1
|
Lu YN, Yue TJ, Ding WL, Xu BW, Li AY, Huang SC. Gut-X Axis and Its Role in Poultry Bone Health: A Review. Microorganisms 2025; 13:757. [PMID: 40284594 PMCID: PMC12029844 DOI: 10.3390/microorganisms13040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The normal development and growth of bones are critical for poultry health. With the rapid increase in poultry growth rates achieved over the last few decades, juvenile meat-type poultry exhibit a high incidence of leg weakness and lameness. These issues are significant contributors to poor animal welfare and substantial economic losses. Understanding the potential etiology of bone problems in poultry will aid in developing treatments for bone diseases. The gut microbiota represents the largest micro-ecosystem in animals and is closely related to many metabolic disorders, including bone disease. It achieves this by secreting secondary metabolites and coordinating with various tissues and organs through the circulatory system, which leads to the concept of the gut-X axis. Given its importance, modulating gut microbiota to influence the gut-X axis presents new opportunities for understanding and developing innovative therapeutic approaches for poultry bone diseases. In light of the extensive literature on this topic, this review focuses on the effects of gut microbiota on bone density and strength in poultry, both directly and indirectly, through the regulation of the gut-X axis. Our aim is to provide scientific insights into the bone health problems faced by poultry.
Collapse
Affiliation(s)
| | | | | | | | - Ao-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| |
Collapse
|
2
|
Greene ES, Ramser A, Wideman R, Bedford M, Dridi S. Dietary inclusion of phytase and stimbiotic decreases mortality and lameness in a wire ramp challenge model in broilers. Avian Pathol 2024; 53:474-491. [PMID: 38776101 DOI: 10.1080/03079457.2024.2359592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Wire ramp model reproducibly induced lameness/BCO in broilers.Treatments did not affect growth, but phytase with stimbiotic significantly reduced BCO.Phytase increased circulating inositol, and wire flooring decreased bone inositol.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Alison Ramser
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Robert Wideman
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| |
Collapse
|
3
|
Wang Z, Wang X, Zhu C, Xiong Y, Yan K, He S. Effects of Bacillus subtilis and Lactobacillus on growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora in heat-stressed broilers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2705-2713. [PMID: 39302453 DOI: 10.1007/s00484-024-02780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study investigates the effect of dietary Bacillus subtilis and Lactobacillus on the growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora of broilers under heat stress (HS) and provides a theoretical basis for the application of probiotic additives to alleviate the stress of poultry under HS. A total of 200 Cobb broilers were randomly assigned to four replicates of 10 broilers in each of the five groups. The growth performance, serum biochemistry, nutrient apparent digestibility, and cecum flora of broilers were detected on the 28th, 35th, and 42nd days, respectively. Results revealed that HS can affect the growth performance and serum biochemical indexes of broilers, lowered the number of intestinal bifidobacteria and Lactobacillus, and increase the number of Escherichia coli in comparsion to the CON group. Compared with the HS group, the ADFI of HS broilers in the BS group and the combined group significantly increased (P < 0.05) at 22-28 days of age, and the serum calcium and phosphorus increased (P < 0.05) significantly at 42 days of age. Meanwhile, the number of Lactobacillus in the BS group and LAB group increased significantly at 42 days of age (P < 0.05). The number of Escherichia coli in the LAB group and combination group decreased significantly at 35 days of age (P < 0.01). The present study revealed that the addition of Bacillus subtilis or Lactobacillus to diets increased ADFI, increased probiotic counts, and lowered Escherichia coli counts in HS broilers, while probiotics alone work well.
Collapse
Affiliation(s)
- Zekai Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Xifeng Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Chengcai Zhu
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Kang Yan
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang (233100), Anhui, China.
- Anhui Key Laboratory of Animal Infectious Disease Prevention and Control, Anhui, China.
| |
Collapse
|
4
|
Li L, Ma M, Zuo G, Xiao J, Chen J, He X, Song Z. Effect of manganese amino acid complexes on growth performance, meat quality, breast muscle and bone development in broilers. Br Poult Sci 2024; 65:582-594. [PMID: 38994893 DOI: 10.1080/00071668.2024.2346640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 07/13/2024]
Abstract
1. This study was conducted to investigate the effects of dietary supplementation of manganese (Mn) amino acid complexes on growth performance, Mn deposition, meat quality, breast muscle and bone development of broilers.2. A total of 504, one-day-old male Arbor Acres broilers were randomly divided into seven treatments; control diet (CON; basal diet, no extra Mn addition), manganese diet (MnN as Numine®-Mn; CON + 40, 80, 120 or 160 mg Mn/kg), manganese-S group (MnS; CON + 120 mg Mn/kg as MnSO4·H2O), manganese-A diet (MnA as Mn from hydrolysed feather meal; CON + 40 mg Mn/kg as MnA).3. There were no significant differences for average daily gain (ADG) or feed intake (ADFI) among diets during the feed phases (p > 0.05). The FCR in the starter and over the whole period were quadratically affected by dietary MnN dosage and gave the lowest FCR at 80 mg/kg (p < 0.05). The Mn content of thigh muscle, jejunum, heart, pancreas, liver and tibia increased linearly with MnN addition (p < 0.05).4. For meat quality, MnN significantly increased colour (a*), pH45 min and pH24 h, reduced shear force, drip loss and pressure loss of breast muscle (p < 0.05).5. Moreover, MnN significantly upregulated MYOD expression at d 21 and SOD expression at d 42, decreased MuRF1 and Atrogin-1 mRNA level at d 42 in breast muscle. Transcriptome analysis revealed that the regulating effect of MnN on muscle development significantly enriched signalling pathways such as adhesion, ECM-receptor, MAPK, mTOR and AMPK. Furthermore, dietary MnN significantly affected tibia length and growth plate development (p < 0.05) and promoted growth plate chondrocytes by increasing SOX-9, Runx-2, Mef2c, TGF-β, Ihh, Bcl-2 and Beclin1 and decreasing Bax and Caspase-3 (p < 0.05) expression which affect longitudinal tibial development.6. In conclusion, Mn amino acid complexes could improve growth performance, tissue Mn deposition, breast muscle development, meat quality and bone development.
