1
|
Gogna N, Pinkney J, Stone L, Khorzom MM, Zhao F, Collin GB, Naggert JK, Krebs MP, Nishina PM. A biometric survey of known and prospective murine models of posterior microphthalmia-nanophthalmia. Exp Eye Res 2025; 255:110335. [PMID: 40154727 DOI: 10.1016/j.exer.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
Posterior microphthalmia and nanophthalmia are related genetic conditions that disrupt ocular growth. Here, we conducted a biometric analysis of mouse models to assess shared features of these diseases. Three known microphthalmia alleles (Mfrprd6, Prss56glcr4, and Adipor1tm1Dgen) and two prospective alleles (C1qtnf5tm1.1(KOMP)Vlcg and Prss56em2(IMPC)J) were introgressed onto the C57BL/6J (B6) genetic background and compared to B6 mice at 1 through 12 months of age. Biometric parameters obtained using optical coherence tomography were analyzed statistically to identify strain differences. Fundus imaging and histological analyses were performed to assess ocular morphology. Mfrprd6, Prss56glcr4, and Prss56em2(IMPC)J mice had significantly shorter axial and posterior lengths, and longer anterior chamber depth compared to controls at all ages studied. Adipor1tm1Dgen mice exhibited similar, but less severe, biometric changes. Axial length was not significantly changed in C1qtnf5tm1.1(KOMP)Vlcg mice, but reduced anterior chamber depth and increased lens thickness were observed at one month of age. Lens and corneal thicknesses were otherwise unchanged in the models as compared to B6 controls. Corneal radius of curvature, examined at 4 months of age, was significantly decreased in all models relative to controls. Micropthalmia was observed independent of retinal degeneration (Mfrprd6, Adipor1tm1Dgen) or retinal thickening (Prss56 mutants). Prss56 mutants developed retinal folds that were absent from other mutants and controls. We conclude that, in mice, Mfrp, Prss56, and Adipor1 mutations yield similar microphthalmia phenotypes involving both the anterior and posterior eye. Changes to anterior chamber depth, lens thickness, and corneal curvature in C1qtnf5tm1.1(KOMP)Vlcg mice suggest a role of C1qtnf5 in anterior ocular growth.
Collapse
Affiliation(s)
- Navdeep Gogna
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Jai Pinkney
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | | | - Fuxin Zhao
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gayle B Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
2
|
Lindfors S, Schmotz C, Lewandowski D, Hau A, Saikko L, Lehtonen E, Majaniemi V, Karhe M, Naams JB, Nisen H, Tienari J, Saleem MA, Pfeil K, Bugger H, Pietiläinen KH, Mirtti T, Palczewski K, Lehtonen S. Integrin Trafficking, Fibronectin Architecture, and Glomerular Injury upon Adiponectin Receptor 1 Depletion. J Am Soc Nephrol 2025; 36:825-844. [PMID: 39874092 PMCID: PMC12059104 DOI: 10.1681/asn.0000000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Key Points Glomerular expression of adiponectin receptor 1 (AdipoR1) was lower in people with type 2 diabetes and correlates with podocyte loss. AdipoR1 knockout induced glomerular injury and fibrosis in mice, predominantly in males. AdipoR1 knockdown podocytes showed impaired trafficking of active integrin β 1, fibronectin accumulation, impaired adhesion, and increased apoptosis. Background Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling using adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2, but the role of adiponectin receptor–mediated signaling in glomerular injury in type 2 diabetes remains unknown. Methods The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1 knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting. The functional role of AdipoR1 was studied in AdipoR1-deficient podocytes by performing assays for apoptosis, cytokine secretion, mechanical stress, adhesion, and endocytic trafficking. Results Glomerular AdipoR1 expression was lower in type 2 diabetes and associated kidney disease, correlating with higher body mass index and podocyte loss. Male AdipoR1-KO mice showed typical signs of early diabetic kidney disease, including albuminuria, glomerular structural abnormalities, and lower expression of central podocyte proteins; females were less affected. Podocyte apoptosis increased in female and male AdipoR1-KO mice, and excessive podocyte loss, potentially due to detachment, was detected in males. AdipoR1 deficiency impaired the yes-associated protein–mediated mechanoresponse and induced accumulation of the extracellular matrix (ECM) protein fibronectin in the glomeruli in vivo and podocytes in vitro . Functionally, AdipoR1 deficiency impaired endocytosis of the ECM receptor active integrin β 1, disturbed focal adhesion turnover, and remodulated podocyte-derived ECM, thereby reducing podocyte adhesion. Conclusions AdipoR1 deficiency in mice resulted in the development of kidney injury predominantly in males. Mechanistically, AdipoR1 loss in podocytes impaired endocytosis of active integrin β 1, which plausibly compromised focal adhesion dynamics, disturbed fibronectin matrix turnover, and hindered podocyte adhesion.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Constanze Schmotz
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Annika Hau
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Saikko
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ville Majaniemi
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Karhe
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jette-Britt Naams
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Moin A. Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Katharina Pfeil
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Kirsi H. Pietiläinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Healthy Weight Hub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California
- Department of Chemistry, University of California, Irvine, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Tworak A, Smidak R, Rodrigues Menezes C, Du SW, Suh S, Choi EH, Imanishi SS, Dong Z, Lewandowski D, Fong KE, Grigorean G, Pinto AFM, Xu Q, Skowronska-Krawczyk D, Blackshaw S, Imanishi Y, Palczewski K. MFRP is a molecular hub that organizes the apical membrane of RPE cells by engaging in interactions with specific proteins and lipids. Proc Natl Acad Sci U S A 2025; 122:e2425523122. [PMID: 40249779 PMCID: PMC12036977 DOI: 10.1073/pnas.2425523122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/17/2025] [Indexed: 04/20/2025] Open
Abstract
Membrane frizzled-related protein (MFRP), present in the retinal pigment epithelium (RPE), is an integral membrane protein essential for ocular development and the normal physiology of the retina. Mutations in MFRP are associated with autosomal recessive nonsyndromic nanophthalmos, leading to severe hyperopia and early-onset retinitis pigmentosa. While several preclinical gene-augmentation and gene-editing trials hold promise for future therapies aimed at stopping degeneration and restoring retinal function, the molecular mechanisms involved in MFRP biology are still not well understood. Here, we studied the biochemical properties of MFRP and the molecular consequences of its loss of function in the retinal degeneration 6 (rd6) mouse model. Using transcriptomic and lipidomic approaches, we observed that accumulation of docosahexaenoic acid (DHA) constitutes a primary defect in the MFRP-deficient RPE. In biochemical assays, we showed that MFRP undergoes extensive glycosylation, and it preferentially binds lipids of several classes, including phosphatidylserine and phosphatidylinositol-4-phosphate; as well as binding to several transmembrane proteins, notably adiponectin receptor 1 (ADIPOR1) and inward rectifier potassium channel 13 (KCNJ13). Moreover, MFRP determines the subcellular localization of ADIPOR1 and KCNJ13 in the RPE in vivo. This feature is altered by MFRP deficiency and can be restored by gene-therapy approaches. Overall, our observations suggest that MFRP constitutes an important interaction hub within the apical membrane of RPE cells, coordinating protein trafficking and subcellular localization within the RPE, and lipid homeostasis within the entire retina.
