1
|
Bradley C, McCann E, Nydam AS, Dux PE, Mattingley JB. Causal evidence for increased theta and gamma phase consistency in a parieto-frontal network during the maintenance of visual attention. Neuropsychologia 2025; 208:109079. [PMID: 39826797 DOI: 10.1016/j.neuropsychologia.2025.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention. We recorded electroencephalography (EEG) in response to single pulses of transcranial magnetic stimulation (TMS) of the IPS, while participants (N = 44) viewed bilateral random-dot motion displays. Individual MRI-guided TMS pulses targeted the left IPS, while the left primary somatosensory cortex (S1) served as an active control site. In separate blocks of trials, participants were cued to attend covertly to the motion display in one hemifield (left or right) and to report brief coherent motion targets. The perceptual load of the task was manipulated by varying the degree of motion coherence of the targets. Excitability, variability and information content of the neural responses to TMS were assessed by analysing TMS-evoked potential (TEP) amplitude and inter-trial phase clustering (ITPC), and by performing multivariate decoding of attentional state. Results revealed that a left posterior region displayed reduced variability in the phase of theta and gamma oscillations following TMS of the IPS, but not of S1, when attention was directed contralaterally, rather than ipsilaterally to the stimulation site. A right frontal cluster also displayed reduced theta variability and increased amplitude of TEPs when attention was directed contralaterally rather than ipsilaterally, after TMS of the IPS but not S1. Reliable decoding of attentional state was achieved after TMS pulses of both S1 and IPS. Taken together, our findings suggest that endogenous control of visuo-spatial attention leads to changes in the intrinsic oscillatory properties of the IPS and its associated fronto-parietal network.
Collapse
Affiliation(s)
- Claire Bradley
- Queensland Brain Institute, The University of Queensland, Australia.
| | - Emily McCann
- Queensland Brain Institute, The University of Queensland, Australia
| | - Abbey S Nydam
- Centre for Vision Research VISTA, York University, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Australia; School of Psychology, The University of Queensland, Australia; CIFAR, Canada
| |
Collapse
|
2
|
Spiech C, Hope M, Bégel V. Evoked and entrained pupillary activity while moving to preferred tempo and beyond. iScience 2025; 28:111530. [PMID: 39758823 PMCID: PMC11699394 DOI: 10.1016/j.isci.2024.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/06/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
People synchronize their movements more easily to rhythms with tempi closer to their preferred motor rates than with faster or slower ones. More efficient coupling at one's preferred rate, compared to faster or slower rates, should be associated with lower cognitive demands and better attentional entrainment, as predicted by dynamical system theories of perception and action. We show that synchronizing one's finger taps to metronomes at tempi outside of their preferred rate evokes larger pupil sizes, a proxy for noradrenergic attention, relative to passively listening. This demonstrates that synchronizing is more cognitively demanding than listening only at tempi outside of one's preferred rate. Furthermore, pupillary phase coherence increased for all tempi while synchronizing compared to listening, indicating that synchronous movements resulted in more efficiently allocated attention. Beyond their theoretical implications, our findings suggest that rehabilitation for movement disorders should be tailored to patients' preferred rates to reduce cognitive demands.
Collapse
Affiliation(s)
- Connor Spiech
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Montreal Centre for Brain, Music and Sound (BRAMS), Montreal, QC, Canada
- Centre for Research in Brain, Language and Music (CRBLM), Montreal, QC, Canada
| | - Mikael Hope
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| | - Valentin Bégel
- Montreal Centre for Brain, Music and Sound (BRAMS), Montreal, QC, Canada
- Institut des Sciences du Sport Santé de Paris (I3SP), URP 3625, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Lenc T, Lenoir C, Keller PE, Polak R, Mulders D, Nozaradan S. Measuring self-similarity in empirical signals to understand musical beat perception. Eur J Neurosci 2025; 61:e16637. [PMID: 39853878 PMCID: PMC11760665 DOI: 10.1111/ejn.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses. Here, we propose a theoretical framework and practical implementation of an analytic approach to capture beat-related periodicity in empirical signals using frequency-tagging. We highlight its sensitivity in measuring the extent to which the periodicity of a perceived beat is represented in a range of continuous time-varying signals with minimal assumptions. We also discuss a limitation of this approach with respect to its specificity when restricted to measuring beat-related periodicity only from the magnitude spectrum of a signal and introduce a novel extension of the approach based on autocorrelation to overcome this issue. We test the new autocorrelation-based method using simulated signals and by re-analyzing previously published data and show how it can be used to process measurements of brain activity as captured with surface EEG in adults and infants in response to rhythmic inputs. Taken together, the theoretical framework and related methodological advances confirm and elaborate the frequency-tagging approach as a promising window into the processes underlying beat perception and, more generally, temporally coordinated behaviors.
Collapse
Affiliation(s)
- Tomas Lenc
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
- Basque Center on Cognition, Brain and Language (BCBL)Donostia‐San SebastianSpain
| | - Cédric Lenoir
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
| | - Peter E. Keller
- MARCS Institute for Brain, Behaviour and DevelopmentWestern Sydney UniversitySydneyAustralia
- Center for Music in the Brain & Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rainer Polak
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and MotionUniversity of OsloOsloNorway
- Department of MusicologyUniversity of OsloOsloNorway
| | - Dounia Mulders
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
- Computational and Biological Learning Unit, Department of EngineeringUniversity of CambridgeCambridgeUK
- Institute for Information and Communication TechnologiesElectronics and Applied Mathematics, UCLouvainLouvain‐la‐NeuveBelgium
- Department of Brain and Cognitive Sciences and McGovern InstituteMassachusetts Institute of Technology (MIT)CambridgeMassachusettsUSA
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), UCLouvainBrusselsBelgium
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealCanada
| |
Collapse
|
4
|
Mäki-Marttunen V, Velinov A, Nieuwenhuis S. Strength of Low-Frequency EEG Phase Entrainment to External Stimuli Is Associated with Fluctuations in the Brain's Internal State. eNeuro 2025; 12:ENEURO.0064-24.2024. [PMID: 39779324 PMCID: PMC11772043 DOI: 10.1523/eneuro.0064-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study, we examined whether the strength of low-frequency electroencephalography (EEG) phase entrainment to rhythmic stimulus sequences varied with the pupil size and posterior alpha-band power, thought to reflect the arousal level and excitability of posterior cortical brain areas, respectively. We recorded the pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, the pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a decrease in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Leiden, Alaska 2333, The Netherlands
| | - Alexandra Velinov
- Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Leiden, Alaska 2333, The Netherlands
| | - Sander Nieuwenhuis
- Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Leiden, Alaska 2333, The Netherlands
| |
Collapse
|
5
|
Barbaresi M, Nardo D, Fagioli S. Physiological Entrainment: A Key Mind-Body Mechanism for Cognitive, Motor and Affective Functioning, and Well-Being. Brain Sci 2024; 15:3. [PMID: 39851371 PMCID: PMC11763407 DOI: 10.3390/brainsci15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The human sensorimotor system can naturally synchronize with environmental rhythms, such as light pulses or sound beats. Several studies showed that different styles and tempos of music, or other rhythmic stimuli, have an impact on physiological rhythms, including electrocortical brain activity, heart rate, and motor coordination. Such synchronization, also known as the "entrainment effect", has been identified as a crucial mechanism impacting cognitive, motor, and affective functioning. OBJECTIVES This review examines theoretical and empirical contributions to the literature on entrainment, with a particular focus on the physiological mechanisms underlying this phenomenon and its role in cognitive, motor, and affective functions. We also address the inconsistent terminology used in the literature and evaluate the range of measurement approaches used to assess entrainment phenomena. Finally, we propose a definition of "physiological entrainment" that emphasizes its role as a fundamental mechanism that encompasses rhythmic interactions between the body and its environment, to support information processing across bodily systems and to sustain adaptive motor responses. METHODS We reviewed the recent literature through the lens of the "embodied cognition" framework, offering a unified perspective on the phenomenon of physiological entrainment. RESULTS Evidence from the current literature suggests that physiological entrainment produces measurable effects, especially on neural oscillations, heart rate variability, and motor synchronization. Eventually, such physiological changes can impact cognitive processing, affective functioning, and motor coordination. CONCLUSIONS Physiological entrainment emerges as a fundamental mechanism underlying the mind-body connection. Entrainment-based interventions may be used to promote well-being by enhancing cognitive, motor, and affective functions, suggesting potential rehabilitative approaches to enhancing mental health.
Collapse
Affiliation(s)
| | - Davide Nardo
- Department of Education, “Roma Tre” University, 00185 Rome, Italy; (M.B.); (S.F.)
| | | |
Collapse
|
6
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. Context familiarity is a third kind of episodic memory distinct from item familiarity and recollection. iScience 2024; 27:111439. [PMID: 39758982 PMCID: PMC11699256 DOI: 10.1016/j.isci.2024.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Episodic memory is accounted for with two processes: "familiarity" when generally recognizing an item and "recollection" when retrieving the full contextual details bound with the item. We tested a combination of item recognition confidence and source memory, focusing upon three conditions: "item-only hits with source unknown" ('item familiarity'), "low-confidence hits with correct source memory" ('context familiarity'), and "high-confidence hits with correct source memory" ('recollection'). Behaviorally, context familiarity was slower than the others during item recognition, but faster during source memory. Electrophysiologically, a triple dissociation was evident in event-related potentials (ERPs), which was independently replicated. Context familiarity exhibited a negative effect from 800 to 1200 ms, differentiated from positive ERPs for item-familiarity (400-600 ms) and recollection (600-900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory, and we offer a new, tri-component model of memory. Context familiarity is a third distinct process of episodic memory.
