1
|
Yucesoy SN, Temiz K, Ak T. Evolving dermatological complaints following the 2023 Turkey and Syria earthquake: insights from a disaster-affected region. Arch Dermatol Res 2025; 317:682. [PMID: 40195136 DOI: 10.1007/s00403-025-04195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Natural disasters, such as earthquakes, significantly impact public health, including dermatological conditions. This study aimed to evaluate the dermatological complaints of patients who presented to the dermatology outpatient clinic of Hatay Hassa State Hospital following the February 2023 Turkey and Syria earthquake. This retrospective descriptive study analyzed dermatological complaints between April 2023 and January 2024. Patients were categorized into three time periods: Group 1 (April-June 2023), Group 2 (July-September 2023), and Group 3 (October 2023-January 2024). Complaints were classified into 17 groups, and temporal trends were analyzed. A total of 5103 patients were included, with a female predominance (60.7%) and a median age of 26 years (IQR: 18-43). Infections and infestations (Group 1) were the most frequent complaints throughout the study, peaking immediately after the earthquake (38%). Acne (Group 2) and neurocutaneous disorders showed temporal declines, while hair disorders (Group 14) and disorders due to physical agents (Group 13) exhibited seasonal peaks. Hygiene challenges, communal living, and stress were identified as contributing factors to the observed trends. Scabies outbreaks were notable, underscoring the importance of treatment algorithms and national guidelines in managing infectious skin diseases. Dermatological complaints in post-disaster settings evolve over time, reflecting the interplay of environmental, psychological, and seasonal factors. Integrating hygiene interventions and evidence-based dermatological care into disaster response strategies is critical for addressing both acute and chronic conditions. Future research should explore the psychological dimensions of dermatological health in disaster-affected populations.
Collapse
Affiliation(s)
| | - Koray Temiz
- Department of Plastic Reconstructive and Aesthetic Surgery, Iskenderun State Hospital, Hatay, Turkey
| | - Tumay Ak
- Cerrahpasa Medical Faculty, Department of Internal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Kang H, Hwang HJ, Kim E, Lim SH, Choi EH. Activation of Local 11β-Hydroxysteroid Dehydrogenase Type 1 by Diosmetin Enhances Endogenous Glucocorticoid Levels to Alleviate Skin Inflammation: Insights Into a Novel Therapeutic Strategy for Atopic Dermatitis. Exp Dermatol 2025; 34:e70039. [PMID: 39887444 DOI: 10.1111/exd.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Glucocorticoids (GCs) are synthesised de novo by peripheral tissues and the adrenal cortex of the hypothalamic-pituitary-adrenal axis. Skin expresses an enzyme called 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which reduces cortisone to the active hormone cortisol which activates GC receptors. 11β-HSD1 plays a significant role in alleviating atopic inflammation through the elevation of the concentrations of active GC in the skin. This study aimed to investigate the role of diosmetin as an activator of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In human keratinocytes, diosmetin was found to upregulate 11β-HSD1 protein expression and cortisol levels, as well as the transcriptional expression of 11β-HSD1 mRNA. However, this upregulation of 11β-HSD1 mRNA was abrogated in keratinocytes transfected with 11β-HSD1 small interfering RNA (siRNA). In an atopic dermatitis (AD) murine model, topical administration of diosmetin significantly attenuated basal transepidermal water loss (TEWL) and the Eczema Area and Severity Index (EASI), while enhancing stratum corneum (SC) hydration. Diosmetin also increased corticosterone levels in the SC and upregulated 11β-HSD1 expression in both the serum and epidermis. Furthermore, diosmetin treatment led to a marked reduction in serum immunoglobulin E (IgE) and tumour necrosis factor-α (TNF-α) levels, and suppressed mRNA expression of thymic stromal lymphopoietin (TSLP), interleukin-1β (IL-1β), IL-4, and IL-13 in the epidermis. Collectively, these findings suggest that diosmetin promotes the endogenous activation of glucocorticoids via local 11β-HSD1 activation, underscoring its potential as a novel topical therapeutic agent for the management of inflammatory skin disorders, such as AD.
Collapse
Affiliation(s)
- Hyun Kang
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
3
|
Pujos M, Chamayou‐Robert C, Parat M, Bonnet M, Couret S, Robiolo A, Doucet O. Impact of Chronic Moderate Psychological Stress on Skin Aging: Exploratory Clinical Study and Cellular Functioning. J Cosmet Dermatol 2025; 24:e16634. [PMID: 39506493 PMCID: PMC11743297 DOI: 10.1111/jocd.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Skin is continuously exposed to environmental external and internal factors, including psychological stress (PS). PS has been reported to trigger different dermatoses such as psoriasis, atopic dermatitis, vitiligo, alopecia areata, and acne through the release of cortisol and epinephrine. OBJECTIVE To clinically explore PS-induced measurable skin aging signs in subjects with moderate versus mild chronic PS, and to investigate the effect of chronic PS on DNA damage at cellular level. METHODS In vitro stress tests with cortisol and epinephrine, and with cortisol only on extracellular matrix (ECM) synthesis, as well as on normal human skin fibroblast and keratinocyte functioning, including skin barrier and wound healing were performed. RESULTS Moderately stressed subjects in the context of the clinical study had a significantly decreased antioxidant potential and impacted skin barrier integrity, as well as significantly increased signs of microrelief alterations (skin texture and fine lines) reaching an increased severity of about 32.9%. At a cellular level, DNA integrity, ECM synthesis, wound healing, and skin barrier parameters were impacted by increased stress hormone levels. CONCLUSION The clinical exploratory studies presented herewith, as well as the study of cell functioning under stress, have provided evidence that chronic PS significantly affects skin homeostasis and triggers skin aging.
Collapse
|
4
|
Xu D, Wu Y. Ectoin attenuates cortisone-induced skin issues by suppression GR signaling and the UVB-induced overexpression of 11β-HSD1. J Cosmet Dermatol 2024; 23:4303-4314. [PMID: 39222375 PMCID: PMC11626367 DOI: 10.1111/jocd.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Accelerated pace of modern work and lifestyles subject individuals to various external and psychological stressors, which, in turn, can trigger additional stress through visible signs of fatigue, hair loss, and obesity. As the primary stress hormone affecting skin health, cortisol connects to the glucocorticoid receptor (GR) to aggravate skin issues induced by stress. This activation depends on the expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in skin cells, which locally converts cortisone-produced by the central and peripheral hypothalamic-pituitary-adrenal axis-into its active form. METHODS Our study delves deeper into stress's adverse effects on the skin, including the disruption of keratinocyte structural proteins, the loss of basement membrane proteins, and the degradation of collagen. RESULTS Remarkably, we discovered that Ectoin, an amino acid derivative obtained from halophilic bacteria, is capable of mitigating the inhibitory impacts of cortisone on the expression of cutaneous functional proteins, including involucrin, loricrin, laminin-5, and claudin-1. Moreover, Ectoin reduces the suppressive effect of stress on collagen and hyaluronic acid synthesis by impeding GR signal transduction. Additionally, Ectoin counterbalances the UVB-induced overexpression of 11β-HSD1, thereby diminishing the concentration of endogenous glucocorticoids. CONCLUSION Our findings illuminate the significant potential of Ectoin as a preventative agent against stress-induced skin maladies.
Collapse
Affiliation(s)
- Dailin Xu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| | - Yue Wu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| |
Collapse
|
5
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Capaccia C, Ciancabilla F, Porcellato I, Brachelente C, Zerani M, Maranesi M, Guelfi G. The Molecular Signature Related to Local Inflammatory and Immune Response in Canine Cutaneous Hypersensitivity Reactions: A Preliminary Study. Curr Issues Mol Biol 2024; 46:9162-9178. [PMID: 39194759 DOI: 10.3390/cimb46080542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Cutaneous hypersensitivity reactions (CHRs) are complex inflammatory skin disorders that affect humans and dogs. This study examined the inflammatory and immune responses leading to skin damage, inflammation, and irritation by investigating gene expression through quantitative PCR (qPCR) and protein localization through the immunohistochemistry (IHC) of specific receptors and molecules involved in CHRs. Formalin-fixed paraffin-embedded (FFPE) samples from canine CHR skin (n = 20) and healthy dog skin (n = 3) were analyzed for expression levels of eight genes, including members of the pattern recognition receptor (PRR) family, CD209 and CLEC4G, the Regakine-1-like chemokine, and acute phase proteins (APPs), LBP-like and Hp-like genes. Additionally, we examined the local involvement of IL-6, Janus Kinase 1 (JAK1), and the signal transducer activator of transcription 3 (STAT3) in the CHR cases. The study demonstrated statistically significant increases in the expression levels of CD209, Hp-like (p < 0.01), LBP-like, Regakine-1-like, and CLEC4G (p < 0.05) genes in CHRs compared to healthy controls. Conversely, IL-6, JAK1, and STAT3 showed no significant difference between the two groups (p > 0.05). Protein analysis revealed JAK1 and STAT3 expression in CHR hyperplastic epithelial cells, dermal fibroblasts, and endothelial cells of small capillaries, indicating a possible involvement in the JAK/STAT pathway in local inflammatory response regulation. Our findings suggest that the skin plays a role in the development of CHRs.
