1
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
2
|
Sakurai H, Shiba K, Takamura K, Inaba K. Immunohistochemical Characterization of Spermatogenesis in the Ascidian Ciona robusta. Cells 2024; 13:1863. [PMID: 39594612 PMCID: PMC11592721 DOI: 10.3390/cells13221863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Animals show diverse processes of gametogenesis in the evolutionary pathway. Here, we characterized the spermatogenic cells in the testis of the marine invertebrate Ciona robusta. Ciona sperm differentiate in a non-cystic type of testis, comprising many follicles with various sizes and stages of spermatogenic cells. In the space among follicles, we observed free cells that were recognized by antibody against Müllerian inhibiting substance, a marker for vertebrate Sertoli cells. We further categorized the spermatogenic cells into four round stages (RI to RIV) and three elongated stages (EI to EIII) by morphological and immunohistochemical criteria. An antibody against a vertebrate Vasa homolog recognized a few large spermatogonium-like cells (RI) near the basal wall of a follicle. Consistent with the period of meiosis, a synaptonemal complex protein SYCP3 was recognized from early spermatocytes (RII) to early spermatids (E1). Acetylated tubulins were detected in spermatids before flagellar elongation at the RIV stage and became distributed along the flagella. Electron microscopy showed that the free cells outside the testicular follicle possessed a characteristic of vertebrate Sertoli cells. These results would provide a basis for basic and comparative studies on the mechanism of spermatogenesis.
Collapse
Affiliation(s)
- Haruka Sakurai
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan
| | - Katsumi Takamura
- Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan
| |
Collapse
|
3
|
Chorley BN, Klinefelter GR, Nelson GM, Strader LF, Nguyen HH, Schladweiler MC, Palmer G, Moore ML, Grindstaff RD, Padgett WT, Carswell GK, Fisher AA, Kodavanti UP, Dye JA, Miller CN. Episodic ozone exposure in Long-Evans rats has limited effects on cauda sperm motility and non-coding RNA populations. Reprod Toxicol 2024; 128:108631. [PMID: 38830453 DOI: 10.1016/j.reprotox.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Epidemiological evidence suggests the potential for air pollutants to induce male reproductive toxicity. In experimental studies, exposure to ozone during sensitive windows in the sperm lifecycle has been associated with impaired sperm motility. Subsequently, we sought to investigate the effects of episodic exposure to ozone during sperm maturation in the rat. Long-Evans rats were exposed to either filtered air or ozone (0.4 or 0.8 ppm) for five non-consecutive days over two weeks. Ozone exposure did not impact male reproductive organ weights or sperm motility ∼24 hours following the final exposure. Furthermore, circulating sex hormones remained unchanged despite increased T3 and T4 in the 0.8 ppm group. While there was indication of altered adrenergic signaling attributable to ozone exposure in the testis, there were minimal impacts on small non-coding RNAs detected in cauda sperm. Only two piwi-interacting RNAs (piRNAs) were altered in the mature sperm of ozone-exposed rats (piR-rno-346434 and piR-rno-227431). Data across all rats were next analyzed to identify any non-coding RNAs that may be correlated with reduced sperm motility. A total of 7 microRNAs (miRNAs), 8 RNA fragments, and 1682 piRNAs correlated well with sperm motility. Utilizing our exposure paradigm herein, we were unable to substantiate the relationship between ozone exposure during maturation with sperm motility. However, these approaches served to identify a suite of non-coding RNAs that were associated with sperm motility in rats. With additional investigation, these RNAs may prove to have functional roles in the acquisition of motility or be unique biomarkers for male reproductive toxicity.
Collapse
Affiliation(s)
- Brian N Chorley
- Center for Computational Toxicology and Exposure, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Gary R Klinefelter
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Gail M Nelson
- Center for Computational Toxicology and Exposure, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Lillian F Strader
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Helen H Nguyen
- Oak Ridge Institute for Science and Education, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Grant Palmer
- Oak Ridge Institute for Science and Education, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Makala L Moore
- Oak Ridge Institute for Science and Education, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Rachel D Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - William T Padgett
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Gleta K Carswell
- Center for Computational Toxicology and Exposure, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
4
|
Yeste M, Ahmad A, Viñolas E, Recuero S, Bonet S, Pinart E. Inhibition of forward and reverse transport of Ca 2+ via Na +/Ca 2+ exchangers (NCX) prevents sperm capacitation. Biol Res 2024; 57:57. [PMID: 39175101 PMCID: PMC11342557 DOI: 10.1186/s40659-024-00535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated. RESULTS Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation. CONCLUSIONS Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| | - Adeel Ahmad
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Estel Viñolas
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain.