Collapse
Affiliation(s)
- Richard J. Addante
- Florida Institute of Technology, Department of Psychology, 150 W. University Dr., Melbourne, FL 32905, USA
- Florida Institute of Technology, Department of Biomechanical Engineering, Melbourne, FL 32905, USA
- Neurocog Analytics, LLC, Palm Bay, FL 32905, USA
| | - Evan Clise
- Florida Institute of Technology, Department of Psychology, 150 W. University Dr., Melbourne, FL 32905, USA
| | - Randall Waechter
- Windward Islands Research and Education Foundation (WINDREF), Saint George University Medical School, Saint George, Grenada
| | | | | | - Jahdiel Perez-Caban
- Florida Institute of Technology, Department of Psychology, 150 W. University Dr., Melbourne, FL 32905, USA
| |
Collapse
|
7
|
Menétrey MQ, Pascucci D. Spectral tuning and after-effects in neural entrainment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:29. [PMID: 39574159 PMCID: PMC11580347 DOI: 10.1186/s12993-024-00259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.
Collapse
Affiliation(s)
- Maëlan Q Menétrey
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Psychophysics and Neural Dynamics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne, Switzerland.
| | - David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Psychophysics and Neural Dynamics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne, Switzerland
| |
Collapse
|
8
|
Yan D, Seki A. Differential modulations of theta and beta oscillations by audiovisual congruency in letter-speech sound integration. Eur J Neurosci 2024. [PMID: 39469847 DOI: 10.1111/ejn.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The integration of visual letters and speech sounds is a crucial part of learning to read. Previous studies investigating this integration have revealed a modulation by audiovisual (AV) congruency, commonly known as the congruency effect. To investigate the cortical oscillations of the congruency effects across different oscillatory frequency bands, we conducted a Japanese priming task in which a visual letter was followed by a speech sound. We analyzed the power and phase properties of oscillatory activities in the theta and beta bands between congruent and incongruent letter-speech sound (L-SS) pairs. Our results revealed stronger theta-band (5-7 Hz) power in the congruent condition and cross-modal phase resetting within the auditory cortex, accompanied by enhanced inter-trial phase coherence (ITPC) in the auditory-related areas in response to the congruent condition. The observed congruency effect of theta-band power may reflect increased neural activities in the left auditory region during L-SS integration. Additionally, theta ITPC findings suggest that visual letters amplify neuronal responses to the following corresponding auditory stimulus, which may reflect the differential cross-modal influences in the primary auditory cortex. In contrast, decreased beta-band (20-35 Hz) oscillatory power was observed in the right centroparietal regions for the congruent condition. The reduced beta power seems to be unrelated to the processing of AV integration, but may be interpreted as the brain response to predicting auditory sounds during language processing. Our data provide valuable insights by indicating that oscillations in different frequency bands contribute to the disparate aspects of L-SS integration.
Collapse
Affiliation(s)
- Dongyang Yan
- Graduate School of Education, Hokkaido University, Sapporo, Japan
| | - Ayumi Seki
- Faculty of Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. A third kind of episodic memory: Context familiarity is distinct from item familiarity and recollection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603640. [PMID: 39071285 PMCID: PMC11275934 DOI: 10.1101/2024.07.15.603640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Episodic memory is accounted for with two processes: 'familiarity' when generally recognizing an item and 'recollection' when retrieving the full contextual details bound with the item. Paradoxically, people sometimes report contextual information as familiar but without recollecting details, which is not easily accounted for by existing theories. We tested a combination of item recognition confidence and source memory, focusing upon 'item-only hits with source unknown' ('item familiarity'), 'low-confidence hits with correct source memory' ('context familiarity'), and 'high-confidence hits with correct source memory' ('recollection'). Results across multiple within-subjects (trial-wise) and between subjects (individual variability) levels indicated these were behaviorally and physiologically distinct. Behaviorally, a crossover interaction was evident in response times, with context familiarity being slower than each condition during item recognition, but faster during source memory. Electrophysiologically, a Condition x Time x Location triple dissociation was evident in event-related potentials (ERPs), which was then independently replicated. Context familiarity exhibited an independent negative central effect from 800-1200 ms, differentiated from positive ERPs for item-familiarity (400 to 600 ms) and recollection (600 to 900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory. Context familiarity is a third distinct process of episodic memory. Summary Memory for past events is widely believed to operate through two different processes: one called 'recollection' when retrieving confident, specific details of a memory, and another called 'familiarity' when only having an unsure but conscious awareness that an item was experienced before. When people successfully retrieve details such as the source or context of a prior event, it has been assumed to reflect recollection. We demonstrate that familiarity of context is functionally distinct from familiarity of items and recollection and offer a new, tri-component model of memory. The three memory responses were differentiated across multiple behavioral and brain wave measures. What has traditionally been thought to be two kinds of memory processes are actually three, becoming evident when using sensitive enough multi-measures. Results are independently replicated across studies from different labs. These data reveal that context familiarity is a third process of human episodic memory.
Collapse
|
10
|
Cai C, Zhang L, Quan Z, Fang X, Cai S, Zhang J. Search flavor labels in beverages: An electrophysiological investigation of color-flavor congruency and association strength in visual search. Neuropsychologia 2024; 203:108985. [PMID: 39216718 DOI: 10.1016/j.neuropsychologia.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Individuals are apt to link various characteristics of an object or event through different sensory experiences. We conducted two electrophysiological experiments to investigate the effects of color-flavor congruency and association strength on visual search efficiency and the in-depth cognitive mechanisms underlying multisensory processes. Participants were prompted with a flavor label and asked to identify the primed flavor from four beverage bottle images. Experiment 1 focused on color-flavor congruency and noted faster searches for congruent targets than incongruent ones. EEG data exhibited smaller N2, larger P3 and LPC, and increased parietal-occipital midline (POM) alpha power for incongruent targets than congruent ones. Experiment 2 manipulated color-flavor association strength within each flavor. Behavioral findings showed that searches for targets with weak association strength took longer than those with strong association strength. Moreover, time-frequency analysis displayed that the former evoked greater frontal midline (FM) theta power and higher alpha power than the latter. Altogether, our research indicated that (1) color expectations based on prior experience can automatically guide people's attentional selection, (2) the color-flavor congruency and association strength impact the visual search efficiency via distinct pathways, and (3) theta and alpha activities make a pivotal role in unraveling multisensory information processing. These findings shed some light on the intricate cognitive processes involved in crossmodal visual search and the underlying neurocognitive dynamics.
Collapse
Affiliation(s)
- Chen Cai
- Department of Psychology, Normal College, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Le Zhang
- Department of Psychology, Normal College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zihan Quan
- Department of Psychology, Normal College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xin Fang
- Department of Psychology, Normal College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Sisi Cai
- Department of Psychology, Normal College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Jia Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| |
Collapse
|
11
|
Marrelec G, Benhamou J, Le Van Quyen M. Time-frequency analysis of event-related brain recordings: Effect of noise on power. Heliyon 2024; 10:e35310. [PMID: 39323772 PMCID: PMC11422058 DOI: 10.1016/j.heliyon.2024.e35310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 07/26/2024] [Indexed: 09/27/2024] Open
Abstract
In neuroscience, time-frequency analysis is widely used to investigate brain rhythms in brain recordings. In event-related protocols, it is applied to quantify how the brain responds to a stimulation repeated over many trials. We here focus on two common measures: the power of the transform for each single trial averaged across trials, avgPOW; and the power of the transform of the average evoked potential, POWavg. We investigate the influence of additive noise on these two measures. We quantify the expected effect using theoretical calculations, simulated data and experimental brain recordings. We also consider the case of color noise. We extract the main factors influencing the effect of noise on POWavg and avgPOW, such as the noise variance, the number of trials, the sampling rate, the type of noise, the type of time-frequency transform and the frequency of interest. When dealing with time-frequency analysis, the impact of noise on the neuroscientist's work can drastically vary depending on these factors. The present results should help researchers improve their understanding and interpretation of time-frequency diagrams, as well as optimize their experimental designs and analyses based on their neuroscientific question.
Collapse
Affiliation(s)
- Guillaume Marrelec
- Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, F-75006, Paris, France
| | - Jonas Benhamou
- Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, F-75006, Paris, France
| | - Michel Le Van Quyen
- Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, F-75006, Paris, France
| |
Collapse
|
12
|
Ai S. STN-PFC circuit related to attentional fluctuations during non-movement decision-making. Neuroscience 2024; 553:110-120. [PMID: 38972448 DOI: 10.1016/j.neuroscience.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Decision-making is a cognitive process, in which participants need to attend to relevant information and ignore the irrelevant information. Previous studies have described a set of cortical areas important for attention. It is unclear whether subcortical areas also serve a role. The subthalamic nucleus (STN), a part of basal ganglia, is traditionally considered a critical node in the cortico-basal ganglia-thalamus-cortico network. Given the location of the STN and its widespread connections with cortical and subcortical brain regions, the STN plays an important role in motor and non-motor cognitive processing. We would like to know if STN is also related to fluctuations in attentional task performance, and how the STN interacts with prefrontal cortical regions during the process. We examined neural activities within STN covaried with lapses of attention (defined as behavior error). We found that decreased neural activities in STN were associated with sustained attention. By examining connectivity across STN and various sub-regions of the prefrontal cortex (PFC), we found that decreased connectivity across areas was associated with sustained attention. Our results indicated that decreased STN activities were associated with sustained attention, and the STN-PFC circuit supported this process.