Collapse
Affiliation(s)
- Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Roman Smidak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | | | - Samuel W. Du
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| | - Susie Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Elliot H. Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Sanae S. Imanishi
- Department of Ophthalmology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Kristen E. Fong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Gabriela Grigorean
- Proteomics Core Facility, Genome Center, University of California, Davis, CA95616
| | - Antonio F. M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Qianlan Xu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | | | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD21205
- Department of Neurology, Institute for Cell Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD21205
| | - Yoshikazu Imanishi
- Department of Ophthalmology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
4
|
Woodard DR, Ayyagari R. MFRP in Early Onset Retinal Degeneration: Clinical and Molecular Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:75-79. [PMID: 39930176 DOI: 10.1007/978-3-031-76550-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The membrane-frizzled related protein (MFRP) is a retinal pigment epithelium (RPE) and ciliary epithelium-expressed gene of unknown function. Interest in MFRP stems from clinical manifestations that range from acute-angle closure glaucoma to microphthalmia and Retinitis pigmentosa in patients with MFRP mutations. Furthermore, the genetic ablation of Mfrp in mice results in an early-onset retinal disease with visible degeneration around 1mo of age and primary rod photoreceptor loss. Yet, little is known regarding the exact role of MFRP in the RPE, its underlying contribution to pathology, and the impacted mechanisms at the early stages of MFRP-related disease. This review presents a current overview of MFRP studies and poses outstanding questions that are crucial for understanding the involvement of MFRP in early-onset retinal degeneration. Such insight could pave the way for deciphering the molecular mechanisms associated with MFRP that are impacted during early stages in the retina, offering the potential to translate this knowledge into determining similarities and differences in mechanisms involved in late-stage retinal diseases.
Collapse
Affiliation(s)
- DaNae R Woodard
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Radha Ayyagari
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
5
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Lewandowski D, Gao F, Imanishi S, Tworak A, Bassetto M, Dong Z, Pinto AFM, Tabaka M, Kiser PD, Imanishi Y, Skowronska-Krawczyk D, Palczewski K. Restoring retinal polyunsaturated fatty acid balance and retina function by targeting ceramide in AdipoR1-deficient mice. J Biol Chem 2024; 300:107291. [PMID: 38636661 PMCID: PMC11107370 DOI: 10.1016/j.jbc.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Fangyuan Gao
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksander Tworak
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorota Skowronska-Krawczyk
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, and Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| |
Collapse
|
7
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Sanchez-Bretano A, Keeling E, Scott JA, Lynn SA, Soundara-Pandi SP, Macdonald SL, Newall T, Griffiths H, Lotery AJ, Ratnayaka JA, Self JE, Lee H. Human equivalent doses of L-DOPA rescues retinal morphology and visual function in a murine model of albinism. Sci Rep 2023; 13:17173. [PMID: 37821525 PMCID: PMC10567794 DOI: 10.1038/s41598-023-44373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
L-DOPA is deficient in the developing albino eye, resulting in abnormalities of retinal development and visual impairment. Ongoing retinal development after birth has also been demonstrated in the developing albino eye offering a potential therapeutic window in humans. To study whether human equivalent doses of L-DOPA/Carbidopa administered during the crucial postnatal period of neuroplasticity can rescue visual function, OCA C57BL/6 J-c2J OCA1 mice were treated with a 28-day course of oral L-DOPA/Carbidopa at 3 different doses from 15 to 43 days postnatal age (PNA) and for 3 different lengths of treatment, to identify optimum dosage and treatment length. Visual electrophysiology, acuity, and retinal morphology were measured at 4, 5, 6, 12 and 16 weeks PNA and compared to untreated C57BL/6 J (WT) and OCA1 mice. Quantification of PEDF, βIII-tubulin and syntaxin-3 expression was also performed. Our data showed impaired retinal morphology, decreased retinal function and lower visual acuity in untreated OCA1 mice compared to WT mice. These changes were diminished or eliminated when treated with higher doses of L-DOPA/Carbidopa. Our results demonstrate that oral L-DOPA/Carbidopa supplementation at human equivalent doses during the postnatal critical period of retinal neuroplasticity can rescue visual retinal morphology and retinal function, via PEDF upregulation and modulation of retinal synaptogenesis, providing a further step towards developing an effective treatment for albinism patients.
