1
|
Ren X, Wu W, Li Q, Li W, Wang X, Wang G. Different supplements improve insulin resistance, hormonal functions, and oxidative stress on overweight and obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1464959. [PMID: 39722805 PMCID: PMC11668966 DOI: 10.3389/fendo.2024.1464959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives To investigate various supplements that improve insulin resistance, hormonal status, and oxidative stress in overweight or obese women with polycystic ovarian syndrome (PCOS). Methods A literature search was conducted on four different databases, which led to the discovery of twenty - five randomized controlled trials (RCTs). These RCTs evaluated the efficacy of various supplements in improving insulin resistance (IR), hormonal status, and oxidative stress among overweight or obese women diagnosed with PCOS. Subsequently, data extraction and analysis were carried out to determine the quality of the study's methodological design and the potential for bias. Moreover, a meta-analysis was performed using the data from the RCTs. Results A total of 25 RCTs were carried out, and 1636 women were enrolled. All participants were overweight or obese. The standardized mean differences (SMD) were as follows: For fasting plasma glucose (FPG), it was -0.34 (95% confidence interval [CI], -0.49 to -0.19, p = 0.123, I2 = 30.8%); for insulin, it was -0.67 (95% CI, -0.83 to -0.52, p = 0.208, I2 = 24%); for fasting insulin (FI), it was -0.26 (95% CI, -0.52 to -0.00, p = 0.269, I2 = 21.9%); for homeostatic model assessment-insulin resistance index (HOMA-IR), it was -0.59 (95% CI, -0.73 to -0.45, p = 0.015, I2 = 48.7%); for homoeostatic model assessment beta - cell function (HOMA-B), it was -0.51 (95% CI, -0.75 to -0.27, p = 0.547, I2 = 0%); for quantitative insulin sensitivity check index (QUICKI), it was 0.94 (95% CI, 0.76 to -1.12, p = 0.191, I2 = 27.5%); for total testosterone, it was -0.61 (95% CI, -1.14 to -0.09, p = 0.00, I2 = 78.5%); for testosterone, it was -0.38 (95% CI, -0.86 to 0.10, p = 0.03, I2 = 71.5%); for follicle - stimulating hormone (FSH), it was 0.16 (95% CI, -0.08 to 0.40, p = 0.470, I2 = 0%); for luteinizing hormone (LH), it was -0.56 (95% CI, -1.32 to 0.20, p = 0.000, I2 = 91.1%); for sex hormone - binding globulin (SHBG), it was 0.35 (95% CI, 0.02 to 0.69, p = 0.000, I2 = 78%); for dehydroepiandrosterone (DHEAS), it was -0.27 (95% CI, -0.76 to 0.21, p = 0.001, I2 = 78.7%); for plasma total antioxidant capacity (TAC), it was 0.87 (95% CI, 0.45 to 1.30, p = 0.004, I2 = 71.3%); for plasma malondialdehyde (MDA), it was -0.57 (95% CI, -0.79 to -0.36, p = 0.992, I2 = 0.0%). Conclusion This study's findings indicate that, in comparison with a placebo, supplements have a favorable effect on IR, hormonal functions, and oxidative stress in PCOS. Nevertheless, it is crucial to note that the above-drawn conclusions need to be verified by more high-quality studies, given the limitations regarding the number and quality of the included studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wang
- Department of Gynecological Oncology, Sichuan Provincial Women’s and Children’s Hospital/The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Apaijai N, Pintana H, Saengmearnuparp T, Kongkaew A, Arunsak B, Chunchai T, Chattipakorn SC, Chattipakorn N. Inhibition of 5-alpha reductase attenuates cardiac oxidative damage in obese and aging male rats via the enhancement of antioxidants and the p53 protein suppression. Chem Biol Interact 2024; 403:111240. [PMID: 39265715 DOI: 10.1016/j.cbi.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
In aging and metabolic syndrome oxidative stress is a causative factor in the cardiovascular pathology. Upregulation of 5-⍺ reductase is associated with cardiac hypertrophy but how inhibition of 5-⍺ reductase affects cardiometabolic function during oxidative damage under those conditions is unclear. Our hypothesis was that Finasteride (Fin), a 5-⍺ reductase inhibitor, promotes an antioxidant response, leading to an improvement in cardiac function in obese and aging rats. Male rats were divided into 3 groups including normal diet (ND) fed rats, ND-fed rats treated with d-galactose (D-gal) to induce aging, and high-fat diet (HFD) fed rats to induce obesity. Rats received their assigned diet or D-gal for 18 weeks. At week 13, rats in each group were divided into 2 subgroups and received either a vehicle or Fin (5 mg/kg/day, oral gavage). Cardiometabolic and molecular parameters were subsequently investigated. Both D-gal and HFD successfully induced cardiometabolic dysfunction, oxidative stress, mitochondrial dysfunction, and DNA fragmentation. Fin treatment did not affect metabolic disturbances; however, it reduced cardiac sympathovagal imbalance, cardiac dysfunction through the inhibition of oxidative stress and promoted antioxidants, resulting in reduced p53 protein levels and DNA fragmentation. Surprisingly, Fin induced insulin resistance in ND-fed rats. Fin effectively improved cardiac function in both models by enhancing antioxidant levels, suppressing oxidative stress and DNA fragmentation. However, Fin treatment did not confer any beneficial effects on metabolic status. Fin administration effectively improved cardiac sympathovagal balance and cardiac function in rats with oxidative damage induced by either D-gal or HFD.