Collapse
Affiliation(s)
- Shengnan Ai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Hassan A, Deshun Z. Psychophysiological Impact of Touching Landscape Grass among Older Adults. J Urban Health 2024; 101:792-803. [PMID: 38739226 PMCID: PMC11329456 DOI: 10.1007/s11524-024-00875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Few studies have investigated plants' healing effects, particularly through touch-based therapy, on older adults. As hypertension rates continue to climb worldwide, touch-based therapy for hypertension prevention has become a significant priority in public health initiatives. This study investigated the impact of tactile interaction with real grass (a landscape activity) versus artificial grass on older adults' physical and cognitive abilities. Employing a within-subject design, we assessed the physiological and emotional effects of touching real grass versus artificial glass for 10 min. Study participants included 50 Chinese individuals, with an average age of 85.64 ± 3.72 years. Measurements included blood pressure, electroencephalogram, State-Trait Anxiety Inventory, and standard deviation (SD). Analyzing the SD data revealed that participants experienced a heightened sense of relaxation and calmness after touching real grass, compared to artificial grass. Furthermore, the participants' brainwave patterns-measured in mean power units-exhibited an upward trend while interacting with real grass, whereas they exhibited a downward trend during the interaction with artificial grass. Moreover, the mean systolic blood pressure significantly decreased following interaction with real grass. These findings suggest that engaging with real grass through touch potentially alleviates mental stress, in contrast to the effects of artificial grass.
Collapse
Affiliation(s)
- Ahmad Hassan
- College of Architecture and Urban Planning, Tongji University, 1239 Siping Rd, Shanghai, People's Republic of China.
| | - Zhang Deshun
- College of Architecture and Urban Planning, Tongji University, 1239 Siping Rd, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Sjuls GS, Harvei NN, Vulchanova MD. The relationship between neural phase entrainment and statistical word-learning: A scoping review. Psychon Bull Rev 2024; 31:1399-1419. [PMID: 38062317 PMCID: PMC11358248 DOI: 10.3758/s13423-023-02425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 08/29/2024]
Abstract
Statistical language-learning, the capacity to extract regularities from a continuous speech stream, arguably involves the ability to segment the stream before the discrete constituents can be stored in memory. According to recent accounts, the segmentation process is reflected in the alignment of neural activity to the statistical structure embedded in the input. However, the degree to which it can predict the subsequent leaning outcome is currently unclear. As this is a relatively new avenue of research on statistical learning, a scoping review approach was adopted to identify and explore the current body of evidence on the use of neural phase entrainment as a measure of online neural statistical language-learning and its relation to the learning outcome, as well as the design characteristics of these studies. All included studies (11) observed entrainment to the underlying statistical pattern with exposure to the structured speech stream. A significant association between entrainment and learning outcome was observed in six of the studies. We discuss these findings in light of what neural entrainment in statistical word-learning experiments might represent, and speculate that it might reflect a general auditory processing mechanism, rather than segmentation of the speech stream per se. Lastly, as we find the current selection of studies to provide inconclusive evidence for neural entrainment's role in statistical learning, future research avenues are proposed.
Collapse
Affiliation(s)
- Guro S Sjuls
- Department of Language and Literature, Norwegian University of Science and Technology, Dragvoll alle 6, 7049, Trondheim, Norway.
| | - Nora N Harvei
- Department of Language and Literature, Norwegian University of Science and Technology, Dragvoll alle 6, 7049, Trondheim, Norway
| | - Mila D Vulchanova
- Department of Language and Literature, Norwegian University of Science and Technology, Dragvoll alle 6, 7049, Trondheim, Norway
| |
Collapse
|
15
|
Jiang Z, An X, Liu S, Yin E, Yan Y, Ming D. Beyond alpha band: prestimulus local oscillation and interregional synchrony of the beta band shape the temporal perception of the audiovisual beep-flash stimulus. J Neural Eng 2024; 21:036035. [PMID: 37419108 DOI: 10.1088/1741-2552/ace551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Multisensory integration is more likely to occur if the multimodal inputs are within a narrow temporal window called temporal binding window (TBW). Prestimulus local neural oscillations and interregional synchrony within sensory areas can modulate cross-modal integration. Previous work has examined the role of ongoing neural oscillations in audiovisual temporal integration, but there is no unified conclusion. This study aimed to explore whether local ongoing neural oscillations and interregional audiovisual synchrony modulate audiovisual temporal integration.Approach.The human participants performed a simultaneity judgment (SJ) task with the beep-flash stimuli while recording electroencephalography. We focused on two stimulus onset asynchrony (SOA) conditions where subjects report ∼50% proportion of synchronous responses in auditory- and visual-leading SOA (A50V and V50A).Main results.We found that the alpha band power is larger in synchronous response in the central-right posterior and posterior sensors in A50V and V50A conditions, respectively. The results suggested that the alpha band power reflects neuronal excitability in the auditory or visual cortex, which can modulate audiovisual temporal perception depending on the leading sense. Additionally, the SJs were modulated by the opposite phases of alpha (5-10 Hz) and low beta (14-20 Hz) bands in the A50V condition while the low beta band (14-18 Hz) in the V50A condition. One cycle of alpha or two cycles of beta oscillations matched an auditory-leading TBW of ∼86 ms, while two cycles of beta oscillations matched a visual-leading TBW of ∼105 ms. This result indicated the opposite phases in the alpha and beta bands reflect opposite cortical excitability, which modulated the audiovisual SJs. Finally, we found stronger high beta (21-28 Hz) audiovisual phase synchronization for synchronous response in the A50V condition. The phase synchrony of the beta band might be related to maintaining information flow between visual and auditory regions in a top-down manner.Significance.These results clarified whether and how the prestimulus brain state, including local neural oscillations and functional connectivity between brain regions, affects audiovisual temporal integration.
Collapse
Affiliation(s)
- Zeliang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Erwei Yin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, People's Republic of China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, People's Republic of China
| | - Ye Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, People's Republic of China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, People's Republic of China
| |
Collapse
|
16
|
Zamm A, Loehr JD, Vesper C, Konvalinka I, Kappel SL, Heggli OA, Vuust P, Keller PE. A practical guide to EEG hyperscanning in joint action research: from motivation to implementation. Soc Cogn Affect Neurosci 2024; 19:nsae026. [PMID: 38584414 PMCID: PMC11086947 DOI: 10.1093/scan/nsae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Developments in cognitive neuroscience have led to the emergence of hyperscanning, the simultaneous measurement of brain activity from multiple people. Hyperscanning is useful for investigating social cognition, including joint action, because of its ability to capture neural processes that occur within and between people as they coordinate actions toward a shared goal. Here, we provide a practical guide for researchers considering using hyperscanning to study joint action and seeking to avoid frequently raised concerns from hyperscanning skeptics. We focus specifically on Electroencephalography (EEG) hyperscanning, which is widely available and optimally suited for capturing fine-grained temporal dynamics of action coordination. Our guidelines cover questions that are likely to arise when planning a hyperscanning project, ranging from whether hyperscanning is appropriate for answering one's research questions to considerations for study design, dependent variable selection, data analysis and visualization. By following clear guidelines that facilitate careful consideration of the theoretical implications of research design choices and other methodological decisions, joint action researchers can mitigate interpretability issues and maximize the benefits of hyperscanning paradigms.
Collapse
Affiliation(s)
- Anna Zamm
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada
| | - Cordula Vesper
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Simon L Kappel
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus N 8200, Denmark
| | - Ole A Heggli
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
17
|
Abstract
Neural oscillations in the 8-12 Hz alpha band are thought to represent top-down inhibitory control and to influence temporal resolution: Individuals with faster peak frequencies segregate stimuli appearing closer in time. Recently, this theory has been challenged. Here, we investigate a special case in which alpha does not correlate with temporal resolution: when stimuli are presented amidst strong visual drive. Based on findings regarding alpha rhythmogenesis and wave spatial propagation, we suggest that stimulus-induced, bottom-up alpha oscillations play a role in temporal integration. We propose a theoretical model, informed by visual persistence, lateral inhibition, and network refractory periods, and simulate physiologically plausible scenarios of the interaction between bottom-up alpha and the temporal segregation. Our simulations reveal that different features of oscillations, including frequency, phase, and power, can influence temporal perception and provide a theoretically informed starting point for future empirical studies.
Collapse
|
18
|
Karvat G, Ofir N, Landau AN. Sensory Drive Modifies Brain Dynamics and the Temporal Integration Window. J Cogn Neurosci 2024; 36:614-631. [PMID: 38010294 DOI: 10.1162/jocn_a_02088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Perception is suggested to occur in discrete temporal windows, clocked by cycles of neural oscillations. An important testable prediction of this theory is that individuals' peak frequencies of oscillations should correlate with their ability to segregate the appearance of two successive stimuli. An influential study tested this prediction and showed that individual peak frequency of spontaneously occurring alpha (8-12 Hz) correlated with the temporal segregation threshold between two successive flashes of light [Samaha, J., & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25, 2985-2990, 2015]. However, these findings were recently challenged [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022]. To advance our understanding of the link between oscillations and temporal segregation, we devised a novel experimental approach. Rather than relying entirely on spontaneous brain dynamics, we presented a visual grating before the flash stimuli that is known to induce continuous oscillations in the gamma band (45-65 Hz). By manipulating the contrast of the grating, we found that high contrast induces a stronger gamma response and a shorter temporal segregation threshold, compared to low-contrast trials. In addition, we used a novel tool to characterize sustained oscillations and found that, for half of the participants, both the low- and high-contrast gratings were accompanied by a sustained and phase-locked alpha oscillation. These participants tended to have longer temporal segregation thresholds. Our results suggest that visual stimulus drive, reflected by oscillations in specific bands, is related to the temporal resolution of visual perception.
