1
|
Shang L, Ao Y, Huang X, Wu H, Feng K, Wang J, Yue Y, Zhou Z, Liu Q, Li H, Fu G, Liu K, Pan J, Huang Y, Chen J, Chen G, Liang M, Yao J, Huang S, Hou J, Wu Z. sVEGFR3 alleviates myocardial ischemia/reperfusion injury through regulating mitochondrial homeostasis and immune cell infiltration. Apoptosis 2025; 30:894-911. [PMID: 39863719 DOI: 10.1007/s10495-024-02068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion. Echocardiography, TTC-Evans blue staining, ELISA, electron microscopy, immunofluorescence, western blotting, and flow cytometry were used to investigate whether sVEGFR3 attenuates I/R injury. Transcriptome sequencing was used to investigate the downstream mechanism of sVEGFR3. Results showed that, in vivo, sVEGFR3 pretreatment reduced cardiac dysfunction, infarct area, and myocardial injury indicators by reducing ROS production, AIF expression, and apoptosis. In vitro, sVEGFR3 restored mitochondrial homeostasis by stabilizing the mitochondrial membrane potential (MMP) and preventing the opening of mitochondrial permeability transition pores (mPTP). And sVEGFR3 inhibits mitochondrial apoptosis through the Ras/MEK/ERK pathway. Furthermore, I/R injury increased the proportion of M1 macrophages and CD4 + T cells in myocardial tissue, as well as serum IFN-γ and TNF-α levels, whereas sVEGFR3 treatment attenuated these effects. sVEGFR3 attenuates MI/RI by regulating mitochondrial homeostasis and immune cell infiltration, and reduces intrinsic ROS-mediated mitochondrial apoptosis via the Ras/MEK/ERK pathway.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Yuanhan Ao
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Xiaolin Huang
- Department of Thoracic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huawei Wu
- Department of Surgery, Columbia University, New York, NY, USA
| | - Kangni Feng
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Junjie Wang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Yuan Yue
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Zhuoming Zhou
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Quan Liu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Huayang Li
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Guangguo Fu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Kaizheng Liu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Jinyu Pan
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Yang Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Jiantao Chen
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Guangxian Chen
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Jianping Yao
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Suiqing Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
| | - Jian Hou
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
- Department of Cardiology, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Chiu A, Rutkowski JM, Zhang Q, Zhao F. Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema. Adv Healthc Mater 2025; 14:e2403551. [PMID: 39806804 PMCID: PMC11936459 DOI: 10.1002/adhm.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Indexed: 01/16/2025]
Abstract
The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target. Here cutting-edge research on engineered lymphatic tissues, growth factor therapies, and cell-based approaches designed to enhance lymphangiogenesis and restore lymphatic function is explored. Special focus is placed on how therapies with potential for immediate lymphatic reconstruction, originally designed for treating BCRL, can be applied to MI to augment cardiac repair and reduce heart failure risk. The integration of these novel treatments can significantly improve patient outcomes by promoting lymphatic repair, preventing pathological remodeling, and offering new avenues for managing lymphatic-associated diseases.
Collapse
Affiliation(s)
- Alvis Chiu
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX 77843-3120
| | - Joseph M. Rutkowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, Medical Research and Education Building, 8447 Riverside Pkwy, Bryan, TX 77807-3260
| | - Qixu Zhang
- Department of Plastic Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030
| | - Feng Zhao
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX 77843-3120
| |
Collapse
|
3
|
Wang YC, Zhu Y, Meng WT, Zheng Y, Guan XQ, Shao CL, Li XY, Hu D, Wang MZ, Guo HD. Dihydrotanshinone I improves cardiac function by promoting lymphangiogenesis after myocardial ischemia-reperfusion injury. Eur J Pharmacol 2025; 989:177245. [PMID: 39753160 DOI: 10.1016/j.ejphar.2024.177245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research. Lymphangiogenesis can reduce myocardial edema, inflammation, and fibrosis after myocardial infarction in rats, and improve cardiac function. In this study, the changes in cardiac functions, collagen fiber deposition in the infarcted area and the level of relevant indicators of lymphangiogenesis were examined by echocardiography, Masson's trichrome staining, immunohistochemistry and Western blot, respectively. Human lymphatic endothelial cells (HLECs) were transfected with siVE-cadherin and siVEGFR-3, and the effects of DHT on HLEC cell viability, migration and tube formation were detected through CCK8, TUNEL, transwell, wound healing and tube formation assay. We found that in myocardial IR rats treated with DHT, the levels of LYVE-1, PROX1, VEGF-C, VEGFR-3, IGF-1, podoplanin and IGF-1R, which are associated with lymphangiogenesis, were increased, as well as the level of VE-cadherin, which maintains endothelial cell function. DHT reduced the levels of inflammatory factors and myocardial cell apoptosis, thereby improving cardiac function after I/R. To explore the mechanism of DHT promoting lymphangiogenesis, H2O2 and OGD/R injury models of HLECs were constructed to simulate the microenvironment of myocardial IR in vitro. The results proved that DHT could reduce the damage and apoptosis of HLECs. On the other hand, DHT enhanced the expression of VEGFR-3 and VE-cadherin in HLECs, promoted cell migration and tube formation. The effects of DHT on the tube formation and migration of HLECs were significantly decreased after knocking down VEGFR-3 or VE-cadherin. Our research proposed that DHT could improve the heart function after IR through the enhancement of lymphangiogenesis and contributed to the development of the treatment methods for myocardial IR.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhu
- Department of Neurological Rehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wan-Ting Meng
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zheng
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qi Guan
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-le Shao
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiu-Ya Li
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Ming-Zhu Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hai-Dong Guo
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Chen YL, Lin YN, Xu J, Qiu YX, Wu YH, Qian XG, Wu YQ, Wang ZN, Zhang WW, Li YC. Macrophage-derived VEGF-C reduces cardiac inflammation and prevents heart dysfunction in CVB3-induced viral myocarditis via remodeling cardiac lymphatic vessels. Int Immunopharmacol 2024; 143:113377. [PMID: 39405931 DOI: 10.1016/j.intimp.2024.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Cardiac lymphatic vessels are important channels for cardiac fluid circulation and immune regulation. In myocardial infarction and chronic heart failure, promoting cardiac lymphangiogenesis is beneficial in reducing cardiac edema and inflammation. However, the specific involvement of cardiac lymphangiogenesis in viral myocarditis (VMC) has not been studied. Despite the recognized participation of macrophages in lymphangiogenesis, the contribution of macrophages to cardiac lymphangiogenesis in VMC is still unclear. METHODS The male Balb/c mice with VMC were grouped according to the time to explore changes in inflammation, cardiac function and lymphangiogenesis. Adeno-associated virus (AAV) was used to determine the effect of cardiac lymphangiogenesis in VMC. Macrophage depletion and VEGF-CC156S treatment were used to investigate the connection between macrophages and cardiac lymphangiogenesis. RESULTS Cardiac inflammation and lymphatic vessel density were both upregulated, peaking on day 7 following CVB3 infection. After treatment with AAV-sVEGFR3, lymphangiogenesis was inhibited, leading to worsened cardiac dysfunction and aggravated inflammation. However, these effects were reversed by AAV-VEGF-C treatment. Furthermore, macrophages infiltrated the inflamed myocardium and secreted VEGF-C. In vitro, VEGF-C was upregulated when RAW264.7 cells were co-cultured with CVB3. Macrophage depletion in mice with VMC inhibited lymphangiogenesis, while supplementation with VEGF-CC156S depressed it. CONCLUSION Collectively, these results indicate that activation of the VEGF-C/VEGFR3 axis exerts a protective effect in CVB3-induced VMC by resolving inflammation and alleviating cardiac dysfunction through increased lymphatic vasculature density, with macrophage-derived VEGF-C partially contributing to this effect.
Collapse
Affiliation(s)
- Yi-Lian Chen
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Nan Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Xuan Qiu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hao Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Ge Qian
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Qing Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Ning Wang
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Wu Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Shimizu Y, Luo H, Murohara T. Disease-Specific Alteration of Cardiac Lymphatics: A Review from Animal Disease Models to Clinics. Int J Mol Sci 2024; 25:10656. [PMID: 39408983 PMCID: PMC11477446 DOI: 10.3390/ijms251910656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
For many years, the significance of cardiac lymphatic vessels was largely overlooked in clinical practice, with little consideration given to their role in the pathophysiology or treatment of cardiac diseases. However, recent research has brought renewed attention to these vessels, progressively illuminating their function and importance within the realm of cardiovascular science. Experimental studies, particularly those utilizing animal models of cardiac disease, have demonstrated a clear relationship between cardiac lymphatic vessels and both the pathogenesis and progression of these conditions. These findings have prompted a growing interest in potential therapeutic applications that specifically target the cardiac lymphatic system. Conversely, while clinical investigations into cardiac lymphatics remain limited, recent studies have begun to explore their identification through specific surface markers, as well as the expression dynamics of lymphangiogenic factors. These studies have increasingly highlighted associations of lymphatic dysfunction with inflammation and fibrosis, both of which negatively impact cardiac function and remodeling across various pathological states. Despite these advances, comprehensive reviews of the current knowledge regarding the cardiac lymphatic vasculature, particularly within specific disease contexts, remain scarce. This review aims to address this gap by providing a detailed synthesis of existing reports, encompassing both animal model research and studies on human clinical specimens, with a special focus on the role of cardiac lymphatic vessels in different disease states.
Collapse
|
6
|
Cooper STE, Lokman AB, Riley PR. Role of the Lymphatics in Cardiac Disease. Arterioscler Thromb Vasc Biol 2024; 44:1181-1190. [PMID: 38634279 DOI: 10.1161/atvbaha.124.319854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cardiovascular diseases remain the largest cause of death worldwide with recent evidence increasingly attributing the development and progression of these diseases to an exacerbated inflammatory response. As a result, significant research is now focused on modifying the immune environment to prevent the disease progression. This in turn has highlighted the lymphatic system in the pathophysiology of cardiovascular diseases owing, in part, to its established function in immune cell surveillance and trafficking. In this review, we highlight the role of the cardiac lymphatic system and its potential as an immunomodulatory therapeutic target in selected cardiovascular diseases.