Collapse
Affiliation(s)
- L Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - M Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - G Zuo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
- Technical R&D Department, Beijing Deyuanshun Biotechnology Co, Ltd, Beijing, China
| | - J Xiao
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - J Chen
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - X He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - Z Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| |
Collapse
|
5
|
Wang L, Nabi F, Yi W, Wang D, Zhu Y, Jiang X. Low-dose thiram exposure elicits dysregulation of the gut microbial ecology in broiler chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115879. [PMID: 38157796 DOI: 10.1016/j.ecoenv.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Thiram, a typical fungicide pesticide, is widely used in agricultural production. The presence of thiram residues is not only due to over-utilization, but is also primarily attributed to long-term accumulation. However, there is a paucity of information regarding the impact of prolonged utilization of thiram at low doses on the gut microbiota, particularly with respect to gut fungi. Our objective is to explore the effect of thiram on broilers from the perspective of gut microbiota, which includes both bacteria and fungi. We developed a long-term low-dose thiram model to simulate thiram residue and employed 16 S rRNA and ITS gene sequencing to investigate the diversity and profile of gut microbiota between group CC (normal diet) and TC (normal diet supplemented with 5 mg/kg thiram). The results revealed that low doses of thiram had a detrimental effect on broiler's growth performance, resulting in an approximate reduction of 669.33 g in their final body weight at day 45. Our findings indicated that low-dose thiram had a negative impact on the gut bacterial composition, leading to a notable reduction in the abundance of Merdibacter, Paenibacillus, Macrococcus, Fournierella, and Anaeroplasma (p < 0.05) compared to the CC group. Conversely, the relative level of Myroides was significantly increased (p < 0.05) in response to thiram exposure. In gut fungi, thiram significantly enhanced the diversity and richness of gut fungal populations (p < 0.05), as evidenced by the notable increase in alpha indices, i.e. ACE (CC: 346.49 ± 117.27 vs TC: 787.27 ± 379.14, p < 0.05), Chao 1 (CC: 317.63 ± 69.13 vs TC: 504.85 ± 104.50, p < 0.05), Shannon (CC: 1.28 ± 1.19 vs TC: 5.39 ± 2.66, p < 0.05), Simpson (CC: 0.21 ± 0.21 vs TC: 0.78 ± 0.34, p < 0.05). Furthermore, the abundance of Ascomycota, Kickxellomycota, and Glomeromycota were significantly increased (p < 0.05) by exposure to thiram, conversely, the level of Basidiomycota was decreased (p < 0.05) in the TC group compared to the CC group. Overall, this study demonstrated that low doses of thiram induced significant changes in the composition and abundance of gut microbiota in broilers, with more pronounced changes observed in the gut fungal community as compared to the gut bacterial community. Importantly, our findings further emphasize the potential risks associated with low dose thiram exposure and have revealed a novel discovery indicating that significant alterations in gut fungi may serve as the crucial factor contributing to the detrimental effects exerted by thiram residues.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Three Gorges Polytechnic, Yichang 443000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Weixue Yi
- Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lasa 850009, China
| | - Ying Zhu
- Animal Husbandry Station of Bijie City, Bijie 551700, China
| | - Xiong Jiang
- Hubei Three Gorges Polytechnic, Yichang 443000, China.
| |
Collapse
|
6
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
7
|
Liu KL, He YF, Xu BW, Lin LX, Chen P, Iqbal MK, Mehmood K, Huang SC. Leg disorders in broiler chickens: a review of current knowledge. Anim Biotechnol 2023; 34:5124-5138. [PMID: 37850850 DOI: 10.1080/10495398.2023.2270000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Ensuring improved leg health is an important prerequisite for broilers to achieve optimal production performance and welfare status. Broiler leg disease is characterized by leg muscle weakness, leg bone deformation, joint cysts, arthritis, femoral head necrosis, and other symptoms that result in lameness or paralysis. These conditions significantly affect movement, feeding and broiler growth performance. Nowadays, the high incidence of leg abnormalities in broiler chickens has become an important issue that hampers the development of broiler farming. Therefore, it is imperative to prevent leg diseases and improve the health of broiler legs. This review mainly discusses the current prevalence of broiler leg diseases and describes the risk factors, diagnosis, and prevention of leg diseases to provide a scientific basis for addressing broiler leg health problems.
Collapse
Affiliation(s)
- Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yan-Feng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bo-Wen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Lu-Xi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Muhammad Kashif Iqbal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
8
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Zhu H, Kulyar MFEA, Ding Y, Yao W, Mo Q, Li J. Ginsenoside Rg1 regulates thiram-induced chondrocytes' apoptosis and angiogenesis in broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34188-34202. [PMID: 36508105 DOI: 10.1007/s11356-022-24598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Tibial dyschondroplasia (TD) is a developmental cartilaginous disease due to thiram toxicity. The abnormity of chondrocytes and insufficient angiogenesis within the growth plate are the major factors leading to the occurrence of TD in most cases. In the current study, we evaluated the beneficial effects of ginsenoside (Rg1) against thiram-induced TD for knowing the possible underlying mechanisms in broiler chickens through in vivo and in vitro assessment. Arbor acres broilers (1-day-old, n = 120) were randomly divided for the in vivo evaluation. The control broilers were fed under normal conditions during the whole experiment cycle (18 days). The TD broilers were fed with 50 mg/kg thiram, while the treatment group was given 40 mg/kg of Rg1. According to our findings, thiram caused a decrease in production performance and tibia parameters (p < 0.05), which were significantly reversed by Rg1 administration. In addition, the results from the histological evaluation showed that the proliferative zone had a smaller number of blood vessels, surrounded by inviable chondrocytes, proving apoptosis during the occurrence of TD, while Rg1 treatment significantly increased blood vessels and decreased apoptotic cells. Furthermore, it was found that Rg1 effectively ameliorated the angiogenesis by regulation of HIF-1α/VEGFA/VEGFR2 signaling pathway and the chondrocytes' apoptosis via the mitochondrial pathway. Hence, these findings suggest that Rg1 might be a perfect choice in the prevention and treatment of TD via regulating chondrocytes apoptosis and angiogenesis. Also, it might be a potential therapeutic drug for humans to overcome different bone disorders, involving chondrocytes.