Collapse
Affiliation(s)
- Aida Sanchez-Bretano
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Jennifer A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Sudha Priya Soundara-Pandi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Sarah L Macdonald
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Tutte Newall
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Helen Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Jay E Self
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
9
|
Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 2023; 247:108440. [PMID: 37201739 DOI: 10.1016/j.pharmthera.2023.108440] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Deng H, Ai M, Cao Y, Cai L, Guo X, Yang X, Yi G, Fu M. Potential Protective Function of Adiponectin in Diabetic Retinopathy. Ophthalmol Ther 2023; 12:1519-1534. [PMID: 37000404 PMCID: PMC10164206 DOI: 10.1007/s40123-023-00702-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Adiponectin, one of the most ubiquitous adipokines found in the blood, plays a major role in glucolipid metabolism and energy metabolism and regulation. In recent years, a growing body of research indicates that adiponectin also plays a significant role in diabetic retinopathy. In the present review, we specifically address the protective effects of adiponectin on the development and progression of diabetic retinopathy through improvement in insulin resistance, alleviation of oxidative stress, limiting of inflammation, and prevention of vascular remodeling, with the aim to explore new potential approaches and targets for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Deng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Meichen Ai
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yuchen Cao
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Liyang Cai
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xi Guo
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiongyi Yang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26, Erheng Road, Yuancun, Tianhe, Guangzhou, 510230, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue Middle, Haizhu, Guangzhou, 510280, Guangdong, China.
- The Second Clinical School of Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
11
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
12
|
Kim SJ, Gajbhiye A, Lyu AR, Kim TH, Shin SA, Kwon HC, Park YH, Park MJ. Sex differences in hearing impairment due to diet-induced obesity in CBA/Ca mice. Biol Sex Differ 2023; 14:10. [PMID: 36810096 PMCID: PMC9945383 DOI: 10.1186/s13293-023-00493-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Obesity is an independent risk factor for hearing loss. Although attention has focused on major obesity comorbidities such as cardiovascular disease, stroke, and type 2 diabetes, the impact of obesity on sensorineural organs, including the auditory system, is unclear. Using a high-fat diet (HFD)-induced obese mouse model, we investigated the impact of diet-induced obesity on sexual dimorphism in metabolic alterations and hearing sensitivity. METHODS Male and female CBA/Ca mice were randomly assigned to three diet groups and fed, from weaning (at 28 days) to 14 weeks of age, a sucrose-matched control diet (10 kcal% fat content diet), or one of two HFDs (45 or 60 kcal% fat content diets). Auditory sensitivity was evaluated based on the auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and ABR wave 1 amplitude at 14 weeks of age, followed by biochemical analyses. RESULTS We found significant sexual dimorphism in HFD-induced metabolic alterations and obesity-related hearing loss. Male mice exhibited greater weight gain, hyperglycemia, increased ABR thresholds at low frequencies, elevated DPOAE, and lower ABR wave 1 amplitude compared to female mice. The hair cell (HC) ribbon synapse (CtBP2) puncta showed significant sex differences. The serum concentration of adiponectin, an otoprotective adipokine, was significantly higher in female than in male mice; cochlear adiponectin levels were elevated by HFD in female but not male mice. Adiponectin receptor 1 (AdipoR1) was widely expressed in the inner ear, and cochlear AdipoR1 protein levels were increased by HFD, in female but not male mice. Stress granules (G3BP1) were significantly induced by the HFD in both sexes; conversely, inflammatory (IL-1β) responses were observed only in the male liver and cochlea, consistent with phenotype HFD-induced obesity. CONCLUSIONS Female mice are more resistant to the negative effects of an HFD on body weight, metabolism, and hearing. Females showed increased peripheral and intra-cochlear adiponectin and AdipoR1 levels, and HC ribbon synapses. These changes may mediate resistance to HFD-induced hearing loss seen in female mice.
Collapse
Affiliation(s)
- Soo Jeong Kim
- grid.254230.20000 0001 0722 6377Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015 Daejeon, South Korea
| | - Akanksha Gajbhiye
- grid.254230.20000 0001 0722 6377Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Ah-Ra Lyu
- grid.254230.20000 0001 0722 6377Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015 Daejeon, South Korea
| | - Tae Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Sun-Ae Shin
- grid.254230.20000 0001 0722 6377Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015 Daejeon, South Korea
| | - Hyuk Chan Kwon
- grid.254230.20000 0001 0722 6377Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Yong-Ho Park
- Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea. .,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Min Jung Park
- Brain Research Institute, College of Medicine, Chungnam National University, 282 Munwha-ro, Daesa-dong, Jung-gu, 35015, Daejeon, South Korea. .,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| |
Collapse
|
13
|