Collapse
Affiliation(s)
- Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
7
|
Kim J, Ye S, Jun SH, Kang NG. Efficacy of SGPP2 Modulation-Mediated Materials in Ameliorating Facial Wrinkles and Pore Sagging. Curr Issues Mol Biol 2024; 46:9122-9135. [PMID: 39194756 DOI: 10.3390/cimb46080539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Skin aging is a complex process with internal and external factors. Recent studies have suggested that enlargement and elongation of skin pores may be early signs of aging in addition to wrinkles and loss of elasticity. This study explores the potential of targeting the SGPP2 gene in keratinocytes to address these emerging concerns. Using siRNA knockdown, we demonstrated that SGPP2 modulates the production of inflammatory cytokines (interleukin (IL)-1β and IL-8). Furthermore, conditioned media experiments revealed that keratinocytes with high SGPP2 expression indirectly influence fibroblast extracellular matrix remodeling, potentially contributing to enlarged pores and wrinkle formation. Based on these findings, we explored a complex formulation containing four SGPP2-modulating compounds. In vitro and in vivo experiments demonstrated the efficacy of the formulation in mitigating fine wrinkles and pore enlargement. This study highlights the significant implications of developing a more effective antiaging cosmetic formulation by targeting underlying inflammatory processes that drive skin aging.
Collapse
Affiliation(s)
- Juhyun Kim
- LG Household & Health Care (LG H&H) R&D Center, Seoul 07795, Republic of Korea
| | - Sanghyun Ye
- LG Household & Health Care (LG H&H) R&D Center, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household & Health Care (LG H&H) R&D Center, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, Seoul 07795, Republic of Korea
| |
Collapse
|
8
|
Hotowy A, Strojny-Cieślak B, Ostrowska A, Zielińska-Górska M, Kutwin M, Wierzbicki M, Sosnowska M, Jaworski S, Chwalibóg A, Kotela I, Sawosz Chwalibóg E. Silver and Carbon Nanomaterials/Nanocomplexes as Safe and Effective ACE2-S Binding Blockers on Human Skin Cell Lines. Molecules 2024; 29:3581. [PMID: 39124987 PMCID: PMC11313757 DOI: 10.3390/molecules29153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Marlena Zielińska-Górska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - André Chwalibóg
- Section of Production, Nutrition and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Ireneusz Kotela
- Department of Orthopaedics, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland;
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Ewa Sawosz Chwalibóg
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| |
Collapse
|
9
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
10
|
Schürer NY, Symanzik C, Kukshausen O, Stürmer R. Correlation of non-invasive psycho-physiological and skin-physiological measures. Skin Res Technol 2024; 30:e13745. [PMID: 38853249 PMCID: PMC11162891 DOI: 10.1111/srt.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Psychological stress alters epidermal barrier function. While intensive studies on the underlying mechanism have been performed in mice, human studies are limited. Non-invasive skin-physiology measures have not yet been directly linked to non-invasive psycho-physiological assessments. METHODS Standard measures of (I) transepidermal water loss prior to and after experimental barrier perturbation via tape stripping, (II) skin surface pH, (III) electrodermal activity, and (IV) heart rate function were taken over a 24 h time period. To document perceived stress, a standardized stress self-assessment questionnaire, namely the Trierer Inventar zum chronischen Stress (TICS), was utilized. RESULTS Twenty healthy, Caucasian (Fitzpatrick skin phototype I-II), female volunteers (21-32 years, mean age 27, SD = 3.67 years) were included in this study (random sample). Significant correlations were shown for 24 h delta transepidermal water loss changes, that is, barrier repair kinetics (sympathetic activity) and heart rate variability (parasympathetic activity). Further correlations were noted for electrodermal activity and skin surface pH. Perceived stress, as documented by the TICS questionnaire, did not correlate with psycho- and skin physiological parameters, respectively. CONCLUSION The presented approaches may provide a basis for non-invasive objective research on the correlation between psychological stressors and epidermal barrier function.
Collapse
Affiliation(s)
- Nanna Y. Schürer
- Department of DermatologyEnvironmental Medicine and Health TheoryOsnabrück UniversityOsnabrückGermany
| | - Cara Symanzik
- Department of DermatologyEnvironmental Medicine and Health TheoryOsnabrück UniversityOsnabrückGermany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at Osnabrück UniversityOsnabrückGermany
| | - Olga Kukshausen
- Department of DermatologyEnvironmental Medicine and Health TheoryOsnabrück UniversityOsnabrückGermany
| | - Ralf Stürmer
- Psyrecon Research & Consulting Institute for Applied Psychophysiological ResearchWuppertalGermany
| |
Collapse
|
11
|
Scutari M, Kerob D, Salah S. Inferring skin-brain-skin connections from infodemiology data using dynamic Bayesian networks. Sci Rep 2024; 14:10266. [PMID: 38704447 PMCID: PMC11069591 DOI: 10.1038/s41598-024-60937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
The relationship between skin diseases and mental illnesses has been extensively studied using cross-sectional epidemiological data. Typically, such data can only measure association (rather than causation) and include only a subset of the diseases we may be interested in. In this paper, we complement the evidence from such analyses by learning an overarching causal network model over twelve health conditions from the Google Search Trends Symptoms public data set. We learned the causal network model using a dynamic Bayesian network, which can represent both cyclic and acyclic causal relationships, is easy to interpret and accounts for the spatio-temporal trends in the data in a probabilistically rigorous way. The causal network confirms a large number of cyclic relationships between the selected health conditions and the interplay between skin and mental diseases. For acne, we observe a cyclic relationship with anxiety and attention deficit hyperactivity disorder (ADHD) and an indirect relationship with depression through sleep disorders. For dermatitis, we observe directed links to anxiety, depression and sleep disorders and a cyclic relationship with ADHD. We also observe a link between dermatitis and ADHD and a cyclic relationship between acne and ADHD. Furthermore, the network includes several direct connections between sleep disorders and other health conditions, highlighting the impact of the former on the overall health and well-being of the patient. The average R 2 for a condition given the values of all conditions in the previous week is 0.67: in particular, 0.42 for acne, 0.85 for asthma, 0.58 for ADHD, 0.87 for burn, 0.76 for erectile dysfunction, 0.88 for scars, 0.57 for alcohol disorders, 0.57 for anxiety, 0.53 for depression, 0.74 for dermatitis, 0.60 for sleep disorders and 0.66 for obesity. Mapping disease interplay, indirect relationships, and the key role of mediators, such as sleep disorders, will allow healthcare professionals to address disease management holistically and more effectively. Even if we consider all skin and mental diseases jointly, each disease subnetwork is unique, allowing for more targeted interventions.
Collapse
Affiliation(s)
- Marco Scutari
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Lugano, Switzerland.
| | - Delphine Kerob
- La Roche-Posay Dermatological Laboratories, Levallois-Perret, France
- Department of Dermatology, AP-HP Saint-Louis Hospital, Paris, France
| | - Samir Salah
- La Roche-Posay Dermatological Laboratories, Levallois-Perret, France
| |
Collapse
|
12
|
Minoretti P, Sáez ASS, Martín ÁFG, Riera ML, Serrano MG, Emanuele E. Skin biophysical parameters and serum dermokine levels in airline pilots: a comparative study with office workers. Postepy Dermatol Alergol 2023; 40:757-761. [PMID: 38282882 PMCID: PMC10809828 DOI: 10.5114/ada.2023.132262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Concerns are growing in the aviation industry about occupational skin diseases like malignant melanoma (MM) among airline pilots (APs), due to the unique working environment that exposes them to various skin stressors. Aim To compare five skin biophysical parameters in a group of 40 male APs, each matched in terms of age and service tenure (minimum of 5 years) with a control group of 40 male office workers (OWs). Considering the potential role of dermokine (DMKN) in skin barrier dysfunction and the pathogenesis of MM, we further analyzed the serum levels of this molecule and correlated them with the measured skin parameters. Material and methods Stratum corneum skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and melanin index (MI) were quantified by non-invasive instruments in the cheek region. Serum DMKN levels were measured using a commercially available enzyme-linked immunosorbent assay kit. Results Compared with OWs, the skin of APs exhibited a decrease in hydration levels in the stratum corneum, coinciding with a higher TEWL. However, there was no significant variance in sebum content between the groups. MI was notably higher in APs than in OWs, as was EI. In APs, serum DMKN levels were independently associated with MI (β = 0.56, p < 0.05). Conclusions We found a significant link between the profession of an airline pilot and changes in skin biophysical parameters. Further research into the interplay between serum DMKN levels and the risk of MM in APs is warranted.
Collapse
Affiliation(s)
- Piercarlo Minoretti
- Studio Minoretti, Oggiono, Italy
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Andrés S. Santiago Sáez
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ángel F. García Martín
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Miryam Liańo Riera
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Manuel Gómez Serrano
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
13
|
Abstract
Lifestyle health has been recognized as an evidence-based innovation that defines how everyday behaviors and routines influence the avoidance and therapy of illness and provides an important adjunctive component to overall health. Specifically, an approach with small changes over time can have a dramatic impact on the health and well-being of individuals not only, in general, but also can be applied to skin health. However, lifestyle health factors to improve skin well-being have not been discussed extensively and/or well promulgated. The narrative for this overview focuses on providing a summary for topic background information, but more importantly, presents four lifestyle factors that can improve dermal health [i.e., factor 1: nutrition—diet; factor 2: rest (sleep); factor 3: movement/physical exercise, and factor 4: social and community associations]. This was accomplished by identifying preceding journal reports/reviews covering especially the last five years (January 2018 to July 2023; 164 out of 205 references cited or 80%) using scientific search databases. The main conclusions of this overview encourage the concept that lifestyle health factors such as nutrition/diet, rest/sleep, movement/physical exercise, and community/social interactions support enhanced skin health and well-being with aging. Plus, social media interventions that aim to promote dietary, sleep and physical activity changes might be an application to improve skin health in the future.