Collapse
|
19
|
Kamalian A, Barough SS, Ho SG, Albert M, Luciano MG, Yasar S, Moghekar A. Molecular Signatures of Normal Pressure Hydrocephalus: A Largescale Proteomic Analysis of Cerebrospinal Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583014. [PMID: 38496536 PMCID: PMC10942380 DOI: 10.1101/2024.03.01.583014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Given the persistent challenge of differentiating idiopathic Normal Pressure Hydrocephalus (iNPH) from similar clinical entities, we conducted an in-depth proteomic study of cerebrospinal fluid (CSF) in 28 shunt-responsive iNPH patients, 38 Mild Cognitive Impairment (MCI) due to Alzheimer's disease, and 49 healthy controls. Utilizing the Olink Explore 3072 panel, we identified distinct proteomic profiles in iNPH that highlight significant downregulation of synaptic markers and cell-cell adhesion proteins. Alongside vimentin and inflammatory markers upregulation, these results suggest ependymal layer and transependymal flow dysfunction. Moreover, downregulation of multiple proteins associated with congenital hydrocephalus (e.g., L1CAM, PCDH9, ISLR2, ADAMTSL2, and B4GAT1) points to a possible shared molecular foundation between congenital hydrocephalus and iNPH. Through orthogonal partial least squares discriminant analysis (OPLS-DA), a panel comprising 13 proteins has been identified as potential diagnostic biomarkers of iNPH, pending external validation. These findings offer novel insights into the pathophysiology of iNPH, with implications for improved diagnosis.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | - Sara G. Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Mark G. Luciano
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Sevil Yasar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Wolff A, Northoff G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol Psychiatry 2024; 29:425-438. [PMID: 38228893 DOI: 10.1038/s41380-023-02337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
21
|
Dwyer P, Vukusic S, Williams ZJ, Saron CD, Rivera SM. "Neural Noise" in Auditory Responses in Young Autistic and Neurotypical Children. J Autism Dev Disord 2024; 54:642-661. [PMID: 36434480 PMCID: PMC10209352 DOI: 10.1007/s10803-022-05797-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Elevated "neural noise" has been advanced as an explanation of autism and autistic sensory experiences. However, functional neuroimaging measures of neural noise may be vulnerable to contamination by recording noise. This study explored variability of electrophysiological responses to tones of different intensities in 127 autistic and 79 typically-developing children aged 2-5 years old. A rigorous data processing pipeline, including advanced visualizations of different signal sources that were maximally independent across different time lags, was used to identify and eliminate putative recording noise. Inter-trial variability was measured using median absolute deviations (MADs) of EEG amplitudes across trials and inter-trial phase coherence (ITPC). ITPC was elevated in autism in the 50 and 60 dB intensity conditions, suggesting diminished (rather than elevated) neural noise in autism, although reduced ITPC to soft 50 dB sounds was associated with increased loudness discomfort. Autistic and non-autistic participants did not differ in MADs, and indeed, the vast majority of the statistical tests examined in this study yielded no significant effects. These results appear inconsistent with the neural noise account.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, Davis, CA, USA.
- Center for Mind and Brain, UC Davis, Davis, CA, USA.
- MIND Institute, UC Davis Health, Sacramento, CA, USA.
| | | | - Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clifford D Saron
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
| | - Susan M Rivera
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
- College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
22
|
Adamian N, Andersen SK. Attentional Modulation in Early Visual Cortex: A Focused Reanalysis of Steady-state Visual Evoked Potential Studies. J Cogn Neurosci 2024; 36:46-70. [PMID: 37847846 DOI: 10.1162/jocn_a_02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Steady-state visual evoked potentials (SSVEPs) are a powerful tool for investigating selective attention. Here, we conducted a combined reanalysis of multiple studies employing this technique in a variety of attentional experiments to, first, establish benchmark effect sizes of attention on amplitude and phase of SSVEPs and, second, harness the power of a large data set to test more specific hypotheses. Data of eight published SSVEP studies were combined, in which human participants (n = 135 in total) attended to flickering random dot stimuli based on their defining features (e.g., location, color, luminance, or orientation) or feature conjunctions. The reanalysis established that, in all the studies, attention reliably enhanced amplitudes, with color-based attention providing the strongest effect. In addition, the latency of SSVEPs elicited by attended stimuli was reduced by ∼4 msec. Next, we investigated the modulation of SSVEP amplitudes in a subset of studies where two different features were attended concurrently. Although most models assume that attentional effects of multiple features are combined additively, our results suggest that neuronal enhancement provided by concurrent attention is better described by multiplicative integration. Finally, we used the combined data set to demonstrate that the increase in trial-averaged SSVEP amplitudes with attention cannot be explained by increased synchronization of single-trial phases. Contrary to the prediction of the phase-locking account, the variance across trials of complex Fourier coefficients increases with attention, which is more consistent with boosting of a largely phase-locked signal embedded in non-phase-locked noise.
Collapse
|
23
|
Campos A, Tuomainen J, Tuomainen O. Mismatch Responses to Speech Contrasts in Preschoolers with and without Developmental Language Disorder. Brain Sci 2023; 14:42. [PMID: 38248257 PMCID: PMC10813673 DOI: 10.3390/brainsci14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This study compared cortical responses to speech in preschoolers with typical language development (TLD) and with Developmental Language Disorder (DLD). We investigated whether top-down language effects modulate speech perception in young children in an adult-like manner. We compared cortical mismatch responses (MMRs) during the passive perception of speech contrasts in three groups of participants: preschoolers with TLD (n = 11), preschoolers with DLD (n = 16), and adults (n = 20). We also measured children's phonological skills and investigated whether they are associated with the cortical discrimination of phonemic changes involving different linguistic complexities. The results indicated top-down language effects in adults, with enhanced cortical discrimination of lexical stimuli but not of non-words. In preschoolers, the TLD and DLD groups did not differ in the MMR measures, and no top-down effects were detected. Moreover, we found no association between MMRs and phonological skills, even though the DLD group's phonological skills were significantly lower. Our findings suggest that top-down language modulations in speech discrimination may not be present during early childhood, and that children with DLD may not exhibit cortical speech perception deficits. The lack of association between phonological and MMR measures indicates that further research is needed to understand the link between language skills and cortical activity in preschoolers.
Collapse
Affiliation(s)
- Ana Campos
- UCL Ear Institute, University College London, London WC1E 6BT, UK
- Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, UK;
- Carrera de Fonoaudiología, Universidad San Sebastián, Lota 2465, Santiago 7510602, Chile
| | - Jyrki Tuomainen
- Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, UK;
| | - Outi Tuomainen
- Department of Linguistics, University of Potsdam, 14469 Potsdam, Germany;
| |
Collapse
|
24
|
Sun X, Doose J, Faller J, McIntosh JR, Saber GT, Huffman S, Pantazatos SP, Yuan H, Goldman RI, Brown TR, George MS, Sajda P. Biomarkers predict the efficacy of closed-loop rTMS treatment for refractory depression. RESEARCH SQUARE 2023:rs.3.rs-3496521. [PMID: 38106062 PMCID: PMC10723538 DOI: 10.21203/rs.3.rs-3496521/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive FDA-approved therapy for major depressive disorder (MDD), specifically for treatment-resistant depression (TRD). Though offering promise for those with TRD, its effectiveness is less than one in two patients (i.e., less than 50%). Limits on efficacy may be due to individual patient variability, but to date, there are no established biomarkers or measures of target engagement that can predict efficacy. Additionally, TMS efficacy is typically not assessed until a six-week treatment ends, precluding interim re-evaluations of the treatment. Here, we report results using a closed-loop phase-locked repetitive TMS (rTMS) treatment that synchronizes the delivery of rTMS based on the timing of the pulses relative to a patient's individual electroencephalographic (EEG) prefrontal alpha oscillation indexed by functional magnetic resonance imaging (fMRI). Among responders, synchronized rTMS produces two systematic changes in brain dynamics: a reduction in global cortical excitability and enhanced phase entrainment of cortical dynamics. These effects predict clinical outcomes in the synchronized treatment group but not in an active-treatment unsynchronized control group. The systematic decrease in excitability and increase in entrainment correlated with treatment efficacy at the endpoint and intermediate weeks during the synchronized treatment. Specifically, we show that weekly biomarker tracking enables efficacy prediction and dynamic adjustments through a treatment course, improving the overall response rates. This innovative approach advances the prospects of individualized medicine in MDD and holds potential for application in other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Jayce Doose
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - James R. McIntosh
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, 10032, NY, USA
| | - Golbarg T. Saber
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
- Department of Neurology, University of Chicago, Chicago, 60637, IL, USA
| | - Sarah Huffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Spiro P. Pantazatos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, 10032, NY, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, OK, USA
| | - Robin I. Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Truman R. Brown
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Mark S. George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, 29401, SC, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Electrical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, 10032, NY, USA
- Data Science Institute, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
25
|
Mathôt S, Berberyan H, Büchel P, Ruuskanen V, Vilotijević A, Kruijne W. Effects of pupil size as manipulated through ipRGC activation on visual processing. Neuroimage 2023; 283:120420. [PMID: 37871758 DOI: 10.1016/j.neuroimage.2023.120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023] Open
Abstract
The size of the eyes' pupils determines how much light enters the eye and also how well this light is focused. Through this route, pupil size shapes the earliest stages of visual processing. Yet causal effects of pupil size on vision are poorly understood and rarely studied. Here we introduce a new way to manipulate pupil size, which relies on activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) to induce sustained pupil constriction. We report the effects of both experimentally induced and spontaneous changes in pupil size on visual processing as measured through EEG. We compare these to the effects of stimulus intensity and covert visual attention, because previous studies have shown that these factors all have comparable effects on some common measures of early visual processing, such as detection performance and steady-state visual evoked potentials; yet it is still unclear whether these are superficial similarities, or rather whether they reflect similar underlying processes. Using a mix of neural-network decoding, ERP analyses, and time-frequency analyses, we find that induced pupil size, spontaneous pupil size, stimulus intensity, and covert visual attention all affect EEG responses, mainly over occipital and parietal electrodes, but-crucially-that they do so in qualitatively different ways. Induced and spontaneous pupil-size changes mainly modulate activity patterns (but not overall power or intertrial coherence) in the high-frequency beta range; this may reflect an effect of pupil size on oculomotor activity and/ or visual processing. In addition, spontaneous (but not induced) pupil size tends to correlate positively with intertrial coherence in the alpha band; this may reflect a non-causal relationship, mediated by arousal. Taken together, our findings suggest that pupil size has qualitatively different effects on visual processing from stimulus intensity and covert visual attention. This shows that pupil size as manipulated through ipRGC activation strongly affects visual processing, and provides concrete starting points for further study of this important yet understudied earliest stage of visual processing.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands.
