1
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Li M, Yu F, Zhu B, Xiao J, Yan C, Yang X, Liang X, Wang F, Zhang H, Zhang F. Interactions between human immunodeficiency virus and human endogenous retroviruses. J Virol 2025; 99:e0231924. [PMID: 39918304 PMCID: PMC11915820 DOI: 10.1128/jvi.02319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Human immunodeficiency virus (HIV), a retrovirus of the Lentivirus genus, targets CD4+ T cells, causing immune dysfunction and AIDS. Approximately 8% of the human genome consists of human endogenous retroviruses (HERVs), ancient retroviral remnants that may interact with HIV. Despite antiretroviral therapy, challenges such as drug resistance, poor immune reconstitution (PIR), and reservoirs remain. This GEM discusses the impact of HIV on HERVs, the potential roles of HERVs in PIR and reservoirs, and provides insights into future research directions.
Collapse
Affiliation(s)
- Mengying Li
- Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fengting Yu
- Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chang Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Hanxi Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- WHO Collaborating Centre for Comprehensive Management of HIV Treatment and Care, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Cipriani C, Camaioni A, Tartaglione AM, Giudice M, Conti A, Petrone V, Miele MT, Matteucci C, Garaci E, Calamandrei G, Toschi N, Sinibaldi-Vallebona P, Ricceri L, Balestrieri E. Activation of endogenous retroviruses characterizes the maternal-fetal interface in the BTBR mouse model of autism spectrum disorder. Sci Rep 2025; 15:8271. [PMID: 40065061 PMCID: PMC11894120 DOI: 10.1038/s41598-025-91541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Endogenous retroviruses (ERVs) are genetic elements derived from a process of germline infection by exogenous retroviruses. Some ERVs have been co-opted for physiological functions, and their activation has been associated with complex diseases, including Autism Spectrum Disorder (ASD). We have already demonstrated an abnormal expression of ERVs in the BTBR T + tf/J (BTBR) mouse model of ASD during intrauterine life till adulthood. Thus, starting from the assumptions that ERVs may contribute to the derailment of neurodevelopment and that ASD has fetal origins as a consequence of adverse intrauterine conditions, the present study aims to characterize the transcriptional activity of selected ERVs (MusD, IAP, Syn-A, Syn-B, ARC and GLN), LINE-1, inflammatory mediators (IL-6, IL-10, IL-11 CXCL-1) at the maternal-fetal interface and in dissected embryos from BTBR mice. Our results highlight the deregulation of ERVs and inflammatory mediators at the maternal-fetal interface, and in cephalic and non-cephalic embryonic tissues from BTBR compared to C57BL/6 J. Several correlations among ERV expression levels emerged in different tissues from C57BL/6 J mice while, in BTBR mice, no correlations were found, suggesting that in this model, the acquisition of autistic-like traits might be linked to the dysregulation of ERV activity occurring during intra-uterine life.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Gemma Calamandrei
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| |
Collapse
|
4
|
Meyer U, Penner IK. Endogenous retroviruses in neurodevelopmental, psychotic and cognitive disorders. Microbes Infect 2025:105479. [PMID: 39914656 DOI: 10.1016/j.micinf.2025.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Endogenous retroviruses (ERVs) are inherited retroviral genomic elements that integrated into the mammalian genome through germline infections and insertions during evolution. Human ERVs (HERVs) comprise approximately 8 % of the human genome and are increasingly recognized to be involved in the etiology and pathophysiology of numerous brain disorders. In this narrative review, we summarize the existing evidence linking abnormal HERV expression to neurodevelopmental and psychosis-related disorders and discuss how these retroviral elements may contribute to the heterogeneity in clinical outcomes. We also review the findings suggesting that aberrant HERV expression contribute to late-onset cognitive disorders with neurodegenerative components, such as Alzheimer's disease (AD) and other forms of dementia. The evidence implicating abnormal HERV expression in neurodevelopmental, psychotic, and cognitive disorders is manifold and stems from diverse research fields, including human post-mortem brain studies, serological investigations, gene expression analyses, and clinical trials with HERV-specific pharmacological compounds. The recent establishment and use of animal models offer a complementary experimental platform that will help establish causal relationships and identify specific disease pathways affected by abnormal HERV expression. Yet, significant gaps persist in understanding the role of HERVs in neurodevelopmental, psychotic, and cognitive disorders, particularly concerning the specificity and stability of abnormal HERV expression in these conditions. Addressing these questions appears crucial for optimizing the potential benefits of therapeutic interventions aimed at targeting abnormal HERV expression across the broad spectrum of HERV-associated disorders of the central nervous system.
