1
|
Su WC, Lieu R, Fu Y, Kempen T, Yu Z, Zhang K, Chen T, Fan Y. A platform method for simultaneous quantification of lipid and nucleic acid components in lipid nanoparticles. J Chromatogr A 2025; 1746:465788. [PMID: 39987694 DOI: 10.1016/j.chroma.2025.465788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Nucleic acid-based medicines have achieved significant advancements in recent years, with lipid nanoparticles (LNPs) being a pivotal platform for their delivery. However, the complexity of LNP presents significant challenges, requiring analytical methods to identify and quantify individual components to guide formulation development and ensure quality and safety. Current approaches often perform nucleic acid and lipid analysis separately and focus on a single type of formulation, highlighting the need for a simple platform method that can be applied to diverse formulations. We present a platform ion-pair reversed-phase HPLC method with UV and charged aerosol detection (CAD) to simultaneously separate and quantify lipid and nucleic acid components in LNPs. The method separated and quantified 12 lipid species and three types of nucleic acids (antisense oligonucleotide, single-guide RNA, and mRNA), covering a broad range of therapeutic cargoes. Notably, this can be achieved for the first time by one HPLC run with one-step facile sample preparation. Specifically, we used a simple buffer containing Triton and heparin to enable the single-step, simultaneous extraction of both nucleic acid and lipid components from LNPs, achieving quantification recoveries of 90-110 %. We further applied this method and addressed process and quality control challenges of LNPs, including the recovery rate of individual LNP components after purification and simultaneous quantification of co-loaded, different nucleic acid species for potential gene editing applications. This new platform method offers a robust and widely applicable tool to assess the quality of lipid-based nucleic acid therapies.
Collapse
Affiliation(s)
- Wan-Chih Su
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Raymond Lieu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yige Fu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Trevor Kempen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhixin Yu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Yuchen Fan
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
2
|
Fekete S, Imiołek M, Gritti F, Lauber M, Addepalli B, Xu M. Selected new approaches and future perspectives in liquid chromatography for the analysis of emerging modalities. Eur J Pharm Sci 2025; 209:107101. [PMID: 40222419 DOI: 10.1016/j.ejps.2025.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Emerging biopharmaceutical modalities, such as genetic medicines and RNA therapies, offer transformative potential for treating previously intractable diseases. However, these complex drugs present unique analytical challenges due to their intricate structures, sophisticated manufacturing processes, and modality-specific product quality attributes. Liquid chromatography (LC) has emerged as a versatile tool for addressing these challenges, enabling precise characterization and quality control strategies. This review highlights recent advancements in LC technologies, including low-adsorption hardware, ultra-wide pore size exclusion chromatography (SEC) columns, and innovative separation modes such as slalom chromatography and pressure-enhanced liquid chromatography (PELC). These developments tackle issues such as non-specific adsorption, carryover, and inadequate selectivity while improving resolution and robustness for large biomolecules like mRNA, adeno-associated viruses (AAVs), and lipid nanoparticles (LNPs). Novel approaches, such as tandem SEC systems, gradient SEC columns, and dual stationary phase gradients, further expand the scope of LC techniques by enhancing separations for diverse analyte sizes and complexities. Additionally, practical innovations like bracketed injection methods and new enzymatic tools for oligo-mapping improve reproducibility, efficiency, and confidence in RNA sequence analysis. These advancements not only address current analytical limitations but also pave the way for regulatory-compliant approaches, which will support the broader adoption of LC in both discovery and quality control settings. As the field continues to evolve, these innovations are poised to play a pivotal role in ensuring the safety, efficacy, and consistency of next-generation therapeutics.
Collapse
|
3
|
Webb ALJ, Welbourne EN, Evans CA, Dickman MJ. Characterisation and analysis of mRNA critical quality attributes using liquid chromatography based methods. J Chromatogr A 2025; 1745:465724. [PMID: 39946818 PMCID: PMC11855904 DOI: 10.1016/j.chroma.2025.465724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
mRNA technology has been successfully deployed to rapidly develop and mass-manufacture vaccines. Beyond vaccines, RNA-based therapeutics have potential for treatments for infectious diseases, cancer, metabolic disorders, cardiovascular conditions and autoimmune diseases. mRNA based vaccines and therapeutics work by translating exogenous mRNA into the target protein. Analytical methods for mRNA characterisation, lot release and stability testing of mRNA drug substance and drug product must be developed and performed to monitor critical quality attributes (CQAs). mRNA is a highly polar molecule due to its extensive negatively charged phosphodiester backbone. Its single stranded nature forms dynamic alternative secondary structures that can generate potential sample heterogeneity, creating challenges for the analysis and characterisation of this large biomolecule. In this review, we describe current analytical methods, focussing on high performance liquid chromatography in conjunction with both UV detection and mass spectrometry for the analysis and characterisation of mRNA. In particular, we describe recent developments covering a wide range of methods centred on liquid chromatography for the analysis of important CQAs including mRNA identity, mRNA integrity, 5' capping efficiency and poly(A) tail length and heterogeneity.
Collapse
Affiliation(s)
- Alexandra L J Webb
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Emma N Welbourne
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Caroline A Evans
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Mark J Dickman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
4
|
Blevins MS, Chin S, Wang J, Famili A, Cadang L, Wei B, Zhang K. Revealing New Analytical Insights into RNA Complexes: Divalent siRNA Characterization by Liquid Chromatography and Mass Spectrometry. Anal Chem 2025; 97:3554-3562. [PMID: 39829286 DOI: 10.1021/acs.analchem.4c05968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Accurate characterization of therapeutic RNA, including purity and identity, is critical in drug discovery and development. Here, we utilize denaturing and non-denaturing chromatography for the analysis of ∼25 kDa divalent small interfering RNA (di-siRNA), which comprises a complex 2:1 triplex structure. Ion pair reversed-phase (IPRP) liquid chromatography (LC) experiments with UV absorbance and mass spectrometry (MS) showcase a single denaturing LC method for identity confirmation, impurity profiling, and sequencing with automated MS data interpretation. IPRP, size exclusion chromatography (SEC), and melting temperature (Tm) experiments showcase the need for consideration of chromatographic conditions in evaluating noncovalent siRNA structures─here, low-temperature IPRP experiments (generally considered "non-denaturing") indicate denaturation of the noncovalent complex for certain di-siRNA sequences, while SEC data indicate that di-siRNA aggregation can be vastly underestimated due to sample dilution prior to LC experiments. Furthermore, SEC data critically show the propensity of denatured di-siRNA samples to renature under SEC mobile phase conditions upon exposure to high ionic/salt solutions, corroborated by Tm experiments. This work highlights the need for consideration of the noncovalent nature of certain RNA therapeutics during sample preparation, method development, and analytical characterization and the often sequence-specific strength of complex formation, which may significantly affect analytical results obtained for such molecules. Attention to the highly dynamic nature of the duplex RNA structure, which is heavily influenced by its environment, must be considered during analytical method development.
Collapse
Affiliation(s)
- Molly S Blevins
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Steven Chin
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Jenny Wang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Amin Famili
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Lance Cadang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
5
|
Imiołek M, Cojocaru R, Fekete S, Le Huray J, Lauber M. High-Throughput Quantification and Characterization of Dual Payload mRNA/LNP Cargo via Deformulating Size Exclusion and Ion Pairing Reversed Phase Assays. Anal Chem 2025; 97:3091-3098. [PMID: 39883007 PMCID: PMC11822733 DOI: 10.1021/acs.analchem.4c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Therapeutic drugs and multivalent vaccines based on the delivery of mRNA via lipid nanoparticle (LNP) technologies are expected to dominate the biopharmaceutical industry landscape in the coming years. Many of these innovative therapies include several nucleic acid components (e.g., nuclease mRNA and guide RNA) posing unique analytical challenges when monitoring the quantity and quality of each individual payload substance in the formulated LNP. Current methods were optimized for single payload analysis and often lack resolving power needed to investigate nucleic acid mixtures. Ion pairing reversed phase (IP-RP) and size exclusion chromatography (SEC) are increasingly being used to characterize nucleic acids. Here, we studied their application for payload quantification in formulated LNP drug-like products. Using a detergent to disrupt the LNPs, the liberated payloads can be separated on an octadecyl RP column using a fast gradient. Reproducible results were obtained as lipids, and surfactants were efficiently eluted using a high organic solvent wash protocol. Alternatively, we also established an online SEC disruption analysis of the mRNA/LNPs wherein an alcohol and detergent containing a mobile phase was applied. Such conditions universally deformulated all tested LNP samples, indicating that a 5 min-long SEC separation can be used as a high-throughput platform method. In both approaches, the measurements facilitate a multiattribute analysis. Apart from quantitation, the characterization of specific impurities is achieved: IP-RP reveals mRNA-lipid adducts, while SEC informs on size variants, which in turn reduces a laboratory's analytical workload. These easy-to-adopt LC-based assays are expected to fortify the analytical toolbox for emerging gene therapeutics.
