1
|
Rissanen J, Freitak D. Chronic exposure to nicotine in diet enhances the lethal effect of an entomopathogenic fungus in the ant Cardiocondyla obscurior. Biol Open 2025; 14:bio061928. [PMID: 40326397 PMCID: PMC12079572 DOI: 10.1242/bio.061928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Nicotine is a naturally occurring alkaloid that has acute toxic effects for insects and affects their behaviour even in sublethal amounts. In addition, nicotine is shown to accumulate and pollute environments through the use of commercially produced pesticides and tobacco products. We investigated how nicotine-polluted diets in two different concentrations impacted colony fitness in the ant Cardiocondyla obscurior, compared to a nicotine-free diet. We measured brood production and development, changes in relative abundances of bacterial endosymbionts, and worker survival in combination with a fungal pathogen. Chronic exposure to nicotine caused a concentration-dependent effect in enhancing the lethality of the fungal infection, with higher concentrations causing higher mortality in infected colonies. In the absence of pathogens, nicotine had no effect on worker survival. Furthermore, nicotine did not affect brood production or development, nor clearly affect the abundances of the bacterial endosymbionts. Our results show that nicotine pollution in the environment can negatively affect ant fitness through synergistic effects in combination with a fungal pathogen. Pathogens play a significant part in the decline of insects, and the influence that nicotine pollution may have in exacerbating them should receive more attention.
Collapse
Affiliation(s)
- Jason Rissanen
- Institute of Biology, Department of Zoology, University of Graz, Graz AT-8010, Austria
| | - Dalial Freitak
- Institute of Biology, Department of Zoology, University of Graz, Graz AT-8010, Austria
| |
Collapse
|
2
|
Oliver JB, Addesso KM, Valles SM, Archer RS, Youssef NN, Pandey M, Alexander LW, Weeks RD. Solenopsis invicta viruses and Kneallhazia solenopsae in Tennessee imported fire ant (Hymenoptera: Formicidae) populations. ENVIRONMENTAL ENTOMOLOGY 2025:nvaf027. [PMID: 40277204 DOI: 10.1093/ee/nvaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/23/2025] [Accepted: 02/26/2025] [Indexed: 04/26/2025]
Abstract
Multiple pathogens have been identified in red imported fire ants (Solenopsis invicta Buren) in native and introduced ranges, but pathogens infecting black (Solenopsis richteri Forel) or S. invicta × S. richteri hybrids are less studied. Pathogens like Kneallhazia solenopsae (Knell, Allen & Hazard) and Solenopsis invicta virus 3 (SINV-3) negatively impact colony growth and survival and offer augmentative biocontrol potential. The objective of this work was to determine the geography and phenology of K. solenopsae, SINV-1, SINV-2, and SINV-3 pathogens within the Tennessee hybrid-dominated populations. During 2015 to 2016, 62 fire ant-infested counties were gridded (12.1-by-12.1 km), and one colony sampled per grid in warm (July to October) and cool (January to April) periods. Fire ant species were determined by cuticular hydrocarbon and venom alkaloid analysis. Samples were evaluated for pathogens, parasitoids, and social form by molecular analysis. Ant frequencies were hybrid (74.1%), black (25.3%), and red (0.6%). Infection rates were low (9.5% and 1.3% in warm and cool periods, respectively). Parasite prevalence was 4.2% (SINV-1), 1.3% (K. solenopsae), 0.9% (SINV-3), 0.1% (SINV-2), and 0.1% (Pseudacteon). Hybrid colony infection rates were higher (82.2%) than black and red (17.8%) colonies. Polygyne colonies were infrequent (n = 6 of 99) but were more frequently infected (66.7%) than monogyne (11.8%). The most widely distributed pathogen was SINV-1. Higher elevations may negatively influence SINV-1 range expansion. Higher hybridity values (ie more red-like) increased viral infection likelihood, but not Kneallhazia infection. Parasite prevalence was low in Tennessee hybrid-dominated monogyne populations, which may limit their impact on fire ant populations.