Collapse
Affiliation(s)
- Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiranya Pintana
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thiraphat Saengmearnuparp
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Urology, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
3
|
Dou J, Wu Y, Hu R, Liu J, Zhang Y, Zhen X, Wu T, Zhang C, Liu Y, Zheng R, Jiang G. Quinoa ameliorates polycystic ovary syndrome via regulating gut microbiota through PI3K/AKT/mTOR pathway and autophagy. Nutr Metab (Lond) 2024; 21:80. [PMID: 39394588 PMCID: PMC11468221 DOI: 10.1186/s12986-024-00855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a unity of endocrine and metabolic disorders, associated with PI3K/AKT/mTOR, autophagy, and gut microbiota. Quinoa is a valuable food source, which contains rich minerals, unsaturated fatty acids, and has a positive modulating effect on metabolic diseases. However, its effects and potential mechanisms on PCOS have not been reported yet. Therefore, the purpose of this study is to investigate the effect of quinoa on PCOS rats by regulating PI3K/AKT/mTOR, autophagy, and gut microbiota. METHODS Ten-week-old female Sprague-Dawley (SD) rats have received letrozole for 24 days for induction of PCOS and subsequently were treated with a quinoa diet for 8 weeks. Vaginal smears were used to analyze the estrous cycle of rats. Hormone and biochemical indexes were analyzed by kit assays and glucometer. The pathological changes of ovary, pancreas, duodenum and colon were observed by HE staining. PI3K, AKT, mTOR and autophagy-related proteins in the ovary and colon were measured by western blot and immunohistochemistry staining. Tight junction proteins in colon were measured by immunohistochemistry staining. 16 s rDNA sequencing was used to detect the changes of intestinal microbiota in rats. Network pharmacology and molecular docking were used to study the possible targets and mechanisms of quinoa on PCOS. Spearman correlation analysis was used to study the relationship between intestinal microbial abundance and hormone levels of PCOS rats at the phylum and genus level. RESULTS Quinoa significantly improved estrous cycle and biochemical parameters of PCOS-like rats, and the pathological state of ovary, pancreas, duodenum and colon tissues. Especially, quinoa significantly regulated the expression of PI3K, AKT, mTOR and autophagy-related proteins in the ovary. Quinoa may repair the intestinal barrier by upregulating the expression of tight junction proteins in the colon, and regulate autophagy-related factors in colon. Additionally, quinoa increased the abundance of Lactobacillu, Bacteroides and Oscillospira, and decreased the Firmicutes/Bacteroidetes ratio and the Blautia, and Prevotella, reversing the dysregulation of the gut microbiota. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and hormone related to PCOS. CONCLUSION Our result indicated that effect of quinoa on PCOS maybe associated with activation of the PI3K/AKT/mTOR signaling pathway, inhibition of autophagy, and regulation of intestinal flora.
Collapse
Affiliation(s)
- Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanxiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rentong Hu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, China
| | - Jiaxian Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China
- Gansu Chunjie Plateau Agricultural Technology Co., Ltd, Wuwei, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chuyue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yutong Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China
- Gansu Chunjie Plateau Agricultural Technology Co., Ltd, Wuwei, China
| | - Ruifang Zheng
- Institute of Materia Medica, Xinjiang Uyghur Autonomous Region, Urumqi, 830004, China.
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Saengmearnuparp T, Pintana H, Apaijai N, Chunchai T, Thonusin C, Kongkaew A, Lojanapiwat B, Chattipakorn N, Chattipakorn SC. Long-term Treatment with a 5-Alpha-Reductase Inhibitor Alleviates Depression-like Behavior in Obese Male Rats. Behav Brain Res 2024; 472:115155. [PMID: 39032869 DOI: 10.1016/j.bbr.2024.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Several studies have reported side effects of finasteride (FIN), such as anxiety/depression in young men. Obesity is also positively associated with anxiety/depression symptoms; however, the impacts of long-term FIN treatment and FIN withdrawal in young obese individuals are still elusive. The present study aimed to investigate the effect of long-term treatment and its withdrawal on anxiety/depression and brain pathologies in lean and obese adult male rats. Forty-eight male Wistar rats were equally divided into two groups and fed either a normal or high-fat diet. At age 13 weeks, rats in each dietary group were divided into three subgroups: 1) the control group receiving drinking water, 2) the long-term treatment group receiving FIN orally at 5 mg/kg/day for 6 weeks, and 3) the withdrawal group receiving FIN orally at 5 mg/kg/day for 2 weeks followed by a 4-week withdrawal period. Anxiety/depression-like behaviors, biochemical analysis, brain inflammation, oxidative stress, neuroactive steroids, brain metabolites, and microglial complexity were tested. The result showed that lean rats treated with long-term FIN and its withdrawal exhibited metabolic disturbances, depressive-like behavior, and both groups showed increased neurotoxic metabolites and reduced microglial complexity. Obesity itself led to metabolic disturbances and brain pathologies, including increased inflammation, oxidative stress, and quinolinic acid, as well as reduced microglial complexity, resulting in increased anxiety- and depression-like behaviors. Interestingly, the long-term FIN treatment group in obese rats showed attenuation of depressive-like behaviors, brain inflammation, and oxidative stress, along with increased brain antioxidants, suggesting the possible benefits of FIN in obese conditions.
Collapse
Affiliation(s)
- Thiraphat Saengmearnuparp
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bannakij Lojanapiwat
- Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Ge Y, Chen Y, Zhang Y, Hu Y, Jiang F, Lu X, Wu C. Shared genes of polycystic ovary syndrome and sedentary behavior as a novel immune landscape biomarker for endometrial cancer. Sci Rep 2024; 14:19111. [PMID: 39154063 PMCID: PMC11330454 DOI: 10.1038/s41598-024-69951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Endometrial cancer (EC) is associated with significant risk factors such as polycystic ovarian syndrome (PCOS) and sedentary behavior. In our study, we aim to employ machine learning algorithms to investigate the potential molecular processes that underlie their interaction and explore their respective roles in the diagnosis and immunotherapy of EC. The GEO database provides access to microarray data, which was utilized in this study to identify gene expression modules associated with PCOS and sedentary behavior, using weighted gene expression network analysis (WGCNA). Cluego software was then employed to investigate the energy enrichment of shared pathways in both PCOS and sedentary individuals, and differential gene analysis was used to confirm another two databases. The miRNAs-mRNAs controlled network was constructed to verify the pathway. The immune-related factors of the shared pathway in EC were then analyzed. Finally, to validate our findings, we conducted cell experiments using EC cell lines (AN3CA, KLE, Ishikawa, RL95-2, and HEC-1A). We found that increased intracellular aromatic compound anabolism is a common feature of both PCOS and sedentary individuals. We then developed a disease pathway model that was based on the common genetic characteristics of PCOS and sedentary behavior. We utilized pathway typing in EC samples and found a significant survival difference between the two subgroups, with the upregulated expression type exhibiting an immune-hot phenotype. Finally, the experimental results confirmed the expression of the hub gene (NAA15) in EC. The findings of our study suggest that genes related to the intracellular aromatic compound metabolic pathway can be used for immunotherapy of EC.