Collapse
Affiliation(s)
- Mateusz Imiołek
- Waters
Corporation, Rue Michel Servet 1 Geneva, 1211, Switzerland
| | - Razvan Cojocaru
- Acuitas
Therapeutics, 6190 Agronomy
Rd. Suite 405, Vancouver, British Columbia V6T 1Z3, Canada
| | - Szabolcs Fekete
- Waters
Corporation, Rue Michel Servet 1 Geneva, 1211, Switzerland
| | - Jon Le Huray
- Acuitas
Therapeutics, 6190 Agronomy
Rd. Suite 405, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matthew Lauber
- Waters
Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| |
Collapse
|
6
|
Jones JD, Maloney TD. sgRNA Single-Nucleotide Resolution by Ion-Pairing Reversed-Phase Chromatography. Anal Chem 2025; 97:2837-2844. [PMID: 39884737 DOI: 10.1021/acs.analchem.4c05325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility. Here, we perform a systematic evaluation of chromatographic parameters to develop a highly selective ion-pairing reversed-phase chromatography separation for sgRNAs. We identify that stronger and more hydrophobic ion-pairing reagents promote the selectivity for long truncation impurities. Further, reduced flow rates and temperatures promote selectivity near the FLP. Together, this study reports the first single-nucleotide resolution chromatography method for an sgRNA modality while employing a highly MS-compatible mobile phase. This work provides further evidence that the sgRNA chromatographic selectivity is highly independent of on-column mass transfer. This methodology will enable the high-resolution characterization of sgRNA therapeutics, providing further insights into impurity profiles to facilitate toxicological studies and process development of these genetic medicines.
Collapse
Affiliation(s)
- Joshua D Jones
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Todd D Maloney
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
7
|
Imiołek M, Fekete S, Rudaz S, Guillarme D. Ion exchange chromatography of biotherapeutics: Fundamental principles and advanced approaches. J Chromatogr A 2025; 1742:465672. [PMID: 39805233 DOI: 10.1016/j.chroma.2025.465672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Ion exchange chromatography (IEX) is an important analytical technique for the characterization of biotechnology-derived products, such as monoclonal antibodies (mAbs) and more recently, cell and gene therapy products such as messenger ribonucleic acid (mRNA) and adeno-associated viruses (AAVs). This review paper first outlines the basic principles and separation mechanisms of IEX for charge variant separation of biotherapeutics, and examines the different elution modes based on salt or pH gradients. It then highlights several recent trends when applying IEX for the characterization of biotechnology-derived products, including: i) the effective use of pH gradients, ii) the improvement of selectivity by using organic solvents in the mobile phase, multi-step gradients, or by combining ion pairing and ion exchange, and iii) the increase in analytical throughput using ultra-short columns or automated screening of conditions. The review also discusses the incorporation of IEX into multidimensional liquid chromatography setups, integrating it with other chromatographic dimensions for the analysis of complex biotherapeutic products. It also covers the coupling of IEX with mass spectrometry (MS), ion mobility spectrometry (IMS), and multi-angle light scattering (MALS) to identify the various species contained in complex biotherapeutic samples. In conclusion, IEX is considered today as an essential technique in the analytical toolbox for the characterization and quality control of biotechnology-derived products. It offers a unique separation mechanism and can be coupled with highly informative detectors, such as MS and MALS.
Collapse
Affiliation(s)
| | | | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
8
|
Hara S, Arase S, Sano S, Suzuki T, Mizogaki I, Sato S, Ukai K. Anion exchange-HPLC method for evaluating the encapsulation efficiency of mRNA-loaded lipid nanoparticles using analytical quality by design. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124317. [PMID: 39303519 DOI: 10.1016/j.jchromb.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Lipid nanoparticles (LNPs) are emerging nucleic acid delivery systems in the development of mRNA therapeutics such as the severe acute respiratory syndrome coronavirus 2 vaccines. However, a suitable analytical method for evaluating the encapsulation efficiency (EE) of the LNPs is required to ensure drug efficacy, as current analytical methods exhibit throughput issues and require long analysis times. Hence, we developed and validated an anion-exchange HPLC method using Analytical Quality by Design. Three critical method parameters (CMPs) were identified using risk assessment and Design of Experiments: column temperature, flow rate, and sodium perchlorate concentration. The CMPs were optimized using Face-Centered Central Composite Design. The discriminating power of the optimized HPLC method and RiboGreen assay was comparable. The main advantage of this method is that LNPs can be directly injected into the HPLC system without bursting the LNPs loaded with encapsulated poly(A). The optimized HPLC method was validated as robust, high-throughput, and sufficiently sensitive according to the ICH Q2 guidelines. We believe our findings could promote efficient LNPs-based drug development.
Collapse
Affiliation(s)
- Shoki Hara
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan.
| | - Shuntaro Arase
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Syusuke Sano
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Takuya Suzuki
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Iori Mizogaki
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Shinya Sato
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Koji Ukai
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| |
Collapse
|
9
|
Guimaraes GJ, Kim J, Bartlett MG. Characterization of mRNA therapeutics. MASS SPECTROMETRY REVIEWS 2024; 43:1066-1090. [PMID: 37401740 DOI: 10.1002/mas.21856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
Therapeutic messenger RNAs (mRNAs) have emerged as powerful tools in the treatment of complex diseases, especially for conditions that lack efficacious treatment. The successful application of this modality can be attributed to its ability to encode entire proteins. While the large nature of these molecules has supported their success as therapeutics, its extended size creates several analytical challenges. To further support therapeutic mRNA development and its deployment in clinical trials, appropriate methods to support their characterization must be developed. In this review, we describe current analytical methods that have been used in the characterization of RNA quality, identity, and integrity. Advantages and limitations from several analytical techniques ranging from gel electrophoresis to liquid chromatography-mass spectrometry and from shotgun sequencing to intact mass measurements are discussed. We comprehensively describe the application of analytical methods in the measurements of capping efficiency, poly A tail analysis, as well as their applicability in stability studies.
Collapse
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Currie J, Dahlberg JR, Lundberg E, Thunberg L, Eriksson J, Schweikart F, Nilsson GA, Örnskov E. Stability indicating ion-pair reversed-phase liquid chromatography method for modified mRNA. J Pharm Biomed Anal 2024; 245:116144. [PMID: 38636193 DOI: 10.1016/j.jpba.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Modified messenger RNA (mRNA) represents a rapidly emerging class of therapeutic drug product. Development of robust stability indicating methods for control of product quality are therefore critical to support successful pharmaceutical development. This paper presents an ion-pair reversed-phase liquid chromatography (IP-RPLC) method to characterise modified mRNA exposed to a wide set of stress-inducing conditions, relevant for pharmaceutical development of an mRNA drug product. The optimised method could be used for separation and analysis of large RNA, sized up to 1000 nucleotides. Column temperature, mobile phase flow rate and ion-pair selection were each studied and optimised. Baseline separations of the model RNA ladder sample were achieved using all examined ion-pairing agents. We established that the optimised method, using 100 mM Triethylamine, enabled the highest resolution separation for the largest fragments in the RNA ladder (750/1000 nucleotides), in addition to the highest overall resolution for the selected modified mRNA compound (eGFP mRNA, 996 nucleotides). The stability indicating power of the method was demonstrated by analysing the modified eGFP mRNA, upon direct exposure to heat, hydrolytic conditions and treatment with ribonucleases. Our results showed that the formed degradation products, which appeared as shorter RNA fragments in front of the main peak, could be well monitored, using the optimised method, and the relative stability of the mRNA under the various stressed conditions could be assessed.