Landowski M, Bhute VJ, Grindel S, Haugstad Z, Gyening YK, Tytanic M, Brush RS, Moyer LJ, Nelson DW, Davis CR, Yen CLE, Ikeda S, Agbaga MP, Ikeda A. Transmembrane protein 135 regulates lipid homeostasis through its role in peroxisomal DHA metabolism. Commun Biol 2023; 6:8. [PMID: 36599953 PMCID: PMC9813353 DOI: 10.1038/s42003-022-04404-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Transmembrane protein 135 (TMEM135) is thought to participate in the cellular response to increased intracellular lipids yet no defined molecular function for TMEM135 in lipid metabolism has been identified. In this study, we performed a lipid analysis of tissues from Tmem135 mutant mice and found striking reductions of docosahexaenoic acid (DHA) across all Tmem135 mutant tissues, indicating a role of TMEM135 in the production of DHA. Since all enzymes required for DHA synthesis remain intact in Tmem135 mutant mice, we hypothesized that TMEM135 is involved in the export of DHA from peroxisomes. The Tmem135 mutation likely leads to the retention of DHA in peroxisomes, causing DHA to be degraded within peroxisomes by their beta-oxidation machinery. This may lead to generation or alteration of ligands required for the activation of peroxisome proliferator-activated receptor a (PPARa) signaling, which in turn could result in increased peroxisomal number and beta-oxidation enzymes observed in Tmem135 mutant mice. We confirmed this effect of PPARa signaling by detecting decreased peroxisomes and their proteins upon genetic ablation of Ppara in Tmem135 mutant mice. Using Tmem135 mutant mice, we also validated the protective effect of increased peroxisomes and peroxisomal beta-oxidation on the metabolic disease phenotypes of leptin mutant mice which has been observed in previous studies. Thus, we conclude that TMEM135 has a role in lipid homeostasis through its function in peroxisomes.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary Haugstad
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yeboah K Gyening
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Madison Tytanic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Lucas J Moyer
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher R Davis
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Enhanced Immunomodulation, Anti-Apoptosis, and Improved Tear Dynamics of (PEG)-BHD1028, a Novel Adiponectin Receptor Agonist Peptide, for Treating Dry Eye Disease. Pharmaceutics 2022; 15:pharmaceutics15010078. [PMID: 36678707 PMCID: PMC9863990 DOI: 10.3390/pharmaceutics15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Dry eye disease (DED) is characterized by impaired tear dynamics, leading to complex pathophysiological conditions. (PEG)-BHD1028, a peptide agonist to AdipoRs, was evaluated as a potential therapeutic agent for DED based on the reported physiological function of adiponectin, including anti-inflammation and epithelial protection. Therapeutic effects of (PEG)-BHD1028 were evaluated in experimentally induced EDE with 0.001%, 0.01%, and 0.1% (PEG)-BHD1028 in mice and 0.1%, 0.2%, and 0.4% in rabbits for 10 days. In the rabbit study, 0.05% cyclosporine was also tested as a comparator. The results from the mouse study revealed significant improvement in tear volumes, tear breakup time (TBUT), inflammation, and corneal severity score (CSS) within 10 days at all (PEG)-BHD1028 concentrations. In the rabbit study, the tear volume and TBUT significantly increased in (PEG)-BHD1028 groups compared with vehicle and 0.05% cyclosporine groups. The CSS, apoptosis rate, and corneal thickness of all (PEG)-BHD1028 and 0.05% cyclosporine groups were significantly improved relative to the vehicle group. The immune cell counts of 0.2% and 0.4% (PEG)-BHD1028 treated groups were significantly lower than those of the vehicle group. These results represent the potential of (PEG)-BHD1028 as an effective therapeutic agent for DED.
Collapse
|
15
|
Drinking hydrogen water improves photoreceptor structure and function in retinal degeneration 6 mice. Sci Rep 2022; 12:13610. [PMID: 35948585 PMCID: PMC9365798 DOI: 10.1038/s41598-022-17903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinal disorders involving the progressive dysfunction of photoreceptors and the retinal pigment epithelium, for which there is currently no treatment. The rd6 mouse is a natural model of autosomal recessive retinal degeneration. Given the known contributions of oxidative stress caused by reactive oxygen species (ROS) and selective inhibition of potent ROS peroxynitrite and OH·by H2 gas we have previously demonstrated, we hypothesized that ingestion of H2 water may delay the progression of photoreceptor death in rd6 mice. H2 mice showed significantly higher retinal thickness as compared to controls on optical coherence tomography. Histopathological and morphometric analyses revealed higher thickness of the outer nuclear layer for H2 mice than controls, as well as higher counts of opsin red/green-positive cells. RNA sequencing (RNA-seq) analysis of differentially expressed genes in the H2 group versus control group revealed 1996 genes with significantly different expressions. Gene and pathway ontology analysis showed substantial upregulation of genes responsible for phototransduction in H2 mice. Our results show that drinking water high in H2 (1.2-1.6 ppm) had neuroprotective effects and inhibited photoreceptor death in mice, and suggest the potential of H2 for the treatment of RP.
Collapse
|
16
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Inooka D, Omori Y, Ouchi N, Ohashi K, Kawakami Y, Koyanagi Y, Koike C, Terasaki H, Nishiguchi KM, Ueno S. Ablation of Ctrp9, Ligand of AdipoR1, and Lower Number of Cone Photoreceptors in Mouse Retina. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35575905 PMCID: PMC9123514 DOI: 10.1167/iovs.63.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose C1q/TNF-related protein (CTRP) 9 is one of the adiponectin paralogs, and a genetic ablation of its receptor, AdipoR1, is known to cause retinal degeneration. The purpose of this study was to determine the role played by CTRP9 in the retina. Methods The retinas of Ctrp9 gene knockout (KO) and wild type (WT) mice were examined by electroretinography (ERG), histology, RNA sequencing, and quantitative real-time PCR. Results The amplitude of the photopic ERG elicited by the maximum stimulus intensity was smaller by 40% in the Ctrp9 KO mice than in WT mice at 8 weeks of age. However, the photopic ERGs was not reduced from 8 weeks to 6 months of age. The amplitudes of the scotopic ERGs were not reduced in the Ctrp9 KO mice at 8 weeks and 6 months of age. No distinct histological abnormalities were found in the retinal sections but the density of peanut agglutinin-stained cells in the retinal flat mount of KO mice was reduced to about 70% of that of WT mice. Genomewide RNA sequencing of the retina revealed the absence of the expression of CTRP9 in both KO and WT mice. RNA sequencing and quantitative real-time PCR analysis showed that the expressions of the transcripts of genes expressed in cones, Opn1sw, Opn1mw, Gnat2, and Cnga3, were reduced in the KO mice retina, however, the degree of expression of the transcripts in rods was not significantly reduced. Conclusions CTRP9 is released ectopically from other tissues, and it regulates the number of cones in the mouse retinas.