Collapse
Affiliation(s)
- Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Gut microbiome dysregulation drives bone damage in broiler tibial dyschondroplasia by disrupting glucose homeostasis. NPJ Biofilms Microbiomes 2023; 9:1. [PMID: 36596826 PMCID: PMC9810666 DOI: 10.1038/s41522-022-00360-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Tibial dyschondroplasia (TD) with multiple incentives is a metabolic skeletal disease that occurs in fast-growing broilers. Perturbations in the gut microbiota (GM) have been shown to affect bone homoeostasis, but the mechanisms by which GM modulates bone metabolism in TD broilers remain unknown. Here, using a broiler model of TD, we noted elevated blood glucose (GLU) levels in TD broilers, accompanied by alterations in the pancreatic structure and secretory function and damaged intestinal barrier function. Importantly, faecal microbiota transplantation (FMT) of gut microbes from normal donors rehabilitated the GM and decreased the elevated GLU levels in TD broilers. A high GLU level is a predisposing factor to bone disease, suggesting that GM dysbiosis-mediated hyperglycaemia might be involved in bone regulation. 16S rRNA gene sequencing and short-chain fatty acid analysis revealed that the significantly increased level of the metabolite butyric acid derived from the genera Blautia and Coprococcus regulated GLU levels in TD broilers by binding to GPR109A in the pancreas. Tibial studies showed reduced expression of vascular regulatory factors (including PI3K, AKT and VEFGA) based on transcriptomics analysis and reduced vascular distribution, contributing to nonvascularization of cartilage in the proximal tibial growth plate of TD broilers with elevated GLU levels. Additionally, treatment with the total flavonoids from Rhizoma drynariae further validated the improvement in bone homoeostasis in TD broilers by regulating GLU levels through the regulation of GM to subsequently improve intestinal and pancreatic function. These findings clarify the critical role of GM-mediated changes in GLU levels via the gut-pancreas axis in bone homoeostasis in TD chickens.
Collapse
|
11
|
Zhang C, Xu T, Lin L, Shaukat A, Tong X, Yue K, Cao Q, Zhang C, Liu F, Huang S. Morinda officinalis Polysaccharides Ameliorates Bone Growth by Attenuating Oxidative Stress and Regulating the Gut Microbiota in Thiram-Induced Tibial Dyschondroplasia Chickens. Metabolites 2022; 12:958. [PMID: 36295860 PMCID: PMC9609565 DOI: 10.3390/metabo12100958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia (TD) occurs in chickens and other fast-growing birds, affecting their cartilage growth and leading to reduced meat quality in broilers. Morinda officinalis polysaccharide (MOP) is one of the chief active components of Morinda officinalis, which promotes bone formation, inhibiting bone loss and having anti-oxidant and anti-inflammatory properties. A total of 120 AA chickens were randomly divided into the CON group (basal diet), TD group (100 mg/kg thiram + basal diet), and MOP group (100 mg/kg thiram + basal diet + water with 500 mg/kg MOP). The experiment lasted 21 days. The results showed that MOP could alleviates broiler lameness caused by TD, restore the morphological structure of tibial growth plate (TGP), increase tibial weight (p < 0.05), balance the disorder of calcium and phosphorus metabolism, and promote bone formation by increasing the expression of BMP-2, Smad4, and Runx2 genes In addition, MOP supplementation stimulated the secretion of plasma antioxidant enzymes (T-SOD and GSH-Px) by regulating the expression of SOD and GPX-1 genes, thereby enhancing the antioxidant capacity of TD broilers. Interestingly, we observed MOP can also improve gut microbiota by increasing the beneficial bacteria count and decreasing the harmful bacteria count. These findings indicated that MOP can regulate bone formation through the BMP/Smads signaling pathway, attenuating oxidative stress and regulating the gut microbiota of TD broilers, so as to achieve the effect of treating TD. This suggests that MOP might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Chaodong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingting Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Luxi Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ke Yue
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinqin Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shucheng Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
12
|
Wu Z, Su R. Pesticide thiram exposure alters the gut microbial diversity of chickens. Front Microbiol 2022; 13:966224. [PMID: 36160266 PMCID: PMC9493260 DOI: 10.3389/fmicb.2022.966224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Thiram is a major dithiocarbamate pesticide commonly found in polluted field crops, feed, and rivers. Environmental thiram exposure has been demonstrated to cause angiogenesis and osteogenesis disorders in chickens, but information regarding thiram influences on gut microbiota, apoptosis, and autophagy in chickens has been insufficient. Here, we explored the effect of thiram exposure on gut microbiota, apoptosis, and autophagy of chickens. Results demonstrated that thiram exposure impaired the morphology and structure of intestinal and liver tissues. Moreover, thiram exposure also triggered liver apoptosis and autophagy. The gut microbiota in chickens exposed to thiram exhibited a significant decline in alpha diversity, accompanied by significant shifts in taxonomic compositions. Bacterial taxonomic analysis indicated that thiram exposure causes a significant reduction in the levels of eight genera, as well as a significant increase in the levels of two phyla and 10 genera. Among decreased bacterial genera, seven genera even cannot be observed in the thiram-induced chickens. In summary, this study demonstrated that thiram exposure not only dramatically altered the gut microbial diversity and composition but also induced liver apoptosis and autophagy in chickens. Importantly, this study also conveyed a key message that the dysbiosis of gut microbiota may be one of the major pathways for thiram to exert its toxic effects.
Collapse
|
13
|
Lu Y, Xu H, Jiang Y, Hu Z, Du R, Zhao X, Tian Y, Zhu Q, Zhang Y, Liu Y, Wang Y. Comprehensive analysis of differently expression mRNA and non-coding RNAs, and their regulatory mechanisms on relationship in thiram-induced tibial dyschondroplasia in chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113924. [PMID: 35908532 DOI: 10.1016/j.ecoenv.2022.113924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Thiram pollution is one of the main causes of tibial dyschondroplasia (TD) induced by feed sources. Several studies have speculated that miRNA, circRNA and lncRNA may have significant impact on the development of TD, however, the specific mRNAs and noncoding RNAs and their respective regulatory mechanisms and functions in the development of TD have not been explored. Therefore, in this present study, we screened the differentially expressed mRNA, miRNA, circRNA and lncRNA by whole-transcriptome sequencing (RNA-seq) and differentially expressed genes (DEGs) enrichment, as well as constructed the interaction network among the mRNA-miRNA, mRNA-lncRNA and mRNA-miRNA-circRNA. The sequencing results were verified by fluorescence real-time quantitative PCR (RT-qPCR). The results obtained in this study, revealed that the cells were atrophied and disordered in the TD group, and the expression of BMP6, TGF-β and VEGF were significantly reduced. A total of 141 mRNAs, 10 miRNAs, 23 lncRNAs and 35 circRNAs of DEGs were obtained (p<0.05) Theses DEGs were enriched in the adhere junction and insulin signaling pathways. In addition, the mRNA-miRNA-circRNA network suggested that several pivotal ceRNA showed a regulatory relationship between the transcripts with miRNA, circRNA or lncRNA. Taken together, the results in the present study, represent an insight for further functional research on the ceRNA regulatory mechanism of TD in broilers.