Collapse
Affiliation(s)
- Jason B Oliver
- Tennessee State University, College of Agriculture, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA
| | - Karla M Addesso
- Tennessee State University, College of Agriculture, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA
| | - Steven M Valles
- United States Department of Agriculture - Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Reginald S Archer
- Tennessee State University, College of Agriculture, Nashville, TN, USA
| | - Nadeer N Youssef
- Tennessee State University, College of Agriculture, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA
| | - Manoj Pandey
- Tennessee State University, College of Agriculture, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Lisa W Alexander
- USDA-ARS, U.S. National Arboretum, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA
| | | |
Collapse
|
3
|
Liu FLC, Lin WJ, McMillan L, Yang CCS. Fire ants exhibit self-medication but lack preventive behavioral immunity against a viral pathogen. J Invertebr Pathol 2025; 211:108339. [PMID: 40287053 DOI: 10.1016/j.jip.2025.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Behavioral immunity in ants encompasses collective behaviors that help defend against pathogens and parasites by reducing infection risks and limiting disease spread. However, much of the research has focused on fungal pathogens, leaving the behavioral immunity responses to viral pathogens largely unexplored. This study represents the first attempt to characterize behavioral immunity in ants against viral pathogens using the red imported fire ant, Solenopsis invicta and one of its common viruses, Solenopsis invicta virus 3 (SINV-3), as the model system. Given that SINV-3 infection has been shown to cause adverse effects on fire ants, we hypothesized that fire ants may mount behavioral immunity defenses against SINV-3 infection, specifically through avoidance behavior, organizational segregation worker discrimination, and self-medication. Surprisingly, none of the preventive behavioral immunity behaviors we tested were observed, suggesting fire ants' inability to detect or mount collective defenses against SINV-3 infection. However, SINV-3-infected fire ants exhibited increased consumption of reactive oxygen species (ROS)-containing food, providing evidence of therapeutic self-medication. These findings suggest that while no evidence suggest fire ants employing preventive behavioral immunity against SINV-3, they may mitigate the effects of infection through self-medication, highlighting a different adaptive strategy in response to viral pathogens. This study opens new avenues for understanding the adaptive strategies of ants to cope with viral pathogens.
Collapse
Affiliation(s)
- Fang-Ling Chloe Liu
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Wei-Jiun Lin
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Liam McMillan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
4
|
Lau PW, Tundo G, Caren J, Zhang W, Zhu YC. Honey bee immune response to trace concentrations of clothianidin goes beyond the macronutrients found in artificial diets. Sci Rep 2025; 15:10738. [PMID: 40155460 PMCID: PMC11953415 DOI: 10.1038/s41598-025-94647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Honey bees (Apis mellifera) often encounter a variety of stressors in their environment, including poor nutrition and pesticides. These stressors interact and can be exacerbated in large-scale agroecosystems. We investigated how diets varying in macronutrient ratios can affect nurse bee susceptibility to pesticide stressors. Nurse bees were fed trace concentrations of clothianidin (CLO), a neonicotinoid insecticide known to have sublethal and lethal effects on honey bees, after newly emerged bees were given diets varying in proteins and lipids, a natural pollen diet, or sucrose solution diet. Bees given pollen had improved longevity, physiology, enzyme activity, and gene expression related to pesticide detoxification. The artificial diets helped improve bee health and physiology but did little to promote bee detoxification enzymes and genes. There was no effect of the trace CLO treatments on its own, but there was an interactive effect between our higher CLO treatment and poor nutrition on bee longevity and vitellogenin expression. Our results suggest that (1) exposure to even trace concentrations of CLO can interact with poor nutrition to undermine adult bee health and (2) macronutrients in artificial diets can help promote bee physiology, but other nutrients in pollen, such as potentially phytochemicals, are more directly linked honey bee tolerance to pesticide stress.
Collapse
Affiliation(s)
- Pierre W Lau
- USDA-ARS Pollinator Health in Southern Crop Ecosystems Research Unit, Stoneville, MS, USA.
