1
|
Henry L, Fernandez M, Webb A, Ayroles J. Microbial solutions to dietary stress: experimental evolution reveals host-microbiome interplay in Drosophila melanogaster. Proc Biol Sci 2025; 292:20242558. [PMID: 40132628 PMCID: PMC11936674 DOI: 10.1098/rspb.2024.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Can the microbiome serve as a reservoir of adaptive potential for hosts? To address this question, we leveraged approximately 150 generations of experimental evolution in Drosophila melanogaster on a stressful, high-sugar diet. We performed a fully reciprocal transplant experiment using the control and high-sugar bacteria. If the microbiome confers benefits to hosts, then transplant recipients should gain fitness benefits compared with controls. Interestingly, we found that such benefits exist, but their magnitude depends on evolutionary history-mismatches between fly evolution and microbiome reduced fecundity and potentially exerted fitness costs, especially in the stressful high-sugar diet. The dominant high-sugar bacteria (Acetobacter pasteurianus) uniquely encoded several genes to enable uric acid degradation, mediating the toxic effects of uric acid accumulation due to the high-sugar diet for flies. Our study demonstrates that host genotype × microbiome × environment interactions have substantial effects on host phenotype, highlighting how host evolution and ecological context together shape the adaptive potential of the microbiome.
Collapse
Affiliation(s)
- Lucas Henry
- Ecology and Evolutionary Biology Department, Princeton University, Princeton, NJ, USA
- New York University, New York, NY, USA
| | - Michael Fernandez
- Ecology and Evolutionary Biology Department, Princeton University, Princeton, NJ, USA
| | - Andrew Webb
- Ecology and Evolutionary Biology Department, Princeton University, Princeton, NJ, USA
| | - Julien Ayroles
- Ecology and Evolutionary Biology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Sorge S, Girard V, Lampe L, Tixier V, Weaver A, Higgins T, Gould AP. A Drosophila holidic diet optimized for growth and development. Dev Cell 2025:S1534-5807(25)00028-0. [PMID: 39909045 DOI: 10.1016/j.devcel.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/13/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Diets composed of chemically pure components (holidic diets) are useful for determining the metabolic roles of individual nutrients. For the model organism Drosophila melanogaster, existing holidic diets are unable to support the rapid growth characteristic of the larval stage. Here, we use a nutrient co-optimization strategy across more than 50 diet variants to design HolFast, a holidic medium tailored to fast larval growth and development. We identify dietary amino acid ratios optimal for developmental speed but show that they compromise survival unless vitamins and sterols are co-optimized. Rapid development on HolFast is not improved by adding fatty acids, but it is dependent upon their de novo synthesis in the fat body via fatty acid synthase (FASN). HolFast outperforms other holidic diets, supporting rates of growth and development close to those of yeast-based diets and, under germ-free conditions, identical. HolFast has wide applications in nutritional and metabolic studies of Drosophila development.
Collapse
Affiliation(s)
- Sebastian Sorge
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London NW1 1AT, UK.
| | - Victor Girard
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London NW1 1AT, UK
| | - Lena Lampe
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London NW1 1AT, UK
| | - Vanessa Tixier
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Alexandra Weaver
- Media Preparation, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Theresa Higgins
- Media Preparation, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alex P Gould
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Jelena R, Jelena T, Marija R, Tanja L, Tatjana S, Bojan B, Biljana BN, Pavković-Lučić S. Different Long-Term Nutritional Regimens of Drosophila melanogaster Shape Its Microbiota and Associated Metabolic Activity in a Sex-Specific Manner. INSECTS 2025; 16:141. [PMID: 40003771 PMCID: PMC11856610 DOI: 10.3390/insects16020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The dietary habits of fruit flies profoundly influence their fitness, morphology, and physiology yet the mechanisms underlying these effects remain incompletely understood. To address this gap, the relationship between dietary regimens and the composition and function of adult Drosophila melanogaster microbiota was investigated in the present study. The adult fly microbiota communities that were reared for long time on five different diets were characterized by means of 16S rRNA sequencing. Obtained results revealed distinct community structures associated with each dietary regimen, which was additionally corroborated through machine learning-based analysis. In general, sugar-rich diets correlate with microbial ecosystems of higher richness/diversity. Dominance of the phyla Proteobacteria and Firmicutes in the microbiota was confirmed irrespective of diet, with the varying proportions of the most abundant families: Acetobacteraceae, Lactobacillaceae, Moraxellaceae, Bradyrhizobiaceae, and Leucostonocaceae. Bacterial families of lower abundance also emerged as differentially present among the studied fly groups. Additionally, functional prediction provided initial clues into how nutrient availability might modulate the metabolic traits of adult fly microbiota in a sex-specific manner to meet host metabolic needs. Overall, the presented findings highlight the intricate interplay between diet, microbiota composition, and host phenotype in fruit flies, underscoring the importance of diet as a determinant of host-microbiota interactions.