| |
Collapse
|
5
|
Kijima T, Kurokawa D, Sasakura Y, Ogasawara M, Aratake S, Yoshida K, Yoshida M. CatSper mediates not only chemotactic behavior but also the motility of ascidian sperm. Front Cell Dev Biol 2023; 11:1136537. [PMID: 38020915 PMCID: PMC10652287 DOI: 10.3389/fcell.2023.1136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Sperm motility, including chemotactic behavior, is regulated by changes in the intracellular Ca2+ concentration, and the sperm-specific Ca2+ channel CatSper has been shown to play an important role in the regulation of intracellular Ca2+. In particular, in mammals, CatSper is the only functional Ca2+ channel in the sperm, and mice deficient in the genes comprising the pore region of the Ca2+ channel are infertile due to the inhibition of sperm hyperactivation. CatSper is also thought to be involved in sea urchin chemotaxis. In contrast, in ascidian Ciona intestinalis, SAAF, a sperm attractant, interacts with Ca2+/ATPase, a Ca2+ pump. Although the existence of CatSper genes has been reported, it is not clear whether CatSper is a functional Ca2+ channel in sperm. Results: We showed that CatSper is present in the sperm flagella of C. intestinalis as in mammalian species, although a small level of gene expression was found in other tissues. The spermatozoa of CatSper3 KO animals were significantly less motile, and some motile sperms did not show any chemotactic behavior. These results suggest that CatSper plays an important role in ascidians and mammals, and is involved in spermatogenesis and basic motility mechanisms.
Collapse
Affiliation(s)
- Taiga Kijima
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoe Aratake
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
6
|
Shiba K, Inaba K. The Role of Soluble Adenylyl Cyclase in the Regulation of Flagellar Motility in Ascidian Sperm. Biomolecules 2023; 13:1594. [PMID: 38002275 PMCID: PMC10668965 DOI: 10.3390/biom13111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Flagellar motility in sperm is activated and regulated by factors related to the eggs at fertilization. In the ascidian Ciona intestinalis, a sulfated steroid called the SAAF (sperm activating and attracting factor) induces both sperm motility activation and chemotaxis. Cyclic AMP (cAMP) is one of the most important intracellular factors in the sperm signaling pathway. Adenylyl cyclase (AC) is the key enzyme that synthesizes cAMP at the onset of the signaling pathway in all cellular functions. We previously reported that both transmembrane AC (tmAC) and soluble AC (sAC) play important roles in sperm motility in Ciona. The tmAC plays a major role in the SAAF-induced activation of sperm motility. On the other hand, sAC is involved in the regulation of flagellar beat frequency and the Ca2+-dependent chemotactic movement of sperm. In this study, we focused on the role of sAC in the regulation of flagellar motility in Ciona sperm chemotaxis. The immunochemical analysis revealed that several isoforms of sAC protein were expressed in Ciona sperm, as reported in mammals and sea urchins. We demonstrated that sAC inhibition caused strong and transient asymmetrization during the chemotactic turn, and then sperm failed to turn toward the SAAF. In addition, real-time Ca2+ imaging in sperm flagella revealed that sAC inhibition induced an excessive and prolonged Ca2+ influx to flagella. These results indicate that sAC plays a key role in sperm chemotaxis by regulating the clearance of [Ca2+]i and by modulating Ca2+-dependent flagellar waveform conversion.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan;
| | | |
Collapse
|
7
|
Benko F, Urminská D, Ďuračka M, Tvrdá E. Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation. Biomedicines 2023; 11:2519. [PMID: 37760960 PMCID: PMC10525812 DOI: 10.3390/biomedicines11092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In order to accomplish their primary goal, mammalian spermatozoa must undergo a series of physiological, biochemical, and functional changes crucial for the acquisition of fertilization ability. Spermatozoa are highly polarized cells, which must swiftly respond to ionic changes on their passage through the female reproductive tract, and which are necessary for male gametes to acquire their functional competence. This review summarizes the current knowledge about specific ion channels and transporters located in the mammalian sperm plasma membrane, which are intricately involved in the initiation of changes within the ionic milieu of the sperm cell, leading to variations in the sperm membrane potential, membrane depolarization and hyperpolarization, changes in sperm motility and capacitation to further lead to the acrosome reaction and sperm-egg fusion. We also discuss the functionality of selected ion channels in male reproductive health and/or disease since these may become promising targets for clinical management of infertility in the future.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| |
