associated with upregulation of cyclin B, cyclin D, cyclin E, proliferating cell nuclear antigen, myogenic determining factor (MyoD), myogenic factor 5, myogenin (MyoG), myogenic regulatory factor 4 and myosin heavy chain (MyHC) and downregulation of myostatin mRNA levels, increasing protein levels of MyoD, MyoG and MyHC in fish muscle. Finally, based on percentage weight gain (PWG), serum ceruloplasmin (Cp) activity and collagen content in fish muscle, Cu requirements were determined as 4.74, 4.37 and 4.62 mg/kg diet (CuCit as Cu source) of juvenile grass carp, respectively. Based on PWG and Cp activity, compared to CuSO4·5H2O, the efficacy of CuCit were 131.80% and 115.38%, respectively. Our findings provide new insights into Cu supplementation to promote muscle growth in fish, and help improve the overall productivity of aquaculture.
Collapse
Affiliation(s)
- Rui Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wen-Bing Zhang
- The Key Laboratory of Mariculture, Ministry of Education, The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Jia-Yong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
5
|
Sun Y, Yu Y, Wu A, Zhang C, Liu X, Qian C, Li J, Ran J. The composition and function of the gut microbiota of Francois' langurs ( Trachypithecus francoisi) depend on the environment and diet. Front Microbiol 2023; 14:1269492. [PMID: 38033571 PMCID: PMC10687571 DOI: 10.3389/fmicb.2023.1269492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
The microbiota is essential for the extraction of energy and nutrition from plant-based diets and may have facilitated primate adaptation to new dietary niches in response to rapid environmental shifts. In this study, metagenomic sequencing technology was used to analyze the compositional structure and functional differences of the gut microbial community of Francois' langurs (Trachypithecus francoisi) under different environmental and dietary conditions. The results showed that in terms of the composition of the gut microbial community, there were significant differences among the gut microbiota of Francois' langurs (anthropogenic disturbed populations, wild populations, and captive populations) under different environmental and dietary conditions. The microbial communities with the highest abundance in Francois' langurs were Firmicutes and Bacteroidetes. Firmicutes was the most abundant phylum in anthropogenic disturbed Francois' langurs and the least abundant in captive Francois' langurs. The abundance of Bacteroidetes was highest in captive Francois' langurs. In the analysis and comparison of alpha diversity, the diversity of the gut microbiota of Francois' langurs affected by anthropogenic disturbance was the highest. The significant differences in gut microbiota between Francois' langurs in different environments and different diets were further supported by principal coordinate analysis (PCoA), with the disturbance group having a gut microbiota more similar to the wild group. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis indicated a high abundance of functional genes involved in carbohydrate metabolism, amino acid metabolism, replication and repair, cofactor and vitamin metabolism, and other amino acid metabolism pathways. Additionally, the functional genes involved in carbohydrate metabolism pathways were significantly enriched in the gut microbial community of Francois' langurs that were anthropogenic disturbed and captive. The gut microbiota of the Francois' langurs exhibited potential plasticity for dietary flexibility, and long-term food availability in captive populations leads to changes in gut microbiota composition and function. This study explored the composition and function of the gut microbiota of Francois' langurs and provided a scientific basis for understanding the physiological and health status of Francois' langurs, effectively protecting the population of wild Francois' langurs and reintroducing captive Francois' langurs into the wild.
Collapse
Affiliation(s)
- Yue Sun
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Guizhou Fanjingshan Observation and Research Station for Forest Ecosystem, Tongren, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, Bijie, China
| | - Yanze Yu
- Wildlife Institute of Heilongjiang Province, Harbin, China
| | - Ankang Wu
- Mayanghe National Nature Reserve Administration, Tongren, China
| | - Chao Zhang
- Guizhou Forest Wildlife Park, Guiyang, China
| | - Xun Liu
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Changjiang Qian
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Jianfeng Li
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Key Laboratory of Biological Resources Exploitation and Utilization in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, China
| | - Jingcheng Ran
- Guizhou Fanjingshan Observation and Research Station for Forest Ecosystem, Tongren, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, Bijie, China
- Guizhou Academy of Forestry Sciences, Guiyang, China
| |
Collapse
|
6
|
Muhammad R, Klomkliew P, Chanchaem P, Sawaswong V, Kaikaew T, Payungporn S, Malaivijitnond S. Comparative analysis of gut microbiota between common (Macaca fascicularis fascicularis) and Burmese (M. f. aurea) long-tailed macaques in different habitats. Sci Rep 2023; 13:14950. [PMID: 37696929 PMCID: PMC10495367 DOI: 10.1038/s41598-023-42220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.