Collapse
Affiliation(s)
- Yao Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yifang Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
6
|
Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, Li X, Li Q, Huang D, Yu Y, Xiong Y, Qian L. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med 2024; 30:124. [PMID: 39138413 PMCID: PMC11323356 DOI: 10.1186/s10020-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Fanglin Niu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710018, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Man Li
- Department of Endocrinology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Qinhua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Deqing Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Mental Health Center, Xi'an, 710100, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| |
Collapse
|
7
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Li L, Xiao Y, Zhou J, Mo H, Li X, Li Y, Wang Y, Zhong M. Effects of Berberine on glucolipid metabolism among dehydroepiandrosterone-induced rats of polycystic ovary syndrome with insulin-resistance. Heliyon 2024; 10:e24338. [PMID: 38293350 PMCID: PMC10826177 DOI: 10.1016/j.heliyon.2024.e24338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a set of endocrine disorder syndrome characterized by ovulation disorder. Increased insulin resistance (IR) and compensatory hyperinsulinemia play a vital role in the pathogenesis of PCOS. Therefore, insulin sensitizing agents have been studied in the treatment of PCOS. Berberine (BBR) has been proved to alleviate IR in patients with PCOS, but the mechanism remained unclear. This study was aimed to verify the regulatory mechanism of BBR on PCOS-IR rats. Firstly, we established a female rat PCOS-IR model induced by dehydroepiandrosterone (DHEA) and found that estrus cycle was disrupted in the PCOS-IR group, serum fasting insulin (FINS) level and the homeostasis model assessment of insulin resistance (HOMA-IR) index were significantly higher than normal control group. BBR treatment could recover estrous cycle, reduce abnormal serum hormone levels like luteotropic hormone (LH) and testosterone (T). Most importantly, BBR could concentration-dependently reduce serum FINS level in PCOS-IR rat model. Meanwhile, BBR may improve the abnormal lipid metabolism levels in PCOS-IR group by decreasing low density lipoprotein (LDL), total cholesterol (TC) and triglyceride (TG). Histological results showed that BBR can also protect normal histological structures of ovaries in PCOS-IR rats. Our results indicated that BBR plays a protective role in PCOS-IR, increasing insulin sensitivity, improving hyperandrogens and recovering abnormal blood lipids. Therefore, Our research provides novel insights for therapeutic treatment of BBR in patients with glucolipid metabolic disturbances.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
- Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Yao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China
| | - Jiahe Zhou
- Naval Special Medical Center, Naval Medical University, Shanghai, 200082, China
| | - Hui Mo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 000853, China
| | - Xiaofang Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
| | - Yuancheng Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
- Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Youfeng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 000853, China
| | - Minglin Zhong
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
| |
Collapse
|
9
|
Zhang Y, Hu Y, Yu J, Xie X, Jiang F, Wu C. Landscape of PCOS co-expression gene and its role in predicting prognosis and assisting immunotherapy in endometrial cancer. J Ovarian Res 2023; 16:129. [PMID: 37393293 DOI: 10.1186/s13048-023-01201-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) is the sixth most frequent malignancy in women and is often linked to high estrogen exposure. Polycystic ovarian syndrome (PCOS) is a known risk factor for EC, but the underlying mechanisms remain unclear. METHODS We investigated shared gene signals and potential biological pathways to identify effective therapy options for PCOS- and EC-related malignancies. Weighted gene expression network analysis (WGCNA) was used to identify genes associated with PCOS and EC using gene expression data from the Gene Expression Omnibus (GEO) and Cancer Genome Atlas (TCGA) datasets. Enrichment analysis using Cluego software revealed that the steroid hormone biosynthetic process was a critical feature in both PCOS and EC. A predictive signature encompassing genes involved in steroid hormone production was developed using multivariate and least absolute shrinkage and selection operator (LASSO) regression analysis to predict the prognosis of EC. Then, we conducted further experimental verification. RESULTS Patients in the TCGA cohort with high predictive scores had poorer outcomes than those with low scores. We also investigated the relationship between tumor microenvironment (TME) features and predictive risk rating and found that patients with low-risk scores had higher levels of inflammatory and inhibitory immune cells. Also, we found that immunotherapy against anti-CTLA4 and anti-PD-1/PD-L1 was successful in treating individuals with low risk. Low-risk individuals were more responsive to crizotinib therapy, according to further research performed using the "pRRophetic" R package. We further confirmed that IGF2 expression was associated with tumor cell migration, proliferation, and invasion in EC cells. CONCLUTIONS By uncovering the pathways and genes linking PCOS and EC, our findings may provide new therapeutic strategies for patients with PCOS-related EC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, China
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, China
| | - Xiaoyan Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
10
|
Balasubramanian A, Pachiappan S, Mohan S, Adhikesavan H, Karuppasamy I, Ramalingam K. Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: A mechanistic approach. Heliyon 2023; 9:e15488. [PMID: 37180914 PMCID: PMC10173408 DOI: 10.1016/j.heliyon.2023.e15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Objective This study aimed to develop an effective alternative medicine with multi potential herbs against polycystic ovarian syndrome (PCOS) in rats induced by letrozole treatment. Materials and method Polyherbal syrup was prepared with a combination of S. asoca bark, G. sylvestre leaves, P. daemia aerial parts, C. zeylanium stem bark, C. bonduc seeds, and W. somnifera roots ethanolic extract. In vitro cell viability study, adenosine monophosphate-activated protein kinase (AMPK), and glucose transporter 4 (GLUT4) gene expression assay were carried out on the Chinese Hamster Ovarian (CHO) cell line. For the PCOS induction letrozole (1 mg/kg p. o.) was given for 21 consecutive days. The PCOS induction was confirmed by measuring estrus irregularity, insulin resistance by oral glucose tolerance test (OGTT), and hyperandrogenism by measuring serum total testosterone level 21 days after completion of letrozole treatment. After induction of PCOS, metformin (155 mg/kg p. o.), and polyherbal syrup (100 mg/kg, 200 mg/kg, and 400 mg/kg p. o.) were administered for further 28 days. The treatment efficacy was measured by measuring serum lipid profile, fasting insulin level, sex hormones level, ovarian steroidogenic enzymes, ovarian tissue insulin receptor, AMPK, and GLUT4 protein expression levels, and histomorphological studies. The post-treatment effect was confirmed by reproductive performance studies. Results Letrozole-induced PCOS rats showed significant estrus irregularity, abnormal sex hormones levels, and hyperandrogenism indicated by showing increased free androgenic index and decreased sex hormones binding globulin (SHBG) level. The insulin resistance in PCOS rats was indicated by increased fasting glucose levels with impaired glucose clearance in the OGT test. Homeostasis Model Assessment Index of Insulin Resistance (HOMA-IR) increased level, also decreases INSR, GLUT4, and AMPK mRNA expression in ovarian cells confirming the insulin resistance in PCOS rats. Ovarian histology in PCOS rats also showed many follicular cysts, atretic follicles, and the absence of corpus luteum. The administration of polyherbal syrup, in a dose-dependent manner, effectively restored these alterations. The treatment of polyherbal formulation 400 mg/kg possesses highly significant efficacy over the treatment of metformin in PCOS rats. It mainly acts by reducing peripheral and ovarian hyperandrogenism and improves insulin sensitivity via activating the insulin receptor and AMP-activated kinase-mediated transcription and translation of GLUT4 from the cytoplasm to the ovarian membrane improves glucose uptake and promotes the follicular development and ovulation. The higher fertility rate, delivery index, and survival of delivered pups confirm the broader and superior efficacy of PCOS. These beneficial actions are mainly attributable to the formulation's inclusion of the key secondary metabolites flavonoids and phytosterols. In conclusion, the prepared polyherbal syrup was found to be the safest and most effective alternative medicine for both endocrinal and metabolic complications of PCOS women.