Collapse
Affiliation(s)
- Repac Jelena
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Trajković Jelena
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Rakić Marija
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Lunić Tanja
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Savić Tatjana
- Institute for Biological Research “Siniša Stanković” National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Božić Bojan
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Božić Nedeljković Biljana
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Sofija Pavković-Lučić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| |
Collapse
|
4
|
Kristensen TN, Schönherz AA, Rohde PD, Sørensen JG, Loeschcke V. Selection for stress tolerance and longevity in Drosophila melanogaster have strong impacts on microbiome profiles. Sci Rep 2024; 14:17789. [PMID: 39090347 PMCID: PMC11294339 DOI: 10.1038/s41598-024-68753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
There is experimental evidence that microbiomes have a strong influence on a range of host traits. Understanding the basis and importance of symbiosis between host and associated microorganisms is a rapidly developing research field, and we still lack a mechanistic understanding of ecological and genetic pressures affecting host-microbiome associations. Here Drosophila melanogaster lines from a large-scale artificial selection experiment were used to investigate whether the microbiota differ in lines selected for different stress resistance traits and longevity. Following multiple generations of artificial selection all selection regimes and corresponding controls had their microbiomes assessed. The microbiome was interrogated based on 16S rRNA sequencing. We found that the microbiome of flies from the different selection regimes differed markedly from that of the unselected control regime, and microbial diversity was consistently higher in selected relative to control regimes. Several common Drosophila bacterial species showed differentially abundance in the different selection regimes despite flies being exposed to similar environmental conditions for two generations prior to assessment. Our findings provide strong evidence for symbiosis between host and microbiomes but we cannot reveal whether the interactions are adaptive, nor whether they are caused by genetic or ecological factors.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - Anna A Schönherz
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
5
|
Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated stress response signaling acts as a metabolic sensor in fat tissues to regulate oocyte maturation and ovulation. Cell Rep 2024; 43:113863. [PMID: 38457339 PMCID: PMC11077669 DOI: 10.1016/j.celrep.2024.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the integrated stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor that instructs oogenesis. We demonstrate that Atf4 regulates lipase activity to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient-sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat-body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction-directly by impacting yolk lipoprotein production and follicle maturation and systemically by regulating ovulation.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Manuel Michaca
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily Lackner
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Dos Santos CH, Dos Santos KAV, Machado LPDB, Mateus RP. Life History Traits and Metabolic Pool Variation in Neotropical Species of Drosophila (Diptera, Drosophilidae). Zool Stud 2023; 62:e56. [PMID: 38628160 PMCID: PMC11019369 DOI: 10.6620/zs.2023.62-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/20/2023] [Indexed: 04/26/2024]
Abstract
The differential exploration of natural resources by Drosophila species has effects on fitness, with changes in life history and metabolic traits. There is a lack of research on the variation in these characters in different environments in Neotropical species of Drosophila. The purpose of this study was to evaluate the profile of life history traits, including viability, development time, and dry weight (as a measure of size), as well as the metabolic pools of triglyceride, glycogen, and protein, in populations from the southern and southeastern regions of Brazil of four Neotropical Drosophila species: D. willistoni, of the Sophophora subgenus, and D. mercatorum, D. maculifrons, and D. ornatifrons, which belong to the Drosophila subgenus. Life history and metabolic traits showed interpopulational variation in at least one species. When significant differences in life history parameters occurred, species of the same subgenus presented similar profiles, i.e., southern populations were larger, less viable, and showed longer development time. This was also observed for triglyceride. However, for the other two metabolic pools (glycogen and total proteins), D. maculifrons and D. ornatifrons presented inverse patterns to the other two species, with the highest values in southeastern populations and the lowest in southern populations. These populational variations indicate plasticity of the examined life history traits, which allows distinctive responses to different environmental conditions shared by speciesof the same subgenus. Nevertheless, interspecific comparisons did not reflect phylogenetic relationships, with the highest viability being found for D. willistoni and D. mercatorum, which is probably correlated to the ability of these species to explore a broader variety of habitats. On the other hand, the storage capability of metabolic pools seems to be species specific, determined by the adaptive history to the quality and availability of resources, with D. mercatorum (low) and D. ornatifrons (high) having opposing capacities to store metabolites from their diets.
Collapse
Affiliation(s)
- Camila Heloise Dos Santos
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| | - Karoline Aparecida Vieira Dos Santos
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| | - Luciana Paes de Barros Machado
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| | - Rogério Pincela Mateus
- UNICENTRO, CEDETEG, Universidade Estadual do Centro-Oeste, LaGEv, Laboratório de Genética e Evolução do Departamento de Ciências Biológicas, Élio Antonio Dalla Vecchia Alley, 838, Vila Carli, Guarapuava-PR 85040-167, Brazil. E-mail: (Mateus); (CH dos Santos); (KAV dos Santos); (de Barros Machado)
| |
Collapse
|
7
|
Gafarova E, Kuracji D, Sogomonyan K, Gorokhov I, Polev D, Zubova E, Golikova E, Granovitch A, Maltseva A. Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species. BIOLOGY 2023; 12:1521. [PMID: 38132347 PMCID: PMC10740740 DOI: 10.3390/biology12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches.
Collapse
Affiliation(s)
- Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Kuracji
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Karina Sogomonyan
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ivan Gorokhov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, Mira Street 14, 197101 St. Petersburg, Russia;
| | - Ekaterina Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Elena Golikova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Andrey Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Arina Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| |
Collapse
|
8
|
Jiao X, Li Z. Temporal dynamics and composition of ocular surface microbiota in C57BL/6J mice: uncovering a 12h ultradian rhythm. Front Cell Infect Microbiol 2023; 13:1244454. [PMID: 38029247 PMCID: PMC10651734 DOI: 10.3389/fcimb.2023.1244454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to investigate the presence of rhythmic fluctuations in the composition, abundance, and functions of commensal core bacteria on the ocular surface of C57BL/6J mice. Methods Male C57BL/6J mice, aged 12 weeks, were subjected to a 12-hour light/12-hour dark cycle. Ocular surface tissue samples were collected at four time points (ZT) over a 24-hour period at six-hour intervals. The core ocular surface microbiota's oscillation cycles and frequencies were assessed using 16S rRNA gene sequencing targeting the V3-V4 region, along with the JTK_CYCLE algorithm. Functional predictions of these bacteria were conducted using PICRUSt2. Results Deep sequencing of the ocular surface microbiota highlighted the high abundance of commensal bacteria, with Proteobacteria, Actinobacteriota, and Firmicutes collectively constituting over 90% of the total sample abundance. Among the 22 core bacterial genera, 11 exhibited robust 12-hour rhythms, including Halomonas, Pelagibacterium, Pseudomonas, Nesterenkonia, norank_f_Hyphomonadaceae, Stenotrophomonas, Anoxybacillus, Acinetobacter, Zoogloea, Brevibacillus, and Ralstonia. Further taxonomic analysis indicated significant intra-cluster similarities and inter-cluster differences at the order, family, and genus levels during ZT0/12 and ZT6/18. Community interaction networks and functional prediction analyses revealed synchronized 12-hour rhythmic oscillations in neural, immune, metabolic, and other pathways associated with symbiotic bacteria. Conclusion This study demonstrates the presence of ultradian rhythmic oscillations in commensal bacteria on the ocular surface of normal C57BL/6J mice, with a 12-hour cycle. These findings suggest a crucial role for ultradian rhythms in maintaining ocular surface homeostasis in the host.