| | | | - Philipp Büchel
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Veera Ruuskanen
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Ana Vilotijević
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Wouter Kruijne
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| |
Collapse
|
26
|
Studnicki A, Seidler RD, Ferris DP. A table tennis serve versus rally hit elicits differential hemispheric electrocortical power fluctuations. J Neurophysiol 2023; 130:1444-1456. [PMID: 37964746 PMCID: PMC10994643 DOI: 10.1152/jn.00091.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Human visuomotor control requires coordinated interhemispheric interactions to exploit the brain's functional lateralization. In right-handed individuals, the left hemisphere (right arm) is better for dynamic control and the right hemisphere (left arm) is better for impedance control. Table tennis is a game that requires precise movements of the paddle, whole body coordination, and cognitive engagement, providing an ecologically valid way to study visuomotor integration. The sport has many different types of strokes (e.g., serve, return, and rally shots), which should provide unique cortical dynamics given differences in the sensorimotor demands. The goal of this study was to determine the hemispheric specialization of table tennis serving - a sequential, self-paced, bimanual maneuver. We used time-frequency analysis, event-related potentials, and functional connectivity measures of source-localized electrocortical clusters and compared serves with other types of shots, which varied in the types of movement required, attentional focus, and other task demands. We found greater alpha (8-12 Hz) and beta (13-30 Hz) power in the right sensorimotor cortex than in the left sensorimotor cortex, and we found a greater magnitude of spectral power fluctuations in the right sensorimotor cortex for serve hits than return or rally hits, in all right-handed participants. Surprisingly, we did not find a difference in interhemispheric functional connectivity between a table tennis serve and return or rally hits, even though a serve could arguably be a more complex maneuver. Studying real-world brain dynamics of table tennis provides insight into bilateral sensorimotor integration.NEW & NOTEWORTHY We found different spectral power fluctuations in the left and right sensorimotor cortices during table tennis serves, returns, and rallies. Our findings contribute to the basic science understanding of hemispheric specialization in a real-world context.
Collapse
Affiliation(s)
- Amanda Studnicki
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
27
|
Cavanagh JF. Frontal Theta Helps to Explain Etiological Variability. Biol Psychiatry 2023; 94:767-768. [PMID: 37852704 DOI: 10.1016/j.biopsych.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023]
Affiliation(s)
- James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
28
|
Xia C, Li J, Yan R, Su W, Liu Y. Contribution of inter-trial phase coherence at theta, alpha, and beta frequencies in auditory change detection. Front Neurosci 2023; 17:1224479. [PMID: 38027496 PMCID: PMC10665517 DOI: 10.3389/fnins.2023.1224479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Auditory change detection is a pre-attentive cortical auditory processing ability. Many neurological and psychological disorders can lead to defects in this process. Some studies have shown that phase synchronization may be related to auditory discrimination. However, the specific contributions of phase synchronization at different frequencies remain unclear. Methods We analyzed the electroencephalogram (EEG) data of 29 healthy adults using an oddball paradigm consisting of a standard stimulus and five deviant stimuli with varying frequency modulation patterns, including midpoint frequency transitions and linear frequency modulation. We then compared the peak amplitude and latency of inter-trial phase coherence (ITC) at the theta(θ), alpha(α), and beta(β) frequencies, as well as the N1 component, and their relationships with stimulus changes. At the same time, the characteristics of inter-trial phase coherence in response to the pure tone stimulation and chirp sound with a fine time-frequency structure were also assessed. Result When the stimulus frequency did not change relative to the standard stimulus, the peak latency of phase coherence at β and α frequencies was consistent with that of the N1 component. The inter-trial phase coherence at β frequency (β-ITC)served as a faster indicator for detecting frequency transition when the stimulus frequency was changed relative to the standard stimulus. β-ITC demonstrates temporal stability when detecting pure sinusoidal tones and their frequency changes, and is less susceptible to interference from other neural activities. The phase coherence at θ frequency could integrate the frequency and temporal characteristics of deviant into a single representation, which can be compared with the memory trace formed by the standard stimulus, thus effectively identifying auditory changes. Pure sinusoidal tone stimulation could induce higher inter-trial phase coherence in a smaller time window, but chirp sounds with a fine time-frequency structure required longer latencies to achieve phase coherence. Conclusion Phase coherence at theta, alpha, and beta frequencies are all involved in auditory change detection, but play different roles in this automatic process. Complex time-frequency modulated stimuli require longer processing time for effective change detection.
Collapse
Affiliation(s)
- Caifeng Xia
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Jinhong Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Rong Yan
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Wenwen Su
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yuhe Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Dejean C, Dupont T, Verpy E, Gonçalves N, Coqueran S, Michalski N, Pucheu S, Bourgeron T, Gourévitch B. Detecting Central Auditory Processing Disorders in Awake Mice. Brain Sci 2023; 13:1539. [PMID: 38002499 PMCID: PMC10669832 DOI: 10.3390/brainsci13111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Mice are increasingly used as models of human-acquired neurological or neurodevelopmental conditions, such as autism, schizophrenia, and Alzheimer's disease. All these conditions involve central auditory processing disorders, which have been little investigated despite their potential for providing interesting insights into the mechanisms behind such disorders. Alterations of the auditory steady-state response to 40 Hz click trains are associated with an imbalance between neuronal excitation and inhibition, a mechanism thought to be common to many neurological disorders. Here, we demonstrate the value of presenting click trains at various rates to mice with chronically implanted pins above the inferior colliculus and the auditory cortex for obtaining easy, reliable, and long-lasting access to subcortical and cortical complex auditory processing in awake mice. Using this protocol on a mutant mouse model of autism with a defect of the Shank3 gene, we show that the neural response is impaired at high click rates (above 60 Hz) and that this impairment is visible subcortically-two results that cannot be obtained with classical protocols for cortical EEG recordings in response to stimulation at 40 Hz. These results demonstrate the value and necessity of a more complete investigation of central auditory processing disorders in mouse models of neurological or neurodevelopmental disorders.
Collapse
Affiliation(s)
- Camille Dejean
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
- Cilcare Company, F-34080 Montpellier, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, F-75005 Paris, France
| | - Typhaine Dupont
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | - Elisabeth Verpy
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Noémi Gonçalves
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | - Sabrina Coqueran
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Nicolas Michalski
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | | | - Thomas Bourgeron
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Boris Gourévitch
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
- CNRS, F-75016 Paris, France
| |
Collapse
|
30
|
Sun X, Doose J, Faller J, McIntosh JR, Saber GT, Huffman S, Pantazatos SP, Yuan H, Goldman RI, Brown TR, George MS, Sajda P. Increased entrainment and decreased excitability predict efficacious treatment of closed-loop phase-locked rTMS for treatment-resistant depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296751. [PMID: 37873424 PMCID: PMC10593047 DOI: 10.1101/2023.10.09.23296751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved therapy for major depressive disorder (MDD), specifically for patients who have treatment-resistant depression (TRD). However, TMS produces response or remission in about 50% of patients but is ineffective for the other 50%. Limits on efficacy may be due to individual patient variability, but to date, there are no good biomarkers or measures of target engagement. In addition, TMS efficacy is typically not assessed until a six-week treatment ends, precluding the evaluation of intermediate improvements during the treatment duration. Here, we report on results using a closed-loop phase-locked repetitive TMS (rTMS) treatment that synchronizes the delivery of rTMS based on the timing of the pulses relative to a patient's individual electroencephalographic (EEG) prefrontal alpha oscillation informed by functional magnetic resonance imaging (fMRI). We find that, in responders, synchronized delivery of rTMS produces two systematic changes in brain dynamics. The first change is a decrease in global cortical excitability, and the second is an increase in the phase entrainment of cortical dynamics. These two effects predict clinical outcomes in the synchronized treatment group but not in an active-treatment unsynchronized control group. The systematic decrease in excitability and increase in entrainment correlated with treatment efficacy at the endpoint and intermediate weeks during the synchronized treatment. Specifically, we show that weekly tracking of these biomarkers allows for efficacy prediction and potential of dynamic adjustments through a treatment course, improving the overall response rates.
Collapse
|
31
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
32
|
David W, Verwaerde E, Gransier R, Wouters J. Effects of analysis window on 40-Hz auditory steady-state responses in cochlear implant users. Hear Res 2023; 438:108882. [PMID: 37688847 DOI: 10.1016/j.heares.2023.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Auditory steady-state responses (ASSRs) are phase-locked responses of the auditory system to the envelope of a stimulus. These responses can be used as an objective proxy to assess temporal envelope processing and its related functional outcomes such as hearing thresholds and speech perception, in normal-hearing listeners, in persons with hearing impairment, as well as in cochlear-implant (CI) users. While ASSRs are traditionally measured using a continuous stimulation paradigm, an alternative is the intermittent stimulation paradigm, whereby stimuli are presented with silence intervals in between. This paradigm could be more useful in a clinical setting as it allows for other neural responses to be analysed concurrently. One clinical use case of the intermittent paradigm is to objectively program CIs during an automatic fitting session whereby electrically evoked ASSRs (eASSRs) as well as other evoked potentials are used to predict behavioural thresholds. However, there is no consensus yet about the optimal analysis parameters for an intermittent paradigm in order to detect and measure eASSRs reliably. In this study, we used the intermittent paradigm to evoke eASSRs in adult CI users and investigated whether the early response buildup affects the response measurement outcomes. To this end, we varied the starting timepoint and length of the analysis window within which the responses were analysed. We used the amplitude, signal-to-noise ratio (SNR), phase, and pairwise phase consistency (PPC) to characterize the responses. Moreover, we set out to find the optimal stimulus duration for efficient and reliable eASSR measurements. These analyses were performed at two stimulation levels, i.e., 100% and 50% of the dynamic range of each participant. Results revealed that inclusion of the first 300 ms in the analysis window leads to overestimation of response amplitude and underestimation of response phase. Additionally, the response SNR and PPC were not affected by the inclusion of the first 300 ms in the analysis window. However, the latter two metrics were highly dependent on the stimulus duration which complicates comparisons across studies. Finally, the optimal stimulus duration for quick and reliable characterization of eASSRs was found to be around 800 ms for the stimulation level of 100% DR. These findings suggest that inclusion of the early onset period of eASSR recordings negatively influences the response measurement outcomes and that efficient and reliable eASSR measurements are possible using stimuli of around 800 ms long. This will pave the path for the development of a clinically feasible eASSR measurement in CI users.