Collapse
Affiliation(s)
- Jonathan Currie
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations & IT, AstraZeneca, Gothenburg, Sweden
| | - Jacob R Dahlberg
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ester Lundberg
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Thunberg
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonas Eriksson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fritz Schweikart
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunilla A Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eivor Örnskov
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
11
|
Kanavarioti A, Rehman MH, Qureshi S, Rafiq A, Sultan M. High Sensitivity and Specificity Platform to Validate MicroRNA Biomarkers in Cancer and Human Diseases. Noncoding RNA 2024; 10:42. [PMID: 39051376 PMCID: PMC11270241 DOI: 10.3390/ncrna10040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
We developed a technology for detecting and quantifying trace nucleic acids using a bracketing protocol designed to yield a copy number with approximately ± 20% accuracy across all concentrations. The microRNAs (miRNAs) let-7b, miR-15b, miR-21, miR-375 and miR-141 were measured in serum and urine samples from healthy subjects and patients with breast, prostate or pancreatic cancer. Detection and quantification were amplification-free and enabled using osmium-tagged probes and MinION, a nanopore array detection device. Combined serum from healthy men (Sigma-Aldrich, St. Louis, MO, USA #H6914) was used as a reference. Total RNA isolated from biospecimens using commercial kits was used as the miRNA source. The unprecedented ± 20% accuracy led to the conclusion that miRNA copy numbers must be normalized to the same RNA content, which in turn illustrates (i) independence from age, sex and ethnicity, as well as (ii) equivalence between serum and urine. miR-21, miR-375 and miR-141 copies in cancers were 1.8-fold overexpressed, exhibited zero overlap with healthy samples and had a p-value of 1.6 × 10-22, tentatively validating each miRNA as a multi-cancer biomarker. miR-15b was confirmed to be cancer-independent, whereas let-7b appeared to be a cancer biomarker for prostate and breast cancer, but not for pancreatic cancer.
Collapse
Affiliation(s)
- Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA 95672, USA; (M.H.R.); (S.Q.); (A.R.); (M.S.)
| | | | | | | | | |
Collapse
|
12
|
Lardeux H, Stavenhagen K, Paris C, Dueholm R, Kurek C, De Maria L, Gnerlich F, Leek T, Czechtizky W, Guillarme D, Jora M. Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography. Anal Chem 2024; 96:9994-10002. [PMID: 38855895 PMCID: PMC11190878 DOI: 10.1021/acs.analchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.
Collapse
Affiliation(s)
- Honorine Lardeux
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Kathrin Stavenhagen
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Clément Paris
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Rikke Dueholm
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Camille Kurek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Felix Gnerlich
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Tomas Leek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Werngard Czechtizky
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Manasses Jora
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| |
Collapse
|
13
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
14
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
15
|
Nogueira SS, Samaridou E, Simon J, Frank S, Beck-Broichsitter M, Mehta A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur J Pharm Biopharm 2024; 198:114235. [PMID: 38401742 DOI: 10.1016/j.ejpb.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.
Collapse
|
16
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
17
|
Ozaki M, Kuwayama T, Shimotsuma M, Hirose T. Separation and purification of short-, medium-, and long-stranded RNAs by RP-HPLC using different mobile phases and C 18 columns with various pore sizes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1948-1956. [PMID: 38445900 DOI: 10.1039/d4ay00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nucleic acids, which have been employed in medicines for various diseases, are attracting attention as a new pharmaceutical model. Depending on the target substances, nucleic acid medicines with various nucleic acid chain lengths (several tens of nucleotides [nt] to several thousands of nt) exist. The purification of synthesized nucleic acids is crucial as various impurities remain in the crude product after synthesis. Presently, reversed-phase high-performance liquid chromatography (RP-HPLC) represents an effective purification method for nucleic acids. However, the information regarding the HPLC conditions for separating and purifying nucleic acids of various chain lengths is insufficient. Thus, this technical note describes the separation and purification of short-, medium-, and long-stranded nucleic acids (several tens of nt to thousands of nt) by RP-HPLC with various mobile phases and octadecyl-based columns with various pore sizes, such as normal (9-12 nm), wide (30 nm), and super wide (>30 nm) pores.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Tomomi Kuwayama
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Motoshi Shimotsuma
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Tsunehisa Hirose
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
18
|
Welbourne EN, Loveday KA, Nair A, Nourafkan E, Qu J, Cook K, Kis Z, Dickman MJ. Anion exchange HPLC monitoring of mRNA in vitro transcription reactions to support mRNA manufacturing process development. Front Mol Biosci 2024; 11:1250833. [PMID: 38516194 PMCID: PMC10955092 DOI: 10.3389/fmolb.2024.1250833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
mRNA technology has recently demonstrated the ability to significantly change the timeline for developing and delivering a new vaccine from years to months. The potential of mRNA technology for rapid vaccine development has recently been highlighted by the successful development and approval of two mRNA vaccines for COVID-19. Importantly, this RNA-based approach holds promise for treatments beyond vaccines and infectious diseases, e.g., treatments for cancer, metabolic disorders, cardiovascular conditions, and autoimmune diseases. There is currently significant demand for the development of improved manufacturing processes for the production of mRNA therapeutics in an effort to increase their yield and quality. The development of suitable analytical methods for the analysis of mRNA therapeutics is critical to underpin manufacturing development and the characterisation of the drug product and drug substance. In this study we have developed a high-throughput, high-performance liquid chromatography (HPLC) workflow for the rapid analysis of mRNA generated using in vitro transcription (IVT). We have optimised anion exchange (AEX) HPLC for the analysis of mRNA directly from IVT. Chromatography was performed in under 6 min enabling separation of all of the key components in the IVT, including nucleoside triphosphates (NTPs), Cap analogue, plasmid DNA and mRNA product. Moreover, baseline separation of the NTPs was achieved, which facilitates accurate quantification of each NTP such that their consumption may be determined during IVT reactions. Furthermore, the HPLC method was used to rapidly assess the purification of the mRNA product, including removal of NTPs/Cap analogue and other contaminants after downstream purification, including solid phase extraction (SPE), oligo deoxythymidine (oligo-dT) affinity chromatography and tangential flow filtration (TFF). Using the developed method excellent precision was obtained with calibration curves for an external mRNA standard and NTPs giving correlation coefficients of 0.98 and 1.0 respectively. Intra- and inter-day studies on retention time stability of NTPs, showed a relative standard deviation ≤ 0.3% and ≤1.5% respectively. The mRNA retention time variability was ≤0.13%. This method was then utilised to monitor the progress of an IVT reaction for the production of Covid spike protein (C-Spike) mRNA to measure the increasing yield of mRNA alongside the consumption of NTPs during the reaction.
Collapse
Affiliation(s)
- Emma N. Welbourne
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Kate A. Loveday
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Adithya Nair
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ehsan Nourafkan
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ken Cook
- ThermoFisher Scientific, Hemel Hempstead, United Kingdom
| | - Zoltán Kis
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Hengelbrock A, Schmidt A, Strube J. Digital Twin Fundamentals of mRNA In Vitro Transcription in Variable Scale Toward Autonomous Operation. ACS OMEGA 2024; 9:8204-8220. [PMID: 38405539 PMCID: PMC10882708 DOI: 10.1021/acsomega.3c08732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
The COVID-19 pandemic caused the rapid development of mRNA (messenger ribonucleic acid) vaccines and new RNA-based therapeutic methods. However, the approval rate for candidates has the potential to be increased, with a significant number failing so far due to efficacy, safety, and manufacturing deficiencies, hindering equitable vaccine distribution during pandemics. This study focuses on optimizing the production of mRNA, a critical component of mRNA-based vaccines, using a scalable machine by investigating the key mechanisms of mRNA in vitro transcription. First, kinetic parameters for the mRNA production process were determined. The validity of the determination and the robustness of the model are demonstrated by predicting different reactions with and without substrate limitations as well as different transcripts. The optimized reaction conditions, including temperature, urea concentration, and concentration of reaction-enhancing additives, resulted in a 55% increase in mRNA yield with a 33% reduction in truncated mRNA. Additionally, the feasibility of a segmented flow approach allowed for high-throughput screening (HTS), enabling the production of 20 vaccine candidates within a short time frame, representing a 10-fold increase in productivity, compared to nonsegmented reactions limited by the residence time in the plug flow reactor. The findings presented for the first time here contribute to the development of a fully continuous and efficient manufacturing process for mRNA and other cell and gene therapy drugs/vaccine candidates as presented in our previous work, which discussed the integration of process analytical technologies and predictive process models in a Biopharma 4.0 facility to enable the production of clinical and large-scale doses, ensuring a rapid and resilient supply of critical therapeutics. The results in this study especially highlight that the same machine and equipment can be used for screening and manufacturing different drug candidates in continuous operation. By streamlining production and adhering to quality standards, this approach enhances the industry's ability to respond swiftly to pandemics and public health emergencies, addressing the urgent need for accessible and effective vaccines.