Collapse
Affiliation(s)
- Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Iris Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
5
|
Elsherif R, Mm Abdel-Hafez A, Hussein OA, Sabry D, Abdelzaher LA, Bayoumy AA. The potential ameliorative effect of mesenchymal stem cells-derived exosomes on cerebellar histopathology and their modifying role on PI3k-mTOR signaling in rat model of autism spectrum disorder. J Mol Histol 2025; 56:65. [PMID: 39760823 DOI: 10.1007/s10735-024-10335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. This study aimed to elucidate the potential ameliorating effect of postnatal administration of MSCs-derived Exo in a rat model of ASD. Male pups were divided into control (Cont), (VPA); pups of pregnant rats injected with VPA subcutaneously (S.C.) at embryonic day (ED) 13, and (VPA + Exo); pups were intravenously (I.V.) injected with MSCs-derived Exo either at postnatal day (P) 21 (adolescent VPA + Exo) or P70 (adult VPA + Exo). They were evaluated for physiological, histopathological and immunohistochemical changes of cerebellar structure, and genetic expression of PI3k and mTOR. The VPA adult group showed increased locomotor activity and impaired social activity, and anxiety. The cerebellar histological structure was disrupted in VPA groups. VPA + Exo groups showed preservation of the normal histological structure of the cerebellum. Immunohistochemical studies revealed enhanced expression of caspase-3, GFAP, Nestin, and VEGF in VPA groups beside modifying PI3K and mTOR genetic expression. MSCs-derived Exo ameliorated most of the rat cerebellar histopathological alterations and behavioral changes. Their mitigating effect could be established through their antiapoptotic, anti-inflammatory and anti-neurogenesis effect besides modifying PI3k-mTOR signaling.
Collapse
Affiliation(s)
- Raghda Elsherif
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amel Mm Abdel-Hafez
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Histology, Sphinx University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Badr University, Cairo, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Ayat Ah Bayoumy
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Bo M, Carta A, Cipriani C, Cavassa V, Simula ER, Huyen NT, Phan GTH, Noli M, Matteucci C, Sotgiu S, Balestrieri E, Sechi LA. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms 2024; 13:9. [PMID: 39858776 PMCID: PMC11767913 DOI: 10.3390/microorganisms13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated. In this review, we discuss recent advances in genetic research on ASD, with a particular emphasis on the implications of HERVs on neurodevelopment and future genomic initiatives aimed at discovering ASD-related genes through Artificial Intelligence. Given their pro-inflammatory and autoimmune characteristics, the existing literature suggests that HERVs may contribute to the onset or worsening of ASD in individuals with a genetic predisposition. Therefore, we propose that investigating their fundamental properties could not only improve existing therapies but also pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Vanna Cavassa
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
| | - Nguyen Thi Huyen
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Giang Thi Hang Phan
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Marta Noli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Bo M, Manetti R, Biggio ML, Sechi LA. The Humoral Immune Response against Human Endogenous Retroviruses in Celiac Disease: A Case-Control Study. Biomedicines 2024; 12:1811. [PMID: 39200275 PMCID: PMC11351412 DOI: 10.3390/biomedicines12081811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Celiac disease (CD) is an immune-mediated disease characterized by disruptions of the small intestine. Factors such as viral and bacterial infections can trigger CD. Recently, the reactivation of Human Endogenous Retroviruses (HERVs) has also been implicated, but little is known about their specific role in patients with celiac disease. METHODS The purpose of this study is to explore the humoral immune response mounted against epitopes derived from the envelope portion of three families of HERVs (HERV-K, HERV-H, and HERV-W) in CD patients. Reactivity against the HERV-K, HERV-H, and HERV-W env-su peptides was tested by indirect ELISAs in plasma of 40 patients with celiac disease and 41 age-matched healthy subjects (HCs). RESULTS HERV-K, HERV-H, and HERV-W env-su peptides triggered different antibody responses in CD patients compared to HCs, with a stronger reactivity (p = 0.0001). CONCLUSIONS Present results show, for the first time, that epitopes of HERV-K, HERV-H, and HERV-W are more recognized in patients with CD. Taking into consideration their proinflammatory and autoimmune features, this might suggest that HERVs may contribute to the development of CD or its exacerbation in genetically predisposed subjects. Finally, to elucidate the interplay between gut inflammation and HERVs during the inflammatory process, further studies are required. Those investigations should focus on the expression levels of HERVs and their relationship with the immune response, specifically examining anti-transglutaminase 2 (TG2) antibody levels under both gluten-free and gluten-containing dietary conditions.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Roberto Manetti
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Maria Luigia Biggio
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
8
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
9
|
Herrero F, Mueller FS, Gruchot J, Küry P, Weber-Stadlbauer U, Meyer U. Susceptibility and resilience to maternal immune activation are associated with differential expression of endogenous retroviral elements. Brain Behav Immun 2023; 107:201-214. [PMID: 36243285 DOI: 10.1016/j.bbi.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
11
|