Collapse
Affiliation(s)
- Helen Knaggs
- Global Research and Development, Nu Skin Enterprises, Provo, UT 84601, USA
| | - Edwin D. Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
14
|
Polecka A, Awchimkow A, Owsianko N, Baran A, Hermanowicz JM, Flisiak I. Hand Eczema in the Polish Female Population. J Clin Med 2023; 12:6102. [PMID: 37763041 PMCID: PMC10531572 DOI: 10.3390/jcm12186102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND This study aims to investigate the prevalence of hand eczema, its association with disinfectant usage during the COVID-19 pandemic, and potential correlations with age and dermatological history on hand symptoms in the Polish female population. METHODS A personalized online questionnaire was administered from January to March 2021 to 142 participants, including individuals with hand eczema. The questionnaire addressed demographics, dermatological history, disinfectant usage, and symptoms experienced during the pandemic. RESULTS The prevalence of hand eczema was higher in younger adults (aged 18-35), with significant exacerbations reported due to increased disinfectant usage. Respondents with a dermatological history were more susceptible to new skin symptoms during the pandemic. The quality of life was substantially impacted, particularly in individuals with hand skin dermatoses. CONCLUSIONS The COVID-19 pandemic had a considerable influence on hand eczema, affecting prevalence, symptoms, and quality of life. Disinfectant usage emerged as a key factor in exacerbating hand skin lesions. Further research is warranted to explore the influence of specific disinfecting agents and improve treatment guidelines for personalized management of hand eczema. Despite limitations in the online survey method, these findings highlight the importance of proactive healthcare support for individuals with hand eczema during challenging times.
Collapse
Affiliation(s)
- Agnieszka Polecka
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Andrzej Awchimkow
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Natalia Owsianko
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Anna Baran
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | | | - Iwona Flisiak
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| |
Collapse
|
15
|
Zhu T, Yang S, Mauro TM, Man MQ. Association of Epidermal Biophysical Properties with Obesity and Its Implications. Skin Pharmacol Physiol 2023; 36:165-173. [PMID: 37640014 DOI: 10.1159/000533587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections. SUMMARY Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity. KEY MESSAGES This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People's Hospital of Baoshan, Baoshan, China
| | - Theodora M Mauro
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
| | - Mao-Qiang Man
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Sivamani RK, Maloh J, Nong Y. Correlating the Gut Microbiota and Circulating Hormones with Acne Lesion Counts and Skin Biophysical Features. Microorganisms 2023; 11:2049. [PMID: 37630609 PMCID: PMC10459794 DOI: 10.3390/microorganisms11082049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Acne vulgaris is a common inflammatory condition that is multi-factorial and impacted by both intrinsic and extrinsic features. Several previous studies have assessed for correlations between factors such as circulating hormones, stress, or the microbiome. However, there have not been any correlations specifically against lesion counts or differentiating correlations between inflammatory and non-inflammatory lesion counts. Here, we correlate several factors against acne lesions. Twenty men and women with mild to moderate acne were recruited, and their hormonal levels and their gut microbiome were collected and correlated against their inflammatory and non-inflammatory lesions of acne. Facial non-inflammatory lesions were weakly correlated to sebum excretion rate and weakly inversely correlated to forehead and cheek hydration. We examined stress through the use of a normalized peak-to-trough ratio (higher numbers indicated less stress), which correlated with skin hydration and inversely correlated with sebum excretion rate. Sebum excretion rate was weakly correlated to testosterone levels, and facial hydration correlated with estradiol levels. Correlations with the gut microbiome showed differential correlations with inflammatory and non-inflammatory lesions, with Clostridium sp AF 23-8 correlating to inflammatory lesion counts, while Actinomyces naeslundii str Howell 279 correlated to non-inflammatory lesions. Overall, measures of stress and circulating hormones correlate to skin biophysical properties and acne lesion counts. Also, different gut bacteria correlate with either inflammatory or non-inflammatory lesion counts. We hope that our findings stimulate further work on the gut-mind-stress-skin axis within acne.
Collapse
Affiliation(s)
- Raja K. Sivamani
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- Department of Dermatology, University of California-Davis, Sacramento, CA 95616, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
| | - Jessica Maloh
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Yvonne Nong
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| |
Collapse
|
17
|
Lee YB, Hwang HJ, Kim E, Lim SH, Chung CH, Choi EH. Hyperglycemia-activated 11β-hydroxysteroid dehydrogenase type 1 increases endoplasmic reticulum stress and skin barrier dysfunction. Sci Rep 2023; 13:9206. [PMID: 37280272 PMCID: PMC10244460 DOI: 10.1038/s41598-023-36294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
The diabetes mellitus (DM) skin shows skin barrier dysfunction and skin lipid abnormality, similar to conditions induced by systemic or local glucocorticoid excess and aged skin. Inactive glucocorticoid (GC) is converted into active glucocorticoid by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Hyperglycemia in DM and excessive GC are known to increase endoplasmic reticulum (ER) stress. We hypothesized that hyperglycemia affects systemic GC homeostasis and that the action of skin 11β-HSD1 and GC contributes to increased ER stress and barrier defects in DM. We compared 11β-HSD1, active GC, and ER stress between hyperglycemic and normoglycemic conditions in normal human keratinocytes and db/db mice. 11β-HSD1 and cortisol increased with time in keratinocyte culture under hyperglycemic conditions. 11β-HSD1 siRNA-transfected cells did not induce cortisol elevation in hyperglycemic condition. The production of 11β-HSD1 and cortisol was suppressed in cell culture treated with an ER stress-inhibitor. The 14-week-old db/db mice showed higher stratum corneum (SC) corticosterone, and skin 11β-HSD1 levels than 8-week-old db/db mice. Topical 11β-HSD1 inhibitor application in db/db mice decreased SC corticosterone levels and improved skin barrier function. Hyperglycemia in DM may affect systemic GC homeostasis, activate skin 11β-HSD1, and induce local GC excess, which increases ER stress and adversely affects skin barrier function.
Collapse
Affiliation(s)
- Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Choon Hee Chung
- Department of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea.
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
18
|
Al Rudaisat M, Chen X, Chen S, Amanullah M, Wang X, Liang Q, Hua C, Zhou C, Song Y, van der Veen S, Cheng H. RNA sequencing and metabolic analysis of imiquimod-induced psoriasis-like mice with chronic restrain stress. Life Sci 2023:121788. [PMID: 37230377 DOI: 10.1016/j.lfs.2023.121788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
AIM Psoriasis is one of the most common dermatological disorders, characterized by increased epidermal hyperplasia and immune cell infiltration. Psychological stress has been reported to contribute to the severity, aggravation, and relapse of psoriasis. However, the exact mechanism involved in psychological stress's impact on psoriasis is still unclear. We aim to investigate the role of psychological stress in psoriasis from a transcriptomic and metabolomic perspective. MAIN METHOD We developed a chronic restrain stress (CRS)-imiquimod (IMQ)-induced psoriasis-like mouse model and performed a comprehensive comparative transcriptomic and metabolic analysis with control mice, CRS-treated mice, and IMQ-treated mice to investigate how psychological stress affects psoriasis. KEY FINDING We found that CRS-IMQ-induced psoriasis-like mice showed significant exacerbation of psoriasis-like skin inflammation compared with mice treated with IMQ only. Mice of the CRS + IMQ group showed increased expression of keratinocyte proliferation and differentiation genes, differential regulation of cytokines, and promotion of linoleic acid metabolism. Correlation analysis of differentially expressed genes in the CRS-IMQ-induced psoriasis-like mice and human psoriasis datasets compared with respective controls revealed 96 overlapping genes of which 30 genes showed consistent induced or repressed expression in all human and mouse datasets. SIGNIFICANCE Our study provides new insights into the effects of psychological stress on psoriasis pathogenesis and the mechanisms involved, which provides clues for development of therapeutics or biomarkers.
Collapse
Affiliation(s)
- Mus'ab Al Rudaisat
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Md Amanullah
- Institute of Translational Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chunting Hua
- Institute of Translational Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Can Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Stijn van der Veen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
19
|
Lyu F, Wu T, Bian Y, Zhu K, Xu J, Li F. Stress and its impairment of skin barrier function. Int J Dermatol 2023; 62:621-630. [PMID: 36759891 DOI: 10.1111/ijd.16598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The principal function of skin is to provide a barrier to water loss and percutaneous penetration of exogenous substances. Any compromise of the skin homeostasis can lead to dryness, itchiness, or even pathogenic conditions. This study aimed to explore the relationship among psychological stress, skin homeostasis, sleep quality, and emotion. METHODS This prospective observational study was conducted using a random sample of medical students from Shanghai Medical College, Fudan University. A questionnaire including the validated Chinese version of Pittsburgh Sleep Quality Index (PSQI), Beck Anxiety Inventory (BAI), and Beck Depression Inventory-II (BDI) was distributed. The skin barrier function was measured by the transepidermal water loss (TEWL), hydration of skin. Dermoscopic images of the nose and infraorbital skin were obtained. We compared the skin homeostasis, sleep quality, and emotional state of medical students at different time points of the semester and explored the correlation between the variables. RESULTS As the semester progressed, the sleep quality and severity of anxiety of medical students got significantly worse, and they were closely related to the impaired skin barrier function. Both irregular schedule and stress can aggravate dark circles. CONCLUSIONS Mental stress can do harm to skin barrier through poor sleep and severe anxiety. The amount of sebum was positively correlated with the severity of anxiety while blackheads are mainly influenced by season change. Dermoscopy has a unique role in assessing blackheads and dark circles.