Collapse
Affiliation(s)
- Wouter David
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 box 721, 3000 Leuven, Belgium.
| | - Elise Verwaerde
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 box 721, 3000 Leuven, Belgium
| | - Robin Gransier
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 box 721, 3000 Leuven, Belgium
| | - Jan Wouters
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 box 721, 3000 Leuven, Belgium
| |
Collapse
|
33
|
Gedankien T, Tan RJ, Qasim SE, Moore H, McDonagh D, Jacobs J, Lega B. Acetylcholine modulates the temporal dynamics of human theta oscillations during memory. Nat Commun 2023; 14:5283. [PMID: 37648692 PMCID: PMC10469188 DOI: 10.1038/s41467-023-41025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The cholinergic system is essential for memory. While degradation of cholinergic pathways characterizes memory-related disorders such as Alzheimer's disease, the neurophysiological mechanisms linking the cholinergic system to human memory remain unknown. Here, combining intracranial brain recordings with pharmacological manipulation, we describe the neurophysiological effects of a cholinergic blocker, scopolamine, on the human hippocampal formation during episodic memory. We found that the memory impairment caused by scopolamine was coupled to disruptions of both the amplitude and phase alignment of theta oscillations (2-10 Hz) during encoding. Across individuals, the severity of theta phase disruption correlated with the magnitude of memory impairment. Further, cholinergic blockade disrupted connectivity within the hippocampal formation. Our results indicate that cholinergic circuits support memory by coordinating the temporal dynamics of theta oscillations across the hippocampal formation. These findings expand our mechanistic understanding of the neurophysiology of human memory and offer insights into potential treatments for memory-related disorders.
Collapse
Affiliation(s)
- Tamara Gedankien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ryan Joseph Tan
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Salman Ehtesham Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haley Moore
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - David McDonagh
- Department of Anesthesiology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA.
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
34
|
Wu X, Jia H, Wang E. The neurophysiological mechanism of valence-space congruency effect: evidence from spatial Stroop task and event-related EEG features. Cogn Neurodyn 2023; 17:855-867. [PMID: 37522040 PMCID: PMC10374502 DOI: 10.1007/s11571-022-09842-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022] Open
Abstract
Metaphors commonly represent mental representations of abstract concepts. One example is the valence-space metaphor (i.e., positive word-up, negative word-down), which suggests that the vertical position of positive/negative words can modulate the evaluation of word valence. Here, the spatial Stroop task and electroencephalography (EEG) techniques were used to explore the neural mechanism of the valence-space congruency effect in valence-space metaphors. This study showed that the reaction time of the congruent condition (i.e., positive words at the top and negative words at the bottom of the screen) was significantly shorter than that of the incongruent condition (i.e., positive words at the bottom and negative words at the top of the screen), while the accuracy rate of the congruent condition was significantly larger than that of the incongruent condition. The analysis of the amplitudes of event-related potential components revealed that congruency between the vertical position and valence of Chinese words could significantly modulate the amplitude of attention allocation-related P2 component and semantic violations related N400 component. Moreover, statistical tests conducted on the post-stimulus inter-trial phase coherence (ITPC) found that the ITPC value of an alpha band region of interest (8-12 Hz, 100-300 ms post-stimulus) in the time-frequency plane of the congruent condition was significantly larger than that of the incongruent condition. Above all, the current study proved the existence of the space-valence congruency effect in Chinese words and provided some interesting neurophysiological mechanisms regarding the valence-space metaphor.
Collapse
Affiliation(s)
- Xiangci Wu
- Institute of Psychology and Behavior, Henan University, 475004 Kaifeng, China
- School of Psychology, Henan University, 475004 Kaifeng, China
| | - Huibin Jia
- Institute of Psychology and Behavior, Henan University, 475004 Kaifeng, China
- School of Psychology, Henan University, 475004 Kaifeng, China
| | - Enguo Wang
- Institute of Psychology and Behavior, Henan University, 475004 Kaifeng, China
- School of Psychology, Henan University, 475004 Kaifeng, China
| |
Collapse
|
35
|
Hardy SM, Jensen O, Wheeldon L, Mazaheri A, Segaert K. Modulation in alpha band activity reflects syntax composition: an MEG study of minimal syntactic binding. Cereb Cortex 2023; 33:497-511. [PMID: 35311899 PMCID: PMC9890467 DOI: 10.1093/cercor/bhac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Collapse
Affiliation(s)
- Sophie M Hardy
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Linda Wheeldon
- Department of Foreign Languages and Translations, University of Agder, Kristiansand 4630, Norway
| | - Ali Mazaheri
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Lin Y, Fan X, Chen Y, Zhang H, Chen F, Zhang H, Ding H, Zhang Y. Neurocognitive Dynamics of Prosodic Salience over Semantics during Explicit and Implicit Processing of Basic Emotions in Spoken Words. Brain Sci 2022; 12:brainsci12121706. [PMID: 36552167 PMCID: PMC9776349 DOI: 10.3390/brainsci12121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
How language mediates emotional perception and experience is poorly understood. The present event-related potential (ERP) study examined the explicit and implicit processing of emotional speech to differentiate the relative influences of communication channel, emotion category and task type in the prosodic salience effect. Thirty participants (15 women) were presented with spoken words denoting happiness, sadness and neutrality in either the prosodic or semantic channel. They were asked to judge the emotional content (explicit task) and speakers' gender (implicit task) of the stimuli. Results indicated that emotional prosody (relative to semantics) triggered larger N100, P200 and N400 amplitudes with greater delta, theta and alpha inter-trial phase coherence (ITPC) and event-related spectral perturbation (ERSP) values in the corresponding early time windows, and continued to produce larger LPC amplitudes and faster responses during late stages of higher-order cognitive processing. The relative salience of prosodic and semantics was modulated by emotion and task, though such modulatory effects varied across different processing stages. The prosodic salience effect was reduced for sadness processing and in the implicit task during early auditory processing and decision-making but reduced for happiness processing in the explicit task during conscious emotion processing. Additionally, across-trial synchronization of delta, theta and alpha bands predicted the ERP components with higher ITPC and ERSP values significantly associated with stronger N100, P200, N400 and LPC enhancement. These findings reveal the neurocognitive dynamics of emotional speech processing with prosodic salience tied to stage-dependent emotion- and task-specific effects, which can reveal insights into understanding language and emotion processing from cross-linguistic/cultural and clinical perspectives.
Collapse
Affiliation(s)
- Yi Lin
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinran Fan
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueqi Chen
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhang
- School of Foreign Languages and Literature, Shandong University, Jinan 250100, China
| | - Fei Chen
- School of Foreign Languages, Hunan University, Changsha 410012, China
| | - Hui Zhang
- School of International Education, Shandong University, Jinan 250100, China
| | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (H.D.); (Y.Z.); Tel.: +86-213-420-5664 (H.D.); +1-612-624-7818 (Y.Z.)
| | - Yang Zhang
- Department of Speech-Language-Hearing Science & Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (H.D.); (Y.Z.); Tel.: +86-213-420-5664 (H.D.); +1-612-624-7818 (Y.Z.)
| |
Collapse
|
37
|
Gugnowska K, Novembre G, Kohler N, Villringer A, Keller PE, Sammler D. Endogenous sources of interbrain synchrony in duetting pianists. Cereb Cortex 2022; 32:4110-4127. [PMID: 35029645 PMCID: PMC9476614 DOI: 10.1093/cercor/bhab469] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
When people interact with each other, their brains synchronize. However, it remains unclear whether interbrain synchrony (IBS) is functionally relevant for social interaction or stems from exposure of individual brains to identical sensorimotor information. To disentangle these views, the current dual-EEG study investigated amplitude-based IBS in pianists jointly performing duets containing a silent pause followed by a tempo change. First, we manipulated the similarity of the anticipated tempo change and measured IBS during the pause, hence, capturing the alignment of purely endogenous, temporal plans without sound or movement. Notably, right posterior gamma IBS was higher when partners planned similar tempi, it predicted whether partners' tempi matched after the pause, and it was modulated only in real, not in surrogate pairs. Second, we manipulated the familiarity with the partner's actions and measured IBS during joint performance with sound. Although sensorimotor information was similar across conditions, gamma IBS was higher when partners were unfamiliar with each other's part and had to attend more closely to the sound of the performance. These combined findings demonstrate that IBS is not merely an epiphenomenon of shared sensorimotor information but can also hinge on endogenous, cognitive processes crucial for behavioral synchrony and successful social interaction.