Collapse
Affiliation(s)
- Susanna T E Cooper
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Adam B Lokman
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Paul R Riley
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| |
Collapse
|
7
|
Mondal DK, Xie C, Pascal GJ, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2317760121. [PMID: 38652741 PMCID: PMC11067011 DOI: 10.1073/pnas.2317760121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Dipon K. Mondal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Christopher Xie
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Gabriel J. Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
8
|
Bai L, Wang Y, Du S, Si Y, Chen L, Li L, Li Y. Lymphangiogenesis: A new strategy for heart disease treatment (Review). Int J Mol Med 2024; 53:35. [PMID: 38391009 PMCID: PMC10903933 DOI: 10.3892/ijmm.2024.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Liding Bai
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Siqi Du
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yumeng Si
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lu Chen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
9
|
Xu Z, Lu Q, Chen L, Ruan C, Bai Y, Zou Y, Ge J. Role of Lymphangiogenesis in Cardiac Repair and Regeneration. Methodist Debakey Cardiovasc J 2023; 19:37-46. [PMID: 38028969 PMCID: PMC10655763 DOI: 10.14797/mdcvj.1286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023] Open
Abstract
This article highlights the importance of the structure and function of cardiac lymphatics in cardiovascular diseases and the therapeutic potential of cardiac lymphangiogenesis. Specifically, we explore the innate lymphangiogenic response to damaged cardiac tissue or cardiac injury, derive key findings from regenerative models demonstrating how robust lymphangiogenic responses can be supported to improve cardiac function, and introduce an approach to imaging the structure and function of cardiac lymphatics.
Collapse
Affiliation(s)
- Zhongyun Xu
- Shanghai East Hospital Tongji University, Shanghai, China
| | - Qing Lu
- Shanghai East Hospital Tongji University, Shanghai, China
| | | | - Chengchao Ruan
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingnan Bai
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- National Health Commission, Shanghai, China
- Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Wang D, Zhao Y, Zhou Y, Yang S, Xiao X, Feng L. Angiogenesis-An Emerging Role in Organ Fibrosis. Int J Mol Sci 2023; 24:14123. [PMID: 37762426 PMCID: PMC10532049 DOI: 10.3390/ijms241814123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Feng
- Division of Liver Surgery, Department of General Surgery and Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; (D.W.); (Y.Z.); (Y.Z.); (S.Y.); (X.X.)
| |
Collapse
|
11
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
12
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Abstract
In recent years, the lymphatic system has received increasing attention due to the fast-growing number of findings about its diverse novel functional roles in health and disease. It is well documented that the lymphatic vasculature plays major roles in the maintenance of tissue-fluid balance, the immune response, and in lipid absorption. However, recent studies have identified an additional growing number of novel and sometimes unexpected functional roles of the lymphatic vasculature in normal and pathological conditions in different organs. Among those, cardiac lymphatics have been shown to play important roles in heart development, ischemic cardiac disease, and cardiac disorders. In this review, we will discuss some of those novel functional roles of cardiac lymphatics, as well as the therapeutic potential of targeting lymphatics for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
14
|
Ylä-Herttuala E, Vuorio T, Kettunen S, Laidinen S, Ylä-Herttuala S, Liimatainen T. Lymphatic insufficiency leads to distinct myocardial infarct content assessed by magnetic resonance T RAFFn, T 1ρ and T 2 relaxation times. Sci Rep 2023; 13:1579. [PMID: 36709358 PMCID: PMC9884273 DOI: 10.1038/s41598-023-28219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
The role of cardiac lymphatics in the pathogenesis of myocardial infarction (MI) is unclear. Lymphatic system regulates cardiac physiological processes such as edema and tissue fluid balance, which affect MI pathogenesis. Recently, MI and fibrosis have been assessed using endogenous contrast in magnetic resonance imaging (MRI) based on the relaxation along a fictitious field with rank n (RAFFn). We extended the RAFFn applications to evaluate the effects of lymphatic insufficiency on MI with comparison to longitudinal rotating frame (T1ρ) and T2 relaxation times. MI was induced in transgenic (TG) mice expressing soluble decoy VEGF receptor 3 that reduces lymphatic vessel formation and their wild-type (WT) control littermates for comparison. The RAFFn relaxation times with rank 2 (TRAFF2), and rank 4 (TRAFF4), T1ρ and T2 were acquired at time points 0, 3, 7, 21 and 42 days after the MI at 9.4 T. Infarct sizes were determined based on TRAFF2, TRAFF4, T1ρ and T2 relaxation time maps. The area of differences (AOD) was calculated based on the MI areas determined on T2 and TRAFF2, TRAFF4 or T1ρ relaxation time maps. Hematoxylin-eosin and Sirius red stained histology sections were prepared to confirm MI locations and sizes. MI was detected as increased TRAFF2, TRAFF4, T1ρ and T2 relaxation times. Infarct sizes were similar on all relaxation time maps during the experimental period. Significantly larger AOD values were found together with increased AOD values in the TG group compared to the WT group. Histology confirmed these findings. The lymphatic deficiency was found to increase cardiac edema in MI. The combination of TRAFF2 (or TRAFF4) and T2 characterizes MI and edema in the myocardium in both lymphatic insufficiency and normal mice without any contrast agents.