Collapse
Affiliation(s)
- Xinwei Jiao
- Department of Pathology, Medical School, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Lopez-Ortiz C, Gracia-Rodriguez C, Belcher S, Flores-Iga G, Das A, Nimmakayala P, Balagurusamy N, Reddy UK. Drosophila melanogaster as a Translational Model System to Explore the Impact of Phytochemicals on Human Health. Int J Mol Sci 2023; 24:13365. [PMID: 37686177 PMCID: PMC10487418 DOI: 10.3390/ijms241713365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| |
Collapse
|
11
|
Bozkurt B, Terlemez G, Sezgin E. Basidiomycota species in Drosophila gut are associated with host fat metabolism. Sci Rep 2023; 13:13807. [PMID: 37612350 PMCID: PMC10447447 DOI: 10.1038/s41598-023-41027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
The importance of bacterial microbiota on host metabolism and obesity risk is well documented. However, the role of fungal microbiota on host storage metabolite pools is largely unexplored. We aimed to investigate the role of microbiota on D. melanogaster fat metabolism, and examine interrelatedness between fungal and bacterial microbiota, and major metabolic pools. Fungal and bacterial microbiota profiles, fat, glycogen, and trehalose metabolic pools are measured in a context of genetic variation represented by whole genome sequenced inbred Drosophila Genetic Reference Panel (DGRP) samples. Increasing Basidiomycota, Acetobacter persici, Acetobacter pomorum, and Lactobacillus brevis levels correlated with decreasing triglyceride levels. Host genes and biological pathways, identified via genome-wide scans, associated with Basidiomycota and triglyceride levels were different suggesting the effect of Basidiomycota on fat metabolism is independent of host biological pathways that control fungal microbiota or host fat metabolism. Although triglyceride, glycogen and trehalose levels were highly correlated, microorganisms' effect on triglyceride pool were independent of glycogen and trehalose levels. Multivariate analyses suggested positive interactions between Basidiomycota, A. persici, and L. brevis that collectively correlated negatively with fat and glycogen pools. In conclusion, fungal microbiota can be a major player in host fat metabolism. Interactions between fungal and bacterial microbiota may exert substantial control over host storage metabolite pools and influence obesity risk.
Collapse
Affiliation(s)
- Berkay Bozkurt
- Bioengineering Program, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gamze Terlemez
- Biotechnology Program, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Efe Sezgin
- Biotechnology Program, Izmir Institute of Technology, Urla, Izmir, Turkey.
- Department of Food Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
12
|
Smith BR, Patch KB, Gupta A, Knoles EM, Unckless RL. The genetic basis of variation in immune defense against Lysinibacillus fusiformis infection in Drosophila melanogaster. PLoS Pathog 2023; 19:e1010934. [PMID: 37549163 PMCID: PMC10434897 DOI: 10.1371/journal.ppat.1010934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/17/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023] Open
Abstract
The genetic causes of phenotypic variation often differ depending on the population examined, particularly if the populations were founded by relatively small numbers of genotypes. Similarly, the genetic causes of phenotypic variation among similar traits (resistance to different xenobiotic compounds or pathogens) may also be completely different or only partially overlapping. Differences in genetic causes for variation in the same trait among populations suggests context dependence for how selection acts on those traits. Similarities in the genetic causes of variation for different traits, on the other hand, suggests pleiotropy which would also influence how natural selection shapes variation in a trait. We characterized immune defense against a natural Drosophila pathogen, the Gram-positive bacterium Lysinibacillus fusiformis, in three different populations and found almost no overlap in the genetic architecture of variation in survival post infection. However, when comparing our results to a similar experiment with the fungal pathogen, B. bassiana, we found a convincing shared QTL peak for both pathogens. This peak contains the Bomanin cluster of Drosophila immune effectors. Loss of function mutants and RNAi knockdown experiments confirms a role of some of these genes in immune defense against both pathogens. This suggests that natural selection may act on the entire cluster of Bomanin genes (and the linked region under the QTL) or specific peptides for specific pathogens.
Collapse
Affiliation(s)
- Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kistie B. Patch
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Anjali Gupta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Emma M. Knoles
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
13
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
14
|
Ørsted M, Yashiro E, Hoffmann AA, Kristensen TN. Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genet 2022; 18:e1010206. [PMID: 35604942 PMCID: PMC9166449 DOI: 10.1371/journal.pgen.1010206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/03/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
It is becoming increasingly clear that microbial symbionts influence key aspects of their host’s fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations. It is becoming increasingly clear that organisms and the microbes that live on or in them–their microbiome–affect each other in profound ways that we are just beginning to understand. For instance, a diverse microbiome can help maintain metabolic functions or fight pathogens causing diseases. A disrupted microbiome may be especially critical for animals and plants that occur in low numbers because of threats from e.g. human exploitation or climate change, as they may already suffer from genetic challenges such as inbreeding and reduced evolutionary potential. The importance of such a reduction in population size, called a bottleneck, on the microbial diversity and the potential interactive effects on host health remains unexplored. Here we experimentally test these associations by investigating the microbiomes of 50 inbred or non-inbred populations of vinegar flies. We found that restricting the population size constrain the host’s genetic variation and simultaneously decreases the diversity of the microbiome that they harbor, and that both effects were detrimental to host fitness. The microbial communities in inbred host populations were less robust than in their non-inbred counterparts, suggesting that we should increasingly consider the microbiome diversity, which may ultimately influence the health and persistence of threatened species.