Collapse
Affiliation(s)
- Daiki Inooka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Shiga, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Kawakami
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Shiga, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chieko Koike
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji M. Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Genetic Interaction between Mfrp and Adipor1 Mutations Affect Retinal Disease Phenotypes. Int J Mol Sci 2022; 23:ijms23031615. [PMID: 35163536 PMCID: PMC8835889 DOI: 10.3390/ijms23031615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.
Collapse
|
19
|
Lewandowski D, Foik AT, Smidak R, Choi EH, Zhang J, Hoang T, Tworak A, Suh S, Leinonen H, Dong Z, Pinto AF, Tom E, Luu JC, Lee JY, Ma X, Bieberich E, Blackshaw S, Saghatelian A, Lyon DC, Skowronska-Krawczyk D, Tabaka M, Palczewski K. Inhibition of ceramide accumulation in AdipoR1-/- mice increases photoreceptor survival and improves vision. JCI Insight 2022; 7:156301. [PMID: 35015730 PMCID: PMC8876453 DOI: 10.1172/jci.insight.156301] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adiponectin receptor 1 (ADIPOR1) is a lipid and glucose metabolism regulator that possesses intrinsic ceramidase activity. Mutations of the ADIPOR1 gene have been associated with nonsyndromic and syndromic retinitis pigmentosa. Here, we show that the absence of AdipoR1 in mice leads to progressive photoreceptor degeneration, significant reduction of electroretinogram amplitudes, decreased retinoid content in the retina, and reduced cone opsin expression. Single-cell RNA-Seq results indicate that ADIPOR1 encoded the most abundantly expressed ceramidase in mice and one of the 2 most highly expressed ceramidases in the human retina, next to acid ceramidase ASAH1. We discovered an accumulation of ceramides in the AdipoR1–/– retina, likely due to insufficient ceramidase activity for healthy retina function, resulting in photoreceptor death. Combined treatment with desipramine/L-cycloserine (DC) lowered ceramide levels and exerted a protective effect on photoreceptors in AdipoR1–/– mice. Moreover, we observed improvement in cone-mediated retinal function in the DC-treated animals. Lastly, we found that prolonged DC treatment corrected the electrical responses of the primary visual cortex to visual stimuli, approaching near-normal levels for some parameters. These results highlight the importance of ADIPOR1 ceramidase in the retina and show that pharmacological inhibition of ceramide generation can provide a therapeutic strategy for ADIPOR1-related retinopathy.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Andrzej T Foik
- International Center for Translational Eye Research, Institute of Physical Chemistry PAS, Warsaw, Poland
| | - Roman Smidak
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Elliot H Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, United States of America
| | - Jianye Zhang
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Aleksander Tworak
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, United States of America
| | - Henri Leinonen
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Zhiqian Dong
- Department of Medical Devices, Polgenix Inc., Cleveland, United States of America
| | - Antonio Fm Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, United States of America
| | - Emily Tom
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Jennings C Luu
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Joan Y Lee
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, United States of America
| | - Xiuli Ma
- Department of Medical Devices, Polgenix Inc, Cleveland, United States of America
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, United States of America
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, John Hopkins School of Medicine, Baltimore, United States of America
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, United States of America
| | - David C Lyon
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States of America
| | | | - Marcin Tabaka
- International Center for Translational Eye Research, Institute of Physical Chemistry PAS, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| |
Collapse
|
20
|
Tang X, Cao Y, Arora G, Hwang J, Sajid A, Brown CL, Mehta S, Marín-López A, Chuang YM, Wu MJ, Ma H, Pal U, Narasimhan S, Fikrig E. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector. eLife 2021; 10:e72568. [PMID: 34783654 PMCID: PMC8639152 DOI: 10.7554/elife.72568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin, suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection, suggesting that ISARL signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yongguo Cao
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Clinical Veterinary Medicine, and Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchunChina
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Courtney L Brown
- Yale Combined Program in the Biological and Biomedical Sciences, Yale UniversityNew HavenUnited States
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale UniversityNew HavenUnited States
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Hongwei Ma
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College ParkCollege ParkUnited States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
21
|
Tomita Y, Usui-Ouchi A, Nilsson AK, Yang J, Ko M, Hellström A, Fu Z. Metabolism in Retinopathy of Prematurity. Life (Basel) 2021; 11:1119. [PMID: 34832995 PMCID: PMC8620873 DOI: 10.3390/life11111119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of prematurity is defined as retinal abnormalities that occur during development as a consequence of disturbed oxygen conditions and nutrient supply after preterm birth. Both neuronal maturation and retinal vascularization are impaired, leading to the compensatory but uncontrolled retinal neovessel growth. Current therapeutic interventions target the hypoxia-induced neovessels but negatively impact retinal neurons and normal vessels. Emerging evidence suggests that metabolic disturbance is a significant and underexplored risk factor in the disease pathogenesis. Hyperglycemia and dyslipidemia correlate with the retinal neurovascular dysfunction in infants born prematurely. Nutritional and hormonal supplementation relieve metabolic stress and improve retinal maturation. Here we focus on the mechanisms through which metabolism is involved in preterm-birth-related retinal disorder from clinical and experimental investigations. We will review and discuss potential therapeutic targets through the restoration of metabolic responses to prevent disease development and progression.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Anders K. Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| |
Collapse
|
22
|
ADIPOR1 deficiency-induced suppression of retinal ELOVL2 and docosahexaenoic acid levels during photoreceptor degeneration and visual loss. Cell Death Dis 2021; 12:458. [PMID: 33963174 PMCID: PMC8105316 DOI: 10.1038/s41419-021-03741-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
Lipid metabolism-related gene mutations can cause retinitis pigmentosa, a currently untreatable blinding disease resulting from progressive neurodegeneration of the retina. Here, we demonstrated the influence of adiponectin receptor 1 (ADIPOR1) deficiency in retinal neurodegeneration using Adipor1 knockout (KO) mice. Adipor1 mRNA was observed to be expressed in photoreceptors, predominately within the photoreceptor inner segment (PIS), and increased after birth during the development of the photoreceptor outer segments (POSs) where photons are received by the visual pigment, rhodopsin. At 3 weeks of age, visual function impairment, specifically photoreceptor dysfunction, as recorded by electroretinography (ERG), was evident in homozygous, but not heterozygous, Adipor1 KO mice. However, although photoreceptor loss was evident at 3 weeks of age and progressed until 10 weeks, the level of visual dysfunction was already substantial by 3 weeks, after which it was retained until 10 weeks of age. The rhodopsin mRNA levels had already decreased at 3 weeks, suggesting that reduced rhodopsin may have contributed to early visual loss. Moreover, inflammation and oxidative stress were induced in homozygous KO retinas. Prior to observation of photoreceptor loss via optical microscopy, electron microscopy revealed that POSs were present; however, they were misaligned and their lipid composition, including docosahexaenoic acid (DHA), which is critical in forming POSs, was impaired in the retina. Importantly, the expression of Elovl2, an elongase of very long chain fatty acids expressed in the PIS, was significantly reduced, and lipogenic genes, which are induced under conditions of reduced endogenous DHA synthesis, were increased in homozygous KO mice. The causal relationship between ADIPOR1 deficiency and Elovl2 repression, together with upregulation of lipogenic genes, was confirmed in vitro. Therefore, ADIPOR1 in the retina appears to be indispensable for ELOVL2 induction, which is likely required to supply sufficient DHA for appropriate photoreceptor function and survival.