Collapse
Affiliation(s)
- Fan Lyu
- Affiliated Huashan Hospital, Fudan University, Shanghai, China
| | - Tong Wu
- Affiliated Huashan Hospital, Fudan University, Shanghai, China
| | - Yizhe Bian
- Affiliated Huashan Hospital, Fudan University, Shanghai, China
| | - Kesen Zhu
- Affiliated Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Affiliated Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Li
- Affiliated Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Respiratory psychophysiology and COVID-19: A research agenda. Biol Psychol 2023; 176:108473. [PMID: 36535514 PMCID: PMC9756651 DOI: 10.1016/j.biopsycho.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
After multiple waves of the COVID-19 pandemic, it has become clear that the impact of SARS-CoV-2 will carry on for years to come. Acutely infected patients show a broad range of disease severity, depending on virus variant, vaccination status, age and the presence of underlying medical and physical conditions, including obesity. Additionally, a large number of patients who have been infected with the virus present with post-COVID syndrome. In September 2020, the International Society for the Advancement of Respiratory Psychophysiology organized a virtual interest meeting on 'Respiratory research in the age of COVID-19', which aimed to discuss how research in respiratory psychophysiology could contribute to a better understanding of psychophysiological interactions in COVID-19. In the resulting current paper, we propose an interdisciplinary research agenda discussing selected research questions on acute and long-term neurobiological, physiological and psychological outcomes and mechanisms related to respiration and the airways in COVID-19, as well as research questions on comorbidity and potential treatment options, such as physical rehabilitation.
Collapse
|
21
|
He B, Chen Y, Yu S, Hao Y, Wang F, Qu L. Food plant extracts for sleep-related skin health: Mechanisms and prospects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Schneider G, Ständer S, Kahnert S, Pereira MP, Mess C, Huck V, Agelopoulos K, Frank G, Schneider SW. Biological and psychosocial factors associated with the persistence of pruritus symptoms: protocol for a prospective, exploratory observational study in Germany (individual project of the Interdisciplinary SOMACROSS Research Unit [RU 5211]). BMJ Open 2022; 12:e060811. [PMID: 35798519 PMCID: PMC9263938 DOI: 10.1136/bmjopen-2022-060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Chronic pruritus (CP) is a symptom of dermatologic, neurologic, systemic and psychosomatic diseases. CP has a prevalence of ~20% in the general population and is therefore a significant burden on society, but the transition from acute pruritus to CP is not well understood. It probably involves interactions between biological and psychosocial factors and pruritus-specific risk factors as well as mechanisms shared with other persistent somatic symptoms addressed in other projects of the SOMACROSS Research Unit (RU). Here we aim to identify psychosocial and biological factors and their interactions which might be associated with the persistence of CP with and without immunologic/inflammatory origin, that is, atopic dermatitis and pruritus on non-inflamed skin. We expect that psychosocial factors relevant to the persistence of symptoms such as fatigue and pain may also show associations to CP. METHODS AND ANALYSIS In this prospective, exploratory observational study situated in Germany, three cohorts of 40 patients each with acute exacerbation of atopic dermatitis and chronic atopic dermatitis and 40 CP patients with unaffected skin will be recruited for a comprehensive translational investigation including pruritus-specific and the shared psychosocial assessments of the RU SOMACROSS. Pruritus-specific measures will include questionnaires, quantitative sensory testing, cutaneous nerve fibre morphology, skin barrier morphology, epidermal metabolism and pruritogen blood levels. Within 1 year, patients and 80 age-matched and sex-matched healthy controls will be examined at three time points, allowing cross-sectional comparison and a longitudinal investigation of predictive outcome factors in patients under treatment according to existing guidelines. ETHICS AND DISSEMINATION The study has been approved by the ethics committees of Hamburg (2020-10200-BO-ff) and Münster (2020-676 f-S), Germany. All participants are required to provide written informed consent. Findings will be disseminated through peer-reviewed publications, scientific conferences and involvement of relevant stakeholders, patients and the lay public. TRIAL REGISTRATION NUMBER DRKS00026646.
Collapse
Affiliation(s)
- Gudrun Schneider
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Munster, Munster, Nordrhein-Westfalen, Germany
| | - Sonja Ständer
- Competence Center Chronic Pruritus, Department of Dermatology, University Hospital Munster, Munster, Nordrhein-Westfalen, Germany
| | - Stefan Kahnert
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Munster, Munster, Nordrhein-Westfalen, Germany
| | - Manuel Pedro Pereira
- Competence Center Chronic Pruritus, Department of Dermatology, University Hospital Munster, Munster, Nordrhein-Westfalen, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | - Volker Huck
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | - Konstantin Agelopoulos
- Competence Center Chronic Pruritus, Department of Dermatology, University Hospital Munster, Munster, Nordrhein-Westfalen, Germany
| | - Gina Frank
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Munster, Munster, Nordrhein-Westfalen, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Ataallahi M, Nejad JG, Park KH. Selection of appropriate biomatrices for studies of chronic stress in animals: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:621-639. [PMID: 35969712 PMCID: PMC9353350 DOI: 10.5187/jast.2022.e38] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Cortisol and corticosterone, hormones traditionally considered biomarkers of stress, can be measured in fluid biomatrices (e.g., blood, saliva) from live animals to evaluate conditions at sampling time, or in solid biomatrices (e.g., hair, feather) from live or dead animals to obtain information regarding long-term changes. Using these biomarkers to evaluate physiological stress responses in domestic animals may be challenging due to the diverse characteristics of biomatrices for potential measurement. Ideally, a single measurement from the biomatrix should be sufficient for evaluating chronic stress. The availability of appropriate and cost-effective immunoassay methods for detecting the biomarkers should also be considered. This review discusses the strengths and limitations of different biomatrices with regard to ensuring the highest possible reliability for chronic stress evaluation. Overall, solid biomatrices require less frequent sampling than other biomatrices, resulting in greater time- and cost-effectiveness, greater ease of use, and fewer errors. The multiplex immunoassay can be used to analyze interactions and correlations between cortisol and other stress biomarkers in the same biomatrix. In light of the lack of information regarding appropriate biomatrices for measuring chronic stress, this review may help investigators set experimental conditions or design biological research.
Collapse
Affiliation(s)
- Mohammad Ataallahi
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Kyu-Hyun Park
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
24
|
Manav V, Karaali MG, Erdem O, Koku Aksu AE. Association between biophysical properties and anxiety in patients with sensitive skin. Skin Res Technol 2022; 28:556-563. [PMID: 35416350 PMCID: PMC9907588 DOI: 10.1111/srt.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sensitive skin (SS) is a syndrome in which neurosensory disorders accompany epidermal barrier dysfunction. However, it is not yet clear how high anxiety levels affect the biophysical parameters of the skin in patients with SS. OBJECTIVES We aimed to investigate the relationship between anxiety levels and facial neurosensitivity, the erythema index, sebum content, and sensitive skin scale scores in individuals with sensitive skin. METHODS The study was carried out on 35 individuals with SS and 40 without SS over three months. In the study, a questionnaire to detect the presence of sensitive skin, the sensitive skin scale for sensitive skin severity, the lactic acid sting test (LAST) to show facial neurosensitivity, a Mexameter for erythema index measurement, and a Sebumeter for sebum content measurement were used. In addition, the anxiety levels of the patient and control groups were measured using the hospital anxiety and depression scale (HADS). RESULTS While the HADS-Anxiety scores were found to be significantly higher in patients with sensitive skin, there was no significant difference in the HADS-Depression scores. Moreover, a strong positive correlation was found between the HADS-Anxiety scores and the erythema index in patients with sensitive skin. CONCLUSIONS Sensitive skin is a disorder that can sometimes occur without any dermatological examination findings. In particular, the sensations of the patients, along with their anxiety levels, are essential parameters that should be evaluated in the approach to patients with sensitive skin.