Collapse
Affiliation(s)
- Arul Balasubramanian
- Department of Pharmacology, Vinayaka Mission's College of Pharmacy,Vinayaka Mission's Research Foundation (Deemed to be University), Salem, 636308, Tamil Nadu, India
| | - Sudhakar Pachiappan
- Department of Pharmacology, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengode, Tamil Nadu, India
| | - Surendiran Mohan
- Department of Chemistry, School of Arts and Science, AVIT Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Chennai, India
| | - Harikrishnan Adhikesavan
- Department of Chemistry, School of Arts and Science, AVIT Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Chennai, India
| | - Indira Karuppasamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Kothai Ramalingam
- Department of Pharmacology, Vinayaka Mission's College of Pharmacy,Vinayaka Mission's Research Foundation (Deemed to be University), Salem, 636308, Tamil Nadu, India
- Corresponding author.
| |
Collapse
|
11
|
Zhang XT, Mao ZY, Jin XY, Wang YG, Dong YQ, Zhang C. Identification of a tsRNA Contributor to Impaired Diabetic Wound Healing via High Glucose-Induced Endothelial Dysfunction. Diabetes Metab Syndr Obes 2023; 16:285-298. [PMID: 36760596 PMCID: PMC9899021 DOI: 10.2147/dmso.s379473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Delayed skin healing in diabetic wounds is a major clinical problem. The tRNA-derived small RNAs (tsRNAs) were reported to be associated with diabetes. However, the role of tsRNAs in diabetic wound healing is unclear. Our study was designed to explore the tsRNA expression profile and mine key potential tsRNAs and their mechanism in diabetic wounds. METHODS Skin tissues of patients with diabetic foot ulcers and healthy controls were subjected to small RNA sequencing. The role of candidate tsRNA was explored by loss- and gain-of-function experiments in HUVECs. RESULTS A total of 55 differentially expressed tsRNAs were identified, including 12 upregulated and 43 downregulated in the diabetes group compared with the control group. These tsRNAs were mainly concentrated in intercellular interactions and neural function regulation in GO terms and enriched in MAPK, insulin, FoxO, calcium, Ras, ErbB, Wnt, T cell receptor, and cGMP-PKG signaling pathways. tRF-Gly-CCC-039 expression was upregulated in vivo and in vitro in the diabetic model. High glucose disturbed endothelial function in HUVECs, and tRF-Gly-CCC-039 mimics further harmed HUVECs function, characterized by the suppression of proliferation, migration, tube formation, and the expression of Coll1a1, Coll4a2, and MMP9. Conversely, the tRF-Gly-CCC-039 inhibitor could attenuate high-glucose-induced endothelial injury to HUVECs. CONCLUSION We investigated the tsRNAs expression profile in diabetic foot ulcers and defined the impairment role of tRF-Gly-CCC-039 in endothelial function in HUVECs. This study may provide novel insights into accelerating diabetic skin wound healing.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhen-Yang Mao
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang-Yun Jin
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Gang Wang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Qi Dong
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Chao Zhang; Yu-Qi Dong, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong New Area, Shanghai, People’s Republic of China, Tel +86-13817307997; +86-13331873590, Email ;
| |
Collapse
|
12
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|
13
|
Yang X, Wang K, Lang J, Guo D, Gao H, Qiu Y, Jin X, Zhang M, Shi J, Ma Q, Ma Q, Wen Z. Up-regulation of miR-133a-3p promotes ovary insulin resistance on granulosa cells of obese PCOS patients via inhibiting PI3K/AKT signaling. BMC Womens Health 2022; 22:412. [PMID: 36209087 PMCID: PMC9548189 DOI: 10.1186/s12905-022-01994-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Background MicroRNAs are a type of non-coding single-stranded RNA, which is involved in the regulation of ovary insulin resistance (IR). This study aims to explore the underlying mechanisms of miR-133a-3p regulating ovary IR in obese polycystic ovary syndrome (PCOS).
Methods Granulosa cells (GCs) were extracted from follicular fluids of PCOS patients (obese PCOS group and non-obese PCOS group) and healthy women (control group). The expression of miR-133a-3p in GCs was detected by qRT-PCR. The targets and pathways of miR-133a-3p were predicted by bioinformatics analyses. The protein levels of PI3K, p-AKT, GLUT4, p-GSK-3β, and p-FOXO1 were measured by Western blotting. Results MiR-133a-3p was highly expressed in GCs from PCOS patients, especially in obese PCOS patients. The protein levels of PI3K and p-AKT was downregulated in GCs from PCOS patients. There were 11 target genes of miR-133a-3p enriching in PI3K/AKT signaling pathway. miR-133a-3p mimic downregulated the expression of PI3K, p-AKT, and GLUT4, and upregulated the protein levels of p-GSK-3β and p-FOXO1. miR-133a-3p inhibitor presented the opposite effect of miR-133a-3p mimic. Conclusion MiR-133a-3p promotes ovary IR on GCs of obese PCOS patients via inhibiting PI3K/AKT signaling pathway. This study lays a foundation for further research on the mechanism of ovary IR in obese PCOS patients.