Collapse
|
23
|
Pilon M. Paradigm shift: the primary function of the "Adiponectin Receptors" is to regulate cell membrane composition. Lipids Health Dis 2021; 20:43. [PMID: 33931104 PMCID: PMC8088037 DOI: 10.1186/s12944-021-01468-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ADIPOR1 and ADIPOR2 proteins (ADIPORs) are generally considered as adiponectin receptors with anti-diabetic properties. However, studies on the yeast and C. elegans homologs of the mammalian ADIPORs, and of the ADIPORs themselves in various mammalian cell models, support an updated/different view. Based on findings in these experimental models, the ADIPORs are now emerging as evolutionarily conserved regulators of membrane homeostasis that do not require adiponectin to act as membrane fluidity sensors and regulate phospholipid composition. More specifically, membrane rigidification activates ADIPOR signaling to promote fatty acid desaturation and incorporation of polyunsaturated fatty acids into membrane phospholipids until fluidity is restored. The present review summarizes the evidence supporting this new view of the ADIPORs, and briefly examines physiological consequences.
Collapse
Affiliation(s)
- Marc Pilon
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, Box 462, S-405 30, Gothenburg, Sweden.
| |
Collapse
|
24
|
Zhao W, Adjei M, Wang H, Yangliu Y, Zhu J, Wu H. ADIPOR1 regulates genes involved in milk fat metabolism in goat mammary epithelial cells. Res Vet Sci 2021; 137:194-200. [PMID: 34020334 DOI: 10.1016/j.rvsc.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Fat metabolism is a complex process regulated by a number of factors. Adiponectin receptor 1 (ADIPOR1) gene takes active part in lipid metabolism. Although, there have been some researches indicating that ADIPOR1 could influence the milk fat metabolism through targeting some factors, little is known about the effect of ADIPOR1 on goat milk fat metabolism. To investigate the regulatory role of ADIPOR1 on milk fat metabolism in GMECs, we analysed overexpression in the presence and absence of AdipoRon (50 μM) and examined knockdown using siRNA. Using RT-qPCR, we assessed ADIPOR1 mRNA expressions among different lactation stages in goat mammary gland and the expression of six genes that regulate milk fat metabolism in GMECs. RESULTS ADIPOR1 mRNA expression level was higher during the various lactation stages, except dry-off period. Knockdown and overexpression results revealed a significant decrease and increase in mRNA expression of ADIPOR1 and genes considered: SREBF1, ACACA, FASN, SCD, ATGL, and HSL, respectively. Treatment of GMECs with AdipoRon 50 μM resulted in a significant (p < 0.05) increase in the mRNA expression of all measured genes, except SREBF1. CONCLUSION Overall, ADIPOR1 plays a central role in regulating the transcription of several genes involved in milk fat metabolism.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Yueling Yangliu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu 610041, Sichuan, China; Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, Sichuan, China
| | - Huijuan Wu
- Beijing Laboratory Animal Research Center, Beijing, 102600 Beijing, China.