Collapse
Affiliation(s)
- Vildan Manav
- Department of Dermatology, University of Health Sciences, İstanbul Training and Research Hospital, Istanbul, Turkey.,Master of Cosmetology, İstanbul University Graduate School of Medicine, İstanbul, Turkey
| | - Müge Göre Karaali
- Department of Dermatology, Erzincan Binali Yildirim University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Ozan Erdem
- Deparment of Dermatology, University of Health Sciences, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Ayşe Esra Koku Aksu
- Department of Dermatology, University of Health Sciences, İstanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
25
|
Ajjan RA, Hensor EMA, Del Galdo F, Shams K, Abbas A, Fairclough RJ, Webber L, Pegg L, Freeman A, Taylor AE, Arlt W, Morgan AW, Tahrani AA, Stewart PM, Russell DA, Tiganescu A. Oral 11β-HSD1 inhibitor AZD4017 improves wound healing and skin integrity in adults with type 2 diabetes mellitus: a pilot randomized controlled trial. Eur J Endocrinol 2022; 186:441-455. [PMID: 35113805 PMCID: PMC8942338 DOI: 10.1530/eje-21-1197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chronic wounds (e.g. diabetic foot ulcers) reduce the quality of life, yet treatments remain limited. Glucocorticoids (activated by the enzyme 11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1) impair wound healing. OBJECTIVES Efficacy, safety, and feasibility of 11β-HSD1 inhibition for skin function and wound healing. DESIGN Investigator-initiated, double-blind, randomized, placebo-controlled, parallel-group phase 2b pilot trial. METHODS Single-center secondary care setting. Adults with type 2 diabetes mellitus without foot ulcers were administered 400 mg oral 11β-HSD1 inhibitor AZD4017 (n = 14) or placebo (n = 14) bi-daily for 35 days. Participants underwent 3-mm full-thickness punch skin biopsies at baseline and on day 28; wound healing was monitored after 2 and 7 days. Computer-generated 1:1 randomization was pharmacy-administered. Analysis was descriptive and focused on CI estimation. Of the 36 participants screened, 28 were randomized. RESULTS Exploratory proof-of-concept efficacy analysis suggested AZD4017 did not inhibit 24-h ex vivoskin 11β-HSD1 activity (primary outcome; difference in percentage conversion per 24 h 1.1% (90% CI: -3.4 to 5.5) but reduced systemic 11β-HSD1 activity by 87% (69-104%). Wound diameter was 34% (7-63%) smaller with AZD4017 at day 2, and 48% (12-85%) smaller after repeat wounding at day 30. AZD4017 improved epidermal integrity but modestly impaired barrier function. Minimal adverse events were comparable to placebo. Recruitment rate, retention, and data completeness were 2.9/month, 27/28, and 95.3%, respectively. CONCLUSION A phase 2 trial is feasible, and preliminary proof-of-concept data suggests AZD4017 warrants further investigation in conditions of delayed healing, for example in diabetic foot ulcers. SIGNIFICANCE STATEMENT Stress hormone activation by the enzyme 11β-HSD type 1 impairs skin function (e.g. integrity) and delays wound healing in animal models of diabetes, but effects in human skin were previously unknown. Skin function was evaluated in response to treatment with a 11β-HSD type 1 inhibitor (AZD4017), or placebo, in people with type 2 diabetes. Importantly, AZD4017 was safe and well tolerated. This first-in-human randomized, controlled, clinical trial found novel evidence that 11β-HSD type 1 regulates skin function in humans, including improved wound healing, epidermal integrity, and increased water loss. Results warrant further studies in conditions of impaired wound healing, for example, diabetic foot ulcers to evaluate 11β-HSD type 1 as a novel therapeutic target forchronic wounds.
Collapse
Affiliation(s)
- R A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - E M A Hensor
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - F Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - K Shams
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - A Abbas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - R J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D
| | - L Webber
- Emerging Portfolio Development, Late Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - L Pegg
- Emerging Portfolio Development, Late Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - W Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - A W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - A A Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - P M Stewart
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - D A Russell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Vascular Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A Tiganescu
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Correspondence should be addressed to A Tiganescu;
| |
Collapse
|
26
|
Morrison KE, Stenson AF, Marx-Rattner R, Carter S, Michopoulos V, Gillespie CF, Powers A, Huang W, Kane MA, Jovanovic T, Bale TL. Developmental Timing of Trauma in Women Predicts Unique Extracellular Vesicle Proteome Signatures. Biol Psychiatry 2022; 91:273-282. [PMID: 34715991 PMCID: PMC9219961 DOI: 10.1016/j.biopsych.2021.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Exposure to traumatic events is a risk factor for negative physical and mental health outcomes. However, the underlying biological mechanisms that perpetuate these lasting effects are not known. METHODS We investigated the impact and timing of sexual trauma, a specific type of interpersonal violence, experienced during key developmental windows of childhood, adolescence, or adulthood on adult health outcomes and associated biomarkers, including circulating cell-free mitochondrial DNA levels and extracellular vesicles (EVs), in a predominantly Black cohort of women (N = 101). RESULTS Significant changes in both biomarkers examined, circulating cell-free mitochondrial DNA levels and EV proteome, were specific to developmental timing of sexual trauma. Specifically, we identified a large number of keratin-related proteins from EVs unique to the adolescent sexual trauma group. Remarkably, the majority of these keratin proteins belong to a 17q21 gene cluster, which suggests a potential local epigenetic regulatory mechanism altered by adolescent trauma to impact keratinocyte EV secretion or its protein cargo. These results, along with changes in fear-potentiated startle and skin conductance detected in these women, suggest that sexual violence experienced during the specific developmental window of adolescence may involve unique programming of the skin, the body's largest stress organ. CONCLUSIONS Together, these descriptive studies provide novel insight into distinct biological processes altered by trauma experienced during specific developmental windows. Future studies will be required to mechanistically link these biological processes to health outcomes.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anaïs F Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Ruth Marx-Rattner
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
27
|
Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med 2022; 28:97-109. [PMID: 35012887 DOI: 10.1016/j.molmed.2021.12.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype.
Collapse
|
28
|
Romera-Vilchez M, Montero-Vilchez T, Herrero-Fernandez M, Rodriguez-Pozo JA, Jimenez-Galvez G, Morales-Garcia C, Buendia-Eisman A, Arias-Santiago S. Impact of Exposome Factors on Epidermal Barrier Function in Patients with Obstructive Sleep Apnea Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020659. [PMID: 35055481 PMCID: PMC8775463 DOI: 10.3390/ijerph19020659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023]
Abstract
Exposome factors, such as sleep deprivation and diet, could affect skin barrier function. The objectives of this study are to compare skin barrier function between patients with Obstructive Sleep Apnea Syndrome (OSAS) and healthy individuals, and to evaluate the effect of other exposome factors on skin. A cross-sectional study was conducted. Patients with OSAS and healthy volunteers matched by age and sex were included. OSAS severity was assessed by the Apnea-Hypopnea Index (AHI). Validated questionnaires were used to assess diet, anxiety, depression, and psychological stress. Skin barrier function parameters including temperature, erythema, melanin, pH, transepidermal water loss (TEWL), and stratum corneum hydration (SCH) were measured on the volar forearm. A total of 86 participants were included, 56 patients with OSAS and 30 healthy volunteers. TEWL was higher in OSAS patients than in healthy individuals (8.01 vs. 8.68 g·m−2·h−1). Regarding disease severity, severe patients had higher TEWL values (9.31 vs. 8.46 vs. 7.08 g·m−2·h−1) compared to moderate and mild patients. Patients with OSAS had significantly lower sleep quality (11.89 vs. 6.47 Pittsburgh Sleep Quality Index score; p < 0.001), poor adherence to the Mediterranean Diet (8.46 vs. 9.77; p = 0.005), and significantly higher anxiety and depression levels than healthy individuals. In conclusion, patients with OSAS may have skin barrier impairment, reflected in higher TEWL values. These patients also have higher levels of anxiety, depression, stress, and a lower adherence to a Mediterranean Diet, all exposome factors that might impact on skin barrier function.
Collapse
Affiliation(s)
- Maria Romera-Vilchez
- Dermatology Department, Faculty of Medicine, University of Granada, 18012 Granada, Spain; (M.R.-V.); (M.H.-F.); (A.B.-E.); (S.A.-S.)
| | - Trinidad Montero-Vilchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain
- Correspondence: or ; Tel.: +34-958-023-259
| | - Manuel Herrero-Fernandez
- Dermatology Department, Faculty of Medicine, University of Granada, 18012 Granada, Spain; (M.R.-V.); (M.H.-F.); (A.B.-E.); (S.A.-S.)
| | - Juan-Angel Rodriguez-Pozo
- Dermatology Department, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain
| | - Gonzalo Jimenez-Galvez
- Pneumnology Department, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (G.J.-G.); (C.M.-G.)
| | - Concepcion Morales-Garcia
- Pneumnology Department, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (G.J.-G.); (C.M.-G.)
| | - Agustin Buendia-Eisman
- Dermatology Department, Faculty of Medicine, University of Granada, 18012 Granada, Spain; (M.R.-V.); (M.H.-F.); (A.B.-E.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Faculty of Medicine, University of Granada, 18012 Granada, Spain; (M.R.-V.); (M.H.-F.); (A.B.-E.); (S.A.-S.)