Collapse
Affiliation(s)
- Xiaoman Yang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kehua Wang
- grid.479672.9Integrative Medicine Center for Reproductive and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhuaxi Road, Jinan, China
| | - Jiajia Lang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Guo
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixia Gao
- grid.479672.9Integrative Medicine Center for Reproductive and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhuaxi Road, Jinan, China
| | - Yue Qiu
- grid.479672.9Integrative Medicine Center for Reproductive and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhuaxi Road, Jinan, China
| | - Xiaohan Jin
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingyue Zhang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxiu Shi
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - QianQian Ma
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Ma
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zixi Wen
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Zhang YY, Ma JX, Zhu YT, Wang YX, Chen WQ, Sun X, Zhang W, Wang CY, Ding CF. Investigation of the mechanisms and experimental verification of Cuscuta-Salvia in the treatment of polycystic ovary syndrome (PCOS) via network pharmacology. J Ovarian Res 2022; 15:40. [PMID: 35379295 PMCID: PMC8978390 DOI: 10.1186/s13048-022-00964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproduction. The Cuscuta-Salvia formula has been widely used to treat for PCOS in clinic. However, its chemical and pharmacological properties remain unclear. We identified the active components and related targets of Cuscuta-Salvia using UHPLC-ESI-Q-TOF-MS and TCMSP database. Disease targets were obtained from the DisGeNET and GeneCards databases. Subsequently, common targets between Cuscuta-Salvia and PCOS were identified using a Venn diagram. PPI network was established. Core genes were selected using a Cytoscape software plugin. GO and KEGG enrichment analyses were performed for common targets using the "pathview" package in R. Several core targets were verified using molecular and Immunological methods. By combining UHPLC-ESI-Q-TOF-MS with a network pharmacology study, 14 active components and a total of 80 common targets were obtained. Ten core genes were regulated by Cuscuta-Salvia in PCOS, including IL6, AKT1, VEGFA, TP53, TNF, MAPK1, JUN, EGF, CASP3, and EGFR. GO results showed that cellular response to drugs, response to oxygen levels, response lipopolysaccharides, and response to molecule of bacterial origin in BP category; membrane, transcription regulator complex, nuclear chromatin, postsynaptic membrane, and vesicle lumen in CC category; DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, DNA-binding transcription activator activity, RNA polymerase II-specific, DNA-binding transcription activator activity, and cytokine receptor binding in MF terms. The KEGG enrichment pathway was mainly involved in the PI3K - Akt, MAPK, TNF, IL-17 signalling pathways, and in cellular senescence. Furthermore, the results of the experimental study showed that Cuscuta-Salvia ameliorated the pathological changes in the ovaries, liver and adipose tissue. And it improved the expressions of the genes or proteins. Our results demonstrate that Cuscuta-Salvia may provide a novel pharmacological basis in an experimental model of PCOS by regulating gene expression. This study provides a basis for future research and clinical applications.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Xiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Xuan Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Wang-Qiang Chen
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Xin Sun
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Wei Zhang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Chen-Ye Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Cai-Fei Ding
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China.
| |
Collapse
|
15
|
Xiong H, Hu Q, Jiang Q. Protective effects of lidocaine on polycystic ovary syndrome through modulating ovarian granulosa cell physiology via PI3K/AKT/mTOR pathway. Cytotechnology 2022; 74:283-292. [PMID: 35464164 PMCID: PMC8975917 DOI: 10.1007/s10616-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/10/2022] [Indexed: 11/03/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine condition in women that causes adverse reproductive and metabolic effects. PCOS is a heterogeneous disorder and its pathogenesis is affected by different factors. Thus, the criteria for diagnosing PCOS, disease and availability of treatment options vary widely across different countries. Lidocaine has been proven to inhibit the proliferation of a variety of cancer cell types, and can be used alone or in combination with other drugs for the treatment of numerous types of disease. The present study aimed to determine whether lidocaine was able to reduce human ovarian granulosa cell tumor cell line KGN cell proliferation and provide a novel insight into potential therapeutic strategies for PCOS. KGN cells were treated alone with lidocaine at different concentrations, or with lidocaine and insulin-like growth factor-1 (IGF-1; a phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT) signaling pathway agonist) in combination for 48 h. The proliferative ability of KGN cells was detected using an 3-(45)-dimethylthiahiazo (-z-y1)-35-di- phenytetrazoliumromide (MTT) assay, and cell apoptosis was detected using flow cytometry. The expression levels of proteins and mRNAs were measured using western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. The results of the present study revealed that lidocaine significantly suppressed KGN cell proliferation and increased apoptosis. Lidocaine significantly downregulated the protein expression levels of phosphorylated (p)-AKT and p-mTOR, but had no effect on their transcriptional levels. Treatment with IGF-1, could reverse the lidocaine-induced abnormal expression of PI3K/AKT signaling pathway-related proteins. Moreover, treatment with IGF-1 could reverse all the effects of lidocaine on KGN cells. In conclusion, the findings of the present study indicated that lidocaine may inhibit KGN cell proliferation and induce apoptosis by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway. These results revealed the potential inhibitory effect of lidocaine on the proliferation of KGN cells and its underlying mechanism of action, providing a novel insight into potential therapeutic strategies for PCOS.
Collapse
|
16
|
Han MJ, Park SJ, Lee SJ, Choung SY. The Panax ginseng Berry Extract and Soluble Whey Protein Hydrolysate Mixture Ameliorates Sarcopenia-Related Muscular Deterioration in Aged Mice. Nutrients 2022; 14:799. [PMID: 35215448 PMCID: PMC8876731 DOI: 10.3390/nu14040799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Sarcopenia is prevalent as the aging population grows. Therefore, the need for supplements for the elderly is increasing. This study aimed to investigate the efficacy and mechanism of a Panax ginseng berry extract (GBE) and soluble whey protein hydrolysate (WPH) mixture on a sarcopenia-related muscular deterioration in aged mice. Ten-month-old male C57BL/6J mice were administered three different doses of the GBE + WPH mixture for 8 weeks; 700 mg/kg, 900 mg/kg, and 1100 mg/kg. Grip strength, serum inflammatory cytokines level, and mass of muscle tissues were estimated. The deteriorating function of aging muscle was investigated via protein or gene expression. Grip strength and mass of three muscle tissues were increased significantly in a dose-dependent manner, and increased anti-inflammatory cytokine alleviated systemic inflammatory state. The mixture resolved the imbalance of muscle protein turnover through activation of the PI3K/Akt pathway and increased gene expression of the muscle regeneration-related factors, while decreasing myostatin, which interferes with muscle protein synthesis and regeneration. Furthermore, we confirmed that increased mitochondria number in muscle with the improvement of mitochondrial biogenesis. These physiological changes were similar to the effects of exercise.