Cipriani C, Giudice M, Petrone V, Fanelli M, Minutolo A, Miele MT, Toschi N, Maracchioni C, Siracusano M, Benvenuto A, Coniglio A, Curatolo P, Mazzone L, Sandro G, Garaci E, Sinibaldi-Vallebona P, Matteucci C, Balestrieri E. Modulation of human endogenous retroviruses and cytokines expression in peripheral blood mononuclear cells from autistic children and their parents. Retrovirology 2022; 19:26. [PMID: 36451209 PMCID: PMC9709758 DOI: 10.1186/s12977-022-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Putative pathogenic effects mediated by human endogenous retroviruses (HERVs) in neurological and psychiatric disorders in humans have been extensively described. HERVs may alter the development of the brain by means of several mechanisms, including modulation of gene expression, alteration of DNA stability, and activation of immune system. We recently demonstrated that autistic children and their mothers share high expression levels of some HERVs and cytokines in peripheral blood mononuclear cells (PBMCs) ex vivo, suggesting a close mother-child association in Autism Spectrum Disorder (ASD). RESULTS In the present study, PBMCs from autistic children and their parents were exposed to stimulating factors (Interleukin-2/Phytohaemagglutinin) or drugs, as Valproic acid and Efavirenz. The results show that HERVs and cytokines expression can be modulated in vitro by different stimuli in PBMCs from autistic children and their mothers, while no significant changes were found in PBMCs ASD fathers or in controls individuals. In particular, in vitro exposure to interleukin-2/Phytohaemagglutinin or valproic acid induces the expression of several HERVs and cytokines while Efavirenz inhibits them. CONCLUSION Herein we show that autistic children and their mothers share an intrinsic responsiveness to in vitro microenvironmental changes in expressing HERVs and pro-inflammatory cytokines. Remarkably, the antiretroviral drug Efavirenz restores the expression of specific HERV families to values similar to those of the controls, also reducing the expression of proinflammatory cytokines but keeping the regulatory ones high. Our findings open new perspectives to study the role of HERVs in the biological mechanisms underlying Autism.
Collapse
Affiliation(s)
- Chiara Cipriani
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giudice
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marialaura Fanelli
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Minutolo
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martino T. Miele
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy ,grid.38142.3c000000041936754XMartinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA
| | - Christian Maracchioni
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Siracusano
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Arianna Benvenuto
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Antonella Coniglio
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Paolo Curatolo
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Luigi Mazzone
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Grelli Sandro
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Pisana, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Claudia Matteucci
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Emanuela Balestrieri
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Cipriani C, Tartaglione AM, Giudice M, D’Avorio E, Petrone V, Toschi N, Chiarotti F, Miele MT, Calamandrei G, Garaci E, Matteucci C, Sinibaldi-Vallebona P, Ricceri L, Balestrieri E. Differential Expression of Endogenous Retroviruses and Inflammatory Mediators in Female and Male Offspring in a Mouse Model of Maternal Immune Activation. Int J Mol Sci 2022; 23:13930. [PMID: 36430402 PMCID: PMC9695919 DOI: 10.3390/ijms232213930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal infections during pregnancy and the consequent maternal immune activation (MIA) are the major risk factors for autism spectrum disorder (ASD). Epidemiological evidence is corroborated by the preclinical models in which MIA leads to ASD-like behavioral abnormalities and altered neuroinflammatory profiles, with an increase in pro-inflammatory cytokines and microglial markers. In addition to neuroinflammatory response, an abnormal expression of endogenous retroviruses (ERVs) has been identified in neurodevelopmental disorders and have been found to correlate with disease severity. Our aim was to evaluate the transcriptional profile of several ERV families, ERV-related genes, and inflammatory mediators (by RT real-time PCR) in mouse offspring of both sexes, prenatally exposed to polyinosinic:polycytidylic acid (Poly I:C), a synthetic double-stranded RNA molecule targeting TLR-3 that mimics viral maternal infection during pregnancy. We found that prenatal exposure to Poly I:C deregulated the expression of some ERVs and ERV-related genes both in the prefrontal cortex (PFC) and hippocampus, while no changes were detected in the blood. Interestingly, sex-related differences in the expression levels of some ERVs, ERV-related genes, and inflammatory mediators that were higher in females than in males emerged only in PFC. Our findings support the tissue specificity of ERV and ERV-related transcriptional profiles in MIA mice.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Maria Tartaglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Erica D’Avorio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Calamandrei
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, 00166 Rome, Italy
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
13
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
14
|
Enhanced Expression of Human Endogenous Retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23115964. [PMID: 35682642 PMCID: PMC9180946 DOI: 10.3390/ijms23115964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancestral infections and represent 8% of the human genome. They are no longer infectious, but their activation has been associated with several disorders, including neuropsychiatric conditions. Enhanced expression of HERV-K and HERV-H envelope genes has been found in the blood of autism spectrum disorder (ASD) patients, but no information is available on syncytin 1 (SYN1), SYN2, and multiple sclerosis-associated retrovirus (MSRV), which are thought to be implicated in brain development and immune responses. HERV activation is regulated by TRIM28 and SETDB1, which are part of the epigenetic mechanisms that organize the chromatin architecture in response to external stimuli and are involved in neural cell differentiation and brain inflammation. We assessed, through a PCR realtime Taqman amplification assay, the transcription levels of pol genes of HERV-H, -K, and -W families, of env genes of SYN1, SYN2, and MSRV, as well as of TRIM28 and SETDB1 in the blood of 33 ASD children (28 males, median 3.8 years, 25–75% interquartile range 3.0–6.0 y) and healthy controls (HC). Significantly higher expressions of TRIM28 and SETDB1, as well as of all the HERV genes tested, except for HERV-W-pol, were found in ASD, as compared with HC. Positive correlations were observed between the mRNA levels of TRIM28 or SETDB1 and every HERV gene in ASD patients, but not in HC. Overexpression of TRIM28/SETDB1 and several HERVs in children with ASD and the positive correlations between their transcriptional levels suggest that these may be main players in pathogenetic mechanisms leading to ASD.