- Dermatology Department, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain
| |
Collapse
|
29
|
Lugović-Mihić L, Meštrović-Štefekov J, Ferček I, Pondeljak N, Lazić-Mosler E, Gašić A. Atopic Dermatitis Severity, Patient Perception of the Disease, and Personality Characteristics: How Are They Related to Quality of Life? Life (Basel) 2021; 11:1434. [PMID: 34947965 PMCID: PMC8704437 DOI: 10.3390/life11121434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition that greatly affects patients' quality of life, psychological condition, and social relationships. MATERIALS AND METHODS To analyze different aspects of AD patients' quality of life, we used the SCORing Atopic Dermatitis (SCORAD) index (for AD severity), the Dermatology Life Quality Index (DLQI), the World Health Organization Quality of Life Brief Version (WHOQOL-BREF), the Brief Illness Perception Questionnaire (Brief IPQ), and the Crown-Crisp Experiential Index (CCEI) to analyze personality traits. The study included 84 AD patients, 42 with clinical manifestations and 42 in remission. RESULTS SCORAD values correlated positively and linearly with DLQI (r = 0.551; p < 0.001) and with disease impact on life, disease control, and disease symptoms (r = 0.350-0.398; p ≤ 0.023). DLQI was also related to certain personality characteristics (free-floating anxiety disorder, obsession, somatization, and depression (p ≤ 0.032)). Symptomatic AD patients had a significantly more impaired DLQI than asymptomatic patients (p < 0.001) and the two groups differed in some IPQ dimensions, but they did not differ significantly concerning the WHOQOL-BREF dimensions and personality traits (CCEI). CONCLUSION Since AD patient quality of life was dependent not only on disease severity but was also influenced by patient personality characteristics (anxiety disorder, obsession, somatization, depression), many factors need to be taken into account to create effective, patient-specific therapy regimens.
Collapse
Affiliation(s)
- Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (J.M.-Š.); (I.F.); (N.P.); (A.G.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Meštrović-Štefekov
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (J.M.-Š.); (I.F.); (N.P.); (A.G.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva Ferček
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (J.M.-Š.); (I.F.); (N.P.); (A.G.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nives Pondeljak
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (J.M.-Š.); (I.F.); (N.P.); (A.G.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Elvira Lazić-Mosler
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia;
- Department of Dermatology and Venereology, General Hospital Sisak, 44000 Sisak, Croatia
| | - Ana Gašić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (J.M.-Š.); (I.F.); (N.P.); (A.G.)
| |
Collapse
|
30
|
Lephart ED. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin-Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int J Mol Sci 2021; 22:11218. [PMID: 34681876 PMCID: PMC8538984 DOI: 10.3390/ijms222011218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The overarching theme for this review is perspective. Superfoods (a marketing term for fruits and vegetables, etc.) have a positive connotation, while many superfoods contain phytoestrogens, a term that is alarming to the public and has a negative connotation because phytoestrogens are endocrine-disruptors, even though they are strong antioxidants that have many health benefits. To understand phytoestrogens, this paper provides a brief summary of the characteristics of: (a) estrogens, (b) estrogen receptors (ER), (c) estrogen-deficient skin, (d) how perspective(s) get off track, (e) phytoestrogen food sources, and (f) misconceptions of phytoestrogens and food safety, in general, that influence person(s) away from what is true. Finally, a brief history of cosmetics to nutraceuticals is covered plus the characteristics of phytoestrogens, resveratrol and equol on: (g) estrogen receptor binding, (h) topical and oral dosing, and (i) in vitro, molecular mechanisms and select clinical evidence, where both phytoestrogens (resveratrol and equol) demonstrate promising applications to improve skin health is presented along with future directions of nutraceuticals. Perspective is paramount in understanding the controversies associated with superfoods, phytoestrogens, and endocrine-disruptors because they have both positive and negative connotations. Everyone is exposed to and consumes these molecules everyday regardless of age, gender, or geographic location around the world, and how we understand this is a matter of perspective.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
31
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
32
|
A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids. Sci Rep 2021; 11:11920. [PMID: 34099793 PMCID: PMC8184959 DOI: 10.1038/s41598-021-91450-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3',4'-trihydroxyisoflavone (7,3',4'-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3',4'-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.
Collapse
|
33
|
Kim BJ, Lee NR, Lee CH, Lee YB, Choe SJ, Lee S, Hwang HJ, Kim E, Lavery GG, Shin KO, Park K, Choi EH. Increased Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 Contributes to Epidermal Permeability Barrier Dysfunction in Aged Skin. Int J Mol Sci 2021; 22:ijms22115750. [PMID: 34072239 PMCID: PMC8198579 DOI: 10.3390/ijms22115750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inactive cortisone is converted into active cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Excessive levels of active glucocorticoids could deteriorate skin barrier function; barrier impairment is also observed in aged skin. In this study, we aimed to determine whether permeability barrier impairment in the aged skin could be related to increased 11β-HSD1 expression. Aged humans (n = 10) showed increased cortisol in the stratum corneum (SC) and oral epithelium, compared to young subjects (n = 10). 11β-HSD1 expression (as assessed via immunohistochemical staining) was higher in the aged murine skin. Aged hairless mice (56-week-old, n = 5) manifested greater transepidermal water loss, lower SC hydration, and higher levels of serum inflammatory cytokines than the young mice (8-week-old, n = 5). Aged 11β-HSD1 knockout mice (n = 11), 11β-HSD1 inhibitor (INHI)-treated aged wild type (WT) mice (n = 5) and young WT mice (n = 10) exhibited reduced SC corticosterone level. Corneodesmosome density was low in WT aged mice (n = 5), but high in aged 11β-HSD1 knockout and aged INHI-treated WT mice. Aged mice exhibited lower SC lipid levels; this effect was reversed by INHI treatment. Therefore, upregulation of 11β-HSD1 in the aged skin increases the active-glucocorticoid levels; this suppresses SC lipid biosynthesis, leading to impaired epidermal permeability barrier.
Collapse
Affiliation(s)
- Beom Jun Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Noo Ri Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Chung Hyeok Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Sung Jay Choe
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Materials Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Materials Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
- Correspondence: ; Tel.: +82-33-748-2650
| |
Collapse
|
34
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gyogamdan, a Traditional Medicine Prescription, Ameliorated Dermal Inflammation and Hyperactive Behavior in an Atopic Dermatitis Mouse Model Exposed to Psychological Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6687513. [PMID: 33859711 PMCID: PMC8026289 DOI: 10.1155/2021/6687513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Psychological stress (PS) plays a significant role as an aggravating factor in atopic dermatitis (AD). The traditional medicine prescription, Gyogamdan, has been used to treat chest discomfort and mood disorders caused by PS. This study investigated the effects of an ethanolic extract of Gyogamdan (GGDE) on stress-associated AD models and the underlying mechanisms. 2,4-Dinitrochlorobenzene- (DNCB-) treated BALB/c mice were exposed to social isolation (SI) stress. The effects of orally administered GGDE (100 or 500 mg/kg) were evaluated by ELISA, western blotting, and an open field test (OFT). SI stress exaggerated the skin inflammation and induced locomotor hyperactivity in the AD mouse model. GGDE reduced the levels of IgE, TNF-α, IL-13, eotaxin, and VEGF and mast cell/eosinophil infiltration and prevented the decreases in the levels of involucrin and loricrin in the skin. GGDE also suppressed the SI-induced increases in corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in socially isolated AD mice. Furthermore, GGDE reduced traveling distances and mean speed significantly in the OFT. The in vitro experiments were performed using HaCaT, HMC-1, PC12, and BV2 cells. In the TNF-α/IFN-γ- (TI-) stimulated HaCaT cells, GGDE decreased the thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) production significantly by inhibiting p-STAT1 and NF-κB signaling. GGDE also reduced VEGF production in HMC-1 cells stimulated with CRH/substance P (SP) by inhibiting p-ERK signaling pathway. GGDE increased the cell viability significantly and suppressed apoptosis in CORT-stimulated PC12 cells. Moreover, GGDE suppressed the LPS-induced production of NO, TNF-α, IL-1β, and IL-6 in BV2 cells. These results suggest that GGDE might be useful in patients with AD, which is exacerbated by PS.
Collapse
|
36
|
Ajjan R, Hensor EM, Shams K, Del Galdo F, Abbas A, Woods J, Fairclough RJ, Webber L, Pegg L, Freeman A, Morgan A, Stewart PM, Taylor AE, Arlt W, Tahrani A, Russell D, Tiganescu A. A randomised controlled pilot trial of oral 11β-HSD1 inhibitor AZD4017 for wound healing in adults with type 2 diabetes mellitus.. [DOI: 10.1101/2021.03.23.21254200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractChronic wounds (e.g. diabetic foot ulcers) have a major impact on quality of life, yet treatments remain limited. Glucocorticoids impair wound healing; preclinical research suggests that blocking glucocorticoid activation by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves wound repair. This investigator-initiated double-blind, randomised, placebo-controlled parallel-group phase 2b pilot trial investigated efficacy, safety and feasibility of 11β-HSD1 inhibition for 35 days by oral AZD4017 (AZD) treatment in adults with type 2 diabetes (n=14) compared to placebo (PCB, n=14) in a single-centre secondary care setting. Computer-generated 1:1 randomisation was pharmacy-administered. From 300 screening invitations, 36 attended, 28 were randomised. There was no proof-of-concept that AZD inhibited 24 hour skin 11β-HSD1 activity at day 28 (primary outcome: adjusted difference AZD-PCB 90% CI (diffCI)=-3.4,5.5) but systemic 11β-HSD1 activity (median urinary [THF+alloTHF]/THE ratio) was 87% lower with AZD at day 35 (PCB 1.00, AZD 0.13, diffCI=-1.04,-0.69). Mean wound gap diameter (mm) following baseline 2mm punch biopsy was 34% smaller at day 2 (PCB 1.51, AZD 0.98, diffCI=-0.95,-0.10) and 48% smaller after repeat wounding at day 30 (PCB 1.35, AZD 0.70, diffCI=-1.15,-0.16); results also suggested greater epidermal integrity but modestly impaired barrier function with AZD. AZD was well-tolerated with minimal side effects and comparable adverse events between treatments. Staff availability restricted recruitment (2.9/month); retention (27/28) and data completeness (95.3%) were excellent. These preliminary findings suggest that AZD may improve wound healing in patients with type 2 diabetes and warrant a fully-powered trial in patients with active ulcers. [Trial Registry: www.isrctn.com/ISRCTN74621291.FundingMRC Confidence in Concept and NIHR Senior Investigator Award.]Single Sentence SummaryAZD4017 was safe; data suggested improved skin healing / integrity, and modestly reduced epidermal barrier function in patients with type 2 diabetes.Disclosure SummaryI certify that neither I nor my co-authors have a conflict of interest as described above that is relevant to the subject matter or materials included in this Work.