Collapse
|
8
|
Park YJ, Pang WK, Pang MG. Integration of omics studies indicates that species-dependent molecular mechanisms govern male fertility. J Anim Sci Biotechnol 2023; 14:28. [PMID: 36859388 PMCID: PMC9979430 DOI: 10.1186/s40104-023-00836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/10/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Comparative and comprehensive omics studies have recently been conducted to provide a comprehensive understanding of the biological mechanisms underlying infertility. However, because these huge omics datasets often contain irrelevant information, editing strategies for summarizing and filtering the data are necessary prerequisite steps for identifying biomarkers of male fertility. Here, we attempted to integrate omics data from spermatozoa with normal and below-normal fertility from boars and bulls, including transcriptomic, proteomic, and metabolomic data. Pathway enrichment analysis was conducted and visualized using g:Profiler, Cytoscape, EnrichmentMap, and AutoAnnotation to determine fertility-related biological functions according to species. RESULTS In particular, gamete production and protein biogenesis-associated pathways were enriched in bull spermatozoa with below-normal fertility, whereas mitochondrial-associated metabolic pathways were enriched in boar spermatozoa with normal fertility. These results indicate that below-normal fertility may be determined by aberrant regulation of protein synthesis during spermatogenesis, and the modulation of reactive oxygen species generation to maintain capacitation and the acrosome reaction governs boar sperm fertility. CONCLUSION Overall, this approach demonstrated that distinct molecular pathways drive sperm fertility in mammals in a species-dependent manner. Moreover, we anticipate that searching for species-specific signaling pathways may aid in the discovery of fertility-related biomarkers within large omics datasets.
Collapse
Affiliation(s)
- Yoo-Jin Park
- grid.254224.70000 0001 0789 9563Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546 Republic of Korea
| | - Won-Ki Pang
- grid.254224.70000 0001 0789 9563Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546 Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
9
|
Using the Culex pipiens sperm proteome to identify elements essential for mosquito reproduction. PLoS One 2023; 18:e0280013. [PMID: 36795667 PMCID: PMC9934393 DOI: 10.1371/journal.pone.0280013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/19/2022] [Indexed: 02/17/2023] Open
Abstract
Mature sperm from Culex pipiens were isolated and analyzed by mass spectrometry to generate a mature sperm proteome dataset. In this study, we highlight subsets of proteins related to flagellar structure and sperm motility and compare the identified protein components to previous studies examining essential functions of sperm. The proteome includes 1700 unique protein IDs, including a number of uncharacterized proteins. Here we discuss those proteins that may contribute to the unusual structure of the Culex sperm flagellum, as well as potential regulators of calcium mobilization and phosphorylation pathways that regulate motility. This database will prove useful for understanding the mechanisms that activate and maintain sperm motility as well as identify potential molecular targets for mosquito population control.
Collapse
|
10
|
Ikenaga J, Aratake S, Yoshida K, Yoshida M. A novel role for ATP2B in ascidians: Ascidian-specific mutations in ATP2B contribute to sperm chemotaxis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:430-437. [PMID: 35468255 DOI: 10.1002/jez.b.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Sperm chemotaxis, in which sperms are attracted to conspecific eggs via species-specific attractants, plays an important role in fertilization. This phenomenon has been observed in various animals and species-specific sperm attractants have been reported in some species. However, the mechanisms involved in the reception and recognition of the species-specific attractant by the sperms is poorly studied. Previously, we found that the plasma membrane-type Ca2+ /ATPase (PMCA) is the receptor for the sperm-activating and -attracting factor (SAAF) in the ascidian Ciona intestinalis. To determine the role of PMCA in species-specific sperm chemotaxis, we identified the amino acid sequences of PMCAs derived from six Phlebobranchia species. The testis-specific splice variant of PMCA was found to be present in all the species investigated and the ascidian-specific sequence was detected near the 3'-terminus. Moreover, dN/dS analysis revealed that the extracellular loops 1, 2, and 4 in ascidian PMCA underwent a positive selection. These findings suggest that PMCA recognizes the species-specific structure of SAAF at the extracellular loops 1, 2, and 4, and its testis-specific C-terminal region is involved in the activation and chemotaxis of ascidian sperms.