Collapse
Affiliation(s)
- Raza Muhammad
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titiporn Kaikaew
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand.
| |
Collapse
|
7
|
Lai Y, Chen Y, Zheng J, Liu Z, Nong D, Liang J, Li Y, Huang Z. Gut microbiota of white-headed black langurs ( Trachypithecus leucocephalus) in responses to habitat fragmentation. Front Microbiol 2023; 14:1126257. [PMID: 36860490 PMCID: PMC9968942 DOI: 10.3389/fmicb.2023.1126257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
The white-headed black langur (Trachypithecus leucocephalus) is exclusively distributed in the karst forests and is critically endangered owing to habitat fragmentation. Gut microbiota can provide physiological data for a comprehensive study of the langur's response to human disturbance in the limestone forest; to date, data on spatial variations in the langurs' gut microbiota are limited. In this study, we examined intersite variations in the gut microbiota of white-headed black langurs in the Guangxi Chongzuo White-headed Langur National Nature Reserve, China. Our results showed that langurs in the Bapen area with a better habitat had higher gut microbiota diversity. In the Bapen group, the Bacteroidetes (13.65% ± 9.73% vs. 4.75% ± 4.70%) and its representative family, Prevotellaceae, were significantly enriched. In the Banli group, higher relative abundance of Firmicutes (86.30% ± 8.60% vs. 78.85% ± 10.35%) than the Bapen group was observed. Oscillospiraceae (16.93% ± 5.39% vs. 16.13% ± 3.16%), Christensenellaceae (15.80% ± 4.59% vs. 11.61% ± 3.60%), and norank_o__Clostridia_UCG-014 (17.43% ± 6.64% vs. 9.78% ± 3.83%) were increased in comparison with the Bapen group. These intersite variations in microbiota diversity and composition could be accounted for by differences in food resources caused by fragmentation. Furthermore, compared with the Banli group, the community assembly of gut microbiota in the Bapen group was influenced by more deterministic factors and had a higher migration rate, but the difference between the two groups was not significant. This might be attributed to the serious fragmentation of the habitats for both groups. Our findings highlight the importance of gut microbiota response for the integrity of wildlife habitats and the need in using physiological indicators to study the mechanisms by which wildlife responds to human disturbances or ecological variations.
Collapse
Affiliation(s)
- Ying Lai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Yanqiong Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Jingjin Zheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zheng Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Dengpan Nong
- Administration Center of Guangxi Chongzuo White-headed Langur National Nature Reserve, Chongzuo, China
| | - Jipeng Liang
- Administration Center of Guangxi Chongzuo White-headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
8
|
Shang Y, Zhai Z, Huang J, Li L, Zuo X. Specific alterations in mucosa-associated bacterial composition in ulcerative colitis (UC) patients with different degrees of inflammation. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yansheng Shang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhenzhen Zhai
- Department of Gastroenterology, Dezhou People’s Hospital, Dezhou, Shandong, PR China
| | - Jiaguo Huang
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
9
|
Microbial rewilding in the gut microbiomes of captive ring-tailed lemurs (Lemur catta) in Madagascar. Sci Rep 2022; 12:22388. [PMID: 36575246 PMCID: PMC9794702 DOI: 10.1038/s41598-022-26861-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Microbial rewilding, whereby exposure to naturalistic environments can modulate or augment gut microbiomes and improve host-microbe symbiosis, is being harnessed as an innovative approach to human health, one that may also have significant value to animal care and conservation. To test for microbial rewilding in animal microbiomes, we used a unique population of wild-born ring-tailed lemurs (Lemur catta) that were initially held as illegal pets in unnatural settings and, subsequently, relocated to a rescue center in Madagascar where they live in naturalistic environments. Using amplicon and shotgun metagenomic sequencing of lemur and environmental microbiomes, we found multiple lines of evidence for microbial rewilding in lemurs that were transitioned from unnatural to naturalistic environments: A lemur's duration of exposure to naturalistic settings significantly correlated with (a) increased compositional similarly to the gut communities of wild lemurs, (b) decreased proportions of antibiotic resistance genes that were likely acquired via human contact during pethood, and (c) greater covariation with soil microbiomes from natural habitats. Beyond the inherent psychosocial value of naturalistic environments, we find that actions, such as providing appropriate diets, minimizing contact with humans, and increasing exposure to natural environmental consortia, may assist in maximizing host-microbe symbiosis in animals under human care.
Collapse
|
10
|
Malik H, Ratovonamana YR, Rakotondranary SJ, Ganzhorn JU, Sommer S. Anthropogenic Disturbance Impacts Gut Microbiome Homeostasis in a Malagasy Primate. Front Microbiol 2022; 13:911275. [PMID: 35801106 PMCID: PMC9253676 DOI: 10.3389/fmicb.2022.911275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022] Open
Abstract
Increasing anthropogenic disturbances in Madagascar are exerting constrains on endemic Malagasy lemurs and their habitats, with possible effects on their health and survival. An important component of health is the gut microbiome, which might be disrupted by various stressors associated with environmental change. We have studied the gut microbiome of gray-brown mouse lemurs (Microcebus griseorufus), one of the smallest Malagasy primates and an important model of the convergent evolution of diseases. We sampled two sites: one situated in a national park and the other consisting of a more disturbed site around human settlement. We found that more intense anthropogenic disturbances indeed disrupted the gut microbiome of this lemur species marked by a reduction in bacterial diversity and a shift in microbial community composition. Interestingly, we noted a decrease in beneficial bacteria (i.e., members of the Bacteroidaceae family) together with a slight increase in disease-associated bacteria (i.e., members of the Veillonellaceae family), and alterations in microbial metabolic functions. Because of the crucial services provided by the microbiome to pathogen resistance and host health, such negative alterations in the gut microbiome of mouse lemurs inhabiting anthropogenically disturbed habitats might render them susceptible to diseases and ultimately affecting their survival in the shrinking biodiversity seen in Madagascar. Gut microbiome analyses might thus serve as an early warning signal for pending threats to lemur populations.