Collapse
Affiliation(s)
- Alina Hengelbrock
- Institute for Separation
and Process Technology, Clausthal University
of Technology, Clausthal-Zellerfeld 38678, Germany
| | - Axel Schmidt
- Institute for Separation
and Process Technology, Clausthal University
of Technology, Clausthal-Zellerfeld 38678, Germany
| | - Jochen Strube
- Institute for Separation
and Process Technology, Clausthal University
of Technology, Clausthal-Zellerfeld 38678, Germany
| |
Collapse
|
20
|
Gilar M, Doneanu C, Gaye MM. Liquid Chromatography Methods for Analysis of mRNA Poly(A) Tail Length and Heterogeneity. Anal Chem 2023; 95:14308-14316. [PMID: 37696042 PMCID: PMC10535021 DOI: 10.1021/acs.analchem.3c02552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Messenger RNA (mRNA) is a new class of therapeutic compounds. The current advances in mRNA technology require the development of efficient analytical methods. In this work, we describe the development of several methods for measurement of mRNA poly(A) tail length and heterogeneity. Poly(A) tail was first cleaved from mRNA with the RNase T1 enzyme. The average length of a liberated poly(A) tail was analyzed with the size exclusion chromatography method. Size heterogeneity of the poly(A) tail was estimated with high-resolution ion-pair reversed phase liquid chromatography (IP RP LC). The IP RP LC method provides resolution of poly(A) tail oligonucleotide variants up to 150 nucleotide long. Both methods use a robust ultraviolet detection suitable for mRNA analysis in quality control laboratories. The results were confirmed by the LC-mass spectrometry (LC MS) analysis of the same mRNA sample. The poly(A) tail length and heterogeneity results were in good agreement.
Collapse
Affiliation(s)
- Martin Gilar
- Separations
R&D, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Catalin Doneanu
- Discovery
and Development, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Maissa M. Gaye
- Consumables
Research, Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
21
|
Miklavčič R, Megušar P, Kodermac ŠM, Bakalar B, Dolenc D, Sekirnik R, Štrancar A, Černigoj U. High Recovery Chromatographic Purification of mRNA at Room Temperature and Neutral pH. Int J Mol Sci 2023; 24:14267. [PMID: 37762568 PMCID: PMC10532270 DOI: 10.3390/ijms241814267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM® PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.5. Here, we report that a newly developed chromatographic material enables the elution of mRNA at neutral pH and room temperature. This material demonstrates weak anion-exchanging properties and an isoelectric point of 5.3. It enables the baseline separation of mRNA (at least up to 10,000 nucleotides (nt) in size) from parental plasmid DNA (regardless of isoform composition) with both a NaCl gradient and ascending pH gradient approach, while mRNA elution is achieved in a pH range of 5-7. In addition, the basic structure of the novel material is a chromatographic monolith, enabling convection-assisted mass transfer of large RNA molecules to and from the active surface. This facilitates the elution of mRNA in 3-7 column volumes with more than 80% elution recovery and uncompromised integrity. This is demonstrated by the purification of a model mRNA (size 995 nt) from an in vitro transcription reaction mixture. The purified mRNA is stable for at least 34 days, stored in purified H2O at room temperature.
Collapse
Affiliation(s)
- Rok Miklavčič
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Polona Megušar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | | | - Blaž Bakalar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Darko Dolenc
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
22
|
Li F, Chen S, Studzińska S, Lämmerhofer M. Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography of small interfering RNA. Part 2: Use for selective comprehensive two-dimensional liquid chromatography. J Chromatogr A 2023; 1701:464069. [PMID: 37216850 DOI: 10.1016/j.chroma.2023.464069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
With the increasing numbers of nucleic acid-based pharmaceuticals like antisense oligonucleotides (ASO), small interfering ribonucleic acid (siRNA) entering the market, research facilities, pharmaceutical industries and also regulatory authorities have been looking for efficient analytical methods for these synthetic oligonucleotides (ON). Besides of conventional one-dimensional (1D) reversed-phase liquid chromatography with or without ion-pairing (IP-RP-LC, RP-LC), hydrophilic liquid chromatography (HILIC) and mixed-mode chromatography (MMC), two-dimensional (2D) approaches combining two orthogonal chromatographic techniques also become more relevant due to the high structural complexity of oligonucleotides. Recently, we tested a polybutylene terephthalate(PBT)-based stationary phase under ion-pairing free RP mode for the liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) analysis of siRNA (Patisiran). In this study, retention profile and chromatographic orthogonality, respectively, were compared to other LC-modes like HILIC, IP-RPLC, another ion-pair free cholesterol-bonded RPLC and MMC considering their normalized retention times. Finally, because of higher orthogonality, the ion-pairing free PBT-bonded RPLC as first dimension (1D) was hyphenated with HILIC in the second dimension (2D) in a selective comprehensive 2D-LC setup leading to an enhanced resolution for peak purity evaluation of the main ON entities.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Shenkai Chen
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Sylwia Studzińska
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., PL-87-100 Toruń, Poland
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Torelli E, Shirt-Ediss B, Navarro SA, Manzano M, Vizzini P, Krasnogor N. Light-Up Split Broccoli Aptamer as a Versatile Tool for RNA Assembly Monitoring in Cell-Free TX-TL Systems, Hybrid RNA/DNA Origami Tagging and DNA Biosensing. Int J Mol Sci 2023; 24:ijms24108483. [PMID: 37239830 DOI: 10.3390/ijms24108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Binary light-up aptamers are intriguing and emerging tools with potential in different fields. Herein, we demonstrate the versatility of a split Broccoli aptamer system able to turn on the fluorescence signal only in the presence of a complementary sequence. First, an RNA three-way junction harbouring the split system is assembled in an E. coli-based cell-free TX-TL system where the folding of the functional aptamer is demonstrated. Then, the same strategy is introduced into a 'bio-orthogonal' hybrid RNA/DNA rectangle origami characterized by atomic force microscopy: the activation of the split system through the origami self-assembly is demonstrated. Finally, our system is successfully used to detect the femtomoles of a Campylobacter spp. DNA target sequence. Potential applications of our system include the real-time monitoring of the self-assembly of nucleic-acid-based devices in vivo and of the intracellular delivery of therapeutic nanostructures, as well as the in vitro and in vivo detection of different DNA/RNA targets.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Silvia A Navarro
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, 33100 Udine, Italy
| | - Priya Vizzini
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, 33100 Udine, Italy
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
24
|
Chin S, Goyon A, Zhang K, Kurita KL. Middle-out sequence confirmation of CRISPR/Cas9 single guide RNA (sgRNA) using DNA primers and ribonuclease T1 digestion. Anal Bioanal Chem 2023; 415:2809-2818. [PMID: 37093234 DOI: 10.1007/s00216-023-04693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Accurate sequencing of single guide RNAs (sgRNAs) for CRISPR/Cas9 genome editing is critical for patient safety, as the sgRNA guides the Cas9 nuclease to target site-specific cleavages in DNA. An approach to fully sequence sgRNA using protective DNA primers followed by ribonuclease (RNase) T1 digestion was developed to facilitate the analysis of these larger molecules by hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (HILIC-HRMS). Without RNase digestion, top-down mass spectrometry alone struggles to properly fragment precursor ions in large RNA oligonucleotides to provide confidence in sequence coverage. With RNase T1 digestion of these larger oligonucleotides, however, bottom-up analysis cannot confirm full sequence coverage due to the presence of short, redundant digestion products. By combining primer protection with RNase T1 digestion, digestion products are large enough to prevent redundancy and small enough to provide base resolution by tandem mass spectrometry to allow for full sgRNA sequence coverage. An investigation into the general requirements for adequate primer protection of specific regions of the RNA was conducted, followed by the development of a generic protection and digestion strategy that may be applied to different sgRNA sequences. This middle-out technique has the potential to expedite accurate sequence confirmation of chemically modified sgRNA oligonucleotides.
Collapse
Affiliation(s)
- Steven Chin
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alexandre Goyon
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kelly Zhang
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kenji L Kurita
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
25
|
Fekete S, Doneanu C, Addepalli B, Gaye M, Nguyen J, Alden B, Birdsall R, Han D, Isaac G, Lauber M. Challenges and emerging trends in liquid chromatography-based analyses of mRNA pharmaceuticals. J Pharm Biomed Anal 2023; 224:115174. [PMID: 36446261 PMCID: PMC9678211 DOI: 10.1016/j.jpba.2022.115174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Lipid encapsulated messenger RNA (LNP mRNA) has garnered a significant amount of interest from the pharmaceutical industry and general public alike. This attention has been catalyzed by the clinical success of LNP mRNA for SARS-CoV-2 vaccination as well as future promises that might be fulfilled by the biotechnology pipeline, such as the in vivo delivery of a CRISPR/Cas9 complex that can edit patient cells to reduce levels of low-density lipoprotein. LNP mRNAs are comprised of various chemically diverse molecules brought together in a sophisticated intermolecular complex. This can make it challenging to achieve thorough analytical characterization. Nevertheless, liquid chromatography is becoming an increasingly relied upon technique for LNP mRNA analyses. Although there have been significant advances in all types of LNP mRNA analyses, this review focuses on recent developments and the possibilities of applying anion exchange (AEX) and ion pairing reversed phase (IP-RP) liquid chromatography for intact mRNAs as well as techniques for oligo mapping analysis, 5' endcap testing and lipid compositional assays.