Collapse
Affiliation(s)
- Jumpei Ikenaga
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Satoe Aratake
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, 225-8503, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
11
|
Sawada H, Saito T. Mechanisms of Sperm-Egg Interactions: What Ascidian Fertilization Research Has Taught Us. Cells 2022; 11:2096. [PMID: 35805180 PMCID: PMC9265791 DOI: 10.3390/cells11132096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Fertilization is an essential process in terrestrial organisms for creating a new organism with genetic diversity. Before gamete fusion, several steps are required to achieve successful fertilization. Animal spermatozoa are first activated and attracted to the eggs by egg-derived chemoattractants. During the sperm passage of the egg's extracellular matrix or upon the sperm binding to the proteinaceous egg coat, the sperm undergoes an acrosome reaction, an exocytosis of acrosome. In hermaphrodites such as ascidians, the self/nonself recognition process occurs when the sperm binds to the egg coat. The activated or acrosome-reacted spermatozoa penetrate through the proteinaceous egg coat. The extracellular ubiquitin-proteasome system, the astacin-like metalloproteases, and the trypsin-like proteases play key roles in this process in ascidians. In the present review, we summarize our current understanding and perspectives on gamete recognition and egg coat lysins in ascidians and consider the general mechanisms of fertilization in animals and plants.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya 463-8521, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
12
|
Released ATP Mediates Spermatozoa Chemotaxis Promoted by Uterus-Derived Factor (UDF) in Ascaris suum. Int J Mol Sci 2022; 23:ijms23074069. [PMID: 35409429 PMCID: PMC8999757 DOI: 10.3390/ijms23074069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Fertilization requires sperm migration toward oocytes and subsequent fusion. Sperm chemotaxis, a process in which motile sperm are attracted by factors released from oocytes or associated structures, plays a key role in sperm migration to oocytes. Here, we studied sperm chemotaxis in the nematode Ascaris suum. Our data show that uterus-derived factor (UDF), the protein fraction of uterine extracts, can attract spermatozoa. UDF is heat resistant, but its activity is attenuated by certain proteinases. UDF binds to the surface of spermatozoa but not spermatids, and this process is mediated by membranous organelles that fuse with the plasma membrane. UDF induces spermatozoa to release ATP from intracellular storage sites to the extracellular milieu, and extracellular ATP modulates sperm chemotaxis. Moreover, UDF increases protein serine phosphorylation (pS) levels in sperm, which facilitates sperm chemotaxis. Taken together, we revealed that both extracellular ATP and intracellular pS signaling are involved in Ascaris sperm chemotaxis. Our data provide insights into the mechanism of sperm chemotaxis in Ascaris suum.
Collapse
|
13
|
Shiba K, Inaba K. The Roles of Two CNG Channels in the Regulation of Ascidian Sperm Chemotaxis. Int J Mol Sci 2022; 23:ijms23031648. [PMID: 35163568 PMCID: PMC8835908 DOI: 10.3390/ijms23031648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
Spermatozoa sense and respond to their environmental signals to ensure fertilization success. Reception and transduction of signals are reflected rapidly in sperm flagellar waveforms and swimming behavior. In the ascidian Ciona intestinalis (type A; also called C. robusta), an egg-derived sulfated steroid called SAAF (sperm activating and attracting factor), induces both sperm motility activation and chemotaxis. Two types of CNG (cyclic nucleotide-gated) channels, Ci-tetra KCNG (tetrameric, cyclic nucleotide-gated, K+-selective) and Ci-HCN (hyperpolarization-activated and cyclic nucleotide-gated), are highly expressed in Ciona testis from the comprehensive gene expression analysis. To elucidate the sperm signaling pathway to regulate flagellar motility, we focus on the role of CNG channels. In this study, the immunochemical analysis revealed that both CNG channels are expressed in Ciona sperm and localized to sperm flagella. Sperm motility analysis and Ca2+ imaging during chemotaxis showed that CNG channel inhibition affected the changes in flagellar waveforms and Ca2+ efflux needed for the chemotactic turn. These results suggest that CNG channels in Ciona sperm play a vital role in regulating sperm motility and intracellular Ca2+ regulation during chemotaxis.