Collapse
Affiliation(s)
- Michael Ørsted
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Erika Yashiro
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute for Plant Sciences, Department of Biology, University of Cologne, Cologne, Germany
| | - Ary A. Hoffmann
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Torsten Nygaard Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Bombin A, Yan S, Bombin S, Mosley JD, Ferguson JF. Obesity influences composition of salivary and fecal microbiota and impacts the interactions between bacterial taxa. Physiol Rep 2022; 10:e15254. [PMID: 35384379 PMCID: PMC8980904 DOI: 10.14814/phy2.15254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 04/23/2023] Open
Abstract
Obesity is an increasing global health concern and is associated with a broad range of morbidities. The gut microbiota are increasingly recognized as important contributors to obesity and cardiometabolic health. This study aimed to characterize oral and gut microbial communities, and evaluate host: microbiota interactions between clinical obesity classifications. We performed 16S rRNA sequencing on fecal and salivary samples, global metabolomics profiling on plasma and stool samples, and dietary profiling in 135 healthy individuals. We grouped individuals by obesity status, based on body mass index (BMI), including lean (BMI 18-124.9), overweight (BMI 25-29.9), or obese (BMI ≥30). We analyzed differences in microbiome composition, community inter-relationships, and predicted microbial function by obesity status. We found that salivary bacterial communities of lean and obese individuals were compositionally and phylogenetically distinct. An increase in obesity status was positively associated with strong correlations between bacterial taxa, particularly with bacterial groups implicated in metabolic disorders including Fretibacterium, and Tannerella. Consumption of sweeteners, especially xylitol, significantly influenced compositional and phylogenetic diversities of salivary and fecal bacterial communities. In addition, obesity groups exhibited differences in predicted bacterial metabolic activity, which was correlated with host's metabolite concentrations. Overall, obesity was associated with distinct changes in bacterial community dynamics, particularly in saliva. Consideration of microbiome community structure and inclusion of salivary samples may improve our ability to understand pathways linking microbiota to obesity and cardiometabolic disease.
Collapse
Affiliation(s)
- Andrei Bombin
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shun Yan
- Department of GeneticsThe University of AlabamaBirminghamAlabamaUSA
| | - Sergei Bombin
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - Jonathan D. Mosley
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jane F. Ferguson
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Microbiome Innovation Center (VMIC)NashvilleTennesseeUSA
| |
Collapse
|
16
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
17
|
Jaramillo A, Castañeda LE. Gut Microbiota of Drosophila subobscura Contributes to Its Heat Tolerance and Is Sensitive to Transient Thermal Stress. Front Microbiol 2021; 12:654108. [PMID: 34025608 PMCID: PMC8137359 DOI: 10.3389/fmicb.2021.654108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota can contribute to host physiology leading to an increase of resistance to abiotic stress conditions. For instance, temperature has profound effects on ectotherms, and the role of the gut microbiota on the thermal tolerance of ectotherms is a matter of recent research. However, most of these studies have been focused on single static temperatures instead of evaluating thermal tolerance in a wide range of stressful temperatures. Additionally, there is evidence supporting that the gut microbiota is sensitive to environmental temperature, which induces changes in its composition and diversity. These studies have evaluated the effects of thermal acclimation (>2 weeks) on the gut microbiota, but we know little about the impact of transient thermal stress on the composition and diversity of the gut microbiota. Thus, we investigated the role of the gut microbiota on the heat tolerance of Drosophila subobscura by measuring the heat tolerance of conventional and axenic flies exposed to different heat stressful temperatures (35, 36, 37, and 38°C) and estimating the heat tolerance landscape for both microbiota treatments. Conventional flies exposed to mild heat conditions exhibited higher thermal tolerance than axenic flies, whereas at higher stressful temperatures there were no differences between axenic and conventional flies. We also assessed the impact of transient heat stress on the taxonomical abundance, diversity, and community structure of the gut microbiota, comparing non-stressed flies (exposed to 21°C) and heat-stressed flies (exposed to 34°C) from both sexes. Bacterial diversity indices, bacterial abundances, and community structure changed between non-stressed and heat-stressed flies, and this response was sex-dependent. In general, our findings provide evidence that the gut microbiota influences heat tolerance and that heat stress modifies the gut microbiota at the taxonomical and structural levels. These results demonstrate that the gut microbiota contributes to heat tolerance and is also highly sensitive to transient heat stress, which could have important consequences on host fitness, population risk extinction, and the vulnerability of ectotherms to current and future climatic conditions.
Collapse
Affiliation(s)
- Angélica Jaramillo
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis E Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Henry LP, Ayroles JF. Meta-analysis suggests the microbiome responds to Evolve and Resequence experiments in Drosophila melanogaster. BMC Microbiol 2021; 21:108. [PMID: 33836662 PMCID: PMC8034159 DOI: 10.1186/s12866-021-02168-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Experimental evolution has a long history of uncovering fundamental insights into evolutionary processes, but has largely neglected one underappreciated component--the microbiome. As eukaryotic hosts evolve, the microbiome may also respond to selection. However, the microbial contribution to host evolution remains poorly understood. Here, we re-analyzed genomic data to characterize the metagenomes from ten Evolve and Resequence (E&R) experiments in Drosophila melanogaster to determine how the microbiome changed in response to host selection. RESULTS Bacterial diversity was significantly different in 5/10 studies, primarily in traits associated with metabolism or immunity. Duration of selection did not significantly influence bacterial diversity, highlighting the importance of associations with specific host traits. CONCLUSIONS Our genomic re-analysis suggests the microbiome often responds to host selection; thus, the microbiome may contribute to the response of Drosophila in E&R experiments. We outline important considerations for incorporating the microbiome into E&R experiments. The E&R approach may provide critical insights into host-microbiome interactions and fundamental insight into the genomic basis of adaptation.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology & Evolutionary Biology, 150 Carl Icahn Laboratory, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| | - Julien F Ayroles
- Department of Ecology & Evolutionary Biology, 150 Carl Icahn Laboratory, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
19
|
Silva V, Palacios-Muñoz A, Okray Z, Adair KL, Waddell S, Douglas AE, Ewer J. The impact of the gut microbiome on memory and sleep in Drosophila. J Exp Biol 2021; 224:jeb233619. [PMID: 33376141 PMCID: PMC7875489 DOI: 10.1242/jeb.233619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome has been proposed to influence diverse behavioral traits of animals, although the experimental evidence is limited and often contradictory. Here, we made use of the tractability of Drosophila melanogaster for both behavioral analyses and microbiome studies to test how elimination of microorganisms affects a number of behavioral traits. Relative to conventional flies (i.e. with unaltered microbiome), microbiologically sterile (axenic) flies displayed a moderate reduction in memory performance in olfactory appetitive conditioning and courtship assays. The microbiological status of the flies had a small or no effect on anxiety-like behavior (centrophobism) or circadian rhythmicity of locomotor activity, but axenic flies tended to sleep for longer and displayed reduced sleep rebound after sleep deprivation. These last two effects were robust for most tests conducted on both wild-type Canton S and w1118 strains, as well for tests using an isogenized panel of flies with mutations in the period gene, which causes altered circadian rhythmicity. Interestingly, the effect of absence of microbiota on a few behavioral features, most notably instantaneous locomotor activity speed, varied among wild-type strains. Taken together, our findings demonstrate that the microbiome can have subtle but significant effects on specific aspects of Drosophila behavior, some of which are dependent on genetic background.