Collapse
Affiliation(s)
- Yuxiang Lu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuru Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhi Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ranran Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yiping Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
14
|
Xu T, Zheng J, Jin W, Li L, Lin L, Shaukat A, Zhang C, Cao Q, Ashraf M, Huang S. Total Flavonoids of Rhizoma Drynariae Ameliorate Bone Growth in Experimentally Induced Tibial Dyschondroplasia in Chickens via Regulation of OPG/RANKL Axis. Front Pharmacol 2022; 13:881057. [PMID: 35694251 PMCID: PMC9178197 DOI: 10.3389/fphar.2022.881057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
Background:Rhizoma Drynariae, traditional Chinese herb, is widely used to treat and prevent bone disorders. However, experimental evidence on the use of Rhizoma Drynariae extract, total flavonoids of Rhizoma Drynariae (TFRD) to treat tibial dyschondroplasia (TD) in chickens and its underlying mechanisms have not been investigated. Purpose: To evaluate the therapeutic effect of TFRD on leg disease caused by TD and elucidate its mechanisms in modulating the bone status. Methods: Thiram-induced chicken TD model has been established. The tibia status was evaluated by analyzing tibia-related parameters including tibial weight, tibial length and its growth plate width and by performing histopathological examination. The expression of tibial bone development-related genes and proteins was confirmed by western blotting and qRT-PCR. Results: The results showed that administration of TFRD mitigated lameness, increased body weight, recuperated growth plate width in broilers affected by TD and the increase of tibia weight and tibia length is significantly positively correlated with body weight. Compared with the TD group broilers, 500 mg/kg TFRD evidently reduced the damage width of the growth plate and improved its blood vessel distribution by elevating the gene expression levels of BMP-2 and Runx2 and OPG/RANKL ratio. Furthermore, correlation analysis found that the damage width of the growth plate was negatively correlated with the expression levels of BMP-2 and OPG. Conclusion: The present study revealed that TFRD could promote the bone growth via upregulating OPG/RANKL ratio, suggesting that TFRD might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Tingting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - WeiXing Jin
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Lu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Chaodong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qinqin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Ashraf
- Livestock and Dairy Development Department, Pishin, Pakistan
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Shucheng Huang,
| |
Collapse
|
15
|
Huang S, Zhang C, Xu T, Shaukat A, He Y, Chen P, Lin L, Yue K, Cao Q, Tong X. Integrated Fecal Microbiome and Metabolomics Reveals a Novel Potential Biomarker for Predicting Tibial Dyschondroplasia in Chickens. Front Physiol 2022; 13:887207. [PMID: 35634144 PMCID: PMC9133743 DOI: 10.3389/fphys.2022.887207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Tibial dyschondroplasia (TD) is a metabolic tibial-tarsal disorder occurring in fast-growing poultry, and its diagnosis is mainly based on an invasive method. Here, we profiled the fecal gut microbiome and metabolome of broilers with and without TD to identify potential non-invasive and non-stress biomarkers of TD. First, TD broilers with the most pronounced clinical signs during the experiment were screened and faecal samples were collected for integrated microbiome and metabolomics analysis. Moreover, the diagnostic potential of identified biomarkers was further validated throughout the experiment. It was noted that the microbial and metabolic signatures of TD broilers differed from those of normal broilers. TD broilers were characterized by enriched bacterial OTUs of the genus Klebsiella, and depleted genera [Ruminococcus], Dorea, Ruminococcus, Oscillospira, Ochrobactrum, and Sediminibacterium. In addition, a total of 189 fecal differential metabolites were identified, mainly enriched in the purine, vitamin and amino acid metabolism, which were closely associated with differential microbiota and tibia-related indicators. Furthermore, three fecal metabolites were screened, including 4-hydroxybenzaldehyde, which distinguished TD from normal broilers with extremely high specificity and was superior to serum bone markers. These results indicated that gut microbiota equilibrium might influence the pathogenesis of TD by modulating host metabolism, and the identified fecal metabolite 4-hydroxybenzaldehyde might be a potential and non-invasive biomarker for predicting TD in chickens.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Shucheng Huang,
| | - Chaodong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tingting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qinqin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Wang B, Wang S, Ding M, Lu H, Wu H, Li Y. Quercetin Regulates Calcium and Phosphorus Metabolism Through the Wnt Signaling Pathway in Broilers. Front Vet Sci 2022; 8:786519. [PMID: 35155643 PMCID: PMC8828646 DOI: 10.3389/fvets.2021.786519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
This study intended to explore the effect and mechanism of different doses of dietary quercetin on calcium and phosphorus metabolism to provide an experimental basis for preventing leg disease in broilers. A total of 480 1-day-old healthy Arbor Acre broilers were randomly allotted into four groups (0, 0.02, 0.04, 0.06%) for 42 days. Compared with control, 0.06% quercetin significantly increased the unit weight and the relative weight of tibia in broilers (P < 0.05). Meanwhile, phosphorus content and bone mineral density (BMD) were significantly increased by 0.06% dietary quercetin supplementation in tibia (P < 0.05). Ash of tibia was significantly increased by 0.04 and 0.06% quercetin in broilers (P < 0.05). In addition, 0.06% quercetin significantly increased the content of serum calcium-binding protein (CB), estradiol (E2), osteocalcin (OC), alkaline phosphatase (ALP), and calcitonin (CT) (P < 0.05); 0.04% quercetin significantly increased 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (P < 0.05) content in serum of broilers. The content of serum parathyroid (PTH) was significantly decreased by 0.02 and 0.06% quercetin (P < 0.05) in broilers. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the Wnt signaling pathway was a key signaling pathway of calcium and phosphorus metabolism in broilers which was significantly regulated by quercetin. The differentially expressed genes (DEGs) from transcriptome sequencing were validated with real-time quantitative PCR (RT-qPCR). In conclusion, 0.06% dietary quercetin supplementation improved calcium and phosphorus metabolism by regulating the Wnt signaling pathway in broilers.