| | - Giovanni Tundo
- USDA-ARS Pollinator Health in Southern Crop Ecosystems Research Unit, Stoneville, MS, USA
| | - Joel Caren
- USDA-ARS Pollinator Health in Southern Crop Ecosystems Research Unit, Stoneville, MS, USA
| | - Weiqiang Zhang
- USDA-ARS Pollinator Health in Southern Crop Ecosystems Research Unit, Stoneville, MS, USA
| | - Yu Cheng Zhu
- USDA-ARS Pollinator Health in Southern Crop Ecosystems Research Unit, Stoneville, MS, USA
| |
Collapse
|
5
|
Valles SM. Effect of Solenopsis invicta virus 3 on brood mortality and egg hatch in Solenopsis invicta. J Invertebr Pathol 2024; 203:108056. [PMID: 38176676 DOI: 10.1016/j.jip.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Solenopsis invicta virus 3 (SINV-3) has been shown to cause significant mortality among all stages of its host, Solenopsis invicta. One impact of the virus is alteration of worker ant foraging behavior, which results in colony starvation and collapse over time. Additionally, it has been hypothesized that SINV-3 infection of S. invicta may disrupt worker ant brood care behavior. To investigate this possibility, various combinations of SINV-3-infected and -uninfected adult (worker) and immature (brood) stages were placed together and monitored using the response variables, mortality, egg hatch, and virus load. While significant differences in percent cumulative S. invicta worker ant mortality among six combinations of SINV-3-infected and -uninfected stages were observed, no significant differences in percent cumulative mortality of S. invicta larvae or pupae were observed. No significant differences in egg hatch were observed among SINV-3-uninfected, SINV-3-infected (colony-treated and queen-treated), and starved colonies. Eggs hatched normally in 10-12 days for all treatments indicating that egg care by worker ants was unaffected by SINV-3 infection status. The study further clarifies SINV-3 pathogenesis in its host, S. invicta. Larval mortality in SINV-3-infected colonies does not appear to be caused by worker ant neglect. S. invicta brood under the care of SINV-3-infected worker ants did not exhibit higher mortality rates compared with those tended by SINV-3-uninfected worker ants.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23(rd) Drive, Gainesville, FL 32608, United States
| |
Collapse
|
6
|
Valles SM. Solenopsis invicta virus 3 infection alters foraging behavior in its host Solenopsisinvicta. Virology 2023; 581:81-88. [PMID: 36933306 DOI: 10.1016/j.virol.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Solenopsis invicta is an invasive ant introduced into the United States in the early 1900s. Control efforts and damage caused by this ant exceed $8 billion annually. Solenopsis invicta virus 3 (SINV-3) is a positive-sense, single-stranded RNA virus (Solinviviridae) that is being used as a classical natural control agent for S. invicta. S. invicta colonies were exposed to purified preparations of SINV-3 to investigate the impact of the virus on the ant. Food retrieval behavior (i.e., foraging) by worker ants was significantly decreased, which led to mortality among all life stages. Queen fecundity and weight were also significantly decreased. The change in food retrieval was associated with the exhibition of an unusual behavior, whereby the remaining live ant workers wedged dead ant worker corpses into and on top of cricket carcasses (the laboratory colony food source). SINV-3 infection alters foraging behavior in S. invicta, which adversely impacts colony nutrition.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
7
|
Felden A, Dobelmann J, Baty JW, McCormick J, Haywood J, Lester PJ. Can immune gene silencing via dsRNA feeding promote pathogenic viruses to control the globally invasive Argentine ant? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2755. [PMID: 36196505 DOI: 10.1002/eap.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Pest control methods that can target pest species with limited environmental impacts are a conservation and economic priority. Species-specific pest control using RNA interference is a challenging but promising avenue in developing the next generation of pest management. We investigate the feasibility of manipulating a biological invader's immune system using double-stranded RNA (dsRNA) in order to increase susceptibility to naturally occurring pathogens. We used the invasive Argentine ant as a model, targeting the immunity-associated genes Spaetzle and Dicer-1 with dsRNA. We show that feeding with Spaetzle dsRNA can result in partial target gene silencing for up to 28 days in the laboratory and 5 days in the field. Dicer-1 dsRNA only resulted in partial gene knockdown after 2 days in the laboratory. Double-stranded RNA treatments were associated with significant gene expression disruptions across immune pathways in the laboratory and to a lower extent in the field. In total, 12 viruses and four bacteria were found in these ant populations. Some changes in viral loads in dsRNA-treated groups were observed. For example, Linepithema humile Polycipivirus 2 (LhuPCV2) loads increased after 2 days of treatment with Spaetzle and Dicer-1 dsRNA treatments in the laboratory. After treatment with the dsRNA in the field, after 5 days the virus Linepithema humile toti-like virus 1 (LhuTLV1) was significantly more abundant. However, immune pathway disruption did not result in a consistent increase in microbial infections, nor did it alter ant abundance in the field. Some viruses even declined in abundance after dsRNA treatment. Our study explored the feasibility of lowering a pest's immunity as a control tool. We demonstrate that it is possible to alter immune gene expression of pest species and pathogen loads, although in our specific system the affected pathogens did not appear to influence pest abundance. We provide suggestions on future directions for dsRNA-mediated immune disruption in pest species, including potential avenues to improve dsRNA delivery as well as the importance of pest and pathogen biology. Double-stranded RNA targeting immune function might be especially useful for pest control in systems in which viruses or other microorganisms are prevalent and have the potential to be pathogenic.