| |
Collapse
|
25
|
Bazan NG. Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors. J Lipid Res 2021; 62:100058. [PMID: 33662383 PMCID: PMC8058566 DOI: 10.1194/jlr.tr120001137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRCs), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine, amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (n-3, ≥ 28 carbons) are at the sn-1 of this phosphatidylcholine molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of antiapoptotic and prosurvival protein expression with concomitant downregulation of proapoptotic proteins when RPE is confronted with uncompensated oxidative stress. ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix, as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration, Alzheimer's disease, and other pathologies.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
26
|
Das Y, Swinkels D, Kocherlakota S, Vinckier S, Vaz FM, Wever E, van Kampen AHC, Jun B, Do KV, Moons L, Bazan NG, Van Veldhoven PP, Baes M. Peroxisomal Multifunctional Protein 2 Deficiency Perturbs Lipid Homeostasis in the Retina and Causes Visual Dysfunction in Mice. Front Cell Dev Biol 2021; 9:632930. [PMID: 33604342 PMCID: PMC7884615 DOI: 10.3389/fcell.2021.632930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 01/09/2023] Open
Abstract
Patients lacking multifunctional protein 2 (MFP2), the central enzyme of the peroxisomal β-oxidation pathway, develop retinopathy. This pathway is involved in the metabolism of very long chain (VLCFAs) and polyunsaturated (PUFAs) fatty acids, which are enriched in the photoreceptor outer segments (POS). The molecular mechanisms underlying the retinopathy remain, however, elusive. Here, we report that mice with MFP2 inactivation display decreased retinal function already at the age of 3 weeks, which is accompanied by a profound shortening of the photoreceptor outer and inner segments, but with preserved photoreceptor ultrastructure. Furthermore, MFP2 deficient retinas exhibit severe changes in gene expression with downregulation of genes involved in the phototransduction pathway and upregulation of inflammation related genes. Lipid profiling of the mutant retinas revealed a profound reduction of DHA-containing phospholipids. This was likely due to a hampered systemic supply and retinal traffic of this PUFA, although we cannot exclude that the local defect of peroxisomal β-oxidation contributes to this DHA decrease. Moreover, very long chain PUFAs were also reduced, with the exception of those containing ≥ 34 carbons that accumulated. The latter suggests that there is an uncontrollable elongation of retinal PUFAs. In conclusion, our data reveal that intact peroxisomal β-oxidation is indispensable for retinal integrity, most likely by maintaining PUFA homeostasis.
Collapse
Affiliation(s)
- Yannick Das
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven-VIB, Leuven, Belgium
| | - Frédéric M Vaz
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Eric Wever
- Laboratory of Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands.,Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Lieve Moons
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Paul P Van Veldhoven
- Lipid Biochemistry and Protein Interactions (LIPIT), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Anderson DMG, Messinger JD, Patterson NH, Rivera ES, Kotnala A, Spraggins JM, Caprioli RM, Curcio CA, Schey KL. Lipid Landscape of the Human Retina and Supporting Tissues Revealed by High-Resolution Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2426-2436. [PMID: 32628476 PMCID: PMC8161663 DOI: 10.1021/jasms.0c00119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human retina provides vision at light levels ranging from starlight to sunlight. Its supporting tissues regulate plasma-delivered lipophilic essentials for vision, including retinoids. The macula is an anatomic specialization for high-acuity and color vision that is also vulnerable to prevalent blinding diseases. The retina's exquisite architecture comprises numerous cell types that are aligned horizontally, yielding structurally distinct cell, synaptic, and vascular layers that are visible in histology and in diagnostic clinical imaging. MALDI imaging mass spectrometry (IMS) is now capable of uniting low micrometer spatial resolution with high levels of chemical specificity. In this study, a multimodal imaging approach fortified with accurate multi-image registration was used to localize lipids in human retina tissue at laminar, cellular, and subcellular levels. Multimodal imaging results indicate differences in distributions and abundances of lipid species across and within single cell types. Of note are distinct localizations of signals within specific layers of the macula. For example, phosphatidylethanolamine and phosphatidylinositol lipids were localized to central RPE cells, whereas specific plasmalogen lipids were localized to cells of the perifoveal RPE and Henle fiber layer. Subcellular compartments of photoreceptors were distinguished by PE(20:0_22:5) in the outer nuclear layer, PE(18:0_22:6) in outer and inner segments, and cardiolipin CL(70:5) in the mitochondria-rich inner segments. Several lipids, differing by a single double bond, have markedly different distributions between the central fovea and the ganglion cell and inner nuclear layers. A lipid atlas, initiated in this study, can serve as a reference database for future examination of diseased tissues.
Collapse
Affiliation(s)
- David M G Anderson
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Nathan H Patterson
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Emilio S Rivera
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Ankita Kotnala
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Richard M Caprioli
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kevin L Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
28
|
Lipidomics of the brain, retina, and biofluids: from the biological landscape to potential clinical application in schizophrenia. Transl Psychiatry 2020; 10:391. [PMID: 33168817 PMCID: PMC7653030 DOI: 10.1038/s41398-020-01080-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a serious neuropsychiatric disorder, yet a clear pathophysiology has not been identified. To date, neither the objective biomarkers for diagnosis nor specific medications for the treatment of schizophrenia are clinically satisfactory. It is well accepted that lipids are essential to maintain the normal structure and function of neurons in the brain and that abnormalities in neuronal lipids are associated with abnormal neurodevelopment in schizophrenia. However, lipids and lipid-like molecules have been largely unexplored in contrast to proteins and their genes in schizophrenia. Compared with the gene- and protein-centric approaches, lipidomics is a recently emerged and rapidly evolving research field with particular importance for the study of neuropsychiatric disorders such as schizophrenia, in which even subtle aberrant alterations in the lipid composition and concentration of the neurons may disrupt brain functioning. In this review, we aimed to highlight the lipidomics of the brain, retina, and biofluids in both human and animal studies, discuss aberrant lipid alterations in correlation with schizophrenia, and propose future directions from the biological landscape towards potential clinical applications in schizophrenia. Recent studies are in support of the concept that aberrations in some lipid species [e.g. phospholipids, polyunsaturated fatty acids (PUFAs)] lead to structural alterations and, in turn, impairments in the biological function of membrane-bound proteins, the disruption of cell signaling molecule accessibility, and the dysfunction of neurotransmitter systems. In addition, abnormal lipidome alterations in biofluids are linked to schizophrenia, and thus they hold promise in the discovery of biomarkers for the diagnosis of schizophrenia.