Collapse
Affiliation(s)
- Hina Malik
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Yedidya R Ratovonamana
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
- Département Biologie Animale, Faculté des Sciences, Université d' Antananarivo, Antananarivo, Madagascar
| | - Solofomalala Jacques Rakotondranary
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
- Département Biologie Animale, Faculté des Sciences, Université d' Antananarivo, Antananarivo, Madagascar
| | - Jörg U Ganzhorn
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Bornbusch SL, Greene LK, Rahobilalaina S, Calkins S, Rothman RS, Clarke TA, LaFleur M, Drea CM. Gut microbiota of ring-tailed lemurs (Lemur catta) vary across natural and captive populations and correlate with environmental microbiota. Anim Microbiome 2022; 4:29. [PMID: 35484581 PMCID: PMC9052671 DOI: 10.1186/s42523-022-00176-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inter-population variation in host-associated microbiota reflects differences in the hosts' environments, but this characterization is typically based on studies comparing few populations. The diversity of natural habitats and captivity conditions occupied by any given host species has not been captured in these comparisons. Moreover, intraspecific variation in gut microbiota, generally attributed to diet, may also stem from differential acquisition of environmental microbes-an understudied mechanism by which host microbiomes are directly shaped by environmental microbes. To more comprehensively characterize gut microbiota in an ecologically flexible host, the ring-tailed lemur (Lemur catta; n = 209), while also investigating the role of environmental acquisition, we used 16S rRNA sequencing of lemur gut and soil microbiota sampled from up to 13 settings, eight in the wilderness of Madagascar and five in captivity in Madagascar or the U.S. Based on matched fecal and soil samples, we used microbial source tracking to examine covariation between the two types of consortia. RESULTS The diversity of lemur gut microbes varied markedly within and between settings. Microbial diversity was not consistently greater in wild than in captive lemurs, indicating that this metric is not necessarily an indicator of host habitat or environmental condition. Variation in microbial composition was inconsistent both with a single, representative gut community for wild conspecifics and with a universal 'signal of captivity' that homogenizes the gut consortia of captive animals. Despite the similar, commercial diets of captive lemurs on both continents, lemur gut microbiomes within Madagascar were compositionally most similar, suggesting that non-dietary factors govern some of the variability. In particular, soil microbial communities varied across geographic locations, with the few samples from different continents being the most distinct, and there was significant and context-specific covariation between gut and soil microbiota. CONCLUSIONS As one of the broadest, single-species investigations of primate microbiota, our study highlights that gut consortia are sensitive to multiple scales of environmental differences. This finding begs a reevaluation of the simple 'captive vs. wild' dichotomy. Beyond the important implications for animal care, health, and conservation, our finding that environmental acquisition may mediate aspects of host-associated consortia further expands the framework for how host-associated and environmental microbes interact across different microbial landscapes.
Collapse
Affiliation(s)
- Sally L. Bornbusch
- Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| | | | | | - Samantha Calkins
- Department of Psychology, Program in Animal Behavior and Conservation, Hunter College, New York, NY USA
| | - Ryan S. Rothman
- Institute for the Conservation of Tropical Environments, Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY USA
| | - Tara A. Clarke
- Department of Sociology and Anthropology, North Carolina State University, Raleigh, NC USA
| | - Marni LaFleur
- Department of Anthropology, University of San Diego, 5998 Alcala Park, San Diego, CA USA
| | - Christine M. Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| |
Collapse
|
12
|
Mekonnen A, Fashing PJ, Chapman CA, Venkataraman VV, Stenseth NC. The value of flagship and umbrella species for restoration and sustainable development: Bale monkeys and bamboo forest in Ethiopia. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2021.126117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
McManus N, Holmes SM, Louis EE, Johnson SE, Baden AL, Amato KR. The gut microbiome as an indicator of habitat disturbance in a Critically Endangered lemur. BMC Ecol Evol 2021; 21:222. [PMID: 34915861 PMCID: PMC8680155 DOI: 10.1186/s12862-021-01945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Habitat disturbance affects the biology and health of animals globally. Understanding the factors that contribute to the differential responses of animals to habitat disturbance is critical for conservation. The gut microbiota represents a potential pathway through which host responses to habitat disturbance might be mediated. However, a lack of quantitative environmental data in many gut microbiome (GM) studies of wild animals limits our ability to pinpoint mechanisms through which habitat disturbance affects the GM. Here, we examine the impact of anthropogenic habitat disturbance on the diet and GM of the Critically Endangered black-and-white ruffed lemur (Varecia variegata editorum). We collected fecal samples and behavioral data from Varecia occupying habitats qualitatively categorized as primary forest, moderately disturbed forest, and heavily disturbed forest. RESULTS Varecia diet and GM composition differed substantially across sites. Dietary richness predicted GM richness across sites, and overall GM composition was strongly correlated to diet composition. Additionally, the consumption of three specific food items positively correlated to the relative abundances of five microbial strains and one microbial genus across sites. However, diet did not explain all of the GM variation in our dataset, and differences in the GM were detected that were not correlated with diet, as measured. CONCLUSIONS Our data suggest that diet is an important influence on the Varecia GM across habitats and thus could be leveraged in novel conservation efforts in the future. However, other factors such as contact with humans should also be accounted for. Overall, we demonstrate that quantitative data describing host habitats must be paired with GM data to better target the specific mechanisms through which environmental change affects the GM.