Collapse
Affiliation(s)
- Min-Ji Han
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Seok-Jun Park
- Health & Nutrition R&D Group, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Korea;
| | | | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
17
|
Wei H, Huo P, Liu S, Huang H, Zhang S. Posttranslational modifications in pathogenesis of PCOS. Front Endocrinol (Lausanne) 2022; 13:1024320. [PMID: 36277727 PMCID: PMC9585718 DOI: 10.3389/fendo.2022.1024320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and psychiatric disorder that affects 5-18% of women, which is associated with a significantly increased lifetime risk of concomitant diseases, including type 2 diabetes, psychiatric disorders, and gynecological cancers. Posttranslational modifications (PTMs) play an important role in changes in protein function and are necessary to maintain cellular viability and biological processes, thus their maladjustment can lead to disease. Growing evidence suggests the association between PCOS and posttranslational modifications. This article mainly reviews the research status of phosphorylation, methylation, acetylation, and ubiquitination, as well as their roles and molecular mechanisms in the development of PCOS. In addition, we briefly summarize research and clinical trials of PCOS therapy to advance our understanding of agents that can be used to target phosphorylated, methylated, acetylated, and ubiquitinated PTM types. It provides not only ideas for future research on the mechanism of PCOS but also ideas for PCOS treatments with therapeutic potential.
Collapse
Affiliation(s)
- Huimei Wei
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peng Huo
- School of Public Health, Guilin Medical University, Guilin, China
| | - Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| |
Collapse
|
18
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
19
|
Cui C, Wang J, Han X, Wang Q, Zhang S, Liang S, Li H, Meng L, Zhang C, Chen H. Identification of small extracellular vesicle-linked miRNA specifically derived from intrafollicular cells in women with polycystic ovary syndrome. Reprod Biomed Online 2021; 42:870-880. [PMID: 33840620 DOI: 10.1016/j.rbmo.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
RESEARCH QUESTION This study aimed to identify small extracellular vesicle (sEV)-linked microRNAs (miRNA) specifically derived from intrafollicular cells in women with polycystic ovary syndrome (PCOS) and to investigate their biological functions. DESIGN A total of 120 women were recruited from September 2017 to October 2018. To investigate miRNA profiles in sEV derived from follicular fluid and serum, 30 women with PCOS and 30 without PCOS were included for a miRNA microarray containing probes interrogating 2549 human miRNA. To study the expression levels of differentially expressed miRNA, sEV in follicular fluid obtained from another 30 PCOS and 30 non-PCOS patients were used for quantitative real-time polymerase chain reaction analysis. RESULTS A total of 281 sEV-linked miRNA specifically derived from intrafollicular cells were identified, 179 of which were expressed in both the PCOS and non-PCOS groups. Twenty-six of the 179 intrafollicle-specific sEV-linked miRNA were predicted to target 1537 genes. Functional analysis suggested that these genes were involved in pathways related to folliculogenesis, including the MAPK, and PI3K-Akt signalling pathways. Quantitative real-time polymerase chain reaction analysis showed that the expression of seven intrafollicle-specific sEV-linked miRNA was significantly higher in follicular fluid-derived sEV in women with PCOS than in women without it. These miRNA and their corresponding target genes were identified as being involved in the MAPK signalling pathway and oocyte meiosis. CONCLUSIONS The data suggest that the aberrantly expressed miRNA and their target genes might be associated with PCOS, providing novel insights into the molecular mechanisms underlying regulation of folliculogenesis and oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Chenchen Cui
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Jie Wang
- Women & Infant Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xiao Han
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Qian Wang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Shan Zhang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Department of Reproductive Medicine Center, Henan Provincial People's Hospital Affiliated to Xinxiang Medical College, Zhengzhou, Henan, China
| | - Shoujing Liang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Huan Li
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Li Meng
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China.
| | - Huanhuan Chen
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China.
| |
Collapse
|
20
|
Joshi DM, Patel J, Bhatt H. In silico study to quantify the effect of exercise on surface GLUT4 translocation in diabetes management. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s13721-020-00274-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Lin J, Huang H, Lin L, Li W, Huang J. MiR-23a induced the activation of CDC42/PAK1 pathway and cell cycle arrest in human cov434 cells by targeting FGD4. J Ovarian Res 2020; 13:90. [PMID: 32772928 PMCID: PMC7416395 DOI: 10.1186/s13048-020-00686-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background MiRNAs play important roles in the development of ovarian cancer, activation of primitive follicles, follicular development, oocyte maturation and ovulation. In the present study, we investigated the specific role of miR-23a in cov434 cells. Results Downregulation of miR-23a was observed in serum of PCOS patients compared with the healthy control, suggesting the inhibitory effect of miR-23a in PCOS. MiR-23a was positively correlated with Body Mass Index (BMI) and negatively correlated with Luteinizing hormone (LH), Testostrone (T), Glucose (Glu) and Insulin (INS) of PCOS patients. MiR-23a mimic inhibited the proliferation and promoted apoptosis of human cov434 cells. In addition, flow cytometry assay confirmed that miR-23a blocked cell cycle on G0/G1 phase. MiR-23a inhibitor showed opposite results. Furthermore, double luciferase reporter assay proved that miR-23a could bind to the 3’UTR of FGD4 directly through sites predicted on Target Scan. FGD4 level was significantly suppressed by miR-23a mimic, but was significantly enhanced by miR-23a inhibitor. We further proved that miR-23a increased the expression of activated CDC42 (GTP bround) and p-PAK-1, suggesting that miR-23a induced cell cycle arrest through CDC42/PAK1 pathway. Conclusions In conclusion, our study reveals that miR-23a participates in the regulation of proliferation and apoptosis of cov434 cells through target FGD4, and may play a role in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Ji Lin
- Graduate School, Fujian Medical University, Fuzhou, China.,The 900th hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Fuzhou, China.,Gynaecology, Mindong Hospital in Ningde City, No. 89 Heshan Road, Fuan, Fujian, China
| | - Huijuan Huang
- The 900th hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Fuzhou, China
| | - Liheng Lin
- Gynaecology, Mindong Hospital in Ningde City, No. 89 Heshan Road, Fuan, Fujian, China.