Collapse
Affiliation(s)
- Valeria Silva
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - John Ewer
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
20
|
The Drosophila melanogaster Neprilysin Nepl15 is involved in lipid and carbohydrate storage. Sci Rep 2021; 11:2099. [PMID: 33483521 PMCID: PMC7822871 DOI: 10.1038/s41598-021-81165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
The prototypical M13 peptidase, human Neprilysin, functions as a transmembrane "ectoenzyme" that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.
Collapse
|
21
|
Bombin A, Cunneely O, Eickman K, Bombin S, Ruesy A, Su M, Myers A, Cowan R, Reed L. Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster. Microorganisms 2020; 8:E1972. [PMID: 33322411 PMCID: PMC7763083 DOI: 10.3390/microorganisms8121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.
Collapse
Affiliation(s)
- Andrei Bombin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| | | | | | | | | | | | | | | | - Laura Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| |
Collapse
|
22
|
Henry Y, Tarapacki P, Colinet H. Larval density affects phenotype and surrounding bacterial community without altering gut microbiota in Drosophila melanogaster. FEMS Microbiol Ecol 2020; 96:5813260. [PMID: 32221589 DOI: 10.1093/femsec/fiaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Larval crowding represents a complex stressful situation arising from inter-individual competition for time- and space-limited resources. The foraging of a large number of individuals may alter the chemical and bacterial composition of food and in turn affect individual's traits. Here we used Drosophila melanogaster to explore these assumptions. First, we used a wide larval density gradient to investigate the impact of crowding on phenotypical traits. We confirmed that high densities increased development time and pupation height, and decreased viability and body mass. Next, we measured concentrations of common metabolic wastes (ammonia, uric acid) and characterized bacterial communities, both in food and in larvae, for three contrasting larval densities (low, medium and high). Ammonia concentration increased in food from medium and high larval densities, but remained low in larvae regardless of the larval density. Uric acid did not accumulate in food but was detected in larvae. Surprisingly, bacterial composition remained stable in guts of larvae whatever their rearing density, although it drastically changed in the food. Overall, these results indicate that crowding deeply affects individuals, and also their abiotic and biotic surroundings. Environmental bacterial communities likely adapt to altered nutritional situations resulting from crowding, putatively acting as scavengers of larval metabolic wastes.
Collapse
Affiliation(s)
- Y Henry
- ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France.,Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - P Tarapacki
- ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France
| | - H Colinet
- ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France
| |
Collapse
|
23
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Klepsatel P, Knoblochová D, Girish TN, Dircksen H, Gáliková M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol Biol 2020; 20:93. [PMID: 32727355 PMCID: PMC7392729 DOI: 10.1186/s12862-020-01663-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background The adaptive significance of phenotypic changes elicited by environmental conditions experienced early in life has long attracted attention in evolutionary biology. In this study, we used Drosophila melanogaster to test whether the developmental diet produces phenotypes better adapted to cope with similar nutritional conditions later in life. To discriminate among competing hypotheses on the underlying nature of developmental plasticity, we employed a full factorial design with several developmental and adult diets. Specifically, we examined the effects of early- and late-life diets (by varying their yeast and sugar contents) on reproductive fitness and on the amount of energy reserves (fat and glycogen) in two wild-caught populations. Results We found that individuals that had developed on either low-yeast or high-sugar diet showed decreased reproductive performance regardless of their adult nutritional environment. The lower reproductive fitness might be caused by smaller body size and reduced ovariole number. Overall, these results are consistent with the silver spoon concept, which posits that development in a suboptimal environment negatively affects fitness-associated traits. On the other hand, the higher amount of energy reserves (fat) in individuals that had developed in a suboptimal environment might represent either an adaptive response or a side-effect of compensatory feeding. Conclusion Our findings suggest that the observed differences in the adult physiology induced by early-life diet likely result from inevitable and general effects of nutrition on the development of reproductive and metabolic organs, rather than from adaptive mechanisms.
Collapse
Affiliation(s)
- Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| | - Diana Knoblochová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.,Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Thirnahalli Nagaraj Girish
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, 515134, India
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, S-106 91, Stockholm, Sweden
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
25
|
Malek HL, Long TAF. On the use of private versus social information in oviposition site choice decisions by Drosophila melanogaster females. Behav Ecol 2020. [DOI: 10.1093/beheco/araa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Individuals are faced with decisions throughout their lifetimes, and the choices they make often have important consequences toward their fitness. Being able to discern which available option is best to pursue often incurs sampling costs, which may be largely avoided by copying the behavior and decisions of others. Although social learning and copying behaviors are widespread, much remains unknown about how effective and adaptive copying behavior is, as well as the factors that underlie its expression. Recently, it has been suggested that since female fruit flies (Drosophila melanogaster) appear to rely heavily on public information when selecting oviposition sites, they are a promising model system for researching patch-choice copying, and more generally, the mechanisms that control decision making. Here, we set out to determine how well female distinguish between socially produced cues, and whether females are using “relevant” signals when choosing an oviposition site. We found that females showed a strong preference for ovipositing on media patches that had been previously occupied by ovipositing females of the same species and diet over other female outgroups. However, in a separate assay, we observed that females favored ovipositing on media patches that previously housed virgin males over those exhibiting alternative conspecific signals. Our results confirm that females use cues left behind by other flies when choosing between potential oviposition sites, though their prioritization of these signals raises serious questions as to whether fruit flies are employing copying behavior, or are instead responding to signals that may not be of relevance to oviposition site suitability.