Collapse
Affiliation(s)
- Katarzyna Gugnowska
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome 00161, Italy
| | - Natalie Kohler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Peter E Keller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW 2751, Australia
| | - Daniela Sammler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| |
Collapse
|
38
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
39
|
David W, Gransier R, Wouters J. Evaluation of phase-locking to parameterized speech envelopes. Front Neurol 2022; 13:852030. [PMID: 35989900 PMCID: PMC9382131 DOI: 10.3389/fneur.2022.852030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Humans rely on the temporal processing ability of the auditory system to perceive speech during everyday communication. The temporal envelope of speech is essential for speech perception, particularly envelope modulations below 20 Hz. In the literature, the neural representation of this speech envelope is usually investigated by recording neural phase-locked responses to speech stimuli. However, these phase-locked responses are not only associated with envelope modulation processing, but also with processing of linguistic information at a higher-order level when speech is comprehended. It is thus difficult to disentangle the responses into components from the acoustic envelope itself and the linguistic structures in speech (such as words, phrases and sentences). Another way to investigate neural modulation processing is to use sinusoidal amplitude-modulated stimuli at different modulation frequencies to obtain the temporal modulation transfer function. However, these transfer functions are considerably variable across modulation frequencies and individual listeners. To tackle the issues of both speech and sinusoidal amplitude-modulated stimuli, the recently introduced Temporal Speech Envelope Tracking (TEMPEST) framework proposed the use of stimuli with a distribution of envelope modulations. The framework aims to assess the brain's capability to process temporal envelopes in different frequency bands using stimuli with speech-like envelope modulations. In this study, we provide a proof-of-concept of the framework using stimuli with modulation frequency bands around the syllable and phoneme rate in natural speech. We evaluated whether the evoked phase-locked neural activity correlates with the speech-weighted modulation transfer function measured using sinusoidal amplitude-modulated stimuli in normal-hearing listeners. Since many studies on modulation processing employ different metrics and comparing their results is difficult, we included different power- and phase-based metrics and investigate how these metrics relate to each other. Results reveal a strong correspondence across listeners between the neural activity evoked by the speech-like stimuli and the activity evoked by the sinusoidal amplitude-modulated stimuli. Furthermore, strong correspondence was also apparent between each metric, facilitating comparisons between studies using different metrics. These findings indicate the potential of the TEMPEST framework to efficiently assess the neural capability to process temporal envelope modulations within a frequency band that is important for speech perception.
Collapse
Affiliation(s)
- Wouter David
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
40
|
Wu G, Tang X, Gan R, Zeng J, Hu Y, Xu L, Wei Y, Tang Y, Chen T, Liu H, Li C, Wang J, Zhang T. Automatic auditory processing features in distinct subtypes of patients at clinical high risk for psychosis: Forecasting remission with mismatch negativity. Hum Brain Mapp 2022; 43:5452-5464. [PMID: 35848373 PMCID: PMC9704791 DOI: 10.1002/hbm.26021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 01/15/2023] Open
Abstract
Individuals at clinical high risk (CHR) for psychosis exhibit a compromised mismatch negativity (MMN) response, which indicates dysfunction of pre-attentive deviance processing. Event-related potential and time-frequency (TF) information, in combination with clinical and cognitive profiles, may provide insight into the pathophysiology and psychopathology of the CHR stage and predict the prognosis of CHR individuals. A total of 92 individuals with CHR were recruited and followed up regularly for up to 3 years. Individuals with CHR were classified into three clinical subtypes demonstrated previously, specifically 28 from Cluster 1 (characterized by extensive negative symptoms and cognitive deficits), 31 from Cluster 2 (characterized by thought and behavioral disorganization, with moderate cognitive impairment), and 33 from Cluster 3 (characterized by the mildest symptoms and cognitive deficits). Auditory MMN to frequency and duration deviants was assessed. The event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were acquired using TF analysis. Predictive indices for remission were identified using logistic regression analyses. As expected, reduced frequency MMN (fMMN) and duration MMN (dMMN) responses were noted in Cluster 1 relative to the other two clusters. In the TF analysis, Cluster 1 showed decreased theta and alpha ITC in response to deviant stimuli. The regression analyses revealed that dMMN latency and alpha ERSP to duration deviants, theta ITC to frequency deviants and alpha ERSP to frequency deviants, and fMMN latency were significant MMN predictors of remission for the three clusters. MMN variables outperformed behavioral variables in predicting remission of Clusters 1 and 2. Our findings indicate relatively disrupted automatic auditory processing in a certain CHR subtype and a close affinity between these electrophysiological indexes and clinical profiles within different clusters. Furthermore, MMN indexes may serve as predictors of subsequent remission from the CHR state. These findings suggest that the auditory MMN response is a potential neurophysiological marker for distinct clinical subtypes of CHR.
Collapse
Affiliation(s)
- GuiSen Wu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - RanPiao Gan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - JiaHui Zeng
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - Tao Chen
- Big Data Research LabUniversity of WaterlooOntarioCanada,Labor and Worklife ProgramHarvard UniversityCambridgeMassachusettsUSA,Niacin (Shanghai) Technology Co., Ltd.ShanghaiPeople's Republic of China
| | - HaiChun Liu
- Department of AutomationShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)Chinese Academy of ScienceBeijingPeople's Republic of China,Institute of Psychology and Behavioral ScienceShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| |
Collapse
|
41
|
Donoghue T, Schaworonkow N, Voytek B. Methodological considerations for studying neural oscillations. Eur J Neurosci 2022; 55:3502-3527. [PMID: 34268825 PMCID: PMC8761223 DOI: 10.1111/ejn.15361] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022]
Abstract
Neural oscillations are ubiquitous across recording methodologies and species, broadly associated with cognitive tasks, and amenable to computational modelling that investigates neural circuit generating mechanisms and neural population dynamics. Because of this, neural oscillations offer an exciting potential opportunity for linking theory, physiology and mechanisms of cognition. However, despite their prevalence, there are many concerns-new and old-about how our analysis assumptions are violated by known properties of field potential data. For investigations of neural oscillations to be properly interpreted, and ultimately developed into mechanistic theories, it is necessary to carefully consider the underlying assumptions of the methods we employ. Here, we discuss seven methodological considerations for analysing neural oscillations. The considerations are to (1) verify the presence of oscillations, as they may be absent; (2) validate oscillation band definitions, to address variable peak frequencies; (3) account for concurrent non-oscillatory aperiodic activity, which might otherwise confound measures; measure and account for (4) temporal variability and (5) waveform shape of neural oscillations, which are often bursty and/or nonsinusoidal, potentially leading to spurious results; (6) separate spatially overlapping rhythms, which may interfere with each other; and (7) consider the required signal-to-noise ratio for obtaining reliable estimates. For each topic, we provide relevant examples, demonstrate potential errors of interpretation, and offer suggestions to address these issues. We primarily focus on univariate measures, such as power and phase estimates, though we discuss how these issues can propagate to multivariate measures. These considerations and recommendations offer a helpful guide for measuring and interpreting neural oscillations.
Collapse
Affiliation(s)
- Thomas Donoghue
- Department of Cognitive Science, University of California, San Diego
| | | | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego
- Neurosciences Graduate Program, University of California, San Diego
- Halıcıoğlu Data Science Institute, University of California, San Diego
- Kavli Institute for Brain and Mind, University of California, San Diego
| |
Collapse
|
42
|
van Noordt S, Desjardins JA, Elsabbagh M. Inter-trial theta phase consistency during face processing in infants is associated with later emerging autism. Autism Res 2022; 15:834-846. [PMID: 35348304 DOI: 10.1002/aur.2701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2022] [Accepted: 01/30/2022] [Indexed: 11/05/2022]
Abstract
A growing body of research suggests that consistency in cortical activity may be a promising neurophysiological marker of autism spectrum disorder (ASD). In the current study we examined inter-trial coherence, a measure of phase consistency across trials, in the theta range (t-ITC: 3-6 Hz), as theta has been implicated in the processing of social and emotional stimuli in infants and adults. The sample included infants who had an older sibling with a confirmed ASD diagnosis and typically developing (TD) infants with no family history of ASD. The data were collected as part of the British Autism Study of Infant Siblings (BASIS) study. Infants between 6 and 10 months of age (Mage = 7.34, SDage = 1.21) performed a visual face processing task that included faces and scrambled, "face noise", stimuli. Follow-up assessments in higher likelihood infants were completed at 24 and again at 36 months to determine diagnostic outcomes. Analysis focused on posterior t-ITC during early (0-200 ms) and late (200-500 ms) visual processing stages commonly investigated in infant studies. t-ITC over posterior scalp regions during late stage face processing was significantly higher in TD and higher likelihood infants without ASD (HRA-), indicating reduced consistency in theta-band responses in higher likelihood infants who eventually receive a diagnosis of ASD (HRA+). These findings indicate that the temporal dynamics of theta during face processing relate to ASD outcomes. Reduced consistency of oscillatory dynamics at basic levels of infant sensory processing could have downstream effects on learning and social communication. LAY SUMMARY: We examined the consistency in brain responses to faces in infants at lower or higher familial likelihood for autism. Our results show that the consistency of EEG responses was lower during face processing in higher likelihood infants who eventually received a diagnosis of autism. These findings highlight that reduced consistency in brain activity during face processing in the first year of life is related to emerging autism.