Collapse
Affiliation(s)
- Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jana Dobelmann
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Joseph McCormick
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Characterization of Solenopsis invicta virus 4, a polycipivirus infecting the red imported fire ant Solenopsis invicta. Arch Virol 2022; 167:2591-2600. [PMID: 36098800 DOI: 10.1007/s00705-022-05587-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Solenopsis invicta virus 4 (SINV-4), a new polycipivirus, was characterized in the host in which it was discovered, Solenopsis invicta. SINV-4 was detected in the worker and larval stages of S. invicta, but not in pupae, male or female alates, or queens. The SINV-4 titer was highest in worker ants, with a mean of 1.14 × 107 ± 5.84 ×107 SINV-4 genome equivalents/ng RNA. Electron microscopic examination of negatively stained samples from particles purified from SINV-4-infected fire ant workers revealed isometric particles with a mean diameter of 47.3 ± 1.4 nm. The mean inter-colony SINV-4 infection rate among S. invicta worker ants was 45.8 ± 38.6 in Alachua County, Florida. In S. invicta collected in Argentina, SINV-4 was detected in 22% of 54 colonies surveyed from across the Formosa region. There did not appear to be any seasonality associated with the SINV-4 infection rate among S. invicta nests. SINV-4 was successfully transmitted to uninfected S. invicta colonies by feeding. Among three colonies of S. invicta inoculated with SINV-4, two retained the infection for up to 72 days. The replicative genome strand of SINV-4 was detected in 18% (n = 11) of SINV-4-infected S. invicta colonies. Among 33 ant species examined, the plus genome strand of SINV-4 was detected in undetermined species of Dorymyrmex and Pheidole, Cyphomyrmex rimosus, Monomorium pharaonis, Pheidole obscurithorax, Solenopsis geminata, Solenopsis richteri, Solenopsis xyloni, and Solenopsis invicta. However, the replicative (minus) genome strand was only detected in S. invicta. SINV-4 infection did not impact brood production or queen fecundity in S. invicta. The mean brood rating (63.3% ± 8.8) after 31 days for SINV-4-infected colonies was not statistically different from that of uninfected colonies (48.3 ± 25.5). At the end of the 31-day test period, mean egg production was not significantly different between SINV-4-infected S. invicta colonies (287.7 ± 45.2 eggs laid/24 hours) and uninfected control colonies (193.0 ± 43.6 eggs laid/24 hours).
Collapse
|
9
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open 2022; 11:bio059039. [PMID: 36082847 PMCID: PMC9548382 DOI: 10.1242/bio.059039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS Sugarcane Research Unit, 5883 Usda Rd., Houma, LA, USA70360-5578
| | - Michael D. Simone-Finstrom
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Lilia I. de Guzman
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Philip G. Tokarz
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Rachel Dickens
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| |
Collapse
|
10
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Colony-Level Viral Load Influences Collective Foraging in Honey Bees. FRONTIERS IN INSECT SCIENCE 2022; 2:894482. [PMID: 38468777 PMCID: PMC10926460 DOI: 10.3389/finsc.2022.894482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 03/13/2024]
Abstract
Nutrition is an important component of social insect colony health especially in the face of stressors such as parasitism and viral infections. Honey bees are known to preferentially select nectar and pollen based on macronutrient and phytochemical contents and in response to pathogen loads. However, given that honey bees live in colonies, collective foraging decisions may be impacted directly by forager infection status but also by colony health. This field experiment was conducted to determine if honey bee viral infections are correlated with pollen and nectar foraging and if these associations are impacted more by colony or forager infection. By comparing regressions with and without forager and colony variables and through structural equation models, we were able to determine the relative contributions of colony and forager virus loads on forager decisions. We found that foragers had higher numbers and levels of BQCV and CBPV but lower levels of DWV viruses than their respective colonies. Overall, individuals appeared to forage based a combination of their own and colony health but with greater weight given to colony metrics. Colony parasitism by Varroa mites, positively correlated with both forager and colony DWV-B levels, was negatively associated with nectar weight. Further, colony DWV-B levels were negatively associated with individually foraged pollen protein: lipid ratios but positively correlated with nectar weight and sugar content. This study shows that both colony and forager health can simultaneously mediate individual foraging decisions and that the importance of viral infections and parasite levels varies with foraging metrics. Overall, this work highlights the continued need to explore the interactions of disease, nutrition, and genetics in social interactions and structures.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Lilia I. de Guzman