Collapse
|
26
|
Oude Blenke E, Örnskov E, Schöneich C, Nilsson GA, Volkin DB, Mastrobattista E, Almarsson Ö, Crommelin DJA. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. J Pharm Sci 2023; 112:386-403. [PMID: 36351479 PMCID: PMC9637289 DOI: 10.1016/j.xphs.2022.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The remarkable impact of mRNA vaccines on mitigating disease and improving public health has been amply demonstrated during the COVID-19 pandemic. Many new mRNA-based vaccine and therapeutic candidates are in development, yet the current reality of their stability limitations requires their frozen storage. Numerous challenges remain to improve formulated mRNA stability and enable refrigerator storage, and this review provides an update on developments to tackle this multi-faceted stability challenge. We describe the chemistry underlying mRNA degradation during storage and highlight how lipid nanoparticle (LNP) formulations are a double-edged sword: while LNPs protect mRNA against enzymatic degradation, interactions with and between LNP excipients introduce additional risks for mRNA degradation. We also discuss strategies to improve mRNA stability both as a drug substance (DS) and a drug product (DP) including the (1) design of the mRNA molecule (nucleotide selection, primary and secondary structures), (2) physical state of the mRNA-LNP complexes, (3) formulation composition and purity of the components, and (4) DS and DP manufacturing processes. Finally, we summarize analytical control strategies to monitor and assure the stability of mRNA-based candidates, and advocate for an integrated analytical and formulation development approach to further improve their storage, transport, and in-use stability profiles.
Collapse
Affiliation(s)
- Erik Oude Blenke
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - Eivor Örnskov
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States.
| | - Gunilla A Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.
| | - David B Volkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States; Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047 United States.
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands.
| | - Örn Almarsson
- AfiRx LLC, Chestnut Hill, MA 02467 United States; Visiting Fellow, UNSW RNA Institute and the School of Chemistry, UNSW, Sydney, Australia.
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, the Netherlands.
| |
Collapse
|
27
|
Vanhinsbergh C. The Role of Separation Techniques in the Analysis of mRNA Therapeutic Drug Substances and Drug Products. LCGC EUROPE 2023. [DOI: 10.56530/lcgc.eu.hk6689y3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Messenger ribonucleic acids (mRNA) therapeutics are becoming more widespread pharmaceutical tools to treat a wide range of diseases or infections, as highlighted by regulatory approval of two vaccines for SARS‑CoV-2. Alongside their use as vaccines, they also play a role in protein replacement therapy to ensure therapeutic protein is synthesized within the patient. Structural elements, such as the 5’ cap, UTR regions, reading frame, and poly A tail are considered as critical quality attributes (CQAs) that are subject to a range of analytical techniques. However, chromatography and other separation methods are commonly used for characterization and quantification of the drug substance and drug product. This article reviews a range of techniques available for separative analysis of mRNA therapeutics, their associated impurities, and delivery vehicles.
Collapse
|
28
|
Comprehensive UHPLC- and CE-based methods for engineered Cas9 characterization. Talanta 2023; 252:123780. [DOI: 10.1016/j.talanta.2022.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
|
29
|
Qin W, Li L, Yang F, Wang S, Yang GY. High-throughput iSpinach fluorescent aptamer-based real-time monitoring of in vitro transcription. BIORESOUR BIOPROCESS 2022; 9:112. [PMID: 38647769 PMCID: PMC10991154 DOI: 10.1186/s40643-022-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
In vitro transcription (IVT) is an essential technique for RNA synthesis. Methods for the accurate and rapid screening of IVT conditions will facilitate RNA polymerase engineering, promoter optimization, and screening for new transcription inhibitor drugs. However, traditional polyacrylamide gel electrophoresis (PAGE) and high-performance liquid chromatography methods are labor intensive, time consuming and not compatible with real-time analysis. Here, we developed an inexpensive, high-throughput, and real-time detection method for the monitoring of in vitro RNA synthesis called iSpinach aptamer-based monitoring of Transcription Activity in Real-time (STAR). STAR has a detection speed at least 100 times faster than conventional PAGE method and provides comparable results in the analysis of in vitro RNA synthesis reactions. It also can be used as an easy and quantitative method to detect the catalytic activity of T7 RNA polymerase. To further demonstrate the utility of STAR, it was applied to optimize the initially transcribed region of the green fluorescent protein gene and the 3T4T variants demonstrated significantly enhanced transcription output, with at least 1.7-fold and 2.8-fold greater output than the wild-type DNA template and common transcription template, respectively. STAR may provide a valuable tool for many biotechnical applications related to the transcription process, which may pave the way for the development of better RNA-related enzymes and new drugs.
Collapse
Affiliation(s)
- Weitong Qin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Li
- Hzymes Biotechnology Co. Ltd, Hubei, 430010, China
| | - Fan Yang
- Hzymes Biotechnology Co. Ltd, Hubei, 430010, China
| | - Siyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
30
|
Lokras A, Chakravarty A, Rades T, Christensen D, Franzyk H, Thakur A, Foged C. Simultaneous quantification of multiple RNA cargos co-loaded into nanoparticle-based delivery systems. Int J Pharm 2022; 626:122171. [PMID: 36070841 DOI: 10.1016/j.ijpharm.2022.122171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Robust, sensitive, and versatile analytical methods are essential for quantification of RNA drug cargos loaded into nanoparticle-based delivery systems. However, simultaneous quantification of multiple RNA cargos co-loaded into nanoparticles remains a challenge. Here, we developed and validated the use of ion-pair reversed-phase high-performance liquid chromatography combined with UV detection (IP-RP-HPLC-UV) for simultaneous quantification of single- and double-stranded RNA cargos. Complete extraction of RNA cargo from the nanoparticle carrier was achieved using a phenol:chloroform:isoamyl alcohol mixture. Separations were performed using either a C18 or a PLRP-S column, eluted with 0.1 M triethylammonium acetate (TEAA) solution as ion-pairing reagent (eluent A), and 0.1 M TEAA containing 25 % (v/v) CH3CN as eluent B. These methods were applied to quantify mRNA and polyinosinic:polycytidylic acid co-loaded into lipid-polymer hybrid nanoparticles, and single-stranded oligodeoxynucleotide donors and Alt-R CRISPR single guide RNAs co-loaded into lipid nanoparticles. The developed methods were sensitive (limit of RNA quantification < 60 ng), linear (R2 > 0.997), and accurate (≈ 100 % recovery of RNA spiked in nanoparticles). Hence, the present study may facilitate convenient quantification of multiple RNA cargos co-loaded into nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Abhijeet Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Akash Chakravarty
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
31
|
A High-Pressure, High-Temperature Flow Reactor Simulating the Hadean Earth Environment, with Application to the Pressure Dependence of the Cleavage of Avocado Viroid Hammerhead Ribozyme. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081224. [PMID: 36013404 PMCID: PMC9410335 DOI: 10.3390/life12081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
The RNA world hypothesis suggests that chemical networks consisting of functional RNA molecules could have constructed a primitive life-like system leading a first living system. The chemical evolution scenario of RNA molecules should be consistent with the Hadean Earth environment. We have demonstrated the importance of the environment at both high temperature and high pressure, using different types of hydrothermal flow reactor systems and high-pressure equipment. In the present study, we have attempted to develop an alternative easy-to-implement method for high-pressure measurements and demonstrate that the system is applicable as an efficient research tool for high-pressure experiments at pressures up to 30 MPa. We demonstrate the usefulness of the system by detecting the high-pressure influence for the self-cleavage of avocado hammerhead ribozyme (ASBVd(−):HHR) at 45–65 °C. A kinetic analysis of the high-pressure behavior of ASBVd(−):HHR shows that the ribozyme is active at 30 MPa and its activity is sensitive to pressures between 0.1–30 MPa. The surprising finding that such a short ribozyme is effective for self-cleavage at a high pressure suggests the importance of pressure as a factor for selection of adaptable RNA molecules towards an RNA-based life-like system in the Hadean Earth environment deep in the ocean.