Collapse
Affiliation(s)
- Heather L Malek
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario, Canada
| | - Tristan A F Long
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario, Canada
| |
Collapse
|
26
|
Ayayee PA, Kinney G, Yarnes C, Larsen T, Custer GF, van Diepen LTA, Muñoz-Garcia A. Role of the gut microbiome in mediating standard metabolic rate after dietary shifts in the viviparous cockroach, Diploptera punctata. J Exp Biol 2020; 223:jeb218271. [PMID: 32393544 DOI: 10.1242/jeb.218271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023]
Abstract
Diet may be a significant determinant of insect gut microbiome composition. However, the extent to which dietary shifts shape both the composition and relevant functions of insect gut microbiomes, and ultimately impact host energy balance (i.e. metabolic phenotype), is not well understood. We investigated the impacts of diet switching on Diploptera punctata females maintained on a dog food (DF) diet relative to those fed a comparatively sub-optimal cellulose-amended dog food (CADF) diet for 4 weeks. After this period, dietary shift resulted in a significantly higher average mass-specific standard metabolic rate (SMR) in CADF-fed females compared with DF-fed females. We also uncovered significant 13C-enrichment in DF-fed insect samples relative to CADF-fed insect samples and lowered bacterial essential amino acid (EAA) provisioning in CADF-fed samples. Differences in SMR and EAA provisioning were not accompanied by significant differences in overall microbiome composition between the two groups. However, cellulolytic and nitrogen-fixing bacterial families dominant in wild omnivorous cockroaches and wood-feeding termites were significantly enriched in CADF-fed females than in DF-fed females, at the end of the study. We propose that these changes in microbiome composition after dietary shifts are associated with changes in EAA provisioning and possibly SMR. Further studies are needed to comprehensively understand the relative importance of gut microbial functions among the complexity of factors known to underscore SMR responses in insects under varying dietary conditions.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY 82071, USA
| | - George Kinney
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chris Yarnes
- Department of Plant Sciences, Stable Isotope Facility, University of California, Davis, Davis, CA 95616, USA
| | - Thomas Larsen
- Max Planck Institute for the Science of Human History, Kahlaische Strasse, 07745 Jena, Germany
| | - Gordon F Custer
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY 82071, USA
| | - Linda T A van Diepen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY 82071, USA
| | - Agustí Muñoz-Garcia
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Mansfield, Mansfield, OH 43210, USA
| |
Collapse
|
27
|
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB, Kapahi P. GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 2020; 30:2749-2760.e3. [PMID: 32502405 DOI: 10.1016/j.cub.2020.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) is the most robust means to extend lifespan and delay age-related diseases across species. An underlying assumption in the aging field is that DR enhances both lifespan and physical activity through similar mechanisms, but this has not been rigorously tested in different genetic backgrounds. Furthermore, nutrient response genes responsible for lifespan extension or age-related decline in functionality remain underexplored in natural populations. To address this, we measured nutrient-dependent changes in lifespan and age-related decline in climbing ability in the Drosophila Genetic Reference Panel fly strains. On average, DR extended lifespan and delayed decline in climbing ability, but there was a lack of correlation between these traits across individual strains, suggesting that distinct genetic factors modulate these traits independently and that genotype determines response to diet. Only 50% of strains showed positive response to DR for both lifespan and climbing ability, 14% showed a negative response for one trait but not both, and 35% showed no change in one or both traits. Through GWAS, we uncovered a number of genes previously not known to be diet responsive nor to influence lifespan or climbing ability. We validated decima as a gene that alters lifespan and daedalus as one that influences age-related decline in climbing ability. We found that decima influences insulin-like peptide transcription in the GABA receptor neurons downstream of short neuropeptide F precursor (sNPF) signaling. Modulating these genes produced independent effects on lifespan and physical activity decline, which suggests that these age-related traits can be regulated through distinct mechanisms.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA
| | | | - Tyler A Hilsabeck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA.
| |
Collapse
|
28
|
The Drosophila Post-mating Response: Gene Expression and Behavioral Changes Reveal Perdurance and Variation in Cross-Tissue Interactions. G3-GENES GENOMES GENETICS 2020; 10:967-983. [PMID: 31907222 PMCID: PMC7056969 DOI: 10.1534/g3.119.400963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Examining cross-tissue interactions is important for understanding physiology and homeostasis. In animals, the female gonad produces signaling molecules that act distally. We examine gene expression in Drosophila melanogaster female head tissues in 1) virgins without a germline compared to virgins with a germline, 2) post-mated females with and without a germline compared to virgins, and 3) post-mated females mated to males with and without a germline compared to virgins. In virgins, the absence of a female germline results in expression changes in genes with known roles in nutrient homeostasis. At one- and three-day(s) post-mating, genes that change expression are enriched with those that function in metabolic pathways, in all conditions. We systematically examine female post-mating impacts on sleep, food preference and re-mating, in the strains and time points used for gene expression analyses and compare to published studies. We show that post-mating, gene expression changes vary by strain, prompting us to examine variation in female re-mating. We perform a genome-wide association study that identifies several DNA polymorphisms, including four in/near Wnt signaling pathway genes. Together, these data reveal how gene expression and behavior in females are influenced by cross-tissue interactions, by examining the impact of mating, fertility, and genotype.