Collapse
|
29
|
Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins. PLoS Genet 2020; 16:e1008975. [PMID: 32750056 PMCID: PMC7428288 DOI: 10.1371/journal.pgen.1008975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The C. elegans proteins PAQR-2 (a homolog of the human seven-transmembrane domain AdipoR1 and AdipoR2 proteins) and IGLR-2 (a homolog of the mammalian LRIG proteins characterized by a single transmembrane domain and the presence of immunoglobulin domains and leucine-rich repeats in their extracellular portion) form a complex that protects against plasma membrane rigidification by promoting the expression of fatty acid desaturases and the incorporation of polyunsaturated fatty acids into phospholipids, hence increasing membrane fluidity. In the present study, we leveraged a novel gain-of-function allele of PAQR-1, a PAQR-2 paralog, to carry out structure-function studies. We found that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2, that PAQR-1 does not require IGLR-2 but acts via the same pathway as PAQR-2, and that the divergent N-terminal cytoplasmic domains of the PAQR-1 and PAQR-2 proteins serve a regulatory function and may regulate access to the catalytic site of these proteins. We also show that overexpression of human AdipoR1 or AdipoR2 alone is sufficient to confer increased palmitic acid resistance in HEK293 cells, and thus act in a manner analogous to the PAQR-1 gain-of-function allele.
Collapse
|
30
|
Kautzmann MAI, Gordon WC, Jun B, Do KV, Matherne BJ, Fang Z, Bazan NG. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function. FASEB J 2019; 34:912-929. [PMID: 31914617 PMCID: PMC6956729 DOI: 10.1096/fj.201902359r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Molecular decision‐makers of photoreceptor (PRC) membrane organization and gene regulation are critical to understanding sight and retinal degenerations that lead to blindness. Using Mfrprd6mice, which develop PRC degeneration, we uncovered that membrane‐type frizzled‐related protein (MFRP) participates in docosahexaenoic acid (DHA, 22:6) enrichment in a manner similar to adiponectin receptor 1 (AdipoR1). Untargeted imaging mass spectrometry demonstrates cell‐specific reduction of phospholipids containing 22:6 and very long‐chain polyunsaturated fatty acids (VLC‐PUFAs) in Adipor1−/−and Mfrprd6 retinas. Gene expression of pro‐inflammatory signaling pathways is increased and gene‐encoding proteins for PRC function decrease in both mutants. Thus, we propose that both proteins are necessary for retinal lipidome membrane organization, visual function, and to the understanding of the early pathology of retinal degenerative diseases.
Collapse
Affiliation(s)
- Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Blake J Matherne
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| |
Collapse
|
31
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
32
|
Li HY, Hong X, Cao QQ, So KF. Adiponectin, exercise and eye diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:281-294. [PMID: 31607358 DOI: 10.1016/bs.irn.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adiponectin, one kind of adipokines, has been shown to be neuroprotective in different neurodegenerative diseases. Adiponectin exerts its role through combination with its receptors and activates downstream molecular pathways. In the retinas, the expression of adiponectin can be detected and adiponectin receptors (AdipoRs) locate in different retinal cells. Adiponectin is mainly produced by adipose tissue, enters the circulation and passes through blood-brain barrier (BBB) without injury. It can also be produced locally in the brains as well as in the retinas. Therefore, it is possible that adiponectin from blood as well as that produced locally in the retinas take part in defense of different eye diseases. Here we have summarized the published data about the protective effects of adiponectin in eye diseases. Because exercise can increase the production of adiponectin systemically in the whole body and locally in the brain although no evidence has shown that exercise can increase the production of adiponectin in the eyes until now, we hypothesize that exercise will have a potential protective effect for the eyes via increasing the levels of adiponectin which needs further investigation.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Anatomy, Medical School, Jinan University, Guangzhou, PR China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China.
| | - Xi Hong
- Department of Anatomy, Medical School, Jinan University, Guangzhou, PR China
| | - Qian-Qian Cao
- Department of Anatomy, Medical School, Jinan University, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, The University of HongKong, Hong Kong, PR China.
| |
Collapse
|
33
|
Vasiliauskaité-Brooks I, Healey RD, Granier S. 7TM proteins are not necessarily GPCRs. Mol Cell Endocrinol 2019; 491:110397. [PMID: 31026477 DOI: 10.1016/j.mce.2019.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
In this review article, we summarize the current knowledge on a large and diverse superfamily of seven-pass transmembrane proteins functionally independent from the GPCR superfamily. We include the newest research findings about their physiological roles and their mechanism of action. In particular, we concentrate on the structural basis for the newly discovered amide hydrolase activity, with a focus on adiponectin receptors for which structures are available. Finally, we discuss the remaining challenges in understanding the activation and signaling of these intramembrane proteins and suggest how regulation of the amide hydrolase activity may help in development of new therapeutic agents.
Collapse
Affiliation(s)
| | - Robert D Healey
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
34
|
Ruiz M, Ståhlman M, Borén J, Pilon M. AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin. J Lipid Res 2019; 60:995-1004. [PMID: 30890562 PMCID: PMC6495173 DOI: 10.1194/jlr.m092494] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
The FA composition of phospholipids must be tightly regulated to maintain optimal cell membrane properties and compensate for a highly variable supply of dietary FAs. Previous studies have shown that AdipoR2 and its homologue PAQR-2 are important regulators of phospholipid FA composition in HEK293 cells and Caenorhabditiselegans, respectively. Here we show that both AdipoR1 and AdipoR2 are essential for sustaining desaturase expression and high levels of unsaturated FAs in membrane phospholipids of many human cell types, including primary human umbilical vein endothelial cells, and for preventing membrane rigidification in cells challenged with exogenous palmitate, a saturated FA. Three independent methods confirm the role of the AdipoRs as regulators of membrane composition and fluidity: fluorescence recovery after photobleaching, measurements of Laurdan dye generalized polarization, and mass spectrometry to determine the FA composition of phospholipids. Furthermore, we show that the AdipoRs can prevent lipotoxicity in the complete absence of adiponectin, their putative ligand. We propose that the primary cellular function of AdipoR1 and AdipoR2 is to maintain membrane fluidity in most human cell types and that adiponectin is not required for this function.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology; University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology; University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|