Collapse
|
15
|
Glinsky GV. Genomics-Guided Drawing of Molecular and Pathophysiological Components of Malignant Regulatory Signatures Reveals a Pivotal Role in Human Diseases of Stem Cell-Associated Retroviral Sequences and Functionally-Active hESC Enhancers. Front Oncol 2021; 11:638363. [PMID: 33869024 PMCID: PMC8044830 DOI: 10.3389/fonc.2021.638363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Repetitive DNA sequences (repeats) colonized two-third of human genome and a majority of repeats comprised of transposable genetic elements (TE). Evolutionary distinct categories of TE represent nucleic acid sequences that are repeatedly copied from and pasted into chromosomes at multiple genomic locations and acquired a multitude of regulatory functions. Here, genomics-guided maps of stemness regulatory signatures were drawn to dissect the contribution of TE to clinical manifestations of malignant phenotypes of human cancers. From patients’ and physicians’ perspectives, the clinical definition of a tumor’s malignant phenotype could be restricted to the early diagnosis of sub-types of malignancies with the increased risk of existing therapy failure and high likelihood of death from cancer. It is the viewpoint from which the understanding of stemness and malignant regulatory signatures is considered in this contribution. Genomics-guided analyses of experimental and clinical observations revealed the pivotal role of human stem cell-associated retroviral sequences (SCARS) in the origin and pathophysiology of clinically-lethal malignancies. SCARS were defined as the evolutionary- and biologically-related family of genomic regulatory sequences, the principal physiological function of which is to create and maintain the stemness phenotype during human preimplantation embryogenesis. For cell differentiation to occur, SCARS expression must be silenced and SCARS activity remains repressed in most terminally-differentiated human cells which are destined to perform specialized functions in the human body. Epigenetic reprogramming, de-repression, and sustained activity of SCARS results in various differentiation-defective phenotypes. One of the most prominent tissue- and organ-specific clinical manifestations of sustained SCARS activities is diagnosed as a pathological condition defined by a consensus of morphological, molecular, and genetic examinations as the malignant growth. Here, contemporary evidence are acquired, analyzed, and reported defining both novel diagnostic tools and druggable molecular targets readily amenable for diagnosis and efficient therapeutic management of clinically-lethal malignancies. These diagnostic and therapeutic approaches are based on monitoring of high-fidelity molecular signals of continuing SCARS activities in conjunction with genomic regulatory networks of thousands’ functionally-active embryonic enhancers affecting down-stream phenotype-altering genetic loci. Collectively, reported herein observations support a model of SCARS-activation triggered singular source code facilitating the intracellular propagation and intercellular (systemic) dissemination of disease states in the human body.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States.,Department of Functional & Translational Genomics, OncoSCAR, Inc., Portland, OR, United States
| |
Collapse
|
16
|
Mikhalkevich N, O’Carroll IP, Tkavc R, Lund K, Sukumar G, Dalgard CL, Johnson KR, Li W, Wang T, Nath A, Iordanskiy S. Response of human macrophages to gamma radiation is mediated via expression of endogenous retroviruses. PLoS Pathog 2021; 17:e1009305. [PMID: 33556144 PMCID: PMC7895352 DOI: 10.1371/journal.ppat.1009305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/19/2021] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Ionizing radiation-induced tissue damage recruits monocytes into the exposed area where they are differentiated to macrophages. These implement phagocytic removal of dying cells and elicit an acute inflammatory response, but can also facilitate tumorigenesis due to production of anti-inflammatory cytokines. Using primary human monocyte-derived macrophages (MDMs) and the THP1 monocytic cell line, we demonstrate that gamma radiation triggers monocyte differentiation toward the macrophage phenotype with increased expression of type I interferons (IFN-I) and both pro- and anti-inflammatory macrophage activation markers. We found that these changes correlate with significantly upregulated expression of 622 retroelements from various groups, particularly of several clades of human endogenous retroviruses (HERVs). Elevated transcription was detected in both sense and antisense directions in the HERV subgroups tested, including the most genetically homogeneous clade