Collapse
Affiliation(s)
- Elias Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Taina Vuorio
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland. .,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
15
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:466-478. [PMID: 35218948 PMCID: PMC9338339 DOI: 10.1016/j.jshs.2022.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth. METHODS Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy. RESULTS Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPβ) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)-rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation. CONCLUSION Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xing Feng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lin Li
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Shuqin Liu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Huimin Jiang
- Clinical Laboratory Center, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
17
|
Cardiac lymphatics: state of the art. Curr Opin Hematol 2022; 29:156-165. [PMID: 35220321 DOI: 10.1097/moh.0000000000000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.
Collapse
|
18
|
Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5044046. [PMID: 35222798 PMCID: PMC8881141 DOI: 10.1155/2022/5044046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Cardiac lymphatic vessel growth (lymphangiogenesis) and integrity play an essential role in maintaining tissue fluid balance. Inhibition of lymphatic lymphangiogenesis is involved in cardiac edema and cardiac remodeling after ischemic injury or pressure overload. However, whether lymphatic vessel integrity is disrupted during angiotensin II- (Ang II-) induced cardiac remodeling remains to be investigated. In this study, cardiac remodeling models were established by Ang II (1000 ng/kg/min) in VEGFR-3 knockdown (Lyve-1Cre VEGFR-3f/−) and wild-type (VEGFR-3f/f) littermates. Our results indicated that Ang II infusion not only induced cardiac lymphangiogenesis and upregulation of VEGF-C and VEGFR-3 expression in the time-dependent manner but also enhanced proteasome activity, MKP5 and VE-cadherin degradation, p38 MAPK activation, and lymphatic vessel hyperpermeability. Moreover, VEGFR-3 knockdown significantly inhibited cardiac lymphangiogenesis in mice, resulting in exacerbation of tissue edema, hypertrophy, fibrosis superoxide production, inflammation, and heart failure (HF). Conversely, administration of epoxomicin (a selective proteasome inhibitor) markedly mitigated Ang II-induced cardiac edema, remodeling, and dysfunction; upregulated MKP5 and VE-cadherin expression; inactivated p38 MAPK; and reduced lymphatic vessel hyperpermeability in WT mice, indicating that inhibition of proteasome activity is required to maintain lymphatic endothelial cell (LEC) integrity. Our results show that both cardiac lymphangiogenesis and lymphatic barrier hyperpermeability are implicated in Ang II-induced adaptive hypertrophic remodeling and dysfunction. Proteasome-mediated hyperpermeability of LEC junctions plays a predominant role in the development of cardiac remodeling. Selective stimulation of lymphangiogenesis or inhibition of proteasome activity may be a potential therapeutic option for treating hypertension-induced cardiac remodeling.
Collapse
|
19
|
Harris NR, Nielsen NR, Pawlak JB, Aghajanian A, Rangarajan K, Serafin DS, Farber G, Dy DM, Nelson-Maney NP, Xu W, Ratra D, Hurr SH, Qian L, Scallan JP, Caron KM. VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circ Res 2022; 130:5-23. [PMID: 34789016 PMCID: PMC8756423 DOI: 10.1161/circresaha.121.318852] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.
Collapse
Affiliation(s)
- Natalie R. Harris
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Natalie R. Nielsen
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - John B. Pawlak
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Amir Aghajanian
- Department of Medicine Division of Cardiology, University
of North Carolina at Chapel Hill; 160 Dental Circle, Chapel Hill, North Carolina,
USA 27599
| | - Krsna Rangarajan
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Gregory Farber
- Department of Pathology and Laboratory Medicine, University
of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina,
USA 27599,McAllister Heart Institute, University of North Carolina,
Chapel Hill, North Carolina, USA 27599
| | - Danielle M. Dy
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Nathan P. Nelson-Maney
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Disha Ratra
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Sophia H. Hurr
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University
of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina,
USA 27599
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology,
University of South Florida, Tampa, Florida, USA 33612
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA
27599
| |
Collapse
|
20
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
21
|
Abstract
Cardiac lymphatics have emerged as a therapeutic target in cardiovascular diseases to limit myocardial edema and inflammation, notably after myocardial infarction (MI). While most experimental therapeutic approaches have focused on vascular endothelial growth factor C (VEGF-C) delivery, it remains uncertain to what degree the beneficial cardiac effects are related to lymphatic expansion in the heart. In this issue of the JCI, Keller, Lim, et al. reexamined the acute functional impact of endogenous cardiac lymphangiogenesis in the infarct zone after MI in mice. Their data, obtained by elegant comparisons of several complementary genetic mouse models, indicate that infarct expansion and left ventricular dilation and function after MI are unaffected by infarct lymphangiogenesis. This Commentary places the results into the context of previous findings. We believe these data will help further advance the research field of cardiac lymphatics to guide better clinical translation and benefit patients with ischemic heart disease.