Collapse
|
32
|
Takeuchi S, Yamamoto M, Matsumoto S, Kenjo E, Karashima M, Ikeda Y. Pinpoint modification strategy for stabilization of single guide RNA. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123149. [PMID: 35139474 DOI: 10.1016/j.jchromb.2022.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
The clustered regularly interspaced short palindromic repeats-CRISPR associated protein9 (CRISPR-Cas9) system, which includes a single guide RNA (sgRNA) and a Cas9 protein, is an emerging and promising gene editing technology that produces specific changes, including insertions, deletions, or substitutions, in desired targets. This approach can be applied in novel therapeutic areas for multiple cancers and genetic diseases, including Parkinson's disease, sickle cell disease, and muscular dystrophy. However, there are many limitations to its potential application to therapeutics. CRISPR-Cas9 activity without side effects, delivery of CRISPR-Cas9 to the target cell within the desired tissue including liver, lungs, brain and muscle and the expression of Cas9 endonuclease in the target cell are key factors in achieving therapeutic efficacy. Generally, single-stranded RNA is immediately degraded in cells and biological fluids such as serum, as chemically unmodified single-stranded RNA shows extremely poor stability against nuclease degradation. To overcome this limitation, sgRNA is chemically modified to obtain a highly stable sgRNA for efficient gene editing in cells and in vivo. Here, we identified the cleavage site of sgRNA for pinpoint modification in biological tissues using mass spectrometry and improved stability of pinpoint modified sgRNA in these fluids. Although improved efficiency provided by modified sgRNA has already been reported, we identified the cleavage site by mass spectrometry and revealed that the stability increased with the pinpoint modification strategy for the first time in this study. In future studies, the efficiency of pinpoint modification strategy for the potential application of sgRNA by systematic routes, including intravenous and subcutaneous administration will be assessed.
Collapse
Affiliation(s)
- Shoko Takeuchi
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan.
| | - Mitsuo Yamamoto
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| | - Satoru Matsumoto
- Drug Product Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| | - Eriya Kenjo
- TCiRA Discovery, Takeda Pharmaceutical Company Limited, Japan
| | - Masatoshi Karashima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| | - Yukihiro Ikeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
33
|
Vilímová I, Chourpa I, David S, Soucé M, Hervé-Aubert K. Two-step formulation of magnetic nanoprobes for microRNA capture. RSC Adv 2022; 12:7179-7188. [PMID: 35424703 PMCID: PMC8982131 DOI: 10.1039/d1ra09016j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRs) belong to a family of short non-coding endogenous RNAs. Their over-expression correlates with various pathologies: for instance, miRNA-155 (miR-155) is over-expressed upon the development of breast cancers. However, the detection of miRs as disease biomarkers suffers from insufficient sensitivity. In the present study, we propose a protocol for a rapid and efficient generation of magnetic nanoprobes able to capture miR-155, with the aim of increasing its concentration. As a nanoprobe precursor, we first synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coated with covalently attached polyethylene glycol carrying a free biotin terminus (PEG-bi). Using streptavidin–biotin interactions, the nanoprobes were formulated by functionalizing the surface of the nanoparticles with the miR sequence (CmiR) complementary to the target miR-155 (TmiR). The two-step formulation was optimized and validated using several analytical techniques, in particular with Size-Exclusion High Performance Liquid Chromatography (SE-HPLC). Finally, the proof of the nanoprobe affinity to TmiR was made by demonstrating the TmiR capture on model solutions, with the estimated ratio of 18 : 22 TmiR : CmiR per nanoprobe. The nanoprobes were confirmed to be stable after incubation in serum. Two-step formulation of magnetic nanoprobes for microRNA capture.![]()
Collapse
Affiliation(s)
- Iveta Vilímová
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Martin Soucé
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | | |
Collapse
|
34
|
Wei B, Wang J, Cadang L, Goyon A, Chen B, Yang F, Zhang K. Development of an ion pairing reversed-phase liquid chromatography-mass spectrometry method for characterization of clustered regularly interspaced short palindromic repeats guide ribonucleic acid. J Chromatogr A 2022; 1665:462839. [PMID: 35093620 DOI: 10.1016/j.chroma.2022.462839] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
Abstract
Guide ribonucleic acid (gRNA) is a critical reagent in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. The single stranded guide RNA (sgRNA) is the most commonly used gRNA in application. Evaluation of the impurity profile of synthetic sgRNA is important for any CRISPR genome editing experiments. However, the large molecular size, complex impurity profile and unique secondary structure pose many challenges in the analysis of sgRNA by ion pairing reversed-phase liquid chromatography (IP-RPLC), the commonly used method. In this work, we developed a generic IP-RPLC method for guide RNA analysis. We found that large pore size of stationary phase was the most critical column parameter to achieve high resolution separation of sgRNA while particle structure, particle size and surface chemistry had less impact. Our results indicated that charge interaction was the most critical mechanism for retention and mass transfer had less impact on the performance of separation. An IP-RPLC/mass spectrometry (MS) method was also developed with a specific practice to reduce adducts and enable intact MS analysis of sgRNAs. The generic IP-RPLC method demonstrates its feasibility to serve as a release, stability, characterization and in-process control testing method for synthetic sgRNA products.
Collapse
Affiliation(s)
- Bingchuan Wei
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Jenny Wang
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lance Cadang
- Pharma Technical Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bifan Chen
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Feng Yang
- Pharma Technical Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
35
|
Fekete S, DeLano M, Harrison AB, Shiner SJ, Belanger JL, Wyndham KD, Lauber MA. Size Exclusion and Ion Exchange Chromatographic Hardware Modified with a Hydrophilic Hybrid Surface. Anal Chem 2022; 94:3360-3367. [PMID: 35143179 DOI: 10.1021/acs.analchem.1c05466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Certain biomolecules have proven to be difficult to analyze by liquid chromatography (LC), especially under certain chromatographic conditions. The separation of proteins in aqueous mobile phases is one such example because there is the potential for both hydrophobic and ionic secondary interactions to occur with chromatographic hardware to the detriment of peak recovery, peak shape, and the overall sensitivity of the LC analysis. To decrease non-specific adsorption and undesired secondary interactions between column hardware and biomolecules, we have developed and applied a new hydrophilically modified hybrid surface (h-HST) for size exclusion chromatography (SEC) and anion exchange (AEX) separations of proteins and nucleic acids. This surface incorporates additional oxygen and carbon atoms onto an ethylene bridge hybrid siloxane polymer. As a result, it exhibits reduced electrostatic properties and hydrophilicity that facilitates challenging aqueous separations. Flow injection tests with a phosphate buffer showed superior protein recovery from an h-HST frit when compared to unmodified ethylene-bridged hybrid HST, titanium, stainless steel, and PEEK frits. When applied to SEC of rituximab, ramucirumab, and trastuzumab emtansine with a 50 mM ammonium acetate buffer, this new hydrophilic chromatographic hardware yielded improved monomer and aggregate recovery, higher plate numbers, and more symmetrical peaks. AEX columns also benefited from h-HST hardware. An acidic mAb (eculizumab) showed improved recovery, more stable retention, and a sharper peak when eluted from an h-HST versus SS column. Moreover, AEX separations of intact mRNA samples (Cas9 and EPO mRNA) were improved, where it was seen that h-HST column hardware provided higher sensitivity and more repeatable peak areas from injection to injection. As such, there is significant potential in the use of h-HST chromatographic hardware to facilitate more robust and more sensitive analyses for a multitude of challenging separations and analytes.
Collapse
Affiliation(s)
- Szabolcs Fekete
- Waters Corporation, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Mathew DeLano
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Stephen J Shiner
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Kevin D Wyndham
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
36
|
Camperi J, Moshref M, Dai L, Lee HY. Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes. Anal Chem 2022; 94:1432-1440. [PMID: 34958212 DOI: 10.1021/acs.analchem.1c04795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Advances in gene-editing technology enable efficient, targeted ex vivo engineering of different cell types, which offer a potential therapeutic platform for most challenging disease areas. CRISPR-Cas9 is a widely used gene-editing tool in therapeutic applications. The quality of gene-editing reagents (i.e., Cas9 nuclease, single guide (sg)RNA) is associated with the final cellular product quality as they can impact the gene-editing accuracy and efficiency. To assess the impact of the quality of Cas9 protein and sgRNA in the formation of a Cas9 ribonucleoprotein (RNP) complex, stability, and functional activities, we developed a size exclusion chromatography method that utilizes multiple detectors and an in vitro DNA cleavage assay using anion-exchange chromatography. Using these methods, we characterized the formation and stability of Cas9 RNP complexes associated with Cas9 and sgRNA characteristics as well as their functional activities. Multi-angle light scattering characterization showed different types and levels of aggregates in different source sgRNA materials, which contribute to form different Cas9 RNP complexes. The aggregations irreversibly dissociated at high temperatures. When the Cas9 RNP complexes derived from non-heated and heated sgRNAs were characterized, the data showed that specific RNP peaks were impacted. The Cas9 RNP complexes derived from the heated sgRNA retained their biological function and cleaved the double-strand target DNA at a higher rate. This work provides new tools to characterize the Cas9 RNP complex formation, stability, and functional activity and provides insights into sgRNA properties and handling procedures to better control the Cas9 RNP complex formation.