HML-2. The level of antisense transcription was three- to five-fold higher than of the sense strand levels. Using a proximity ligation assay and immunoprecipitation followed by RNA quantification, we identified an increased amount of the dsRNA receptors MDA-5 and TLR3 bound to an equivalent number of copies of sense and antisense chains of HERVK HML-2 RNA. This binding triggered MAVS-associated signaling pathways resulting in increased expression of IFN-I and inflammation related genes that enhanced the cumulative inflammatory effect of radiation-induced senescence. HML-2 knockdown was accompanied with reduced expression and secretion of IFNα, pro-inflammatory (IL-1β, IL-6, CCL2, CCL3, CCL8, and CCL20) and anti-inflammatory (IL10) modulators in irradiated monocytes and MDMs. Taken together, our data indicate that radiation stress-induced HERV expression enhances the IFN-I and cytokine response and results in increased levels of pro-inflammatory modulators along with expression of anti-inflammatory factors associated with the macrophage tumorigenic phenotype. Ionizing radiation is a powerful stressogenic factor that induces massive cell damage. The signals released from radiation-damaged tissues recruit the monocytes, which are differentiated into macrophages that remove dying cells via phagocytosis and facilitate inflammation but can also contribute to tumorigenesis through anti-inflammatory and regenerative activities. The mechanism of this dual response of macrophages to irradiation is not fully understood. Using primary human macrophages and a monocytic cell line, we demonstrated that gamma radiation doses activate expression of various human endogenous retroviruses (HERVs). At the molecular level, we have shown that increased numbers of sense and antisense transcripts of tested HERV subgroups bind to double-stranded RNA receptors inducing the expression of type I interferons, multiple pro-inflammatory and some anti-inflammatory factors. At the phenotypic level, polarized macrophages exhibit a potent inflammatory response along with potentially tumorigenic characteristics. Our data suggest that endogenous retroviruses represent an important contributor of the macrophage-mediated inflammation in response to radiation-induced stress but may also indirectly influence tumorigenesis via biased macrophage polarization.
Collapse
Affiliation(s)
- Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ina P. O’Carroll
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland, United States of America
| | - Rok Tkavc
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kateryna Lund
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Gauthaman Sukumar
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AN); (SI)
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail: (AN); (SI)
| |
Collapse
|
17
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
18
|
Blossom SJ, Melnyk SB, Simmen FA. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:583-594. [PMID: 31894794 PMCID: PMC7350281 DOI: 10.1039/c9em00514e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is an environmental contaminant associated with immune-mediated inflammatory disorders and neurotoxicity. Based on known negative effects of developmental overnutrition on neurodevelopment, we hypothesized that developmental exposure to high fat diet (HFD) consisting of 40% kcal fat would enhance neurotoxicity of low-level (6 μg per kg per day) TCE exposure in offspring over either stressor alone. Male offspring were evaluated at ∼6 weeks of age after exposure beginning 4 weeks preconception in the dams until weaning. TCE, whether used as a single exposure or together with HFD, appeared to be more robust than HFD alone in altering one-carbon metabolites involved in glutathione redox homeostasis and methylation capacity. In contrast, opposing effects of expression of key enzymes related to DNA methylation related to HFD and TCE exposure were observed. The mice generated unique patterns of anti-brain antibodies detected by western blotting attributable to both TCE and HFD. Taken together, developmental exposure to TCE and/or HFD appear to act in complex ways to alter brain biomarkers in offspring.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|
19
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
20
|
Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159:107477. [DOI: 10.1016/j.neuropharm.2018.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
21
|
Segura-Bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cell Mol Life Sci 2019; 76:3827-3841. [PMID: 31302748 PMCID: PMC11105529 DOI: 10.1007/s00018-019-03208-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- The Francis Crick Institute, London, UK.