Collapse
Affiliation(s)
- Nicolette McManus
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA
| | - Sheila M Holmes
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo, Omaha, NE, 68107, USA
| | - Steig E Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York, NY, 10065, USA.
- Department of Anthropology, The Graduate Center of the City University of New York, New York, NY, USA.
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
14
|
Cui Z, Holmes AJ, Zhang W, Hu D, Shao Q, Wang Z, Lu J, Raubenheimer D. Seasonal diet and microbiome shifts in wild rhesus macaques are better correlated at the level of nutrient components than food items. Integr Zool 2021; 17:1147-1161. [PMID: 34767280 DOI: 10.1111/1749-4877.12601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Food supply is one of the major drivers of animal behavior, and the gut microbiome is an important mediator between food supply and its effects on physiology. However, predicting the outcome of diet change on microbiome and consequences for the animal has proven extremely challenging. We propose this reflects processes occurring at different scales. Inadequate accounting for the multi-level complexity of nutrition (nutrients, foods, diets) obscures the diet influence on microbiome and subsequently animal. Here, we present a detailed year-round, multi-level analysis of diet and microbiome changes in a wild population of a temperate primate, the rhesus macaque (Macaca mulatta). Total daily food and nutrient intake of 6 male and 6 female macaques was monitored in each of the 4 seasons (total 120 days observations). For each individual, we found significant variation in the microbiome between all 4 seasons. This response was more strongly correlated with changes in macronutrient intake than with food items and much of the response could be explained at the level of 6 ecological guilds-sets of taxa sharing similar responses to nutrient intake. We conclude that study of diet, microbiome, and animal performance in ecology will more effectively identify patterns if diet is recorded at the level of nutrient intake. Although microbiome response to diet does show variation in species-level taxa in response to food items, there is greater commonality in response at the level of guilds. A goal for microbiome researchers should be to identify genes encoding microbial attributes that can define such guilds.
Collapse
Affiliation(s)
- Zhenwei Cui
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew J Holmes
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Wenjuan Zhang
- School of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Dalong Hu
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Shao
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - Jiqi Lu
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - David Raubenheimer
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, China.,Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Greene LK, Rambeloson E, Rasoanaivo HA, Foss ED, Yoder AD, Drea CM, Blanco MB. Gut Microbial Diversity and Ecological Specialization in Four Sympatric Lemur Species Under Lean Conditions. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Grading of endometrial cancer using 1H HR-MAS NMR-based metabolomics. Sci Rep 2021; 11:18160. [PMID: 34518615 PMCID: PMC8438077 DOI: 10.1038/s41598-021-97505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
The tissue metabolomic characteristics associated with endometrial cancer (EC) at different grades were studied using high resolution (400 MHz) magic angle spinning (HR-MAS) proton spectroscopy. The metabolic profiles were obtained from 64 patients (14 with grade 1 (G1), 33 with grade 2 (G2) and 17 with grade 3 (G3) tumors) and compared with the profile acquired from 10 patients with the benign disorders. OPLS-DA revealed increased valine, isoleucine, leucine, hypotaurine, serine, lysine, ethanolamine, choline and decreased creatine, creatinine, glutathione, ascorbate, glutamate, phosphoethanolamine and scyllo-inositol in all EC grades in reference to the non-transformed tissue. The increased levels of taurine was additionally detected in the G1 and G2 tumors in comparison to the control tissue, while the elevated glycine, N-acetyl compound and lactate—in the G1 and G3 tumors. The metabolic features typical for the G1 tumors are the increased dimethyl sulfone, phosphocholine, and decreased glycerophosphocholine and glutamine levels, while the decreased myo-inositol level is characteristic for the G2 and G3 tumors. The elevated 3-hydroxybutyrate, alanine and betaine levels were observed in the G3 tumors. The differences between the grade G1 and G3 malignances were mainly related to the perturbations of phosphoethanolamine and phosphocholine biosynthesis, inositol, betaine, serine and glycine metabolism. The statistical significance of the OPLS-DA modeling was also verified by an univariate analysis. HR-MAS NMR based metabolomics provides an useful insight into the metabolic reprogramming in endometrial cancer.
Collapse
|
17
|
Ji W, Hou LE, Yuan X, Gu T, Chen Z, Zhang Y, Zhang Y, Chen G, Xu Q, Zhao W. Identifying molecular pathways and candidate genes associated with knob traits by transcriptome analysis in the goose (Anser cygnoides). Sci Rep 2021; 11:11978. [PMID: 34099774 PMCID: PMC8184827 DOI: 10.1038/s41598-021-91269-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Anser cygnoides has a spherical crest on the beak roof, which is described as knob. However, the mechanisms affecting knob morphology are unclear. Here, we investigated the phenotypic characteristics and molecular basis of knob-size differences in Yangzhou geese. Anatomically, the knob was identified as frontal hump in the frontal area of the skull, rather than hump of upper beak. Although the frontal hump length, and height varied greatly in geese with different knob phenotypes, little was changed in the width. Histologically, knob skin in large-size knobs geese have a greater length in the stratum corneum, stratum spinosum, and stratum reticular than that in small-size knobs geese. Moveover, the 415 differentially expressed genes were found between the large knobs and small ones through transcriptome profiling. In addition, GO enrichment and KEGG pathway analysis revealed 455 significant GO terms and 210 KEGG pathways were enriched, respectively. Among these, TGF-β signaling and thyroid hormone synthesis-signaling pathways were identified to determine knob-size phenotype. Furthermore, BMP5, DCN, TSHR and ADCY3 were recognized to involve in the growth and development of knob. Our data provide comprehensive molecular determinants of knob size phenotype, which can potentially promote the genetic improvement of goose knobs.