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Philip G. Tokarz
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Rachel Dickens
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Lee CY, Yang CCS. Biology, Ecology, and Management of the Invasive Longlegged Ant, Anoplolepis gracilipes. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:43-63. [PMID: 34587457 DOI: 10.1146/annurev-ento-033121-102332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The longlegged ant (Anoplolepis gracilipes) is one of the most damaging invasive tramp ants globally. It is generally found between latitudes 27°N and 27°S in Asia, although it has been introduced to other continents. Its native range remains debatable, but it is believed to be in Southeast Asia. Anoplolepis gracilipes invasion has many serious ecological consequences, especially for native invertebrate, vertebrate, and plant communities, altering ecosystem dynamics and functions. We examine and synthesize the literature about this species' origin and distribution, impacts on biodiversity and ecosystems, biology and ecology, chemical control, and potential biocontrol agents. We highlight emerging research needs on the origin and invasion history of this species, its reproductive mode, its relationship with myrmecophiles, and its host-microbial interactions, and we discuss future research directions.
Collapse
Affiliation(s)
- Chow-Yang Lee
- Department of Entomology, University of California, Riverside, California 92521, USA;
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
12
|
Trinh T, Ouellette R, de Bekker C. Getting lost: the fungal hijacking of ant foraging behaviour in space and time. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Rachimi S, Burand JP, Geden C, Stoffolano JG. The Effect of the Musca domestica Salivary Gland Hypertrophy Virus on Food Consumption in Its Adult Host, the Common House Fly (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1398-1404. [PMID: 33470402 DOI: 10.1093/jme/tjaa281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 06/12/2023]
Abstract
The Musca domestica salivary gland hypertrophy virus (MdSGHV) substantially enlarges the house fly's salivary glands and prevents or delays ovarian development in its adult host, but the effect that MdSGHV has on the house fly's food consumption is currently unknown. Using house flies from a laboratory-reared colony, we evaluated the effect of MdSGHV infection on food consumption over a 7-d period. Both treatment (virus-infected) and control (saline-injected) flies were provided with a choice of 8% sucrose solution and 4% powdered milk solution to determine food preferences. Quantities of each solution consumed were measured every 24 h for each fly to measure food consumptions. Infected house flies were shown to consume less overall of both solutions than house flies injected with saline. The largest consumption discrepancy was seen between female house flies. Healthy female flies with developing ovaries continued to consume a sugar and protein diet, whereas infected female flies fed predominantly on a sugar diet. Additionally, infected male and female flies consumed significantly lower quantities of protein and sucrose than control flies. This suggests that MdSGHV has a negative consumption effect (e.g., hunger, starvation) on its host. Thus, differences in food consumption of infected and control flies probably represent differences in the nutritional requirements of flies resulting from viral infection.
Collapse
Affiliation(s)
- Suzanna Rachimi
- Biochemistry and Molecular Biology Department, University of Massachusetts, Amherst, MA
| | - John P Burand
- Microbiology Department, University of Massachusetts, Amherst, MA
| | - Chris Geden
- Center for Medical, Agricultural and Veterinary Entomology, USDA ARS, Gainesville, FL
| | - John G Stoffolano
- Department of Entomology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA
| |
Collapse
|
14
|
Xavier CAD, Allen ML, Whitfield AE. Ever-increasing viral diversity associated with the red imported fire ant Solenopsis invicta (Formicidae: Hymenoptera). Virol J 2021; 18:5. [PMID: 33407622 PMCID: PMC7788728 DOI: 10.1186/s12985-020-01469-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
Background Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas. Methods Using a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank’s Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed. Results We characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta. Conclusions The present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.