Collapse
|
17
|
Lu Y, Xu H, Jiang Y, Li D, Hu Z, Yan C, Yin H, Li D, Zhao X, Zhang Y, Tian Y, Zhu Q, Wang Y. Effect of BMP6 on the proliferation and apoptosis of chicken chondrocytes induced by thiram. Res Vet Sci 2021; 142:101-109. [PMID: 34906792 DOI: 10.1016/j.rvsc.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The development of skeleton system is a complex biological process and be regulated by many transcription factors. Previous studies have shown that BMP6 is involved in skeleton development and other cells transforming to chondrocytes, but it is still not known whether do something to tibial dyschondroplasia (TD) broilers chondrocytes. In this study, RT-PCR revealed that the expression level of BMP6 in TD broiler chondrocytes at 7 days age was significantly decreased compared with normal group (P < 0.05). CCK-8 and EdU assay showed that the proliferation of cells transfected with interference BMP6 was significantly decreased compared with control siRNA, while cell proliferation was significantly increased after overexpression of BMP6. Meanwhile, the proportion of G0/G1 phase cells was significantly increased and the proportion of G2/M phase cells was significantly decreased after interference of BMP6 for 48 h in TD chicken chondrocytes (P < 0.05). In addition, flow cytometry analysis exhibited that interference BMP6 significantly increased apoptosis rate and necrotizing rate of cells. In conclusion, these results suggest that BMP6 plays a positive role in the growth and development of TD broiler chondrocytes. Our findings reveal a new target for TD prevention in broiler chickens.
Collapse
Affiliation(s)
- Yuxiang Lu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Hengyong Xu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yuru Jiang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Dan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Zhi Hu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Chaoyang Yan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Huadong Yin
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Xiaoling Zhao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yao Zhang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yaofu Tian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Qing Zhu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China.
| | - Yan Wang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China.
| |
Collapse
|
18
|
Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review. Probiotics Antimicrob Proteins 2021; 14:415-425. [PMID: 34757604 DOI: 10.1007/s12602-021-09869-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Normal development and growth of bones are critical for poultry. With the rapid growth experienced by broiler chickens, higher incidences of leg weakness and lameness are common problems in adolescent meat-type poultry that present huge economic and welfare issues. Leg disorders such as angular bone deformities and tibial dyschondroplasia have become common in broilers and are associated with poor growth, high mortality rates, increased carcass condemnation, and downgrading at slaughter. Probiotics have shown promise for a variety of health purposes, including preventing diarrhea, elevating carcass quality, and promoting growth of the poultry. In addition, recent studies have indicated that probiotics can maintain the homeostasis of the gut microbiota and improve the health of the gastrointestinal tract, which confers a potentially beneficial effect on bone health. This review mainly describes the occurrence of broiler leg disease and the role of probiotics in bone health through regulating the gut microbiota and improving intestinal function, thus providing a relevant theoretical basis for probiotics to hinder the development of skeletal disorders in broiler chickens.
Collapse
|
19
|
Wang CY, Xia WH, Wang L, Wang ZY. Manganese deficiency induces avian tibial dyschondroplasia by inhibiting chondrocyte proliferation and differentiation. Res Vet Sci 2021; 140:164-170. [PMID: 34481207 DOI: 10.1016/j.rvsc.2021.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Manganese (Mn) is an essential trace element for bone growth, and its deficiency has been shown to increase the incidence of leg abnormalities in fast-growing broilers, such as tibial dyschondroplasia (TD). Proliferation and differentiation of growth plate chondrocyte are critical for tibia development, but their roles in Mn deficiency-induced TD remains to be elucidated. Thirty 1-day-old Arbor Acres chicks were randomly divided into two groups and fed with control diet (60 mg Mn/kg diet) and Mn-deficiency diet (22 mg Mn/kg diet) for 42 days, respectively. Mn deficiency-induced TD model was successfully established and samples from proximal tibia metaphysis and growth plate were collected for assays. Pathological observation showed that Mn deficiency induced morphological abnormality and irregular arrangement of chondrocytes in proliferative and hypertrophic zone of tibial growth plate. Also, Mn deficiency decreased mRNA and protein expression levels of type II collagen and type X collagen in tibial growth plate, indicating the impairment of proliferating and hypertrophic chondrocytes. Moreover, down-regulated gene expression levels of Sox9, Tgf-β, Ihh, Runx2, Mef2c and Bmp-2 were shown in tibial growth plate of Mn-deficiency group, demonstrating that Mn deficiency inhibited the transcription levels of key regulators to disrupt chondrocyte proliferation and differentiation. Collectively, these findings confirmed that Mn deficiency affected the proliferation and differentiation of chondrocytes in tibial growth plate via inhibiting related regulatory factors, leading to TD in broilers.
Collapse
Affiliation(s)
- Cui-Yue Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wei-Hao Xia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China..
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China..
| |
Collapse
|
20
|
Zhang Z, Tang H, Ma Y, Li J, Li Z, Zhang Y, Li Y, Kang X, Han R. Identification of key miRNAs affecting broilers with valgus-varus deformity by RNA sequencing and analysis of miRNA-mRNA interactions. Mol Omics 2021; 17:752-759. [PMID: 34165477 DOI: 10.1039/d1mo00011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Valgus-varus Deformity (VVD) leg disease often affects chickens raised in modern large-scale breeding operations. Losses due to VVD are costly to farmers, and the condition also causes significant suffering in affected birds. In this study, we profiled RNAs from the spleens of VVD (BS) and healthy (JS) broilers using high-throughput sequencing to identify miRNAs that might be involved in the development of the disease. Fifty differentially expressed miRNAs (DEMs) were found, of which 30 were up-regulated and 20 were down-regulated in VVD-affected birds (|log 2 Fold Change| ≥ 1 and q-value < 0.05). DEMs were matched with putative target genes and 864 target genes were found. Gene Ontology (GO) analyses of these target genes showed that they were significantly enriched in the "cytoplasm" term (q-value < 0.05), and most of the target genes were enriched in "cellular component". Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that they were significantly enriched in 11 signaling pathways (P-value < 0.05), including metabolic pathways, 2-oxocarboxylic acid metabolism, regulation of actin cytoskeleton, purine metabolism, endocytosis and so on. And we found that they were enriched in immune-related pathways in which MAPK, Notch, JAK-Stat, Toll-like receptor, p53 and other single pathways were involved in the development of skeletal diseases. Differentially expressed mRNAs obtained from our previous study were used to construct an interaction network consisting of 16 DEMs and 21 differentially expressed mRNAs (|log 2 Fold Change| ≥ 1 and q-value < 0.05). We found that miR-12247-5p, miR-15c-5p, miR-15b-5p, FKBP5 and HSP90AB1 were at the center of network interaction. This study provides a foundation for further investigations of the pathogenesis and genetic mechanisms underlying VVD.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Hehe Tang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Yanchao Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jianzeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China. and Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China. and Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China. and Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| |
Collapse
|
21
|
Liu F, Kong A, Fu P, Cao QQ, Tao KS, Liu DY, Wang XB, Tong ZX, Rehman MU, Huang SC. Lactobacillus rhamnosus JYLR-005 Prevents Thiram-Induced Tibial Dyschondroplasia by Enhancing Bone-Related Growth Performance in Chickens. Probiotics Antimicrob Proteins 2021; 13:19-31. [PMID: 32504282 DOI: 10.1007/s12602-020-09670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tibial dyschondroplasia (TD) is a leg disorder caused by the abnormal development of the tibia in fast-growing poultry. Lactobacillus rhamnosus (L. rhamnosus) strains have been reported to have effects on increasing bone growth and improving osteoporosis in animals. However, whether L. rhamnosus JYLR-005 can improve bone growth in TD chickens remains unclear. In this study, we noted that L. rhamnosus JYLR-005 could not reduce the suppression of the production performance of TD broilers (p > 0.05) but had a slight protective effect on the broiler survival rate (χ2 = 5.571, p = 0.062). However, for thiram-induced TD broiler chickens, L. rhamnosus JYLR-005 could promote tibia growth by increasing tibia-related parameters, including the tibia weight (day 11, p = 0.040), tibia length (day 15, p = 0.013), and tibia mean diameter (day 15, p = 0.035). Moreover, L. rhamnosus JYLR-005 supplementation improved the normal growth and development of the tibial growth plate by maintaining the morphological structure of the chondrocytes and restored the balance of calcium and phosphorus. Taken together, these findings provide a proof of principle that L. rhamnosus JYLR-005 may represent a therapeutic strategy to treat leg disease in chickens.