Collapse
Affiliation(s)
- Wangyang Ji
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Li E Hou
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoya Yuan
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - ZhuoYu Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | | | - Qi Xu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| | - Wenming Zhao
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Sci Rep 2021; 11:9999. [PMID: 33976335 PMCID: PMC8113571 DOI: 10.1038/s41598-021-89473-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
The availability of well-assembled genome sequences and reduced sequencing costs have enabled the resequencing of many additional accessions in several crops, thus facilitating the rapid discovery and development of simple sequence repeat (SSR) markers. Although the genome sequence of inbred spinach line Sp75 is available, previous efforts have resulted in a limited number of useful SSR markers. Identification of additional polymorphic SSR markers will support genetics and breeding research in spinach. This study aimed to use the available genomic resources to mine and catalog a large number of polymorphic SSR markers. A search for SSR loci on six chromosome sequences of spinach line Sp75 using GMATA identified a total of 42,155 loci with repeat motifs of two to six nucleotides in the Sp75 reference genome. Whole-genome sequences (30x) of additional 21 accessions were aligned against the chromosome sequences of the reference genome and in silico genotyped using the HipSTR program by comparing and counting repeat numbers variation across the SSR loci among the accessions. The HipSTR program generated SSR genotype data were filtered for monomorphic and high missing loci, and a final set of the 5986 polymorphic SSR loci were identified. The polymorphic SSR loci were present at a density of 12.9 SSRs/Mb and were physically mapped. Out of 36 randomly selected SSR loci for validation, two failed to amplify, while the remaining were all polymorphic in a set of 48 spinach accessions from 34 countries. Genetic diversity analysis performed using the SSRs allele score data on the 48 spinach accessions showed three main population groups. This strategy to mine and develop polymorphic SSR markers by a comparative analysis of the genome sequences of multiple accessions and computational genotyping of the candidate SSR loci eliminates the need for laborious experimental screening. Our approach increased the efficiency of discovering a large set of novel polymorphic SSR markers, as demonstrated in this report.
Collapse
|
19
|
Adriansjach J, Baum ST, Lefkowitz EJ, Van Der Pol WJ, Buford TW, Colman RJ. Age-Related Differences in the Gut Microbiome of Rhesus Macaques. J Gerontol A Biol Sci Med Sci 2021; 75:1293-1298. [PMID: 32052009 DOI: 10.1093/gerona/glaa048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a multifactorial process characterized by progressive changes in gut physiology and the intestinal mucosal immune system. These changes, along with alterations in lifestyle, diet, nutrition, inflammation and immune function alter both composition and stability of the gut microbiota. Given the impact of environmental influences on the gut microbiota, animal models are particularly useful in this field. To understand the relationship between the gut microbiota and aging in nonhuman primates, we collected fecal samples from 20 male and 20 female rhesus macaques (Macaca mulatta), across the natural macaque age range, for 16S rRNA gene analyses. Operational taxonomic units were then grouped together to summarize taxon abundance at different hierarchical levels of classification and alpha- and beta-diversity were calculated. There were no age or sex differences in alpha diversity. At the phylum level, relative abundance of Proteobacteria and Firmicutes and Firmicutes to Bacteriodetes ratio were different between age groups though significance disappeared after correction for multiple comparisons. At the class level, relative abundance of Firmicutes_Bacilli decreased and Proteobacteria_Alphaproteobacteria and Proteobacteria_Betaproteobacteria increased with each successively older group. Only differences in Firmicutes_Bacilli remained significant after correction for multiple comparisons. No sex differences were identified in relative abundances after correction for multiple comparisons. Our results are not surprising given the known impact of environmental factors on the gut microbiota.