Collapse
Affiliation(s)
- César Augusto Diniz Xavier
- Department of Entomology and Plant Pathology, North Carolina State University, 840 Main Campus Drive, Raleigh, NC, 27606, USA
| | - Margaret Louise Allen
- U. S. Department of Agriculture, Agricultural Research Service, Biological Control of Pests Research Unit, 59 Lee Road, Stoneville, MS, 38776, USA.
| | - Anna Elizabeth Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, 840 Main Campus Drive, Raleigh, NC, 27606, USA.
| |
Collapse
|
15
|
Wylie R, Yang CS, Tsuji K. Invader at the gate: The status of red imported fire ant in Australia and Asia. Ecol Res 2019. [DOI: 10.1111/1440-1703.12076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ross Wylie
- Department of Agriculture and Fisheries National Red Imported Fire Ant and Electric Ant Eradication Programs, Biosecurity Queensland Browns Plains Queensland Australia
| | - Chin‐Cheng S. Yang
- Research Institute for Sustainable Humanosphere, Kyoto University Kyoto Japan
| | - Kazuki Tsuji
- Department of Subtropical Agro‐Environmental Sciences University of the Ryukyus Okinawa Japan
| |
Collapse
|
16
|
Hsu HW, Chiu MC, Lee CC, Lee CY, Yang CCS. The Association between Virus Prevalence and Intercolonial Aggression Levels in the Yellow Crazy Ant, Anoplolepis Gracilipes (Jerdon). INSECTS 2019; 10:insects10120436. [PMID: 31817209 PMCID: PMC6956197 DOI: 10.3390/insects10120436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
The recent discovery of multiple viruses in ants, along with the widespread infection of their hosts across geographic ranges, provides an excellent opportunity to test whether viral prevalence in the field is associated with the complexity of social interactions in the ant population. In this study, we examined whether the association exists between the field prevalence of a virus and the intercolonial aggression of its ant host, using the yellow crazy ant (Anoplolepis gracilipes) and its natural viral pathogen (TR44839 virus) as a model system. We delimitated the colony boundary and composition of A. gracilipes in a total of 12 study sites in Japan (Okinawa), Taiwan, and Malaysia (Penang), through intercolonial aggression assay. The spatial distribution and prevalence level of the virus was then mapped for each site. The virus occurred at a high prevalence in the surveyed colonies of Okinawa and Taiwan (100% infection rate across all sites), whereas virus prevalence was variable (30%–100%) or none (0%) at the sites in Penang. Coincidentally, colonies in Okinawa and Taiwan displayed a weak intercolonial boundary, as aggression between colonies is generally low or moderate. Contrastingly, sites in Penang were found to harbor a high proportion of mutually aggressive colonies, a pattern potentially indicative of complex colony composition. Our statistical analyses further confirmed the observed correlation, implying that intercolonial interactions likely contribute as one of the effective facilitators of/barriers to virus prevalence in the field population of this ant species.
Collapse
Affiliation(s)
- Hung-Wei Hsu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Ming-Chung Chiu
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan;
| | - Ching-Chen Lee
- Center for Ecology and Environment, Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Chin-Cheng Scotty Yang
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Correspondence: ; Tel.: +81-70-4144-2823
| |
Collapse
|
17
|
Felden A, Paris C, Chapple DG, Suarez AV, Tsutsui ND, Lester PJ, Gruber MAM. Native and introduced Argentine ant populations are characterised by distinct transcriptomic signatures associated with behaviour and immunity. NEOBIOTA 2019. [DOI: 10.3897/neobiota.49.36086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological invasions can be influenced by trait variation in the invader, such as behavioural traits and ecological factors, such as variation in pathogen pressure. High-throughput nucleotide sequencing has increased our capacity to investigate the genomic basis of the functional changes associated with biological invasions. Here, we used RNA-sequencing in Argentina and California, Australia and New Zealand to investigate if native and introduced Argentine ant populations were characterised by distinct transcriptomic signatures. We focused our analysis on viral pressure and immunity, as well as genes associated with biogenic amines known to modulate key behaviour in social insects. Using a combination of differential expression analysis, gene co-expression network analysis and candidate gene approach, we show that native and introduced populations have distinct transcriptomic signatures. Genes associated with biogenic amines were overall up-regulated in the native range compared to introduced populations. Although we found no significant variation in overall viral loads amongst regions for viruses known to infect Argentine ants, viral diversity was lower in most of the introduced range which was interestingly associated with down-regulation of the RNAi immune pathway, primarily directed against viruses. Altogether, our data show that Argentine ant populations exhibit range-specific transcriptomic signatures, perhaps reflecting regional adaptations that may contribute to the ecological success of introduced populations.