| | - Weiwei Li
- Gynaecology, Mindong Hospital in Ningde City, No. 89 Heshan Road, Fuan, Fujian, China
| | - Jianfen Huang
- Gynaecology, Mindong Hospital in Ningde City, No. 89 Heshan Road, Fuan, Fujian, China
| |
Collapse
|
22
|
Jiang F, Wei K, Lyu W, Wu C. Predicting Risk of Insulin Resistance in a Chinese Population with Polycystic Ovary Syndrome: Designing and Testing a New Predictive Nomogram. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8031497. [PMID: 32626764 PMCID: PMC7312561 DOI: 10.1155/2020/8031497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND This research is aimed at establishing and internally validating the risk nomogram of insulin resistance (IR) in a Chinese population of patients with polycystic ovary syndrome (PCOS). METHODS We developed a predictive model based on a training dataset of 145 PCOS patients, and data were collected between March 2018 and May 2019. The least absolute shrinkage and selection operator regression model was used to optimize function selection for the insulin resistance risk model. Multivariable logistic regression analysis was used to construct a prediction model integrating the function selected in the regression model of the least absolute shrinkage and selection operator. The predicting model's characteristics of prejudice, disease, and lifestyle were analyzed using the C-index, the calibration diagram, and the study of the decision curve. External validity was assessed using the validation of bootstrapping. RESULTS Predictors contained in the prediction nomogram included occupation, disease durations (years), BMI, current use of metformin, and activities. With a C-index of 0.739 (95 percent confidence interval: 0.644-0.830), the model showed good differentiation and proper calibration. In the interval validation, a high C-index value of 0.681 could still be achieved. Examination of the decision curve found that the IR nomogram was clinically useful when the intervention was determined at the 11 percent IR potential threshold. CONCLUSION This novel IR nomogram incorporates occupation, disease durations (years), BMI, current use of metformin, and activities. This nomogram could be used to promote the estimation of individual IR risk in patients with PCOS.
Collapse
Affiliation(s)
- Feng Jiang
- Pediatric Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
- Neonatal Department, Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Huangpu District, Shanghai 200011, China
| | - Ke Wei
- Medical Service Section, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wenjun Lyu
- General Practice Department, The Geriatric Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
23
|
Yu W, Zha W, Peng H, Wang Q, Zhang S, Ren J. Trehalose Protects against Insulin Resistance-Induced Tissue Injury and Excessive Autophagy in Skeletal Muscles and Kidney. Curr Pharm Des 2020; 25:2077-2085. [PMID: 31538882 DOI: 10.2174/1381612825666190708221539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Insulin resistance refers to a pathological state of compromised sensitivity of insulin to promote glucose uptake and utilization, resulting in compensatory excessive insulin secretion and hyperinsulinemia in an effort to maintain glucose homeostasis. Akt2 represents an important member of the Akt family and plays an essential role in the maintenance of insulin signaling. METHODS This study was designed to examine the effects of trehalose on kidney and skeletal muscle (rectus femoris muscle) injury in an Akt2 knockout-induced model of insulin resistance. Akt2 knockout (Akt2-/-) and adult WT mice were treated with trehalose (1 mg/g/d) intraperitoneally for 2 days, followed by providing 2% trehalose in drinking water for 2 months. Intraperitoneal glucose tolerance test (IPGTT), protein carbonyl content and mitochondrial function (aconitase activity) were examined. Apoptosis and autophagy protein markers were monitored using western blot analysis. RESULTS Akt2 ablation impaired glucose tolerance, promoted protein carbonyl formation and decreased aconitase activity in kidney and skeletal muscles, associated with pronounced apoptosis and overt autophagy, the effects of which, with the exception of IPGTT, were greatly ameliorated or negated by trehalose treatment. Moreover, phosphorylation of mTOR was downregulated in both kidney and skeletal muscles from Akt2-/- mice, the effect of which was attenuated by trehalose. Levels of Akt (pan and Akt2) were much lower in Akt2-/- mice, the effect of which was unaffected by trehalose treatment although trehalose itself upregulated Akt levels. CONCLUSION These data suggest that the autophagy inducer trehalose rescued against insulin resistance-induced kidney and skeletal muscle injury, apoptosis and excessive autophagy, possibly in association with restored mTOR phosphorylation without affecting Akt.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pharmacology, School of Pharmacy,Hubei University of Science and Technology, Xianning, Hubei, 437100, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, United States
| | - Wenliang Zha
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, United States.,Department of Surgery, Clinic Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China
| | - Qiurong Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, United States
| | - Shuning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, United States.,Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Feng Y, Zhang J, Tian X, Wu J, Lu J, Shi R. Mechanical stretch activates glycometabolism-related enzymes via estrogen in C 2 C 12 myoblasts. J Cell Physiol 2020; 235:5702-5710. [PMID: 31975415 DOI: 10.1002/jcp.29502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/08/2020] [Indexed: 01/12/2023]
Abstract
Moderate exercise improves glycometabolic disorder and type 2 diabetes mellitus in menopausal females. So far, the effect of exercise-induced estrogen on muscular glycometabolism is not well defined. The current study was designed to explore the effect of mechanical stretch-induced estrogen on glycometabolism in mouse C2 C12 myoblasts. The mouse C2 C12 myoblasts in vitro were assigned randomly to the control (C), stretch (S), and stretch plus aromatase inhibitor anastrozole (SA) groups. Cells in the S group were stretched by the Flexcell FX-5000™ system (15% magnitude, 1 Hz frequency, and 6-hr duration) whereas those in the SA group were treated with 400 μg/ml anastrozole before the same stretching. Glucose uptake, estradiol levels, PFK-1 levels, and oxygen consumption rate were determined, and the expression of HK, PI3K, p-AKT, AKT, and GLUT4 proteins were semiquantified with western blot analysis. Compared to the control, the estradiol level, oxygen consumption rate, expression of HK, PI3K, and PFK-1 proteins, the ratio of p-AKT to AKT, and the ratio of GLUT4 in the cell membrane to that in the whole cell were higher in the S group. On the other hand, the estradiol level, glucose uptake, expression of PFK-1 and GLUT4 proteins, oxygen consumption rate, expression of HK protein, and the ratio of p-AKT/AKT were lower in the myoblasts in the SA group than those in the S group. The level of estradiol was positively correlated with glucose uptake (p < .01, r = .818). Therefore, mechanical stretch-induced estrogen increased the expression of glycometabolism-related enzymes and proteins in the mouse C2 C12 myoblasts.
Collapse
Affiliation(s)
- Yu Feng
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jin Zhang
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiangyang Tian
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jianqiang Lu
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
25
|
Kempegowda P, Melson E, Manolopoulos KN, Arlt W, O’Reilly MW. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820934319. [PMID: 32637065 PMCID: PMC7315669 DOI: 10.1177/2042018820934319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) has been traditionally perceived as a reproductive disorder due to its most common presentation with menstrual dysfunction and infertility. However, it is now clear that women with PCOS are at increased risk of metabolic dysfunction, from impaired glucose tolerance and type 2 diabetes mellitus to nonalcoholic fatty liver disease and cardiovascular disease. PCOS is characterised by androgen excess, with cross-sectional data showing that hyperandrogenism is directly complicit in the development of metabolic complications. Recent studies have also shown that C11-oxy C19 androgens are emerging to be clinically and biochemically significant in PCOS, thus emphasising the importance of understanding the impact of both classic and C11-oxy C19 androgens on women's health. Here we discuss androgen metabolism in the context of PCOS, and dissect the role played by androgens in the development of metabolic disease through their effects on metabolic target tissues in women.