Collapse
Affiliation(s)
- Julie Adriansjach
- Wisconsin National Primate Research Center, University of Wisconsin, Madison
| | - Scott T Baum
- Wisconsin National Primate Research Center, University of Wisconsin, Madison
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Madison
| | - William J Van Der Pol
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Madison
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Madison
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison
| |
Collapse
|
20
|
Kuthyar S, Kowalewski MM, Roellig DM, Mallott EK, Zeng Y, Gillespie TR, Amato KR. Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria. Ecol Evol 2021; 11:45-57. [PMID: 33437414 PMCID: PMC7790644 DOI: 10.1002/ece3.6910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat disturbance, a common consequence of anthropogenic land use practices, creates human-animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host-microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host-microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | - Martin M. Kowalewski
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
- Estación Biológica CorrientesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN‐CONICET)CorrientesArgentina
| | - Dawn M. Roellig
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | | | - Yan Zeng
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
| | - Thomas R. Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | | |
Collapse
|
21
|
Narat V, Amato KR, Ranger N, Salmona M, Mercier-Delarue S, Rupp S, Ambata P, Njouom R, Simon F, Giles-Vernick T, LeGoff J. A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Sci Rep 2020; 10:19107. [PMID: 33154444 PMCID: PMC7645722 DOI: 10.1038/s41598-020-75847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Comparisons of mammalian gut microbiota across different environmental conditions shed light on the diversity and composition of gut bacteriome and suggest consequences for human and animal health. Gut bacteriome comparisons across different environments diverge in their results, showing no generalizable patterns linking habitat and dietary degradation with bacterial diversity. The challenge in drawing general conclusions from such studies lies in the broad terms describing diverse habitats ("wild", "captive", "pristine"). We conducted 16S ribosomal RNA gene sequencing to characterize intestinal microbiota of free-ranging sympatric chimpanzees and gorillas in southeastern Cameroon and sympatric chimpanzees and gorillas in a European zoo. We conducted participant-observation and semi-structured interviews among people living near these great apes to understand better their feeding habits and habitats. Unexpectedly, bacterial diversity (ASV, Faith PD and Shannon) was higher among zoo gorillas than among those in the Cameroonian forest, but zoo and Cameroonian chimpanzees showed no difference. Phylogeny was a strong driver of species-specific microbial composition. Surprisingly, zoo gorilla microbiota more closely resembled that of zoo chimpanzees than of Cameroonian gorillas. Zoo living conditions and dietary similarities may explain these results. We encourage multidisciplinary approach integrating environmental sampling and anthropological evaluation to characterize better diverse environmental conditions of such investigations.
Collapse
Affiliation(s)
- Victor Narat
- Eco-anthropologie, UMR7206 CNRS/MNHN/Université de Paris, Site du Musée de L'Homme, Paris, France
- Institut Pasteur, Anthropology and Ecology of Disease Emergence Unit, Paris, France
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, USA
- Humans and the Microbiome, CIFAR, Toronto, Canada
| | - Noémie Ranger
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
| | - Maud Salmona
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
- Département des Agents Infectieux, Virologie et Greffes, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | | | - Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, New York, NY, USA
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaounde, Cameroon
| | | | - François Simon
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France
| | - Tamara Giles-Vernick
- Institut Pasteur, Anthropology and Ecology of Disease Emergence Unit, Paris, France.
- Humans and the Microbiome, CIFAR, Toronto, Canada.
| | - Jérôme LeGoff
- Université de Paris, Equipe INSIGHT, Inserm U976, 75010, Paris, France.
- Département des Agents Infectieux, Virologie et Greffes, AP-HP, Hôpital Saint-Louis, 75010, Paris, France.
| |
Collapse
|
22
|
Mallott EK, Borries C, Koenig A, Amato KR, Lu A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre's leaf monkeys. Sci Rep 2020; 10:9961. [PMID: 32561791 PMCID: PMC7305161 DOI: 10.1038/s41598-020-66865-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Studies in multiple host species have shown that gut microbial diversity and composition change during pregnancy and lactation. However, the specific mechanisms underlying these shifts are not well understood. Here, we use longitudinal data from wild Phayre's leaf monkeys to test the hypothesis that fluctuations in reproductive hormone concentrations contribute to gut microbial shifts during pregnancy. We described the microbial taxonomic composition of 91 fecal samples from 15 females (n = 16 cycling, n = 36 pregnant, n = 39 lactating) using 16S rRNA gene amplicon sequencing and assessed whether the resulting data were better explained by overall reproductive stage or by fecal estrogen (fE) and progesterone (fP) concentrations. Our results indicate that while overall reproductive stage affected gut microbiome composition, the observed patterns were driven by reproductive hormones. Females had lower gut microbial diversity during pregnancy and fP concentrations were negatively correlated with diversity. Additionally, fP concentrations predicted both unweighted and weighted UniFrac distances, while reproductive state only predicted unweighted UniFrac distances. Seasonality (rainfall and periods of phytoprogestin consumption) additionally influenced gut microbial diversity and composition. Our results indicate that reproductive hormones, specifically progestagens, contribute to the shifts in the gut microbiome during pregnancy and lactation.
Collapse
Affiliation(s)
| | - Carola Borries
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Andreas Koenig
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Chen T, Li Y, Liang J, Li Y, Huang Z. Variations in the gut microbiota of sympatric François’ langurs and rhesus macaques living in limestone forests in southwest Guangxi, China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
The Gut Microbiota Communities of Wild Arboreal and Ground-Feeding Tropical Primates Are Affected Differently by Habitat Disturbance. mSystems 2020; 5:5/3/e00061-20. [PMID: 32457237 PMCID: PMC7253362 DOI: 10.1128/msystems.00061-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications. Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component. IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.