| | - Travis H Stracker
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
22
|
Balestrieri E, Cipriani C, Matteucci C, Benvenuto A, Coniglio A, Argaw-Denboba A, Toschi N, Bucci I, Miele MT, Grelli S, Curatolo P, Sinibaldi-Vallebona P. Children With Autism Spectrum Disorder and Their Mothers Share Abnormal Expression of Selected Endogenous Retroviruses Families and Cytokines. Front Immunol 2019; 10:2244. [PMID: 31616420 PMCID: PMC6775388 DOI: 10.3389/fimmu.2019.02244] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
The Autism Spectrum Disorder (ASD) is a heterogeneous group of neurodevelopmental disorders, only clinically diagnosed since the lack of reliable biomarkers. Autism etiology is probably attributable to the combination of genetic vulnerability and environmental factors, and recently, maternal immune activation has been linked to derailed neurodevelopment, resulting in ASD in the offspring. Human endogenous retroviruses (HERVs) are relics of ancestral infections, stably integrated in the human DNA. Given the HERV persistence in the genome, some of HERVs have been co-opted for physiological functions during evolution, while their reactivation has been associated with several pathological conditions, including cancer, autoimmune, and neurological and psychiatric disorders. Particularly, due to their intrinsic responsiveness to external stimuli, HERVs can modulate the host immune response and in turn HERVs can be activated by the immune effectors. In previous works we demonstrated high expression levels of HERV-H in blood of autistic patients, closely related with the severity of the disease. Moreover, in a preclinical ASD model we proved changes of expression of several ERV families and cytokines from the intrauterine life to the adulthood, and across generations via maternal lineage. Here we analyzed the expression of HEMO and of selected HERVs and cytokines in blood from ASD patients and their parents and corresponding healthy controls, to look for a common molecular trait within family members. ASD patients and their mothers share altered expression of HERV-H and HEMO and of cytokines such as TNF-α, IFN-γ, IL-10. The multivariate regression models showed a mother-child association by HEMO activity and demonstrated in children and mothers an association between HERV-H and HEMO expression and, only in mothers, between HEMO, and TNF-α expression. Furthermore, high diagnostic performance for HERV-H and HEMO was found, suggesting their potential application for the identification of ASD children and their mothers. The present data support the involvement of HERVs in ASD and suggest HERVs and cytokines as ASD-associated traits. Since ASD is a heterogeneous group of neurodevelopmental disorders, a single determinant alone could be not enough to account for the complexity, and HERV/cytokines expression could be considered in a set of biomarkers, easily detectable in blood, and potentially useful for an early diagnosis.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna Benvenuto
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Rome, Italy
| | - Antonella Coniglio
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Rome, Italy
| | | | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States
| | - Ilaria Bucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
23
|
Del Re B, Bersani F, Giorgi G. Effect of electromagnetic field exposure on the transcription of repetitive DNA elements in human cells. Electromagn Biol Med 2019; 38:262-270. [DOI: 10.1080/15368378.2019.1669634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ferdinando Bersani
- Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Misiak B, Ricceri L, Sąsiadek MM. Transposable Elements and Their Epigenetic Regulation in Mental Disorders: Current Evidence in the Field. Front Genet 2019; 10:580. [PMID: 31293617 PMCID: PMC6603224 DOI: 10.3389/fgene.2019.00580] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) are highly repetitive DNA sequences in the human genome that are the relics of previous retrotransposition events. Although the majority of TEs are transcriptionally inactive due to acquired mutations or epigenetic processes, around 8% of TEs exert transcriptional activity. It has been found that TEs contribute to somatic mosaicism that accounts for functional specification of various brain cells. Indeed, autonomous retrotransposition of long interspersed element-1 (LINE-1) sequences has been reported in the neural rat progenitor cells from the hippocampus, the human fetal brain and the human embryonic stem cells. Moreover, expression of TEs has been found to regulate immune-inflammatory responses, conditioning immunity against exogenous infections. Therefore, aberrant epigenetic regulation and expression of TEs emerged as a potential mechanism underlying the development of various mental disorders, including autism spectrum disorders (ASD), schizophrenia, bipolar disorder, major depression, and Alzheimer's disease (AD). Consequently, some studies revealed that expression of some sequences of human endogenous retroviruses (HERVs) appears only in a certain group of patients with mental disorders (especially those with schizophrenia, bipolar disorder, and ASD) but not in healthy controls. In addition, it has been found that expression of HERVs might be related to subclinical inflammation observed in mental disorders. In this article, we provide an overview of detrimental effects of transposition on the brain development and immune mechanisms with relevance to mental disorders. We show that transposition is not the only mechanism, explaining the way TEs might shape the phenotype of mental disorders. Other mechanisms include the regulation of gene expression and the impact on genomic stability. Next, we review current evidence from studies investigating expression and epigenetic regulation of specific TEs in various mental disorders. Most consistently, these studies indicate altered expression of HERVs and methylation of LINE-1 sequences in patients with ASD, schizophrenia, and mood disorders. However, the contribution of TEs to the etiology of AD is poorly documented. Future studies should further investigate the mechanisms linking epigenetic processes, specific TEs and the phenotype of mental disorders to disentangle causal associations.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wrocław Medical University, Wrocław, Poland
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
25
|