Collapse
Affiliation(s)
- Julien Camperi
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Maryam Moshref
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ho Young Lee
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
37
|
Chabanovska O, Galow AM, David R, Lemcke H. mRNA - A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev 2021; 179:114002. [PMID: 34653534 PMCID: PMC9418126 DOI: 10.1016/j.addr.2021.114002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
After thirty years of intensive research shaping and optimizing the technology, the approval of the first mRNA-based formulation by the EMA and FDA in order to stop the COVID-19 pandemic was a breakthrough in mRNA research. The astonishing success of these vaccines have brought the mRNA platform into the spotlight of the scientific community. The remarkable persistence of the groundwork is mainly attributed to the exceptional benefits of mRNA application, including the biological origin, immediate but transitory mechanism of action, non-integrative properties, safe and relatively simple manufacturing as well as the flexibility to produce any desired protein. Based on these advantages, a practical implementation of in vitro transcribed mRNA has been considered in most areas of medicine. In this review, we discuss the key preconditions for the rise of the mRNA in the medical field, including the unique structural and functional features of the mRNA molecule and its vehicles, which are crucial aspects for a production of potent mRNA-based therapeutics. Further, we focus on the utility of mRNA tools particularly in the scope of regenerative medicine, i.e. cell reprogramming approaches or manipulation strategies for targeted tissue restoration. Finally, we highlight the strong clinical potential but also the remaining hurdles to overcome for the mRNA-based regenerative therapy, which is only a few steps away from becoming a reality.
Collapse
Affiliation(s)
- Oleksandra Chabanovska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany,Corresponding author at: Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| |
Collapse
|
38
|
Guimaraes GJ, Bartlett MG. The critical role of mobile phase pH in the performance of oligonucleotide ion-pair liquid chromatography-mass spectrometry methods. Future Sci OA 2021; 7:FSO753. [PMID: 34840810 PMCID: PMC8610006 DOI: 10.2144/fsoa-2021-0084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Michael G Bartlett
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun 2021; 12:6777. [PMID: 34811367 PMCID: PMC8608879 DOI: 10.1038/s41467-021-26926-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Lipid nanoparticle (LNP)-formulated mRNA vaccines were rapidly developed and deployed in response to the SARS-CoV-2 pandemic. Due to the labile nature of mRNA, identifying impurities that could affect product stability and efficacy is crucial to the long-term use of nucleic-acid based medicines. Herein, reversed-phase ion pair high performance liquid chromatography (RP-IP HPLC) was used to identify a class of impurity formed through lipid:mRNA reactions; such reactions are typically undetectable by traditional mRNA purity analytical techniques. The identified modifications render the mRNA untranslatable, leading to loss of protein expression. Specifically, electrophilic impurities derived from the ionizable cationic lipid component are shown to be responsible. Mechanisms implicated in the formation of reactive species include oxidation and subsequent hydrolysis of the tertiary amine. It thus remains critical to ensure robust analytical methods and stringent manufacturing control to ensure mRNA stability and high activity in LNP delivery systems. Lipid nanoparticle delivery of mRNA vaccines has become of particular importance, however, mRNA stability is a major concern. Here, the authors report on a study of lipid impurity mRNA interactions using reverse phase ion pair HPLC to identify reactions which render the mRNA untranslatable, reducing vaccine efficiency.
Collapse
|
40
|
Purification of N-acetylgalactosamine-modified-oligonucleotides using orthogonal anion-exchange and mixed-mode chromatography approaches. J Chromatogr A 2021; 1661:462679. [PMID: 34871941 DOI: 10.1016/j.chroma.2021.462679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
N-acetylgalactosamine (GalNAc)-modified small interfering ribonucleic acids (siRNA) have shown promising outcomes for targeted siRNA delivery resulting in gene silencing in vivo; however, their structural complexity requires development of new purification methods to address high purity and recovery requirements. The current study evaluates complementary purification approaches using a mixed-mode Scherzo SS-C18 and anion-exchange (AEX) TSK-gel SuperQ-5PW for a range of single-stranded triantennary GalNAc-oligonucleotides. Initially, the semi-preparative mixed-mode support (10 × 250 mm, 3 µm) was compared against the preparative AEX analogue (21.5 × 300 mm, 13 µm), with the former affording double the recovery and higher purity of 95% over its AEX counterpart displaying 91% for a selected siRNA conjugate. An assortment of GalNAc-modified oligonucleotides was later purified using the mixed-mode resin revealing good recoveries (∼30-60%) and high purities of 90-94% ranging from straightforward to more challenging purifications. High sample loading in the 20 mg range was achieved, which was comparable with the larger preparative TSKgel SuperQ-5PW support. The Scherzo-SS-C18 resin also afforded some degree of resolution between diastereomers containing phosphorothioate functionalities. The TSKgel SuperQ-5PW support was later investigated to provide orthogonal separation selectivity to the Scherzo-SS-C18 column enabling purification of a selected, GalNAc-siRNA conjugate. The developed pH (8.5-11) and salt (0.3-0.7 M) gradients method provided enhanced separation selectivity between the free and conjugated siRNA, while minimizing formation of secondary structures and highlighting a complementary approach to deal with challenging purifications of oligonucleotide-GalNAc conjugates. Together, the use of AEX and mixed-mode columns provide much needed orthogonality to deal with complex GalNAc-modified oligonucleotides and potentially other upcoming modalities.
Collapse
|
41
|
Balmayor ER. Synthetic mRNA - emerging new class of drug for tissue regeneration. Curr Opin Biotechnol 2021; 74:8-14. [PMID: 34749063 DOI: 10.1016/j.copbio.2021.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
mRNA has the potential to be the next generation drug for tissue restoration in regenerative medicine. The variety of mRNAs that could be synthesized with the aim of increasing the expression of any required protein offers new opportunities. However, the intrinsic immunogenicity and lack of stability of mRNA has long restricted the potential of mRNA therapeutics. Fortunately, considerable progress has been made on synthetic mRNA modifications and relevant purification steps that have overcome these limitations. However, there remains a lack of efficient mRNA delivery strategies. Additionally, mRNA may need to be administered in situ via three-dimensional biomaterials. These materials, also known as transcript-activated matrices, require further consideration in terms of mRNA loading and release, immunogenicity, and other features. In this article, various limiting factors in mRNA synthesis, vector formulation, and local delivery to tissues are highlighted together with current developments and the future outlook for mRNA therapeutics in tissue regeneration.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- IBE, MERLN Institute for Technology - Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Rees HA, Minella AC, Burnett CA, Komor AC, Gaudelli NM. CRISPR-derived genome editing therapies: Progress from bench to bedside. Mol Ther 2021; 29:3125-3139. [PMID: 34619370 PMCID: PMC8572140 DOI: 10.1016/j.ymthe.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of CRISPR-derived genome editing technologies has enabled the precise manipulation of DNA sequences within the human genome. In this review, we discuss the initial development and cellular mechanism of action of CRISPR nucleases and DNA base editors. We then describe factors that must be taken into consideration when developing these tools into therapeutic agents, including the potential for unintended and off-target edits when using these genome editing tools, and methods to characterize these types of edits. We finish by considering specific challenges associated with bringing a CRISPR-based therapy to the clinic, including manufacturing, regulatory oversight, and considerations for clinical trials that involve genome editing agents.
Collapse
|
43
|
Fast and Flexible mRNA Vaccine Manufacturing as a Solution to Pandemic Situations by Adopting Chemical Engineering Good Practice—Continuous Autonomous Operation in Stainless Steel Equipment Concepts. Processes (Basel) 2021. [DOI: 10.3390/pr9111874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SARS-COVID-19 vaccine supply for the total worldwide population has a bottleneck in manufacturing capacity. Assessment of existing messenger ribonucleic acid (mRNA) vaccine processing shows a need for digital twins enabled by process analytical technology approaches in order to improve process transfer for manufacturing capacity multiplication, a reduction in out-of-specification batch failures, qualified personal training for faster validation and efficient operation, optimal utilization of scarce buffers and chemicals and speed-up of product release by continuous manufacturing. In this work, three manufacturing concepts for mRNA-based vaccines are evaluated: Batch, full-continuous and semi-continuous. Technical transfer from batch single-use to semi-continuous stainless-steel, i.e., plasmid deoxyribonucleic acid (pDNA) in batch and mRNA in continuous operation mode, is recommended, in order to gain: faster plant commissioning and start-up times of about 8–12 months and a rise in dose number by a factor of about 30 per year, with almost identical efforts in capital expenditures (CAPEX) and personnel resources, which are the dominant bottlenecks at the moment, at about 25% lower operating expenses (OPEX). Consumables are also reduceable by a factor of 6 as outcome of this study. Further optimization potential is seen at consequent digital twin and PAT (Process Analytical Technology) concept integration as key-enabling technologies towards autonomous operation including real-time release-testing.