Collapse
Affiliation(s)
- Ebba Bråkenhielm
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU CARNAVAL, Rouen, France
| | - Yuguo Chen
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Keller Iv TCS, Lim L, Shewale SV, McDaid K, Marti-Pamies I, Tang AT, Wittig C, Guerrero AA, Sterling S, Leu NA, Scherrer-Crosbie M, Gimotty PA, Kahn ML. Genetic blockade of lymphangiogenesis does not impair cardiac function after myocardial infarction. J Clin Invest 2021; 131:e147070. [PMID: 34403369 DOI: 10.1172/jci147070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
In recent decades, treatments for myocardial infarction (MI), such as stem and progenitor cell therapy, have attracted considerable scientific and clinical attention but failed to improve patient outcomes. These efforts indicate that more rigorous mechanistic and functional testing of potential MI therapies is required. Recent studies have suggested that augmenting post-MI lymphatic growth via VEGF-C administration improves cardiac function. However, the mechanisms underlying this proposed therapeutic approach remain vague and untested. To more rigorously test the role of lymphatic vessel growth after MI, we examined the post-MI cardiac function of mice in which lymphangiogenesis had been blocked genetically by pan-endothelial or lymphatic endothelial loss of the lymphangiogenic receptor VEGFR3 or global loss of the VEGF-C and VEGF-D ligands. The results obtained using all three genetic approaches were highly concordant and demonstrated that loss of lymphatic vessel growth did not impair left ventricular ejection fraction two weeks after MI in mice. We observed a trend toward excess fluid in the infarcted region of the left ventricle, but immune cell infiltration and clearance were unchanged with loss of expanded lymphatics. These studies refute the hypothesis that lymphangiogenesis contributes significantly to cardiac function after MI, and suggest that any effect of exogenous VEGF-C is likely to be mediated by non-lymphangiogenic mechanisms.
Collapse
Affiliation(s)
- T C Stevenson Keller Iv
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Swapnil V Shewale
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Kendra McDaid
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Ingrid Marti-Pamies
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Carl Wittig
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Andrea A Guerrero
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences and Mouse Transgenic Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - N Adrian Leu
- Department of Biomedical Sciences and Mouse Transgenic Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Marielle Scherrer-Crosbie
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
23
|
Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021; 13:1200. [PMID: 34452161 PMCID: PMC8398144 DOI: 10.3390/pharmaceutics13081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
While oral agents have been the gold standard for cardiovascular disease therapy, the new generation of treatments is switching to other administration options that offer reduced dosing frequency and more efficacy. The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect. The present review will give an overview of the current knowledge on the involvement of the lymphatic vessels in drug delivery in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Fatma Moawad
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada Amri
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
24
|
Monaghan RM, Page DJ, Ostergaard P, Keavney BD. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res 2021; 117:1877-1890. [PMID: 33067626 PMCID: PMC8262640 DOI: 10.1093/cvr/cvaa291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2019] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are part of the evolutionarily conserved VEGF signalling pathways that regulate the development and maintenance of the body's cardiovascular and lymphovascular systems. VEGFR3, encoded by the FLT4 gene, has an indispensable and well-characterized function in development and establishment of the lymphatic system. Autosomal dominant VEGFR3 mutations, that prevent the receptor functioning as a homodimer, cause one of the major forms of hereditary primary lymphoedema; Milroy disease. Recently, we and others have shown that FLT4 variants, distinct to those observed in Milroy disease cases, predispose individuals to Tetralogy of Fallot, the most common cyanotic congenital heart disease, demonstrating a novel function for VEGFR3 in early cardiac development. Here, we examine the familiar and emerging roles of VEGFR3 in the development of both lymphovascular and cardiovascular systems, respectively, compare how distinct genetic variants in FLT4 lead to two disparate human conditions, and highlight the research still required to fully understand this multifaceted receptor.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Donna J Page
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
25
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Specialized Pro-Resolving Mediators and the Lymphatic System. Int J Mol Sci 2021; 22:ijms22052750. [PMID: 33803130 PMCID: PMC7963193 DOI: 10.3390/ijms22052750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.
Collapse
|
27
|
Lin Q, Zhang Y, Bai J, Liu J, Li H. VEGF-C/VEGFR-3 axis protects against pressure-overload induced cardiac dysfunction through regulation of lymphangiogenesis. Clin Transl Med 2021; 11:e374. [PMID: 33783987 PMCID: PMC7989711 DOI: 10.1002/ctm2.374] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prolonged pressure overload triggers cardiac hypertrophy and frequently leads to heart failure (HF). Vascular endothelial growth factor-C (VEGF-C) and its receptor VEGFR-3 are components of the central pathway for lymphatic vessel growth (also known as lymphangiogenesis), which has crucial functions in the maintenance of tissue fluid balance and myocardial function after ischemic injury. However, the roles of this pathway in the development of cardiac hypertrophy and dysfunction during pressure overload remain largely unknown. Eight- to 10-week-old male wild-type (WT) mice, VEGFR-3 knockdown (VEGFR-3f/- ) mice, and their WT littermates (VEGFR-3f/f ) were subjected to pressure overload induced by transverse aortic constriction (TAC) for 1-6 weeks. We found that cardiac lymphangiogenesis and the protein expression of VEGF-C and VEGFR-3 were upregulated in the early stage of cardiac hypertrophy but were markedly reduced in failing hearts. Moreover, TAC for 6 weeks significantly reduced cardiac lymphangiogenesis by inhibiting activation of VEGFR-3-mediated signals (AKT/ERK1/2, calcineurin A/NFATc1/FOXc2, and CX43), leading to increased cardiac edema, hypertrophy, fibrosis, apoptosis, inflammation, and dysfunction. These effects were further aggravated in VEGFR-3f/- mice and were dose-dependently attenuated by delivery of recombinant VEGF-C156S in WT mice. VEGF-C156s administration also reversed pre-established cardiac dysfunction induced by sustained pressure overload. Thus, these results demonstrate, for the first time, that activation of the VEGF-C-VEGFR-3 axis exerts a protective effect during the transition from cardiac hypertrophy to HF and highlight selective stimulation of cardiac lymphangiogenesis as a potential new therapeutic approach for hypertrophic heart diseases.