Collapse
Affiliation(s)
- Fang Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Anan Kong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Pengfei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Qin-Qin Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Kun-Sheng Tao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Di-Yi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xue-Bing Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Zong-Xi Tong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shu-Cheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
22
|
Fan R, Liu K, Zhou Z. Abnormal Lipid Profile in Fast-Growing Broilers With Spontaneous Femoral Head Necrosis. Front Physiol 2021; 12:685968. [PMID: 34194339 PMCID: PMC8236708 DOI: 10.3389/fphys.2021.685968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigated lipid metabolism in broilers with spontaneous femoral head necrosis (FHN) by determining the levels of markers of the blood biochemistry and bone metabolism. The birds were divided into a normal group and FHN group according to the femoral head scores of 3-, 4-, and 5-week-old chickens with FHN, and a comparative study was conducted. The study showed that spontaneous FHN broilers had a lipid metabolism disorder, hyperlipidemia, and an accumulation of lipid droplets in the femur. In addition, there were significant changes in the bone parameters and blood bone biochemistry markers, and the expression of genes related to lipid metabolism in the femoral head was also significantly increased. Therefore, FHN may result from dyslipidemia, which affects the bone growth and development of broilers.
Collapse
Affiliation(s)
| | | | - Zhenlei Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Huang SC, Cao QQ, Cao YB, Yang YR, Xu TT, Yue K, Liu F, Tong ZX, Wang XB. Morinda officinalis polysaccharides improve meat quality by reducing oxidative damage in chickens suffering from tibial dyschondroplasia. Food Chem 2020; 344:128688. [PMID: 33246686 DOI: 10.1016/j.foodchem.2020.128688] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Tibial dyschondroplasia (TD) is the common leg disease in commercial broilers. However, the effects of TD on meat quality and the protective of Morinda officinalis polysaccharide (MOP) are largely unknown. Three hundred broiler chicks (one-day-old) were equally allocated into control (CON), TD and MOP-treated groups for 15 days. The results indicated that TD influenced morphology and meat quality-related parameters of the breast muscle, and changed the activity and mRNA expression of antioxidant enzymes in plasma and breast muscles. Moreover, metabolomics profiling of breast muscle revealed that the main altered metabolites 4-guanidinobutyric acid and chenodeoxycholic acid, which are related to meat quality and oxidative stress. Additionally, 500 mg/L MOP effectively restored the content of meat metabolites and oxidative damage. These findings suggest that oxidative damage caused by TD may affect meat quality in broilers by changing the content of breast muscle metabolites and that MOP supplementation has a restorative effect.
Collapse
Affiliation(s)
- Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Qin-Qin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ya-Bing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yu-Rong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ting-Ting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zong-Xi Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xue-Bing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
24
|
Sakara VS, Melnyk AY, Sakhniuk VV, Bakhur ТI, Bohatko LM, Samorai MM. Changes in protein and mineral metabolism in broiler chickens with perosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Perosis is one of the most common leg pathologies in broiler chickens, during the period of intense weight gain – at the age of 14–35 days. Due to manganese deficiency, the number of sick birds can reach up to 5% of the flock. These studies were carried out in order to establish changes in some indicators of protein, macro- and micromineral metabolism in the blood serum of clinically healthy broiler chickens and birds with perosis at 14, 21 and 28 days of age. A batch of 2,000 Cobb-500 crossbred broiler chickens was selected. Two groups of chickens were directly involved in the research, in which blood was taken at the age of 14, 21 and 28 days: healthy birds and those with perosis signs. Clinical studies showed that 8.0% of chickens on 28th day suffered from perosis. Trace mineral biochemical parameters of serum and blood of broiler chickens with perosis on the 28th day of life significantly differed from those of healthy birds (manganese and zinc). It was found that on the 28th day of life the weight of chickens with perosis was reduced by 42.7%, causing a loss of weight 88 kg per batch of 2000 birds, with a consumption of feed 140 kg. The obtained data will allow the development of early perosis prevention schemes in broiler chickens, which will help manage production losses and increase its profitability. On farms, to prevent the occurrence of perosis, it is necessary to take into account the technological factors of the production of compound feed. Also, an increase in the level of total protein and albumin in serum in the blood may indicate inflammatory processes and dehydration of the body. Therefore, it is better to site a sick bird separately for rearing or hand over to a sanitary culling.
Collapse
|
25
|
Jiang X, Li A, Wang Y, Iqbal M, Waqas M, Yang H, Li Z, Mehmood K, Qamar H, Li J. Ameliorative effect of naringin against thiram-induced tibial dyschondroplasia in broiler chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11337-11348. [PMID: 31960246 DOI: 10.1007/s11356-020-07732-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is widely used in agricultural production as an insecticide and fungicide, which can also lead to tibial dyschondroplasia (TD) in poultry. TD is characterized by leg disorders and growth performance retardation, and no targeted drugs have been found to treat TD until now. Therefore, the objective of the present study was to explore the ameliorative effect of traditional Chinese medicine naringin on thiram-induced TD chickens. A total of 180 one-day-old Arbor Acres (AA) broiler chickens were randomly divided into three equal groups (n = 60): control group (standard diet), thiram-induced group (thiram 50 mg/kg from day 3 to day 7), and naringin-treated group (naringin 30 mg/kg from day 8 to day 18). During the 18-day experiment, the growth performance, tibial bone parameters, antioxidant property of liver, serum biochemical changes and clinical symptoms were recorded to evaluate the protective effect of naringin in thiram-induced TD broiler chickens. Additionally, mRNA expressions and protein levels of Ihh and PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. Administration of naringin showed significant results by alleviating lameness, increased growth performance, recuperated growth plate (GP) width, and improved functions and antioxidant enzyme level of liver in broilers affected by TD. Moreover, naringin treatment restored the development of damaged tibia bone via downregulating Ihh and upregulating PTHrP mRNA and protein expressions. In conclusion, our study determines naringin could be used as an effective medicine to treat TD.