Collapse
|
44
|
Nalbadis A, Trutschel ML, Lucas H, Luetzkendorf J, Meister A, Mäder K. Selection and Incorporation of siRNA Carrying Non-Viral Vector for Sustained Delivery from Gellan Gum Hydrogels. Pharmaceutics 2021; 13:pharmaceutics13101546. [PMID: 34683839 PMCID: PMC8540443 DOI: 10.3390/pharmaceutics13101546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The local controlled release of siRNA is an attractive and rational strategy to enhance and extend the effectiveness of gene therapy. Since naked and unmodified siRNA has a limited cell uptake and knockdown efficiency, the complexation of siRNA with non-viral carriers is often necessary for the delivery of bioactive RNA. We evaluated the performance of three different non-viral siRNA carriers, including DOTAP lipoplexes (DL), chitosan polyplexes (CP), and solid lipid complexes (SLC). The physicochemical properties of the siRNA-nanocarriers were characterized by dynamic light scattering and gel electrophoresis. After in vitro characterization, the carrier with the most appropriate properties was found to be the DL suspension, which was subsequently loaded into a gellan gum hydrogel matrix and examined for its drug load, stability, and homogeneity. The hydrogels microstructure was investigated by rheology to assess the impact of the rheological properties on the release of the siRNA nanocarriers. A controlled release of complexed siRNA over 60 days in vitro was observed. By comparing the results from fluorescence imaging with data received from HPLC measurements, fluorescence imaging was found to be an appropriate tool to measure the release of siRNA complexes. Finally, the bioactivity of the siRNA released from hydrogel was tested and compared to free DL for its ability to knockdown the GFP expression in a DLD1 colon cancer cell model. The results indicate controlled release properties and activity of the released siRNA. In conclusion, the developed formulation is a promising system to provide local controlled release of siRNA over several weeks.
Collapse
Affiliation(s)
- Anastasios Nalbadis
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
| | - Henrike Lucas
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Oncology/Hematology), Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Faculty of Natural Sciences 1-Biosciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.N.); (M.-L.T.); (H.L.)
- Correspondence:
| |
Collapse
|
45
|
Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, Crommelin DJA. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm 2021; 601:120586. [PMID: 33839230 PMCID: PMC8032477 DOI: 10.1016/j.ijpharm.2021.120586] [Citation(s) in RCA: 782] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.
Collapse
Affiliation(s)
- Linde Schoenmaker
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Gideon Kersten
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands; Coriolis Pharma, Fraunhoferstrasse 18b, 82152 Martinsried, Germany
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands; Coriolis Pharma, Fraunhoferstrasse 18b, 82152 Martinsried, Germany.
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
46
|
Impurity profiling of siRNA by two-dimensional liquid chromatography-mass spectrometry with quinine carbamate anion-exchanger and ion-pair reversed-phase chromatography. J Chromatogr A 2021; 1643:462065. [PMID: 33780886 DOI: 10.1016/j.chroma.2021.462065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022]
Abstract
A short RNA with the sequence of the antisense strand of Patisiran has been selected as test material for the investigation of its common impurities using three different two-dimensional liquid chromatography (2D-LC) platforms. On the one hand, a quinine (QN) carbamate-based weak anion-exchange (AX) stationary phase (QN-AX) and a classical C18 reversed phase (RP) stationary phase in ion-pair (IP) mode with tripropylammonium acetate, respectively, have been used in the first dimension (1D) to provide the selectivity for impurities formed during the synthesis of the RNA. In the next step, certain peaks of interest from 1D have been transferred by multiple-heart-cutting (MHC) into a 2D in which an ESI-MS-compatible non-ionpairing RP method has been used for desalting via a diverter valve to remove non-volatile phosphate buffer components and ion-pair agents, respectively. Thus, a sensitive electrospray-ionization quadrupole time of flight mass spectrometry (ESI-TOF-MS) analysis of resolved impurity peaks of the siRNA has become possible under MS-friendly conditions. With both 2D-LC setups, peak purity of the ON has been evaluated by selective comprehensive (high resolution) sampling of the main peak. In a third MHC 2D-LC approach, the QN-AX LC mode was online coupled with the IP-RPLC in the 2D using UV detection. It allows the separation of additional impurities which coeluted in the first dimension. The potential of these methods for comprehensive impurity profiling of ON therapeutics is illustrated and discussed.
Collapse
|
47
|
Kang ASW, Bernasconi JG, Jack W, Kanavarioti A. Ready-to-use nanopore platform for the detection of any DNA/RNA oligo at attomole range using an Osmium tagged complementary probe. Sci Rep 2020; 10:19790. [PMID: 33188229 PMCID: PMC7666163 DOI: 10.1038/s41598-020-76667-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nanopores can serve as single molecule sensors. We exploited the MinION, a portable nanopore device from Oxford Nanopore Technologies, and repurposed it to detect any DNA/RNA oligo (target) in a complex mixture by conducting voltage-driven ion-channel measurements. The detection and quantitation of the target is enabled by the use of a unique complementary probe. Using a validated labeling technology, probes are tagged with a bulky Osmium tag (Osmium tetroxide 2,2′-bipyridine), in a way that preserves strong hybridization between probe and target. Intact oligos traverse the MinION’s nanopore relatively quickly compared to the device’s acquisition rate, and exhibit count of events comparable to the baseline. Counts are reported by a publicly available software, OsBp_detect. Due to the presence of the bulky Osmium tag, probes traverse more slowly, produce multiple counts over the baseline, and are even detected at single digit attomole (amole) range. In the presence of the target the probe is “silenced”. Silencing is attributed to a 1:1 double stranded (ds) complex that does not fit and cannot traverse this nanopore. This ready-to-use platform can be tailored as a diagnostic test to meet the requirements for point-of-care cell-free tumor DNA (ctDNA) and microRNA (miRNA) detection and quantitation in body fluids.
Collapse
Affiliation(s)
- Albert S W Kang
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA
| | - Janette G Bernasconi
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA
| | | | - Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA.
| |
Collapse
|
48
|
Li F, Su X, Bäurer S, Lämmerhofer M. Multiple heart-cutting mixed-mode chromatography-reversed-phase 2D-liquid chromatography method for separation and mass spectrometric characterization of synthetic oligonucleotides. J Chromatogr A 2020; 1625:461338. [PMID: 32709362 DOI: 10.1016/j.chroma.2020.461338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
Until today, ion-pair reversed-phase chromatography is still the dominating method for analytical characterization of synthetic oligonucleotides. Its hyphenation with mass spectrometry, however, has some drawbacks such as ion-suppression in electrospray ionization. To overcome this problem, we present in this work a multiple heart-cutting (MHC) two-dimensional liquid chromatography (2D-LC) method with ultra-violet (UV) and electrospray ionization (ESI) mass spectrometry (MS) detection. A reversed-phase/weak anion-exchange (RP/WAX) stationary phase in the first dimension (1D) provides the selectivity for separation of structurally closely related oligonucleotide sequences and deletions (shortmers), respectively, using a mixed pH/triethylammonium phosphate buffer gradient at constant organic modifier content. Heart cuts of the oligonucleotide peaks are transferred to the second dimension (2D) via a multiple heart-cutting valve which is equipped with two loop decks. The 2D RP column is used for desalting via a diverter valve. Active solvent modulation enables to refocus the oligonucleotide peak into a sharp zone by 2D RP entirely free of non-volatile buffer components and ion-pair agents. Oligonucleotides can thus be sensitively detected by ESI-QTOF-MS under MS-compatible conditions.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaoli Su
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefanie Bäurer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
49
|
Goyon A, Zhang K. Characterization of Antisense Oligonucleotide Impurities by Ion-Pairing Reversed-Phase and Anion Exchange Chromatography Coupled to Hydrophilic Interaction Liquid Chromatography/Mass Spectrometry Using a Versatile Two-Dimensional Liquid Chromatography Setup. Anal Chem 2020; 92:5944-5951. [DOI: 10.1021/acs.analchem.0c00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandre Goyon
- Research and Early Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly Zhang
- Research and Early Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
50
|
Ultra-High-Performance Reversed-Phase Liquid Chromatography Hyphenated with ESI-Q-TOF-MS for the Analysis of Unmodified and Antisense Oligonucleotides. Chromatographia 2019. [DOI: 10.1007/s10337-019-03844-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|