Collapse
|
25
|
Chen T, Li Y, Liang J, Li Y, Huang Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi, China. Microbiologyopen 2020; 9:e981. [PMID: 31880067 PMCID: PMC7066464 DOI: 10.1002/mbo3.981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays an important role in animal health and is strongly affected by the environment. Captivity and human source food have been shown to influence drastically the gut microbiota composition and function of wild animals. Therefore, in the present study, the gut microbiota of provisioned and wild populations of limestone-living rhesus macaques (Macaca mulatta) were compared using high-throughput 16S rRNA sequencing and bioinformatic analyses. The results indicated that provisioned macaques had a higher microbial richness than wild macaques, but there was no significant difference in the evenness of the gut microbiota between the two populations. Provisioned macaques also showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than wild macaques. Functional analysis revealed that wild macaques had enriched microbial pathways involved in glycan biosynthesis and metabolism, transport and catabolism, and the digestive and endocrine systems, while provisioned macaques were richer in pathways associated with signaling molecules and interaction, neurodegenerative diseases. These differences were likely due to modification of the gut microbiota of the provisioned macaques to enable the digestion of new foods.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Jipeng Liang
- Administration of Guangxi Chongzuo White‐headed Langur National Nature ReserveChongzuoChina
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| |
Collapse
|
26
|
Sacco AJ, Mayhew JA, Watsa M, Erkenswick G, Binder AK. Detection of neopterin in the urine of captive and wild platyrrhines. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00051-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-invasive biomarkers can facilitate health assessments in wild primate populations by reducing the need for direct access to animals. Neopterin is a biomarker that is a product of the cell-mediated immune response, with high levels being indicative of poor survival expectations in some cases. The measurement of urinary neopterin concentration (UNC) has been validated as a method for monitoring cell-mediated immune system activation in multiple catarrhine species, but to date there is no study testing its utility in the urine of platyrrhine species. In this study, we collected urine samples across three platyrrhine families including small captive populations of Leontopithecus rosalia and Pithecia pithecia, and larger wild populations of Leontocebus weddelli, Saguinus imperator, Alouatta seniculus, and Plecturocebus toppini, to evaluate a commercial enzyme-linked immunosorbent assay (ELISA) for the measurement of urinary neopterin in platyrrhines.
Results
Our results revealed measured UNC fell within the sensitivity range of the assay in all urine samples collected from captive and wild platyrrhine study species via commercial ELISA, and results from several dilutions met expectations. We found significant differences in the mean UNC across all study species. Most notably, we observed higher UNC in the wild population of L. weddelli which is known to have two filarial nematode infections compared to S. imperator, which only have one.
Conclusion
Our study confirms that neopterin is measurable via commercial ELISA in urine collected from captive and wild individuals of six genera of platyrrhines across three different families. These findings promote the future utility of UNC as a promising biomarker for field primatologists conducting research in Latin America to non-invasively evaluate cell-mediated immune system activation from urine.
Collapse
|
27
|
Amato KR, Jeyakumar T, Poinar H, Gros P. Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. Bioessays 2019; 41:e1900034. [PMID: 31524305 DOI: 10.1002/bies.201900034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Human evolution has been punctuated by climate anomalies, structuring environments, deadly infections, and altering landscapes. How well humans adapted to these new circumstances had direct effects on fitness and survival. Here, how the gut microbiome could have contributed to human evolutionary success through contributions to host nutritional buffering and infectious disease resistance is reviewed. How changes in human genetics, diet, disease exposure, and social environments almost certainly altered microbial community composition is also explored. Emerging research points to the microbiome as a key player in host responses to environmental change. Therefore, the reciprocal interactions between humans and their microbes are likely to have shaped human patterns of local adaptation throughout our shared evolutionary history. Recent alterations in human lifestyle, however, are altering human microbiomes in unprecedented ways. The consequences of interrupted host-microbe relationships for human adaptive potential in the future are unknown.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Thiviya Jeyakumar
- McGill Center for the Study of Complex Traits, Department of Human Genetics, Department of Biochemistry, McGill University, 3649 Sir William Osler Promenade, Montreal, QC, H3G 0B1, Canada
| | - Hendrik Poinar
- Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M4, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, 3649 Sir William Osler Promenade, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
28
|
Extensive variability in the gut microbiome of a highly‐specialized and critically endangered lemur species across sites. Am J Primatol 2019; 81:e23046. [DOI: 10.1002/ajp.23046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 02/03/2023]
|
29
|
Abstract
The gut microbiome can influence host energy balances and metabolic programming. While this information is valuable in a disease context, it also has important implications for understanding host energetics from an ecological and evolutionary perspective. Here I argue that gut microbial influences on host life history-the timing of events that make up an organism's life-are an overlooked but robust area of study given that variation in life history is linked directly to host energetic budgets and allocation patterns. Additionally, while cultural influences on life history complicate the exploration of these links in humans, nonhuman primates represent an alternative system in which more robust associations can be made. By integrating human and nonhuman primate microbiome research within the context of life history theory, we will be able to more effectively pinpoint microbial contributions to host phenotypes. This information will improve our understanding of host-microbe interactions in health and disease and will transform the fields of ecology and evolution more generally.
Collapse
|
30
|
Wei F, Wu Q, Hu Y, Huang G, Nie Y, Yan L. Conservation metagenomics: a new branch of conservation biology. SCIENCE CHINA-LIFE SCIENCES 2018; 62:168-178. [PMID: 30588567 DOI: 10.1007/s11427-018-9423-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
Multifaceted approaches are required to monitor wildlife populations and improve conservation efforts. In the last decade, increasing evidence suggests that metagenomic analysis offers valuable perspectives and tools for identifying microbial communities and functions. It has become clear that gut microbiome plays a critical role in health, nutrition, and physiology of wildlife, including numerous endangered animals in the wild and in captivity. In this review, we first introduce the human microbiome and metagenomics, highlighting the importance of microbiome for host fitness. Then, for the first time, we propose the concept of conservation metagenomics, an emerging subdiscipline of conservation biology, which aims to understand the roles of the microbiota in evolution and conservation of endangered animals. We define what conservation metagenomics is along with current approaches, main scientific issues and significant implications in the study of host evolution, physiology, nutrition, ecology and conservation. We also discuss future research directions of conservation metagenomics. Although there is still a long way to go, conservation metagenomics has already shown a significant potential for improving the conservation and management of wildlife.