Collapse
Affiliation(s)
- Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Three Gorges Polytechnic, Yichang, 443000, Hubei province, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Faculty of Veterinary & Animal Sciences, University of the Poonch, District Poonch, Rawalakot, Azad Jammu & Kashmir, 12350, Pakistan
| | - Hao Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, People's Republic of China.
| |
Collapse
|
26
|
Jahejo AR, Zhang D, Niu S, Mangi RA, Khan A, Qadir MF, Khan A, Chen HC, Tian WX. Transcriptome-based screening of intracellular pathways and angiogenesis related genes at different stages of thiram induced tibial lesions in broiler chickens. BMC Genomics 2020; 21:50. [PMID: 31941444 PMCID: PMC6964038 DOI: 10.1186/s12864-020-6456-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background The Tibial dyschondroplasia (TD) in fast-growing chickens is mainly caused by improper blood circulation. The exact mechanism underlying angiogenesis and vascularization in tibial growth plate of broiler chickens remains unclear. Therefore, this research attempts to study genes involved in the regulation of angiogenesis in chicken red blood cells. Twenty-four broiler chickens were allotted into a control and thiram (Tetramethyl thiuram disulfide) group. Blood samples were collected on day 2, 6 (8- and 14-days old chickens) and 15 (23 days old chickens). Results Histopathology and hematoxylin and eosin (H&E) results showed that angiogenesis decreased on the 6th day of the experiment but started to recover on the 15th day of the experiment. Immunohistochemistry (IHC) results confirmed the expressions of integrin alpha-v precursor (ITGAV) and clusterin precursor (CLU). Transcriptome sequencing analysis evaluated 293 differentially expressed genes (DEGs), of which 103 up-regulated genes and 190 down-regulated genes were enriched in the pathways of neuroactive ligand receptor interaction, mitogen-activated protein kinase (MAPK), ribosome, regulation of actin cytoskeleton, focal adhesion, natural killer cell mediated cytotoxicity and the notch signalling pathways. DEGs (n = 20) related to angiogenesis of chicken erythrocytes in the enriched pathways were thromboxane A2 receptor (TBXA2R), interleukin-1 receptor type 1 precursor (IL1R1), ribosomal protein L17 (RPL17), integrin beta-3 precursor (ITGB3), ITGAV, integrin beta-2 precursor (ITGB2), ras-related C3 botulinum toxin substrate 2 (RAC2), integrin alpha-2 (ITGA2), IQ motif containing GTPase activating protein 2 (IQGAP2), ARF GTPase-activating protein (GIT1), proto-oncogene vav (VAV1), integrin alpha-IIb-like (ITGA5), ras-related protein Rap-1b precursor (RAP1B), tyrosine protein kinase Fyn-like (FYN), tyrosine-protein phosphatase non-receptor type 11 (PTPN11), protein patched homolog 1 (PTCH1), nuclear receptor corepressor 2 (NCOR2) and mastermind like protein 3 (MAML3) selected for further confirmation with qPCR. However, commonly DEGs were sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3), ubiquitin-conjugating enzyme E2 R2 (UBE2R2), centriole cilia and spindle-associated protein (CCSAP), coagulation factor XIII A chain protein (F13A1), shroom 2 isoform X6 (SHROOM2), ras GTPase-activating protein 3 (RASA3) and CLU. Conclusion We have found potential therapeutic genes concerned to erythrocytes and blood regulation, which regulated the angiogenesis in thiram induced TD chickens. This study also revealed the potential functions of erythrocytes. Graphical abstract 1. Tibial dyschondroplasia (TD) in chickens were more on day 6, which started recovering on day 15. 2. The enriched pathway observed in TD chickens on day 6 was ribosome pathway, on day 15 were regulation of actin cytoskeleton and focal adhesion pathway. 3. The genes involved in the ribosome pathways was ribosomal protein L17 (RPL17). regulation of actin cytoskeleton pathway were Ras-related C3 botulinum toxin substrate 2 (RAC2), Ras-related protein Rap-1b precursor (RAP1B), ARF GTPase-activating protein (GIT1), IQ motif containing GTPase activating protein 2 (IQGAP2), Integrin alpha-v precursor (ITGAV), Integrin alpha-2 (ITGA2), Integrin beta-2 precursor (ITGB2), Integrin beta-3 precursor (ITGB3), Integrin alpha-IIb-like (ITGA5). Focal adhesion Proto-oncogene vav (Vav-like), Tyrosine-protein kinase Fyn-like (FYN).
![]()
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Huan-Chun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
27
|
de Oliveira Peixoto J, Savoldi IR, Ibelli AMG, Cantão ME, Jaenisch FRF, Giachetto PF, Settles ML, Zanella R, Marchesi JAP, Pandolfi JR, Coutinho LL, Ledur MC. Proximal femoral head transcriptome reveals novel candidate genes related to epiphysiolysis in broiler chickens. BMC Genomics 2019; 20:1031. [PMID: 31888477 PMCID: PMC6937697 DOI: 10.1186/s12864-019-6411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). RESULTS Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. CONCLUSIONS Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.