Collapse
|
37
|
Teichgräber F, Jacob L, Koyanagi A, Shin JI, Seiringer P, Kostev K. Association between skin disorders and depression in children and adolescents: A retrospective case-control study. J Affect Disord 2021; 282:939-944. [PMID: 33601738 DOI: 10.1016/j.jad.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to investigate the association between skin disorders and depression in children and adolescents in Germany. METHODS This retrospective case-control study was based on data from the Disease Analyzer database (IQVIA). The present study included children and adolescents diagnosed for the first time with depression in 185 pediatric practices between January 2017 and December 2019 (index date) and matched controls without depression. Chronic skin conditions documented within 12 months prior to the index date (i.e. date of first depression diagnosis) were included in the analyses if their prevalence was at least 0.5% in the study population. Associations between nine different skin disorders and depression (dependent variable) were analyzed in a conditional logistic regression model. RESULTS This study included 7,061 cases with depression and 7,061 matched controls without depression (mean age 11.3 (SD: 3.8) years; 53.4% female). Three disorders were significantly associated with depression: atopic dermatitis/eczema (OR = 1.50, 95% CI = 1.37-1.64), nail disorders (OR = 1.84, 95% CI = 1.20-2.82), and hair loss (OR = 1.84, 95% CI = 1.30-2.60). In sex-stratified regression analyses, atopic dermatitis/eczema (OR = 1.43, 95% CI = 1.26-1.61) and hair loss (OR = 2.04, 95% CI = 1.37-3.03), were significantly associated with depression in females, since only atopic dermatitis/eczema was associated with depression (OR = 1.58, 95% CI = 1.39-1.80) in males. However, strong non-significant association was additionally observed for nail disorders (OR = 2.07, 95% CI = 1.07-4.01), and pigmentation disorders (OR = 1.93, 95% CI = 1.05-3.54) in females. CONCLUSIONS Some skin disorders are positively associated with depression in children and adolescents. Further research is needed for better understanding of the underlying mechanisms and mediating factors.
Collapse
Affiliation(s)
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Spain; Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux 78180, France
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Spain; ICREA, Pg, Lluis Companys 23, 08010 Barcelona, Spain
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Peter Seiringer
- Department of Dermatologe and Allergy, Technical University of Munich, Germany
| | | |
Collapse
|
38
|
Peer RP, Burli A, Maibach HI. Unbearable transepidermal water loss (TEWL) experimental variability: why? Arch Dermatol Res 2021; 314:99-119. [PMID: 33638033 DOI: 10.1007/s00403-021-02198-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/13/2021] [Accepted: 02/06/2021] [Indexed: 11/24/2022]
Abstract
Despite the wide breadth of research, much disparity exists in transepidermal water loss (TEWL) research data-possibly due to uncontrolled experimental variables. We determined whether such experimental variables significantly impact TEWL studies and cause this disparity. An initial literature search regarding TEWL was performed to determine potential confounding variables. A subsequent search procured relevant and representative studies investigating the impact of these variables on TEWL. Variables, such as age, anatomic site, and temperature, impact TEWL and should be controlled for in TEWL studies. Other variables, such as smoking and menstrual cycle, have inconclusive results or do not provide sufficient data breadth to make a conclusion regarding its effect, if such an effect exists, on TEWL metrics. Therefore, these variables require further research to determine their potential impact on TEWL. Matching for as many experimental variables as possible may reduce the disparity in TEWL data/conclusions.
Collapse
Affiliation(s)
- Reva P Peer
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - Anuk Burli
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Peters EMJ, Schedlowski M, Watzl C, Gimsa U. To stress or not to stress: Brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2. Neurobiol Stress 2021; 14:100296. [PMID: 33527083 PMCID: PMC7839386 DOI: 10.1016/j.ynstr.2021.100296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic continues to strongly affect people with health disadvantages, creating a heavy burden on medical systems and societies worldwide. Research is growing rapidly and recently revealed that stress-related factors such as socio-economic status, may also play a pivotal role. However, stress research investigating the underlying psychoneuroimmune interactions is missing. Here we address the question whether stress-associated neuroendocrine-immune mechanisms can possibly contribute to an increase in SARS-CoV-2 infections and influence the course of COVID-19 disease. Additionally, we discuss that not all forms of stress (e.g. acute versus chronic) are detrimental and that some types of stress could attenuate infection-risk and -progression. The overall aim of this review is to motivate future research efforts to clarify whether psychosocial interventions have the potential to optimize neuroendocrine-immune responses against respiratory viral infections during and beyond the COVID-19 pandemic. The current state of research on different types of stress is summarized in a comprehensive narrative review to promote a psychoneuroimmune understanding of how stress and its mediators cortisol, (nor)adrenaline, neuropeptides and neurotrophins can shape the immune defense against viral diseases. Based on this understanding, we describe how people with high psychosocial stress can be identified, which behaviors and psychosocial interventions may contribute to optimal stress management, and how psychoneuroimmune knowledge can be used to improve adequate care for COVID-19 and other patients with viral infections.
Collapse
Affiliation(s)
- Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University Giessen, Giessen and Universitätsmedizin-Charité, Berlin, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Germany and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
40
|
Peters EMJ, Schedlowski M, Watzl C, Gimsa U. [Can Stress Interact with SARS-CoV-2? A Narrative Review with a Focus on Stress-Reducing Interventions that may Improve Defence against COVID-19]. Psychother Psychosom Med Psychol 2021; 71:61-71. [PMID: 33440452 DOI: 10.1055/a-1322-3205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The COVID-19 pandemic is on the rise and causes many concerns and fears in the population as well as among medical care givers. This raises the question as to how psychosocial stress associated with the pandemic can be managed, and also if certain forms of stress can contribute to an increase in infections and critical illnesses. METHODS Against the background of the current state of research on stress and the immune response, we provide a narrative review of studies addressing the question as to how stress can influence the immune defence against viral diseases. RESULTS Excessive stress can compromise the barrier function of the airways and alter neuroendocrine control of immune function, which can create a virus-permissive immune response. DISCUSSION Because certain forms of stress can play a role in the successful immune defence against viral respiratory disease, it is important to identify people with high psychosocial stress and to help them manage their stress. Conclusion Psychosocial measures that contribute to improved stress management may have a positive effect on the immune response against viral respiratory infections.