Collapse
|
29
|
Henry Y, Overgaard J, Colinet H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp Biochem Physiol A Mol Integr Physiol 2020; 241:110626. [DOI: 10.1016/j.cbpa.2019.110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
30
|
Garcia-Lozano M, Haynes J, Lopez-Ortiz C, Natarajan P, Peña-Garcia Y, Nimmakayala P, Stommel J, Alaparthi SB, Sirbu C, Balagurusamy N, Reddy UK. Effect of Pepper-Containing Diets on the Diversity and Composition of Gut Microbiome of Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21030945. [PMID: 32023882 PMCID: PMC7038135 DOI: 10.3390/ijms21030945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
One of the greatest impacts on the gastrointestinal microbiome is diet because the host and microbiome share the same food source. In addition, the effect of diet can diverge depending on the host genotype. Diets supplemented with phytochemicals found in peppers might cause shifts in the microbiome. Thus, understanding how these interactions occur can reveal potential health implications associated with such changes. This study aims to explore the gut microbiome of different Drosophila genetic backgrounds and the effects of dietary pepper treatments on its composition and structure. We analyzed the gut microbiomes of three Drosophila melanogaster genetic backgrounds (Canton-S, Oregon-RC, and Berlin-K) reared on control and pepper-containing diets (bell, serrano, and habanero peppers). Results of 16S rRNA gene sequencing revealed that the variability of Drosophila gut microbiome can be driven mainly by genetic factors. When the abundance of these communities is considered, pepper-containing diets also appear to have an effect. The most relevant change in microbial composition was the increment of Lactobacillaceae and Acetobacteraceae abundance in the pepper-containing diets in comparison with the controls in Oregon-RC and Berlin-K. Regression analysis demonstrated that this enhancement was associated with the content of phenolic compounds and carotenoids of the peppers utilized in this study; specifically, to the concentration of β-carotene, β-cryptoxanthin, myricetin, quercetin, and apigenin.
Collapse
Affiliation(s)
- Marleny Garcia-Lozano
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - Joshua Haynes
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - Yadira Peña-Garcia
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - John Stommel
- USDA, ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA;
| | - Suresh B. Alaparthi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
| | - Cristian Sirbu
- Charleston Area Medical Center Health Education and Research Institute, Center for Cancer Research, Charleston, WV 25304, USA;
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
- Correspondence: (N.B.); (U.K.R.)
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (M.G.-L.); (J.H.); (C.L.-O.); (P.N.); (Y.P.-G.); (P.N.); (S.B.A.)
- Correspondence: (N.B.); (U.K.R.)
| |
Collapse
|
31
|
Ng'oma E, Williams-Simon PA, Rahman A, King EG. Diverse biological processes coordinate the transcriptional response to nutritional changes in a Drosophila melanogaster multiparent population. BMC Genomics 2020; 21:84. [PMID: 31992183 PMCID: PMC6988245 DOI: 10.1186/s12864-020-6467-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Environmental variation in the amount of resources available to populations challenge individuals to optimize the allocation of those resources to key fitness functions. This coordination of resource allocation relative to resource availability is commonly attributed to key nutrient sensing gene pathways in laboratory model organisms, chiefly the insulin/TOR signaling pathway. However, the genetic basis of diet-induced variation in gene expression is less clear. Results To describe the natural genetic variation underlying nutrient-dependent differences, we used an outbred panel derived from a multiparental population, the Drosophila Synthetic Population Resource. We analyzed RNA sequence data from multiple female tissue samples dissected from flies reared in three nutritional conditions: high sugar (HS), dietary restriction (DR), and control (C) diets. A large proportion of genes in the experiment (19.6% or 2471 genes) were significantly differentially expressed for the effect of diet, and 7.8% (978 genes) for the effect of the interaction between diet and tissue type (LRT, Padj. < 0.05). Interestingly, we observed similar patterns of gene expression relative to the C diet, in the DR and HS treated flies, a response likely reflecting diet component ratios. Hierarchical clustering identified 21 robust gene modules showing intra-modularly similar patterns of expression across diets, all of which were highly significant for diet or diet-tissue interaction effects (FDR Padj. < 0.05). Gene set enrichment analysis for different diet-tissue combinations revealed a diverse set of pathways and gene ontology (GO) terms (two-sample t-test, FDR < 0.05). GO analysis on individual co-expressed modules likewise showed a large number of terms encompassing many cellular and nuclear processes (Fisher exact test, Padj. < 0.01). Although a handful of genes in the IIS/TOR pathway including Ilp5, Rheb, and Sirt2 showed significant elevation in expression, many key genes such as InR, chico, most insulin peptide genes, and the nutrient-sensing pathways were not observed. Conclusions Our results suggest that a more diverse network of pathways and gene networks mediate the diet response in our population. These results have important implications for future studies focusing on diet responses in natural populations.
Collapse
Affiliation(s)
- E Ng'oma
- University of Missouri, 401 Tucker Hall, Columbia, MO, 65211, USA.
| | | | - A Rahman
- University of Missouri, 401 Tucker Hall, Columbia, MO, 65211, USA
| | - E G King
- University of Missouri, 401 Tucker Hall, Columbia, MO, 65211, USA
| |
Collapse
|
32
|
Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, Chowdhury ZS, Biswas P, Huang V, Shin LJ, Wang LC, Gauthier MPL, Barone MC, Montooth KL, Welte MA, Rideout EJ. A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biol 2020; 18:e3000595. [PMID: 31961851 PMCID: PMC6994176 DOI: 10.1371/journal.pbio.3000595] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/31/2020] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male–female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex. An investigation of the genetic and physiological mechanisms underlying sex differences in fat storage and breakdown in the fruit fly Drosophila identifies previously unrecognized sex- and cell type-specific roles for the conserved triglyceride lipase brummer.