Collapse
|
14
|
Saito T, Sawada H. Fertilization of Ascidians: Gamete Interaction, Self/Nonself Recognition and Sperm Penetration of Egg Coat. Front Cell Dev Biol 2022; 9:827214. [PMID: 35186958 PMCID: PMC8849226 DOI: 10.3389/fcell.2021.827214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fertilization is one of the most important events in living organisms to generate a new life with a mixed genetic background. To achieve successful fertilization, sperm and eggs must undergo complex processes in a sequential order. Fertilization of marine invertebrate Ciona intestinalis type A (Ciona robusta) has been studied for more than a hundred years. Ascidian sperm are attracted by chemoattractants from eggs and bind to the vitelline coat. Subsequently, sperm penetrate through the vitelline coat proteolytically and finally fuse with the egg plasma membrane. Here, we summarize the fertilization mechanisms of ascidians, particularly from sperm-egg interactions to sperm penetration of the egg coat. Since ascidians are hermaphrodites, inbreeding depression is a serious problem. To avoid self-fertilization, ascidians possess a self-incompatibility system. In this review, we also describe the molecular mechanisms of the self-incompatibility system in C. intestinalis type A governed by three allelic gene pairs of s-Themis and v-Themis.
Collapse
Affiliation(s)
- Takako Saito
- Faculty of Agriculture Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | - Hitoshi Sawada
- Depatment of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Lu XP, Liu JH, Fu XY, Wang FJ, Wu H, Weng H, Ma ZQ. Effects of RNAi-mediated plasma membrane calcium transporting ATPase and inositol 1,4,5-trisphosphate receptor gene silencing on the susceptibility of Mythimna separata to wilforine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112909. [PMID: 34673414 DOI: 10.1016/j.ecoenv.2021.112909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Wilforine, a compound of sesquiterpene alkaloids isolated from Tripterygium wilfordii, exhibits excellent insecticidal activity against Mythimna separata. In order to clarify the action mechanism of wilforine, the plasma membrane calcium transporting ATPase (PMCA) and inositol 1,4,5-trisphosphate receptor (IP3R) from M. separata were studied. Results showed that the open reading frame of MsIP3R and MsPMCA were 8118 bp and 3438 bp in length, as well as encoded 2706 and 1146 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis revealed that the MsIP3R and MsPMCA had high homology with the IP3R and PMCA of other insects, but had low similarity with those of mammals, which means the IP3R and PMCA have potential to be the novel targets of insecticides with high selectivity between mammals and insects. Both MsIP3R and MsPMCA genes existed throughout the life cycle of M. separata, and were all predominantly expressed in somatic muscle of fifth-instar larvae and the adults. The susceptibilities of PMCA-silenced M. separata to wilforine were significantly lower than that of the normal M. separata, which illustrates that PMCA could be one of the targets of wilforine. However, the susceptibilities of IP3R-silenced M. separata to wilforine did not change significantly compared with the susceptibilities of normal M. separata, which shows that wilforine may not interact with the IP3R protein. These findings provide clues for elucidating the insecticidal mechanism of wilforine.
Collapse
Affiliation(s)
- Xiao-Peng Lu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Jia-Huan Liu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Xiang-Yun Fu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Feng-Jin Wang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A & F University, Yangling 712100, China
| | - Hua Weng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai Province 810016, China
| | - Zhi-Qing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
16
|
Does the Rainbow Trout Ovarian Fluid Promote the Spermatozoon on Its Way to the Egg? Int J Mol Sci 2021; 22:ijms22179519. [PMID: 34502430 PMCID: PMC8430650 DOI: 10.3390/ijms22179519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the "turn-and-run" behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)-sperm interaction reflect the specific features of the spawning process in this species.
Collapse
|
17
|
Nowicka-Bauer K, Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci 2021; 22:ijms22063259. [PMID: 33806823 PMCID: PMC8004680 DOI: 10.3390/ijms22063259] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Department of Chemical Physics, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
- Correspondence:
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| |
Collapse
|
18
|
Celotto M, De Luca C, Muratore P, Resta F, Allegra Mascaro AL, Pavone FS, De Bonis G, Paolucci PS. Analysis and Model of Cortical Slow Waves Acquired with Optical Techniques. Methods Protoc 2020; 3:E14. [PMID: 32023996 PMCID: PMC7189682 DOI: 10.3390/mps3010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
Slow waves (SWs) are spatio-temporal patterns of cortical activity that occur both during natural sleep and anesthesia and are preserved across species. Even though electrophysiological recordings have been largely used to characterize brain states, they are limited in the spatial resolution and cannot target specific neuronal population. Recently, large-scale optical imaging techniques coupled with functional indicators overcame these restrictions, and new pipelines of analysis and novel approaches of SWs modelling are needed to extract relevant features of the spatio-temporal dynamics of SWs from these highly spatially resolved data-sets. Here we combined wide-field fluorescence microscopy and a transgenic mouse model expressing a calcium indicator (GCaMP6f) in excitatory neurons to study SW propagation over the meso-scale under ketamine anesthesia. We developed a versatile analysis pipeline to identify and quantify the spatio-temporal propagation of the SWs. Moreover, we designed a computational simulator based on a simple theoretical model, which takes into account the statistics of neuronal activity, the response of fluorescence proteins and the slow waves dynamics. The simulator was capable of synthesizing artificial signals that could reliably reproduce several features of the SWs observed in vivo, thus enabling a calibration tool for the analysis pipeline. Comparison of experimental and simulated data shows the robustness of the analysis tools and its potential to uncover mechanistic insights of the Slow Wave Activity (SWA).