Collapse
Affiliation(s)
- Eva Milena Johanne Peters
- Klinik für Psychosomatik und Psychotherapie, Psychoneuroimmunologie Labor, Justus-Liebig Universität Gießen, Deutschland.,Medizinische Klinik mit Schwerpunkt Psychosomatik und Psychotherapie, CharitéCentrum 12 (CC12) für Innere Medizin und Dermatologie, Berlin, Deutschland
| | - Manfred Schedlowski
- Institut für Medizinische Psychologie und Verhaltensimmunbiologie, Universitätsklinik Essen, Deutschland.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Watzl
- Fachbereich Immunologie, Leibniz-Institut für Arbeitsforschung an der TU Dortmund, Deutschland
| | - Ulrike Gimsa
- Institut für Verhaltensphysiologie, Leibniz-Institut für Nutztierbiologie, Dummerstorf, Deutschland
| |
Collapse
|
41
|
Kupczyk D, Studzińska R, Bilski R, Baumgart S, Kołodziejska R, Woźniak A. Synthesis of Novel 2-(Isopropylamino)thiazol-4(5 H)-one Derivatives and Their Inhibitory Activity of 11β-HSD1 and 11β-HSD2 in Aspect of Carcinogenesis Prevention. Molecules 2020; 25:E4233. [PMID: 32942682 PMCID: PMC7570983 DOI: 10.3390/molecules25184233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023] Open
Abstract
Glucocorticoid metabolism at the tissue level is regulated by two isoenzymes 11β-hydroxysteroid dehydrogenase (11β-HSD), which mutually convert biologically active cortisol and inactive cortisone. Recent research is focused on the role of 11β-HSD1 and 11β-HSD2 as autocrine factors of tumor cell proliferation and differentiation. Herein, we report the synthesis of novel 2-(isopropylamino)thiazol-4(5H)-one derivatives and their inhibitory activity for 11β-HSD1 and 11β-HSD2. The derivative containing the spiro system of thiazole and cyclohexane rings shows the highest degree of 11β-HSD1 inhibition (54.53% at 10 µM) and is the most selective inhibitor of this enzyme among the tested compounds. In turn, derivatives containing ethyl and n-propyl group at C-5 of thiazole ring inhibit the activity of 11β-HSD2 to a high degree (47.08 and 54.59% at 10 µM respectively) and are completely selective. Inhibition of the activity of these enzymes may have a significant impact on the process of formation and course of tumors. Therefore, these compounds can be considered as potential pharmaceuticals supporting anti-cancer therapy.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland;
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland;
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| |
Collapse
|
42
|
A Natural Compound Mixture Containing Arctigenin, Hederagenin, and Baicalein Alleviates Atopic Dermatitis in Mice by Regulating HPA Axis and Immune Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1970349. [PMID: 32714398 PMCID: PMC7341412 DOI: 10.1155/2020/1970349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Forsythiae Fructus, Lonicerae Flos, and Scutellariae Radix are medicinal herbs that possess anti-inflammatory and anti-atopic effects. Hence, we investigated the effects of a mixture (ADM), containing arctigenin, hederagenin, and baicalein, which are the main compound from these herbs on atopic dermatitis (AD) skin lesions and the underlying molecular mechanisms. ADM was topically applied to dorsal skin lesions of 2,4-dinitrochlorobenzene- (DNCB-) induced ICR mice, and the expressions of proinflammatory mediators and HPA axis hormones were investigated. The topical application of 0.5% ADM significantly reduced the DNCB-induced symptoms of AD in ICR mice. Histological analysis showed that ADM exerted antiatopic effects by reducing the epidermal thickness and mast cell infiltration into skin lesions. 0.5% ADM attenuated the levels of TNF-α, IFN-γ, IL-4, and VEGF in skin lesions and serum IgE. The production of Th1-/Th2-related cytokines in splenic tissues, including TNF-α, IFN-γ, IL-12, and IL-4, were also decreased by ADM treatment. ADM diminished corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosteroid (CORT) production in DNCB-induced mice. In vitro, ADM reduced the productions of TARC/CCL17, MDC/CCL22, IL-6, and ICAM-1 in TNF-α/IFN-γ- (TI-) stimulated HaCaT cells by suppressing the ERK and JNK signaling pathways. In addition, ADM inhibited corticotropin-releasing hormone/substance P- (CRH/SP-) induced VEGF production in HMC-1 cells. These results suggest that ADM may have therapeutic potential in AD by reducing inflammation and attenuating HPA axis activation.
Collapse
|
43
|
Bojanowski K, Ma S, Applebaum R, Zhao H. Transbuccal platform for delivery of lipogenic actives to facial skin: Because fat matters. J Tissue Eng Regen Med 2020; 14:1169-1174. [PMID: 32592290 DOI: 10.1002/term.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/11/2020] [Accepted: 06/15/2020] [Indexed: 11/07/2022]
Abstract
The ability to control facial skin physiology and appearance through the oral mucosa (transbuccally) is largely unexplored. Here, a hypothesis was tested that transbuccal delivery of fat tissue-supportive actives may trigger beneficial cosmetic responses at the level of the skin. First, the importance of the fat tissue for skin structure and function was established by comparative analysis of human biopsies cultured defatted or in the presence of hypodermis, using macroscopic observation, quantitative polymerase chain reaction, and histochemistry. Then, the ability to improve epidermal function and structure through the application of a lipoactive patch to oral mucosa was demonstrated in a clinical case study by the quantification of several epidermal microRNAs (miRNAs). It was found that removal of the hypodermal fat layer accelerated skin biopsy aging as demonstrated by the deterioration of the physical appearance at the macroscopic and microscopic (hematoxylin and eosin stain) levels and the decrease of expression of genes implicated in the structure and function of the skin, such as AQP3 and LOR. Furthermore, when adipogenic actives were applied to the oral mucosa under a form of bioadhesive film in a clinical case study, an improvement in the expression of miRNA biomarkers of senescence and inflammation was observed in the epidermis. Taken together, these results indicate that the transbuccal delivery of lipogenic compounds to face is a novel method for the improvement of facial skin structure and function.
Collapse
Affiliation(s)
- Krzysztof Bojanowski
- Department of Cosmetic Dermatology, Sunny BioDiscovery Inc., Santa Paula, CA, USA
| | - Stephanie Ma
- Department of Cosmetic Dermatology, Sunny BioDiscovery Inc., Santa Paula, CA, USA.,College of Nursing, California Baptist University, Riverside, CA, USA
| | | | - Hui Zhao
- Department of Cosmetic Dermatology, Sunny BioDiscovery Inc., Santa Paula, CA, USA
| |
Collapse
|
44
|
Aging-associated alterations in epidermal function and their clinical significance. Aging (Albany NY) 2020; 12:5551-5565. [PMID: 32217811 PMCID: PMC7138575 DOI: 10.18632/aging.102946] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
Chronologically-aged skin displays multiple functional changes in both the dermis and the epidermis. It appears that epidermal dysfunction, compromised permeability homeostasis, reduced stratum corneum hydration and elevated skin surface pH predispose to the development of aging-associated cutaneous and extracutaneous disorders. Improvements in epidermal function have been shown to be an effective alternative therapy in the prevention and treatment of some aging-associated cutaneous disorders, including eczematous dermatitis, pruritus, and xerosis. Recent studies demonstrated that epidermal dysfunction leads to the development of chronic, low-grade systemic inflammation, termed ‘inflammaging,’ which is linked to the development of aging-associated systemic disorders. Thus, correction of epidermal dysfunction could comprise a novel strategy in the prevention and treatment of aging-associated systemic disorders as well. In this review, we summarize aging-associated alterations in epidermal function, their underlying mechanisms, and their clinical significance. Regimens to improve epidermal function in the elderly are also discussed.
Collapse
|
45
|
Architecture of antimicrobial skin defense. Cytokine Growth Factor Rev 2019; 49:70-84. [PMID: 31473081 DOI: 10.1016/j.cytogfr.2019.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
The skin is the largest and the most exposed organ in the body and its defense is regulated at several anatomical levels. Here, we explore how skin layers, including the epidermis, dermis, adipose tissue, and skin appendages, as well as cutaneous microbiota, contribute to the function of skin antimicrobial defense. We highlight recent studies that reveal the differential and complementary responses of skin layers to bacterial, viral, and fungal infection. In particular, we focus on key soluble mediators in the layered skin defense, such as antimicrobial peptides, as well as on lipid antimicrobials, cytokines, chemokines, and barrier-maintaining molecules. We include our own evaluative analyses of transcriptomic datasets of human skin to map the involvement of antimicrobial peptides in skin protection under both steady state and infectious conditions. Furthermore, we explore the versatility of the mechanisms underlying skin defense by highlighting the role of the immune and nervous systems in their interaction with cutaneous microbes, and by illustrating the multifunctionality of selected antimicrobial peptides in skin protection.
Collapse
|
46
|
Maarouf M, Maarouf CL, Yosipovitch G, Shi VY. The impact of stress on epidermal barrier function: an evidence-based review. Br J Dermatol 2019; 181:1129-1137. [PMID: 30614527 DOI: 10.1111/bjd.17605] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The epidermal barrier functions to limit skin infection and inflammation by inhibiting irritant and immunogen invasion. Abundant evidence suggests that psychological stress stemming from crowding, isolation, nicotine smoking, insomnia, mental arithmetic tasks, physical pain, real-life stressors (examinations and marital strain) and lack of positive personality traits may impart both acute and chronic epidermal dysfunction. OBJECTIVES To review the relationship between stress and epidermal barrier dysfunction. METHODS A review of the PubMed and Embase databases was conducted to identify all English-language case-control, cross-sectional and randomized control trials that have reported the effect of stress on epidermal barrier function. The authors' conclusions are based on the available evidence from 21 studies that met the inclusion and exclusion criteria. RESULTS Psychological stressors upregulate the hypothalamic-pituitary-adrenal axis to stimulate local and systemic stress hormone production. This ultimately leads to aberrant barrier dysfunction, characterized by decreased epidermal lipid and structural protein production, decreased stratum corneum hydration and increased transepidermal water loss. CONCLUSIONS This evidence-based review explores the adverse effects of psychological stressors on epidermal barrier function. Future investigations using more real-life stressors are needed to elucidate further their impact on skin physiology and identify practical stress-relieving therapies that minimize and restore epidermal barrier dysfunction, particularly in at-risk populations. What's already known about this topic? The literature reports the negative effect of stress on prolonged wound healing. Less is known about the relationship between stress and epidermal barrier dysfunction, a chronic, superficial wound involving the upper epidermal layers. What does this study add? Psychological stressors impact epidermal barrier function by activating the hypothalamic-pituitary-adrenal axis to stimulate local and systemic stress hormone production. Stress hormones negatively affect the epidermal barrier by decreasing epidermal lipids and structural proteins, decreasing stratum corneum hydration and increasing transepidermal water loss. Identification of such stressors can promote stress-avoidance and stress-reduction behaviours that protect epidermal barrier function and prevent certain dermatological conditions.
Collapse
Affiliation(s)
- M Maarouf
- College of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - C L Maarouf
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - G Yosipovitch
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, FL, U.S.A
| | - V Y Shi
- Department of Medicine, Division of Dermatology, University of Arizona, Tucson, AZ, U.S.A
| |
Collapse
|