Collapse
|
18
|
Abstract
Deformed wing virus (DWV) has become the most well-known, widespread, and intensively studied insect pathogen in the world. Although DWV was previously present in honeybee populations, the arrival and global spread of a new vector, the ectoparasitic mite Varroa destructor, has dramatically altered DWV epidemiology. DWV is now the most prevalent virus in honeybees, with a minimum average of 55% of colonies/apiaries infected across 32 countries. Additionally, DWV has been detected in 65 arthropod species spanning eight insect orders and three orders of Arachnida. Here, we describe the significant progress that has been made in elucidating the capsid structure of the virus, understanding its ever-expanding host range, and tracking the constantly evolving DWV genome and formation of recombinants. The construction of molecular clones, working with DWV in cell lines, and the development of immunohistochemistry methods will all help the community to move forward. Identifying the tissues in which DWV variants are replicating and understanding the impact of DWV in non-honeybee hosts are major new goals.
Collapse
Affiliation(s)
- Stephen J Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, United Kingdom;
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2751, Australia;
| |
Collapse
|
19
|
Transcriptome Sequencing of Immature Ants Reveals the Complete Genome Sequence of a New Isolate of Solenopsis invicta Virus 2 from the Mississippi Delta. Microbiol Resour Announc 2019; 8:8/18/e01115-18. [PMID: 31048388 PMCID: PMC6498243 DOI: 10.1128/mra.01115-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Solenopsis invictavirus 2 (SINV-2) is an RNA virus that infects red imported fire ants. I report the genome sequence of SINV-2MSD, an isolate infecting ants collected from Mississippi. Solenopsis invictavirus 2 (SINV-2) is an RNA virus that infects red imported fire ants. I report the genome sequence of SINV-2MSD, an isolate infecting ants collected from Mississippi. The obtained genome is 11,303 nucleotides, including six open reading frames encoding four structural proteins, a helicase, and an RNA-dependent RNA polymerase.
Collapse
|
20
|
Hsu HW, Chiu MC, Shih CJ, Matsuura K, Yang CCS. Apoptosis as a primary defense mechanism in response to viral infection in invasive fire ant Solenopsis invicta. Virology 2019; 531:255-259. [DOI: 10.1016/j.virol.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
21
|
Lester PJ, Buick KH, Baty JW, Felden A, Haywood J. Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant. Sci Rep 2019; 9:5780. [PMID: 30962470 PMCID: PMC6453929 DOI: 10.1038/s41598-019-41843-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive species populations periodically collapse from high to low abundance, sometimes even to extinction. Pathogens and the burden they place on invader immune systems have been hypothesised as a mechanism for these collapses. We examined the association of the bacterial pathogen (Pseudomonas spp.) and the viral community with immune gene expression in the globally invasive Argentine ant (Linepithema humile (Mayr)). RNA-seq analysis found evidence for 17 different viruses in Argentine ants from New Zealand, including three bacteriophages with one (Pseudomonas phage PS-1) likely to be attacking the bacterial host. Pathogen loads and prevalence varied immensely. Transcriptomic data showed that immune gene expression was consistent with respect to the viral classification of negative-sense, positive-sense and double-stranded RNA viruses. Genes that were the most strongly associated with the positive-sense RNA viruses such as the Linepithema humile virus 1 (LHUV-1) and the Deformed wing virus (DWV) were peptide recognition proteins assigned to the Toll and Imd pathways. We then used principal components analysis and regression modelling to determine how RT-qPCR derived immune gene expression levels were associated with viral and bacterial loads. Argentine ants mounted a substantial immune response to both Pseudomonas and LHUV-1 infections, involving almost all immune pathways. Other viruses including DWV and the Kashmir bee virus appeared to have much less immunological influence. Different pathogens were associated with varying immunological responses, which we hypothesize to interact with and influence the invasion dynamics of this species.
Collapse
Affiliation(s)
- Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand.
| | - Kaitlin H Buick
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|