Collapse
Affiliation(s)
- Marco Celotto
- Department of Physics, “Sapienza” University of Rome, 00185 Rome, Italy; (M.C.); (C.D.L.); (P.M.)
- IIT—Neural Computation Lab, CNCS@UniTn, 38068 Rovereto, Italy
| | - Chiara De Luca
- Department of Physics, “Sapienza” University of Rome, 00185 Rome, Italy; (M.C.); (C.D.L.); (P.M.)
- INFN, 00185 Rome, Italy;
- PhD Program in Behavioural Neuroscience,“Sapienza” University of Rome, 00185 Rome, Italy
| | - Paolo Muratore
- Department of Physics, “Sapienza” University of Rome, 00185 Rome, Italy; (M.C.); (C.D.L.); (P.M.)
- PhD Program in Cognitive Neuroscience, SISSA, 34136 Trieste, Italy
| | - Francesco Resta
- LENS, University of Florence, 50019 Florence, Italy; (F.R.); (A.L.A.M.); (F.S.P.)
| | - Anna Letizia Allegra Mascaro
- LENS, University of Florence, 50019 Florence, Italy; (F.R.); (A.L.A.M.); (F.S.P.)
- Istituto di Neuroscienze, CNR, 56124 Pisa, Italy
| | - Francesco Saverio Pavone
- LENS, University of Florence, 50019 Florence, Italy; (F.R.); (A.L.A.M.); (F.S.P.)
- Department of Physics, University of Florence, 50019 Florence, Italy
| | | | | |
Collapse
|
19
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
20
|
Kinoshita-Terauchi N, Shiba K, Terauchi M, Romero F, Ramírez-Gómez HV, Yoshida M, Motomura T, Kawai H, Nishigaki T. High potassium seawater inhibits ascidian sperm chemotaxis, but does not affect the male gamete chemotaxis of a brown alga. ZYGOTE 2019; 27:225-231. [PMID: 31317854 DOI: 10.1017/s0967199419000224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Male gamete chemotaxis towards the female gamete is a general strategy to facilitate the sexual reproduction in many marine eukaryotes. Biochemical studies of chemoattractants for male gametes of brown algae have advanced in the 1970s and 1980s, but the molecular mechanism of male gamete responses to the attractants remains elusive. In sea urchin, a K+ channel called the tetraKCNG channel plays a fundamental role in sperm chemotaxis and inhibition of K+ efflux through this channel by high K+ seawater blocks almost all cell responses to the chemoattractant. This signalling mechanism could be conserved in marine invertebrates as tetraKCNG channels are conserved in the marine invertebrates that exhibit sperm chemotaxis. We confirmed that high K+ seawater also inhibited sperm chemotaxis in ascidian, Ciona intestinalis (robusta), in this study. Conversely, the male gamete chemotaxis towards the female gamete of a brown alga, Mutimo cylindricus, was preserved even in high K+ seawater. This result indicates that none of the K+ channels is essential for male gamete chemotaxis in the brown alga, suggesting that the signalling mechanism for chemotaxis in this brown alga is quite different from that of marine invertebrates. Correlated to this result, we revealed that the channels previously proposed as homologues of tetraKCNG in brown algae have a distinct domain composition from that of the tetraKCNG. Namely, one of them possesses two repeats of the six transmembrane segments (diKCNG) instead of four. The structural analysis suggests that diKCNG is a cyclic nucleotide-modulated and/or voltage-gated K+ channel.
Collapse
Affiliation(s)
- Nana Kinoshita-Terauchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda City, Shizuoka 415-0025, Japan
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Makoto Terauchi
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Francisco Romero
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Héctor Vincente Ramírez-Gómez
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
| | - Takuya Nishigaki
- Institute of Biotechnology, National Autonomous University of Mexico (IBT-UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, Mexico
| |
Collapse
|