Collapse
Affiliation(s)
- Lianna W. Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Bartlett
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin L. Buchanan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jason W. Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui Ju Chih
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zahid S. Chowdhury
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian Huang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Leah J. Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lin Chuan Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie-Pierre L. Gauthier
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria C. Barone
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Kristi L. Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
33
|
Schönborn JW, Jehrke L, Mettler-Altmann T, Beller M. FlySilico: Flux balance modeling of Drosophila larval growth and resource allocation. Sci Rep 2019; 9:17156. [PMID: 31748517 PMCID: PMC6868164 DOI: 10.1038/s41598-019-53532-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Organisms depend on a highly connected and regulated network of biochemical reactions fueling life sustaining and growth promoting functions. While details of this metabolic network are well established, knowledge of the superordinate regulatory design principles is limited. Here, we investigated by iterative wet lab and modeling experiments the resource allocation process during the larval development of Drosophila melanogaster. We chose this system, as survival of the animals depends on the successful allocation of their available resources to the conflicting processes of growth and storage metabolite deposition. First, we generated “FlySilico”, a curated metabolic network of Drosophila, and performed time-resolved growth and metabolite measurements with larvae raised on a holidic diet. Subsequently, we performed flux balance analysis simulations and tested the predictive power of our model by simulating the impact of diet alterations on growth and metabolism. Our predictions correctly identified the essential amino acids as growth limiting factor, and metabolic flux differences in agreement with our experimental data. Thus, we present a framework to study important questions of resource allocation in a multicellular organism including process priorization and optimality principles.
Collapse
Affiliation(s)
- Jürgen Wilhelm Schönborn
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Lisa Jehrke
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry & Cluster of Excellence on Plant Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany. .,Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
34
|
Zheng F, Zhu D, Giles M, Daniell T, Neilson R, Zhu YG, Yang XR. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:70-78. [PMID: 31100670 DOI: 10.1016/j.scitotenv.2019.04.384] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Although the effects of fertilization on the abundance and diversity of soil nematodes have been widely studied, the impact of fertilization on soil nematode microbiomes remains largely unknown. Here, we investigated how different fertilizers: no fertilizer, mineral fertilizer, clean slurry (pig manure with a reduced antibiotic burden) and dirty slurry (pig manure with antibiotics) affect the microbiome of a dominant soil nematode and its associated antibiotic resistance genes (ARGs). The results of 16S rRNA gene high throughput sequencing showed that the microbiome of the soil nematode Dorylaimus stagnalis is diverse (Shannon index: 9.95) and dominated by Proteobacteria (40.3%). Application of mineral fertilizers significantly reduced the diversity of the nematode microbiome (by 28.2%; P < 0.05) but increased the abundance of Proteobacteria (by 70.1%; P = 0.001). Microbial community analysis, using a null hypothesis model, indicated that microbiomes associated with the nematode are not neutrally assembled. Organic fertilizers also altered the diversity of the nematode microbiome, but had no impact on its composition as illustrated by principal coordinates analysis (PCoA). Interestingly, although no change of total ARGs was observed in the nematode microbiome and no significant relationship existed between nematode microbiome and resistome, the abundance of 48 out of a total of 75 ARGs was enriched in the organic fertilizer treatments. Thus, the data suggests that ARGs in the nematode microbiome still had a risk of horizontal gene transfer under fertilization and nematodes might be a potential refuge for ARGs.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Madeline Giles
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Tim Daniell
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK; Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
35
|
Fromont C, Adair KL, Douglas AE. Correlation and causation between the microbiome, Wolbachia and host functional traits in natural populations of drosophilid flies. Mol Ecol 2019; 28:1826-1841. [PMID: 30714238 DOI: 10.1111/mec.15041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Resident microorganisms are known to influence the fitness and traits of animals under controlled laboratory conditions, but the relevance of these findings to wild animals is uncertain. This study investigated the host functional correlates of microbiota composition in a wild community of three sympatric species of mycophagous drosophilid flies, Drosophila falleni, Drosophila neotestacea and Drosophila putrida. Specifically, we quantified bacterial communities and host transcriptomes by parallel 16S rRNA gene amplicon sequencing and RNA-Seq of individual flies. Among-fly variation in microbiota composition did not partition strongly by sex or species, and included multiple modules, that is, sets of bacterial taxa whose abundance varied in concert across different flies. The abundance of bacteria in several modules varied significantly with multiple host transcripts, especially in females, but the identity of the correlated host transcriptional functions differed with host species, including epithelial barrier function in D. falleni, muscle function in D. putrida, and insect growth and development in D. neotestacea. In D. neotestacea, which harbours the endosymbionts Wolbachia and Spiroplasma, Wolbachia promotes the abundance of Spiroplasma, and is positively correlated with abundance of Lactobacillales and Bacteroidales. Furthermore, most correlations between host gene expression and relative abundance of bacterial modules were co-correlated with abundance of Wolbachia (but not Spiroplasma), indicative of an interdependence between host functional traits, microbiota composition and Wolbachia abundance in this species. These data suggest that, in these natural populations of drosophilid flies, different host species interact with microbial communities in functionally different ways that can vary with the abundance of endosymbionts.
Collapse
Affiliation(s)
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, New York
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
36
|
Gáliková M, Klepsatel P. Obesity and Aging in the Drosophila Model. Int J Mol Sci 2018; 19:ijms19071896. [PMID: 29954158 PMCID: PMC6073435 DOI: 10.3390/ijms19071896] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Being overweight increases the risk of many metabolic disorders, but how it affects lifespan is not completely clear. Not all obese people become ill, and the exact mechanism that turns excessive fat storage into a health-threatening state remains unknown. Drosophila melanogaster has served as an excellent model for many diseases, including obesity, diabetes, and hyperglycemia-associated disorders, such as cardiomyopathy or nephropathy. Here, we review the connections between fat storage and aging in different types of fly obesity. Whereas obesity induced by high-fat or high-sugar diet is associated with hyperglycemia, cardiomyopathy, and in some cases, shortening of lifespan, there are also examples in which obesity correlates with longevity. Transgenic lines with downregulations of the insulin/insulin-like growth factor (IIS) and target of rapamycin (TOR) signaling pathways, flies reared under dietary restriction, and even certain longevity selection lines are obese, yet long-lived. The mechanisms that underlie the differential lifespans in distinct types of obesity remain to be elucidated, but fat turnover, inflammatory pathways, and dysregulations of glucose metabolism may play key roles. Altogether, Drosophila is an excellent model to study the physiology of adiposity in both health and disease.
Collapse
Affiliation(s)
- Martina Gáliková
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, S-106 91 Stockholm, Sweden.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|