Collapse
Affiliation(s)
- Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Mekonnen A, Rueness EK, Stenseth NC, Fashing PJ, Bekele A, Hernandez-Aguilar RA, Missbach R, Haus T, Zinner D, Roos C. Population genetic structure and evolutionary history of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands. BMC Evol Biol 2018; 18:106. [PMID: 29986642 PMCID: PMC6038355 DOI: 10.1186/s12862-018-1217-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Species with a restricted geographic distribution, and highly specialized habitat and dietary requirements, are particularly vulnerable to extinction. The Bale monkey (Chlorocebus djamdjamensis) is a little-known arboreal, bamboo-specialist primate endemic to the southern Ethiopian Highlands. While most Bale monkeys inhabit montane forests dominated by bamboo, some occupy forest fragments where bamboo is much less abundant. We used mitochondrial DNA (mtDNA) sequences to analyse the genetic structure and evolutionary history of Bale monkeys covering the majority of their remaining distribution range. We analysed 119 faecal samples from their two main habitats, continuous forest (CF) and fragmented forests (FF), and sequenced 735 bp of the hypervariable region I (HVI) of the control region. We added 12 orthologous sequences from congeneric vervets (C. pygerythrus) and grivets (C. aethiops) as well as animals identified as hybrids, previously collected in southern Ethiopia. Results We found strong genetic differentiation (with no shared mtDNA haplotypes) between Bale monkey populations from CF and FF. Phylogenetic analyses revealed two distinct and highly diverged clades: a Bale monkey clade containing only Bale monkeys from CF and a green monkey clade where Bale monkeys from FF cluster with grivets and vervets. Analyses of demographic history revealed that Bale monkey populations (CF and FF) have had stable population sizes over an extended period, but have all recently experienced population declines. Conclusions The pronounced genetic structure and deep mtDNA divergence between Bale monkey populations inhabiting CF and FF are likely to be the results of hybridization and introgression of the FF population with parapatric Chlorocebus species, in contrast to the CF population, which was most likely not impacted by hybridization. Hybridization in the FF population was probably enhanced by an alteration of the bamboo forest habitat towards a more open woodland habitat, which enabled the parapatric Chlorocebus species to invade the Bale monkey's range and introgress the FF population. We therefore propose that the CF and FF Bale monkey populations should be managed as separate units when developing conservation strategies for this threatened species. Electronic supplementary material The online version of this article (10.1186/s12862-018-1217-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Addisu Mekonnen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316, Oslo, Norway. .,Department of Zoological Sciences, Addis Ababa University, P.O. Box: 1176, Addis Ababa, Ethiopia.
| | - Eli K Rueness
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316, Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316, Oslo, Norway.,Department of Zoological Sciences, Addis Ababa University, P.O. Box: 1176, Addis Ababa, Ethiopia
| | - Peter J Fashing
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316, Oslo, Norway.,Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, CA, 92834, USA
| | - Afework Bekele
- Department of Zoological Sciences, Addis Ababa University, P.O. Box: 1176, Addis Ababa, Ethiopia
| | - R Adriana Hernandez-Aguilar
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316, Oslo, Norway
| | - Rose Missbach
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tanja Haus
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
32
|
Mekonnen A, Fashing PJ, Sargis EJ, Venkataraman VV, Bekele A, Hernandez-Aguilar RA, Rueness EK, Stenseth NC. Flexibility in positional behavior, strata use, and substrate utilization among Bale monkeys (Chlorocebus djamdjamensis) in response to habitat fragmentation and degradation. Am J Primatol 2018; 80:e22760. [DOI: 10.1002/ajp.22760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/05/2018] [Accepted: 03/30/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Addisu Mekonnen
- Centre for Ecological and Evolutionary Synthesis (CEES); Department of Biosciences; University of Oslo; Oslo Norway
- Department of Zoological Sciences; Addis Ababa University; Addis Ababa Ethiopia
| | - Peter J. Fashing
- Centre for Ecological and Evolutionary Synthesis (CEES); Department of Biosciences; University of Oslo; Oslo Norway
- Department of Anthropology and Environmental Studies Program; California State University Fullerton; Fullerton California
| | - Eric J. Sargis
- Department of Anthropology; Yale University; New Haven Connecticut
- Division of Vertebrate Zoology; Yale Peabody Museum of Natural History; New Haven Connecticut
| | - Vivek V. Venkataraman
- Department of Human Evolutionary Biology; Harvard University; Cambridge Massachusetts
| | - Afework Bekele
- Department of Zoological Sciences; Addis Ababa University; Addis Ababa Ethiopia
| | - R. Adriana Hernandez-Aguilar
- Centre for Ecological and Evolutionary Synthesis (CEES); Department of Biosciences; University of Oslo; Oslo Norway
| | - Eli K. Rueness
- Centre for Ecological and Evolutionary Synthesis (CEES); Department of Biosciences; University of Oslo; Oslo Norway
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES); Department of Biosciences; University of Oslo; Oslo Norway
- Department of Zoological Sciences; Addis Ababa University; Addis Ababa Ethiopia
| |
Collapse
|