Collapse
Affiliation(s)
- Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Igor Ricardo Savoldi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | - Fátima Regina Ferreira Jaenisch
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS Brazil
- Programa de Mestrado em BioExperimentação, UPF, Passo Fundo, RS Brazil
| | - Jorge Augusto Petroli Marchesi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José Rodrigo Pandolfi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| |
Collapse
|
28
|
Guo Y, Tang H, Wang X, Li W, Wang Y, Yan F, Kang X, Li Z, Han R. Clinical assessment of growth performance, bone morphometry, bone quality, and serum indicators in broilers affected by valgus-varus deformity. Poult Sci 2019; 98:4433-4440. [PMID: 31065716 DOI: 10.3382/ps/pez269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
The large economic losses caused by leg disorders have raised concerns in the broiler industry. Several types of leg disorders in broilers have been identified, such as tibial dyschondroplasia (TD), femoral head necrosis (FHN), and valgus-varus deformity (VVD). In this study, phenotypic changes associated with VVD were examined using clinical diagnosis, anatomical examination, measured growth performance, bone traits, and serum indicators. The incidence of VVD among the chicken population at a commercial facility in Tangshan China was 1.75% (n = 52,000), distributed about 1:1 (n = 122), between females and males. A majority of chickens were characterized by a unilaterally abnormality, while appropriately 17.6% by bilateral abnormality. Approximately 97.9% of affected broilers were classified as the "valgus" type. Growth traits, including body weight, shank length, and shank girth, were significantly lower in chickens with VVD, while tibia and metatarsal bone indexes were about 1.3-fold higher in the affected birds than in the normal birds. Bone mineral density, bone breaking strength, and several serum indicators were significantly different between affected and normal broilers. Sparse and disarranged bony trabecular was observed in abnormal broilers by histological analysis. Generally, leg disorders are associated with compromised growth, bone quality, bone structure, and lipid metabolism. This study provides a reference for clinical diagnosis of VVD and lays a foundation for exploring its underlying mechanisms.
Collapse
Affiliation(s)
- Yaping Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hehe Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
29
|
Muszyński S, Tomaszewska E, Dobrowolski P, Kwiecień M, Wiącek D, Świetlicka I, Skibińska M, Szymańska-Chargot M, Orzeł J, Świetlicki M, Arczewska M, Szymanek M, Zhyla M, Hułas-Stasiak M, Rudyk H, Tomczyk-Warunek A. Analysis of bone osteometry, mineralization, mechanical and histomorphometrical properties of tibiotarsus in broiler chickens demonstrates a influence of dietary chickpea seeds (Cicer arietinum L.) inclusion as a primary protein source. PLoS One 2018; 13:e0208921. [PMID: 30533027 PMCID: PMC6289425 DOI: 10.1371/journal.pone.0208921] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
This study was focused on analyzing the effects of dietary inclusion of raw chickpea seed as a replacement of soybean meal as a primary protein source on bone structure in broiler chickens. Broiler chickens (n = 160) received in their diet either soybean meal (SBM) or raw chickpea seeds (CPS) as a primary protein source throughout the whole rearing period (n = 80 in each group). On the 42th day randomly selected chickens from each group (n = 8) were slaughtered. Collected tibiotarsus were subjected to examination of the biomechanical characteristics of bone mid-diaphysis, microstructure of the growth plate and articular cartilages; the analysis of mineral content and crystallinity of mineral phase, and the measurements of thermal stability of collagen in hyaline cartilage were also carried out. The inclusion of chickpea seeds resulted in increase of bone osteometric parameters (weight, length and mid-diaphysis cross-sectional area) and mechanical endurance (yield load, ultimate load, stiffness, Young modulus). However, when loads were adjusted to bone shape (yield and ultimate stress) both groups did not differ. Mineral density determined by means of densitometric measurements did not differ between groups, however the detailed analysis revealed the differences in the macro- and microelements composition. The results of FT-IR and XRD analyses showed no effect of diet type on mineral phase crystallinity and hydroxyapatite nanocrystallites size. In trabecular bone, the increase of real bone volume (BV/TV) and number of trabeculae was observed in the CPS group. Total thickness of articular cartilage was the same in both groups, save the transitional zone, which was thicker in the SBM group. The total thickness of the growth plate cartilage was significantly increased in the CPS group. The area of the most intense presence of proteoglycans was wider in the SBM group. The structural analysis of fibrous components of bone revealed the increase of fraction of thin, immature collagen content in articular cartilage, trabeculae and compact bone in the CPS group. The dietary inclusion of CPS affected the thermal stability of collagen, as decrease of net denaturation enthalpy was observed. This study showed a beneficial effect of CPS on the skeletal development, improving the overall bone development and the microarchitecture of cancellous bone. It suggests that CPS can be a promising replacement for SBM in broilers feeding in the aspect of animal welfare related to the development of the skeletal system.
Collapse
Affiliation(s)
- Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
- * E-mail: (SM); (ET)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
- * E-mail: (SM); (ET)
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromathology, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Dariusz Wiącek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| | - Izabela Świetlicka
- Department of Physics, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
| | - Małgorzata Skibińska
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Jolanta Orzeł
- Department of Radiochemistry and Colloid Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Marta Arczewska
- Department of Physics, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
| | - Mariusz Szymanek
- Department of Agricultural, Horticultural and Forest Machinery, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Mykola Zhyla
- Laboratory of Clinical Biological Research, State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Monika Hułas-Stasiak
- Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Halyna Rudyk
- Laboratory of Clinical Biological Research, State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Agnieszka Tomczyk-Warunek
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
30
|
Huang S, Wang M, Rehman MU, Zhang L, Tong X, Shen Y, Li J. Role of Angiopoietin-like 4 on Bone Vascularization in Chickens Exposed to High-altitude Hypoxia. J Comp Pathol 2018; 161:25-33. [PMID: 30173855 DOI: 10.1016/j.jcpa.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the role and expression of a novel angiogenic factor (angiopoietin-like 4, ANGPTL4) in tibial growth plates of broiler chickens exposed to high-altitude hypoxia. One-day-old healthy broiler chickens (n = 120) were transported from lowland to a high-altitude hypoxic region (nearly 3,000 m above sea level) and were reared under hypoxic- (natural lower oxygen content) and normoxic conditions (nearly 21% oxygen content) for 14 days. The effect of hypoxia on angiogenesis in the tibial growth plates and hypoxia-inducible factor (HIF)-1α and ANGPTL4 expressions were determined by histological examination, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), western blot and enzyme-linked immunosorbent assay (ELISA) techniques. The increase in vascular distribution to the hypertrophic chondrocyte zone of tibial growth plates contributed to promoting growth and development of the tibia under hypoxic conditions, which was highly correlated with the upregulation of ANGPTL4 at both the mRNA and protein levels together with activation of HIF-1α under hypoxic conditions. These findings demonstrate that angiogenic factor ANGPTL4 upregulation is involved in tibial growth plate angiogenesis to promote the development of the tibia in broiler chickens under hypoxic conditions. They also suggest that ANGPTL4 may serve as a new molecular therapeutic target for ameliorating tibial dyschondroplasia chicken bone vascularization.
Collapse
Affiliation(s)
- S Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - M Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - M U Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - L Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - X Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Y Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - J Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China; Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China.
| |
Collapse
|