Collapse
Affiliation(s)
- Qiu‐Yue Lin
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yun‐Long Zhang
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jin‐Qiu Liu
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Hui‐Hua Li
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
28
|
Feng X, Travisano S, Pearson CA, Lien CL, Harrison MRM. The Lymphatic System in Zebrafish Heart Development, Regeneration and Disease Modeling. J Cardiovasc Dev Dis 2021; 8:21. [PMID: 33669620 PMCID: PMC7922492 DOI: 10.3390/jcdd8020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Heart disease remains the single largest cause of death in developed countries, and novel therapeutic interventions are desperately needed to alleviate this growing burden. The cardiac lymphatic system is the long-overlooked counterpart of the coronary blood vasculature, but its important roles in homeostasis and disease are becoming increasingly apparent. Recently, the cardiac lymphatic vasculature in zebrafish has been described and its role in supporting the potent regenerative response of zebrafish heart tissue investigated. In this review, we discuss these findings in the wider context of lymphatic development, evolution and the promise of this system to open new therapeutic avenues to treat myocardial infarction and other cardiopathologies.
Collapse
Affiliation(s)
- Xidi Feng
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
| | - Stanislao Travisano
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
| | - Caroline A. Pearson
- Laboratory of Neurogenetics and Development, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Ching-Ling Lien
- The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (X.F.); (S.T.)
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael R. M. Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
29
|
Lin QY, Bai J, Liu JQ, Li HH. Angiotensin II Stimulates the Proliferation and Migration of Lymphatic Endothelial Cells Through Angiotensin Type 1 Receptors. Front Physiol 2020; 11:560170. [PMID: 33013481 PMCID: PMC7506107 DOI: 10.3389/fphys.2020.560170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIM The proliferation and migration of lymphatic endothelial cells (LECs) is essential for lymphatic vessel growth (also known as lymphangiogenesis), which plays a crucial role in regulating the tissue fluid balance and immune cell trafficking under physiological and pathological conditions. Several growth factors, such as VEGF-C, can stimulate lymphangiogenesis. However, the effects of angiotensin II (Ang II) on the proliferation and migration of mouse LECs and the underlying potential mechanisms remain unknown. METHODS Wild-type mice were infused with Ang II (1,000 ng/kg/min) for 1-2 weeks. Murine LECs were stimulated with Ang II (500 nM) or saline for 12-48 h. Cell proliferation was determined with 5-bromo-2-deoxyuridine (BrdU) incorporation assays, while cell migration was assessed by scratch wound healing and transwell chamber assays. The gene expression profiles were obtained by time series microarray and real-time PCR analyses. RESULTS Ang II treatment significantly induced lymphangiogenesis in the hearts of mice and the proliferation and migration of cultured LECs in a time-dependent manner. This effect was completely blocked by losartan, an angiotensin II type 1 receptor (AT1R) antagonist. The microarray results identified 1,385 differentially expressed genes (DEGs) at one or more time points in the Ang II-treated cells compared with the control saline-treated cells. These DEGs were primarily involved in biological processes and pathways, including sensory perception of smell, the G protein coupled receptor signaling pathway, cell adhesion, olfactory transduction, Jak-STAT, alcoholism, RIG-I-like receptor and ECM-receptor interaction. Furthermore, these DEGs were classified into 16 clusters, 7 of which (Nos. 13, 2, 8, 15, 7, 3, and 12, containing 586 genes) were statistically significant. Importantly, the Ang II-induced alterations the expression of lymphangiogenesis-related genes were reversed by losartan. CONCLUSION The results of the present indicate that Ang II can directly regulate the proliferation and migration of LECs through AT1R in vivo and in vitro, which may provide new potential treatments for Ang II-induced hypertension and cardiac remodeling.
Collapse
Affiliation(s)
| | | | - Jin-Qiu Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21 st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020; 182:270-296. [PMID: 32707093 PMCID: PMC7392116 DOI: 10.1016/j.cell.2020.06.039] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
31
|
Korneva YS, Ukrainets RV. The role of the cardiac lymphatic system in the development and progression of heart failure and novel therapeutic approaches for its management in post-infarction cardiac remodeling. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cardiac lymphatic vessels play a vital role in maintaining homeostasis in both physiological and pathological conditions, providing outflow of metabolites. It has been shown that myocardial infarction and postinfarction cardiac remodeling is accompanied by the lymphatic remodeling, which entails functional disorders and is of great importance in heart failure pathogenesis. As a result of progressive myocardial edema, hypoxia and fibrosis of the interstitial space increase, aggravating edema. Other pathways of additional myocardial damage and contractility reduction are triggered. Lymphatic efflux is associated with arrhythmias. Experimental models showed the positive effect of exogenous activation of lymphangiogenesis in relation to the prevention and treatment of heart failure, which can be further used to improve treatment regimens. This review discusses cardiac lymphatic remodeling after myocardial infarction, as well as the pathogenesis of related complications.