Escher J, Robotti S. Pregnancy drugs, fetal germline epigenome, and risks for next-generation pathology: A call to action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:445-454. [PMID: 30891817 DOI: 10.1002/em.22288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/09/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Drugs taken during pregnancy can affect three generations at once: the gestating woman (F0), her exposed fetus (F1), and the fetal germ cells that confer heritable information for the grandchildren (F2). Unfortunately, despite growing evidence for connections between F0 drug exposures and F2 pathology, current approaches to risk assessment overlook this important dimension of risk. In this commentary, we argue that the unique molecular vulnerabilities of the fetal germline, particularly with regard to global epigenomic reprogramming, combined with empirical evidence for F2 effects of F1 in utero drug and other exposures, should change the way we consider potential long-term consequences of pregnancy drugs and alter toxicology's standard somatic paradigm. Specifically, we (1) suggest that pregnancy drugs common in the postwar decades should be investigated as potential contributors to the "missing heritability" of many pathologies now surging in prevalence; (2) call for inclusion of fetal germline risks in pregnancy drug safety assessment; and (3) highlight the need for intensified research to ascertain generational impacts of diethylstilbestrol, a vanguard question of human germline toxicity. Only by fully addressing this important dimension of transplacental exposure can we responsibly evaluate safety of drug exposures during pregnancy and convey the full scope of risks, while also retrospectively comprehending the generational legacy of recent history's unprecedented glut of evolutionarily novel intrauterine exposures. Environ. Mol. Mutagen. 60:445-454, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, San Jose, California
| | | |
Collapse
|
26
|
Wang H, Yin Y, Gong D, Hong L, Wu G, Jiang Q, Wang C, Blinder P, Long S, Han F, Lu Y. Cathepsin B inhibition ameliorates leukocyte-endothelial adhesion in the BTBR mouse model of autism. CNS Neurosci Ther 2019; 25:476-485. [PMID: 30328295 PMCID: PMC6488924 DOI: 10.1111/cns.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Autism spectrum disorder (ASD) is a wide range of neurodevelopmental disorders involving deficits in social interaction and communication. Unfortunately, autism remains a scientific and clinical challenge owing to the lack of understanding the cellular and molecular mechanisms underlying it. This study aimed to investigate the pathophysiological mechanism underlying leukocyte-endothelial adhesion in autism-related neurovascular inflammation. METHODS Male BTBR T+tf/J mice were used as an autism model. The dynamic pattern of leukocyte-endothelial adhesion in mouse cerebral vessels was detected by two-photon laser scanning microscopy (TPLSM). Using FACS, RT-PCR, and Western blotting, we explored the expression of cell adhesion molecules, the mRNA expression of endothelial chemokine, the protein levels of cathepsin B, and inflammatory mediators. RESULTS We found a significant increase in leukocyte-endothelial adhesion in BTBR mice, accompanied by elevated expression of the adhesion molecule neutrophils CD11b and endothelial ICAM-1. Our data further indicate that elevated neutrophil cathepsin B levels contribute to elevated endothelial chemokine CXCL7 levels in BTBR mice. The pharmacological inhibition of cathepsin B reverses the enhanced leukocyte-endothelial adhesion in the cerebral vessels of autistic mice. CONCLUSION Our results revealed the prominent role of cathepsin B in modulating leukocyte-endothelial adhesion during autism-related neurovascular inflammation and identified a promising novel approach for autism treatment.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Carbohydrate and Lipid Metabolism Research, College of Life Science and TechnologyDalian UniversityDalianChina
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yi‐Xuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Dong‐Mei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Ling‐Juan Hong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Cheng‐Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Pablo Blinder
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School for NeuroscienceTel‐Aviv UniversityTel AvivIsrael
| | - Sen Long
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of Pharmacy, Hangzhou No.7 People's HospitalMental Health Center Zhejiang University school of MedicineHangzhouChina
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Ying‐Mei Lu
- School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
27
|
Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P. Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol 2018; 53:17-30. [PMID: 30317035 DOI: 10.1016/j.semcancer.2018.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Cancer incidence and mortality, metastasis, drug resistance and recurrence are still the critical issues of oncological diseases. In this scenario, increasing scientific evidences demonstrate that the activation of human endogenous retroviruses (HERVs) is involved in the aggressiveness of tumors such as melanoma, breast, germ cell, renal, ovarian, liver and haematological cancers. In their dynamic regulation, HERVs have also proved to be important determinants of pluripotency in human embryonic stem cells (ESC) and of the reprogramming process of induced pluripotent stem cells (iPSCs). In many types of tumors, essential characteristics of aggressiveness have been associated with the achievement of stemness features, often accompanied with the identification of defined subpopulations, termed cancer stem cells (CSCs), which possess stem cell-like properties and sustain tumorigenesis. Indeed, CSCs show high self-renewal capacity with a peculiar potential in tumor initiation, progression, metastasis, heterogeneity, recurrence, radiotherapy and drug resistance. However, HERVs role in CSCs biology is still not fully elucidated. In this regard, CD133 is a widely recognized marker of CSCs, and our group demonstrated, for the first time, the requirement of HERV-K activation to expand and maintain a CD133+ melanoma cell subpopulation with stemness features in response to microenvironmental modifications. The review will discuss HERVs expression as cancer hallmark, with particular focus on their role in the regulation of cancer stemness features and the potential involvement as targets for therapy.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy.
| | - Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| |
Collapse
|
28
|
Cristiano C, Pirozzi C, Coretti L, Cavaliere G, Lama A, Russo R, Lembo F, Mollica MP, Meli R, Calignano A, Mattace Raso G. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav Immun 2018; 74:166-175. [PMID: 30193877 DOI: 10.1016/j.bbi.2018.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by impaired social interaction, and repetitive stereotyped behaviours. Interestingly, functional and inflammatory gastrointestinal diseases are often reported as a comorbidity in ASDs, indicating gut-brain axis as a novel emerging approach. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in neurological functions, associated with the behaviour. Among endogenous lipids, palmitoylethanolamide (PEA), a PPAR-α agonist, has been extensively studied for its anti-inflammatory effects both at central and peripheral level. Based on this background, the aim of this study was to investigate the pharmacological effects of PEA on autistic-like behaviour of BTBR T+tf/J mice and to shed light on the contributing mechanisms. Our results showed that PEA reverted the altered behavioural phenotype of BTBR mice, and this effect was contingent to PPAR-α activation. Moreover, PEA was able to restore hippocampal BDNF signalling pathway, and improve mitochondrial dysfunction, both pathological aspects, known to be consistently associated with ASDs. Furthermore, PEA reduced the overall inflammatory state of BTBR mice, reducing the expression of pro-inflammatory cytokines at hippocampal, serum, and colonic level. The analysis of gut permeability and the expression of colonic tight junctions showed a reduction of leaky gut in PEA-treated BTBR mice. This finding together with PEA effect on gut microbiota composition suggests an involvement of microbiota-gut-brain axis. In conclusion, our results demonstrated a therapeutic potential of PEA in limiting ASD symptoms, through its pleiotropic mechanism of action, supporting neuroprotection, anti-inflammatory effects, and the modulation of gut-brain axis.
Collapse
Affiliation(s)
- Claudia Cristiano
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Lorena Coretti
- Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy; Institute for Experimental Endocrinology and Oncology, IEOS, Consiglio Nazionale delle Ricerche CNR, Via S. Pansini, 5, 80131, Naples, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples "Federico II", 80131 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples "Federico II", 80131 Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
29
|
Cipriani C, Pitzianti MB, Matteucci C, D'Agati E, Miele MT, Rapaccini V, Grelli S, Curatolo P, Sinibaldi-Vallebona P, Pasini A, Balestrieri E. The Decrease in Human Endogenous Retrovirus-H Activity Runs in Parallel with Improvement in ADHD Symptoms in Patients Undergoing Methylphenidate Therapy. Int J Mol Sci 2018; 19:3286. [PMID: 30360480 PMCID: PMC6274708 DOI: 10.3390/ijms19113286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Increasing scientific evidence demonstrated the deregulation of human endogenous retroviruses (HERVs) expression in complex diseases, such as cancer, autoimmune, psychiatric, and neurological disorders. The dynamic regulation of HERV activity and their responsiveness to a variety of environmental stimuli designate HERVs as genetic elements that could be modulated by drugs. Methylphenidate (MPH) is widely used in the treatment of attention deficit hyperactivity disorder (ADHD). The aim of this study was to evaluate the time course of human endogenous retrovirus H (HERV-H) expression in peripheral blood mononuclear cells (PBMCs) with respect to clinical response in ADHD patients undergoing MPH therapy. A fast reduction in HERV-H activity in ADHD patients undergoing MPH therapy was observed in parallel with an improvement in clinical symptoms. Moreover, when PBMCs from drug-naïve patients were cultured in vitro, HERV-H expression increased, while no changes in the expression levels were found in ADHD patients undergoing therapy. This suggests that MPH could affect the HERV-H activity and supports the hypothesis that high expression levels of HERV-H could be considered a distinctive trait of ADHD patients.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Bernanda Pitzianti
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
- Unità Sanitaria Locale (USL) Umbria 2, Viale VIII Marzo, 05100 Terni, Italy.
| | - Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Elisa D'Agati
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| | - Martino Tony Miele
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Valentina Rapaccini
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
- Unità Sanitaria Locale (USL) Umbria 2, Viale VIII Marzo, 05100 Terni, Italy.
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Augusto Pasini
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
- Unità Sanitaria Locale (USL) Umbria 2, Viale VIII Marzo, 05100 Terni, Italy.
| | - Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
30
|
Tartaglione AM, Cipriani C, Chiarotti F, Perrone B, Balestrieri E, Matteucci C, Sinibaldi-Vallebona P, Calamandrei G, Ricceri L. Early Behavioral Alterations and Increased Expression of Endogenous Retroviruses Are Inherited Across Generations in Mice Prenatally Exposed to Valproic Acid. Mol Neurobiol 2018; 56:3736-3750. [DOI: 10.1007/s12035-018-1328-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
|