Collapse
Affiliation(s)
- Punith Kempegowda
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Eka Melson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Konstantinos N. Manolopoulos
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | |
Collapse
|
26
|
Basaki M, Saeb M, Saeb S. Androgen profile in young females with insulin resistance; the importance of 17-Hydroxyprogesterone Androgens in young insulin resistant females. Gynecol Endocrinol 2019; 35:1094-1098. [PMID: 31674860 DOI: 10.1080/09513590.2019.1630377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Considerable researches on sex steroids and insulin action have suggested a mutual interaction between hyperandrogenemia and insulin resistance (IR). The objective of present study was to evaluate the androgens levels in young females with emphasis on the association of 17OHP with IR. Serum concentrations of glucose, insulin, and androgens in 80 young females were measured by standard routine procedures. Total testosterone (TT), dihydrotestosterone (DHT), dehydroepiandrosterone sulfate (DHEAS), androstenedione (ASD), and 17-hydroxyprogesterone (17OHP) levels were higher in patients with IR compared to healthy controls (p < .05). 17OHP was associated with IR and other androgens tested in young females. According to the results, androgen excess was associated with IR in young females and TT appeared to be independent predictor of IR in these patients. These data may suggest that simultaneous quantification of an androgen profile including at least TT, DHT, and 17OHP can present useful clinical information for assessment of androgen excess.
Collapse
Affiliation(s)
- Mehdi Basaki
- Department of Biochemistry, School of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mehdi Saeb
- Dr. Saeb Specialized Hormone Lab, Shiraz, Iran
| | - Saeedeh Saeb
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Wang W, Zheng J, Cui N, Jiang L, Zhou H, Zhang D, Hao G. Baicalin ameliorates polycystic ovary syndrome through AMP-activated protein kinase. J Ovarian Res 2019; 12:109. [PMID: 31722718 PMCID: PMC6852906 DOI: 10.1186/s13048-019-0585-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder and regarded as the leading cause of anovulatory infertility. PCOS is characterized by reproductive dysfunction and metabolic disorders. Baicalin (BAL) is one of the most potent bioactive flavonoids isolated from the radix of Scutellaria baicalensis. In the present study, we investigated the potential effects of BAL on PCOS in dehydroepiandrosterone-treated rats. We found that BAL notably reduced the serum levels of free testosterone, total testosterone, follicle-stimulating hormone, luteinizing hormone, progesterone, and estradiol in PCOS rats. The increase of serum insulin level and HOMA-IR was markedly inhibited by BAL. Moreover, BAL decreased body weights, increased the number of rats with the regular estrous cycle, and ameliorated ovarian histological changes and follicular development in the DHEA-treated PCOS rats. The increase of pro-inflammatory cytokines (TNFα, IL-1β, and IL-18) and decrease of anti-inflammatory cytokine (IL-10) in PCOS rats were suppressed by BAL. BAL induced a significant decrease in the mRNA expression of steroidogenic enzymes, including 3β-HSD, CYP11A1, CYP19A1, StAR, in ovarian tissues in PCOS rats. Furthermore, BAL inhibited the decrease of AMPK protein level and phosphorylation, the decrease of Akt phosphorylation and the increase of 5α-reductase enzyme 1 expression in ovarian tissues in PCOS rats. The effects of BAL were inhibited by an inhibitor of AMPK, dorsomorphin. The upregulation of AMPK contributed to the beneficial effects of BAL. The results highlight the potential role of BAL for the intervention of PCOS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jiahua Zheng
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Na Cui
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lei Jiang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Han Zhou
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dan Zhang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guimin Hao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
28
|
How do different physical exercise parameters modulate brain-derived neurotrophic factor in healthy and non-healthy adults? A systematic review, meta-analysis and meta-regression. Sci Sports 2019. [DOI: 10.1016/j.scispo.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Liang Y, Wang S, Liu J. Overexpression of Tumor Protein p53-regulated Apoptosis-inducing Protein 1 Regulates Proliferation and Apoptosis of Breast Cancer Cells through the PI3K/Akt Pathway. J Breast Cancer 2019; 22:172-184. [PMID: 31281721 PMCID: PMC6597403 DOI: 10.4048/jbc.2019.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/11/2019] [Indexed: 01/25/2023] Open
Abstract
Purpose Tumor protein p53-regulated apoptosis-inducing protein 1 (TP53AIP1) functions in various cancers. We studied the effect and molecular mechanism of TP53AIP1 in breast cancer. Methods The degree of correlation between TP53AIP1 expression and overall survival in patients with breast cancer was obtained from the online The Cancer Genome Atlas database. Six of the TP53AIP1 levels in the tumor and adjacent non-tumor tissues randomly selected from 38 breast cancer patients were determined. Transgenic technology was used to enhance the expression of TP53AIP1 in breast cancer cell lines, MDA-MB-415 and MDA-MB-468, and to observe the effects of gene overexpression on the proliferation, cell cycle, and apoptosis of breast cancer cells. The molecular mechanism of association between cell cycle- and apoptosis-related factors and the phosphoinositide 3-kinases/protein kinase B (PI3K/Akt) pathway was also studied. Results The messenger RNA and protein expression levels of TP53AIP1 in cancer tissues were significantly lower than those in the control group. TP53AIP1 overexpression inhibits cell viability. The mechanism of TP53AIP1 inhibition of proliferation and growth of breast cancer cells includes cell cycle arrest, apoptosis promotion (p < 0.01), promotion of the expression of cleaved-caspase-3 (p < 0.01), cleaved-caspase-9 (p < 0.01), B cell lymphoma/leukemia-2 (Bcl-2)-associated X protein, and p53 (p < 0.01), and the inhibition of Bcl-2, Ki67, and PI3K/Akt pathways (p < 0.01). Conclusion TP53AIP1 may be a novel tumor suppressor gene in breast cancer and can potentially be used as an effective target gene for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yueyang Liang
- Department of Breast Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shushu Wang
- Department of Breast & Thyroid Surgery, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, China
| | - Jia Liu
- Department of Breast & Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
30
|
|