Collapse
Affiliation(s)
- Yu. S. Korneva
- Smolensk State Medical University;
Smolensk Regional Institute of Pathology
| | | |
Collapse
|
32
|
Farnsworth RH, Stacker SA. Soothing a Broken Heart: Can Therapeutic Cross-Talk Between Lymphatics and the Immune Response Improve Recovery From Myocardial Infarction? Arterioscler Thromb Vasc Biol 2020; 40:1611-1613. [PMID: 32579475 DOI: 10.1161/atvbaha.120.314666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rae H Farnsworth
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre (R.H.F., S.A.S.), Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne (R.H.F., S.A.S.), Victoria, Australia
| | - Steven A Stacker
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre (R.H.F., S.A.S.), Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne (R.H.F., S.A.S.), Victoria, Australia.,Victorian Comprehensive Cancer Centre, and the Department of Surgery, The University of Melbourne (S.A.S.), Victoria, Australia
| |
Collapse
|
33
|
Gancz D, Perlmoter G, Yaniv K. Formation and Growth of Cardiac Lymphatics during Embryonic Development, Heart Regeneration, and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037176. [PMID: 31818858 DOI: 10.1101/cshperspect.a037176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lymphatic system plays crucial roles in regulating fluid homeostasis, immune surveillance, and lipid transport. As is in most of the body's organs, the heart possesses an extensive lymphatic network. Moreover, a robust lymphangiogenic response has been shown to take place following myocardial infarction, highlighting cardiac lymphatics as potential targets for therapeutic intervention. Yet, the unique molecular properties and functions of the heart's lymphatic system have only recently begun to be addressed. In this review, we discuss the mechanisms underlying the formation and growth of cardiac lymphatics during embryonic development and describe their characteristics across species. We further summarize recent findings highlighting diverse cellular origins for cardiac lymphatic endothelial cells and how they integrate to form a single functional lymphatic network. Finally, we outline novel therapeutic avenues aimed at enhancing lymphatic vessel formation and integrity following cardiac injury, which hold great promise for promoting healing of the infarcted heart.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gal Perlmoter
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Kataru RP, Park HJ, Baik JE, Li C, Shin J, Mehrara BJ. Regulation of Lymphatic Function in Obesity. Front Physiol 2020; 11:459. [PMID: 32499718 PMCID: PMC7242657 DOI: 10.3389/fphys.2020.00459] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The lymphatic system has many functions, including macromolecules transport, fat absorption, regulation and modulation of adaptive immune responses, clearance of inflammatory cytokines, and cholesterol metabolism. Thus, it is evident that lymphatic function can play a key role in the regulation of a wide array of biologic phenomenon, and that physiologic changes that alter lymphatic function may have profound pathologic effects. Recent studies have shown that obesity can markedly impair lymphatic function. Obesity-induced pathologic changes in the lymphatic system result, at least in part, from the accumulation of inflammatory cells around lymphatic vessel leading to impaired lymphatic collecting vessel pumping capacity, leaky initial and collecting lymphatics, alterations in lymphatic endothelial cell (LEC) gene expression, and degradation of junctional proteins. These changes are important since impaired lymphatic function in obesity may contribute to the pathology of obesity in other organ systems in a feed-forward manner by increasing low-grade tissue inflammation and the accumulation of inflammatory cytokines. More importantly, recent studies have suggested that interventions that inhibit inflammatory responses, either pharmacologically or by lifestyle modifications such as aerobic exercise and weight loss, improve lymphatic function and metabolic parameters in obese mice. The purpose of this review is to summarize the pathologic effects of obesity on the lymphatic system, the cellular mechanisms that regulate these responses, the effects of impaired lymphatic function on metabolic syndrome in obesity, and the interventions that may improve lymphatic function in obesity.
Collapse
Affiliation(s)
- Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hyeong Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Claire Li
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
35
|
Houssari M, Dumesnil A, Tardif V, Kivelä R, Pizzinat N, Boukhalfa I, Godefroy D, Schapman D, Hemanthakumar KA, Bizou M, Henry JP, Renet S, Riou G, Rondeaux J, Anouar Y, Adriouch S, Fraineau S, Alitalo K, Richard V, Mulder P, Brakenhielm E. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arterioscler Thromb Vasc Biol 2020; 40:1722-1737. [PMID: 32404007 PMCID: PMC7310303 DOI: 10.1161/atvbaha.120.314370] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. Conclusions: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Collapse
Affiliation(s)
- Mahmoud Houssari
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Anais Dumesnil
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Virginie Tardif
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Nathalie Pizzinat
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Ines Boukhalfa
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - David Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Damien Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France (D.S.)