Collapse
Affiliation(s)
- Stefon van Noordt
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| | - James A Desjardins
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, Canada.,SHARCNET, Compute Ontario, Compute Canada
| | -
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Mayada Elsabbagh
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, Canada
| |
Collapse
|
43
|
Kritzman L, Eidelman-Rothman M, Keil A, Freche D, Sheppes G, Levit-Binnun N. Steady-state visual evoked potentials differentiate between internally and externally directed attention. Neuroimage 2022; 254:119133. [PMID: 35339684 DOI: 10.1016/j.neuroimage.2022.119133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
While attention to external visual stimuli has been extensively studied, attention directed internally towards mental contents (e.g., thoughts, memories) or bodily signals (e.g., breathing, heartbeat) has only recently become a subject of increased interest, due to its relation to interoception, contemplative practices and mental health. The present study aimed at expanding the methodological toolbox for studying internal attention, by examining for the first time whether the steady-state visual evoked potential (ssVEP), a well-established measure of attention, can differentiate between internally and externally directed attention. To this end, we designed a task in which flickering dots were used to generate ssVEPs, and instructed participants to count visual targets (external attention condition) or their heartbeats (internal attention condition). We compared the ssVEP responses between conditions, along with alpha-band activity and the heartbeat evoked potential (HEP) - two electrophysiological measures associated with internally directed attention. Consistent with our hypotheses, we found that both the magnitude and the phase synchronization of the ssVEP decreased when attention was directed internally, suggesting that ssVEP measures are able to differentiate between internal and external attention. Additionally, and in line with previous findings, we found larger suppression of parieto-occipital alpha-band activity and an increase of the HEP amplitude in the internal attention condition. Furthermore, we found a trade-off between changes in ssVEP response and changes in HEP and alpha-band activity: when shifting from internal to external attention, increase in ssVEP response was related to a decrease in parieto-occipital alpha-band activity and HEP amplitudes. These findings suggest that shifting between external and internal directed attention prompts a re-allocation of limited processing resources that are shared between external sensory and interoceptive processing.
Collapse
Affiliation(s)
- Lior Kritzman
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol Center for Brain and Mind, Reichman University, Israel.
| | | | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, USA
| | - Dominik Freche
- Sagol Center for Brain and Mind, Reichman University, Israel; Physics of Complex Systems, Weizmann Institute of Science, Israel
| | - Gal Sheppes
- School of Psychological Sciences, Tel Aviv University, Israel
| | | |
Collapse
|
44
|
Non-invasive recording of high-frequency signals from the human spinal cord. Neuroimage 2022; 253:119050. [PMID: 35276364 DOI: 10.1016/j.neuroimage.2022.119050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Throughout the somatosensory system, neuronal ensembles generate high-frequency signals in the range of several hundred Hertz in response to sensory input. High-frequency signals have been related to neuronal spiking, and could thus help clarify the functional architecture of sensory processing. Recording high-frequency signals from subcortical regions, however, has been limited to clinical pathology whose treatment allows for invasive recordings. Here, we demonstrate the feasibility to record 200-1200 Hz signals from the human spinal cord non-invasively, and in healthy individuals. Using standard electroencephalography equipment in a cervical electrode montage, we observed high-frequency signals between 200 and 1200 Hz in a time window between 8 and 16 ms after electric median nerve stimulation (n = 15). These signals overlapped in latency, and, partly, in frequency, with signals obtained via invasive, epidural recordings from the spinal cord in a patient with neuropathic pain. Importantly, the observed high-frequency signals were dissociable from classic spinal evoked responses. A spatial filter that optimized the signal-to-noise ratio of high-frequency signals led to submaximal amplitudes of the evoked response, and vice versa, ruling out the possibility that high-frequency signals are merely a spectral representation of the evoked response. Furthermore, we observed spontaneous fluctuations in the amplitude of high-frequency signals over time, in the absence of any concurrent, systematic change to the evoked response. High-frequency, "spike-like" signals from the human spinal cord thus carry information that is complementary to the evoked response. The possibility to assess these signals non-invasively provides a novel window onto the neurophysiology of the human spinal cord, both in a context of top-down control over perception, as well as in pathology.
Collapse
|
45
|
Faller J, Doose J, Sun X, Mclntosh JR, Saber GT, Lin Y, Teves JB, Blankenship A, Huffman S, Goldman RI, George MS, Brown TR, Sajda P. Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimul 2022; 15:458-471. [PMID: 35231608 PMCID: PMC8979612 DOI: 10.1016/j.brs.2022.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation modality that can treat depression, obsessive-compulsive disorder, or help smoking cessation. Research suggests that timing the delivery of TMS relative to an endogenous brain state may affect efficacy and short-term brain dynamics. OBJECTIVE To investigate whether, for a multi-week daily treatment of repetitive TMS (rTMS), there is an effect on brain dynamics that depends on the timing of the TMS relative to individuals' prefrontal EEG quasi-alpha rhythm (between 6 and 13 Hz). METHOD We developed a novel closed-loop system that delivers personalized EEG-triggered rTMS to patients undergoing treatment for major depressive disorder. In a double blind study, patients received daily treatments of rTMS over a period of six weeks and were randomly assigned to either a synchronized or unsynchronized treatment group, where synchronization of rTMS was to their prefrontal EEG quasi-alpha rhythm. RESULTS When rTMS is applied over the dorsal lateral prefrontal cortex (DLPFC) and synchronized to the patient's prefrontal quasi-alpha rhythm, patients develop strong phase entrainment over a period of weeks, both over the stimulation site as well as in a subset of areas distal to the stimulation site. In addition, at the end of the course of treatment, this group's entrainment phase shifts to be closer to the phase that optimally engages the distal target, namely the anterior cingulate cortex (ACC). These entrainment effects are not observed in the group that is given rTMS without initial EEG synchronization of each TMS train. CONCLUSIONS The entrainment effects build over the course of days/weeks, suggesting that these effects engage neuroplastic changes which may have clinical consequences in depression or other diseases.
Collapse
Affiliation(s)
- Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jayce Doose
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaoxiao Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, 20115, USA
| | - James R Mclntosh
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Orthopaedic Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Golbarg T Saber
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
| | - Yida Lin
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Joshua B Teves
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aidan Blankenship
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sarah Huffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robin I Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Truman R Brown
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA; Data Science Institute, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
46
|
Sihn D, Kim SP. Brain Infraslow Activity Correlates With Arousal Levels. Front Neurosci 2022; 16:765585. [PMID: 35281492 PMCID: PMC8914100 DOI: 10.3389/fnins.2022.765585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
The functional role of the brain’s infraslow activity (ISA, 0.01–0.1 Hz) in human behavior has yet to be elucidated. To date, it has been shown that the brain’s ISA correlates with behavioral performance; task performance is more likely to increase when executed at a specific ISA phase. However, it is unclear how the ISA correlates behavioral performance. We hypothesized that the ISA phase correlation of behavioral performance is mediated by arousal. Our data analysis results showed that the electroencephalogram (EEG) ISA phase was correlated with the galvanic skin response (GSR) amplitude, a measure of the arousal level. Furthermore, subjects whose EEG ISA phase correlated with the GSR amplitude more strongly also showed greater EEG ISA modulation during meditation, which implies an intimate relationship between brain ISA and arousal. These results may help improve understanding of the functional role of the brain’s ISA.
Collapse
|
47
|
Herbst SK, Stefanics G, Obleser J. Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010. Cortex 2022; 149:226-245. [DOI: 10.1016/j.cortex.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
|
48
|
Wolff A, Gomez-Pilar J, Zhang J, Choueiry J, de la Salle S, Knott V, Northoff G. It's in the Timing: Reduced Temporal Precision in Neural Activity of Schizophrenia. Cereb Cortex 2021; 32:3441-3456. [PMID: 34875019 DOI: 10.1093/cercor/bhab425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023] Open
Abstract
Studies of perception and cognition in schizophrenia (SCZ) show neuronal background noise (ongoing activity) to intermittently overwhelm the processing of external stimuli. This increased noise, relative to the activity evoked by the stimulus, results in temporal imprecision and higher variability of behavioral responses. What, however, are the neural correlates of temporal imprecision in SCZ behavior? We first report a decrease in electroencephalography signal-to-noise ratio (SNR) in two SCZ datasets and tasks in the broadband (1-80 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. SCZ participants also show lower inter-trial phase coherence (ITPC)-consistency over trials in the phase of the signal-in theta. From these ITPC results, we varied phase offsets in a computational simulation, which illustrated phase-based temporal desynchronization. This modeling also provided a necessary link to our results and showed decreased neural synchrony in SCZ in both datasets and tasks when compared with healthy controls. Finally, we showed that reduced SNR and ITPC are related and showed a relationship to temporal precision on the behavioral level, namely reaction times. In conclusion, we demonstrate how temporal imprecision in SCZ neural activity-reduced relative signal strength and phase coherence-mediates temporal imprecision on the behavioral level.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid 47011, Spain.,Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Jianfeng Zhang
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310058, China.,College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Joelle Choueiry
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Sara de la Salle
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
49
|
Gransier R, Wouters J. Neural auditory processing of parameterized speech envelopes. Hear Res 2021; 412:108374. [PMID: 34800800 DOI: 10.1016/j.heares.2021.108374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Speech perception depends highly on the neural processing of the speech envelope. Several auditory processing deficits are hypothesized to result in a reduction in fidelity of the neural representation of the speech envelope across the auditory pathway. Furthermore, this reduction in fidelity is associated with supra-threshold speech processing deficits. Investigating the mechanisms that affect the neural encoding of the speech envelope can be of great value to gain insight in the different mechanisms that account for this reduced neural representation, and to develop stimulation strategies for hearing prosthesis that aim to restore it. In this perspective, we discuss the importance of neural assessment of phase-locking to the speech envelope from an audiological view and introduce the Temporal Envelope Speech Tracking (TEMPEST) stimulus framework which enables the electrophysiological assessment of envelope processing across the auditory pathway in a systematic and standardized way. We postulate that this framework can be used to gain insight in the salience of speech-like temporal envelopes in the neural code and to evaluate the effectiveness of stimulation strategies that aim to restore temporal processing across the auditory pathway with auditory prostheses.
Collapse
Affiliation(s)
- Robin Gransier
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Jan Wouters
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2021; 475:230-245. [PMID: 34656223 PMCID: PMC8592269 DOI: 10.1016/j.neuroscience.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-d-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|