| | - Karthik A Hemanthakumar
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Mathilde Bizou
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Jean-Paul Henry
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Sylvanie Renet
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Gaetan Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Julie Rondeaux
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Youssef Anouar
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Sahil Adriouch
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Sylvain Fraineau
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Vincent Richard
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Paul Mulder
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | | |
Collapse
|
36
|
Nielsen NR, Rangarajan KV, Mao L, Rockman HA, Caron KM. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. Am J Physiol Heart Circ Physiol 2020; 318:H895-H907. [PMID: 32142379 DOI: 10.1152/ajpheart.00436.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and hypertension. The aim of this study was to establish a murine model of myocardial edema and elucidate the response of cardiac lymphatics and the myocardium. Myocardial edema without infarction was induced in mice by cauterizing the coronary sinus, increasing pressure in the coronary venous system, and inducing myocardial edema. In male mice, there was rapid development of edema 3 h following coronary sinus cauterization (CSC), with associated dilation of cardiac lymphatics. By 24 h, males displayed significant cardiovascular contractile dysfunction. In contrast, female mice exhibited a temporal delay in the formation of myocardial edema, with onset of cardiovascular dysfunction by 24 h. Furthermore, myocardial edema induced a ring of fibrosis around the epicardial surface of the left ventricle in both sexes that included fibroblasts, immune cells, and increased lymphatics. Interestingly, the pattern of fibrosis and the cells that make up the fibrotic epicardial ring differ between sexes. We conclude that a novel surgical model of myocardial edema without infarct was established in mice. Cardiac lymphatics compensated by exhibiting both an acute dilatory and chronic growth response. Transient myocardial edema was sufficient to induce a robust epicardial fibrotic and inflammatory response, with distinct sex differences, which underscores the sex-dependent differences that exist in cardiac vascular physiology.NEW & NOTEWORTHY Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and high blood pressure. Cardiac lymphatics regulate interstitial fluid balance and, in a myocardial infarction model, have been shown to be therapeutically targetable by increasing heart function. Cardiac lymphatics have only rarely been studied in a noninfarct setting in the heart, and so we characterized the first murine model of increased coronary sinus pressure to induce myocardial edema, demonstrating distinct sex differences in the response to myocardial edema. The temporal pattern of myocardial edema induction and resolution is different between males and females, underscoring sex-dependent differences in the response to myocardial edema. This model provides an important platform for future research in cardiovascular and lymphatic fields with the potential to develop therapeutic interventions for many common cardiovascular diseases.
Collapse
Affiliation(s)
- Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
37
|
Lioux G, Liu X, Temiño S, Oxendine M, Ayala E, Ortega S, Kelly RG, Oliver G, Torres M. A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics. Dev Cell 2020; 52:350-363.e6. [PMID: 31928974 DOI: 10.1016/j.devcel.2019.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
The mammalian heart contains multiple cell types that appear progressively during embryonic development. Advance in determining cardiac lineage diversification has often been limited by the unreliability of genetic tracers. Here we combine clonal analysis, genetic lineage tracing, tissue transplantation, and mutant characterization to investigate the lineage relationships between epicardium, arterial mesothelial cells (AMCs), and the coronary vasculature. We report a contribution of the second heart field (SHF) to a vasculogenic niche composed of AMCs and sub-mesothelial cells at the base of the pulmonary artery. Sub-mesothelial cells from this niche differentiate into lymphatic endothelial cells and, in close association with AMC-derived cells, contribute to and are essential for the development of ventral cardiac lymphatics. In addition, regionalized epicardial/mesothelial retinoic acid signaling regulates lymphangiogenesis, contributing to the niche properties. These results uncover a SHF vasculogenic contribution to coronary lymphatic development through a local niche at the base of the great arteries.
Collapse
Affiliation(s)
- Ghislaine Lioux
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Estefanía Ayala
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain.
| |
Collapse
|
38
|
Jiang X, Tian W, Nicolls MR, Rockson SG. The Lymphatic System in Obesity, Insulin Resistance, and Cardiovascular Diseases. Front Physiol 2019; 10:1402. [PMID: 31798464 PMCID: PMC6868002 DOI: 10.3389/fphys.2019.01402] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity, insulin resistance, dyslipidemia, and hypertension are fundamental clinical manifestations of the metabolic syndrome. Studies over the last few decades have implicated chronic inflammation and microvascular remodeling in the development of obesity and insulin resistance. Newer observations, however, suggest that dysregulation of the lymphatic system underlies the development of the metabolic syndrome. This review summarizes recent advances in the field, discussing how lymphatic abnormality promotes obesity and insulin resistance, and, conversely, how the metabolic syndrome impairs lymphatic function. We also discuss lymphatic biology in metabolically dysregulated diseases, including type 2 diabetes, atherosclerosis, and myocardial infarction.
Collapse
Affiliation(s)
- Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stanley G Rockson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
39
|
Abstract
The heart contains a complex network of blood and lymphatic vessels. The coronary blood vessels provide the cardiac tissue with oxygen and nutrients and have been the major focus of research for the past few decades. Cardiac lymphatic vessels, which consist of lymphatic capillaries and collecting lymphatic vessels covering all layers of the heart, transport excess fluid from the interstitium and play important roles in maintaining tissue fluid balance. Unlike for the coronary blood vessels, until a few years ago, not much information was available on the origin and function of the cardiac-associated lymphatic vasculature. A growing body of evidence indicates that cardiac lymphatic vessels (lymphatics) may serve as a therapeutic cardiovascular target.
Collapse
Affiliation(s)
- Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|