1
|
Johar D, Hefny HM, Mansy MS, Mekawey AAI, Abdulrahman MS, Zaky S. Cytotoxicity of L-asparaginase from eucaryotic Cladosporium species against breast and colon cancer in vitro. J Egypt Natl Canc Inst 2025; 37:33. [PMID: 40317373 DOI: 10.1186/s43046-025-00270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/06/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Recent statistical analyses indicate a rapid increase in the incidence of breast and colon cancer in Egypt. Although invasive techniques have been widely employed for early detection, diagnosis, and intervention of those cancers, they are associated with inherent risks and limitations, which often result in various complications. Therefore, noninvasive screening methods are inevitable due to their accessibility, cost-effectiveness, and high patient compliance rates. The enzyme L-asparaginase catalyzes the conversion of L-asparagine to L-aspartic acid: key metabolite for tumor cell division, thereby demonstrating anticancer potential. However, the prolonged use of bacterial L-asparaginase may cause allergic reactions and side effects such as diabetes, leukopenia, and co-agglutination disorders. Exploring the anticancer properties of L-asparaginase from different species such as yeast and fungi has been proposed to mitigate these adverse effects. OBJECTIVES This study aimed at extracting and optimizing the expression of L-asparaginase from the eukaryotic Cladosporium species, as to assess its anticancer potential against breast and colon cancer cell lines. METHOD Cladosporium species were identified morphologically and then cultured on modified Czapek-Dox Agar (mCDA) medium supplemented with L-asparagine to induce L-asparaginase production. Submerged fermentation was employed to optimize enzyme production. The enzyme activity was quantified using the Nesslerization method, and its cytotoxicity against colon and breast cancer cell lines was assessed using the (MTT) assay. RESULTS Among the Cladosporium isolates, 18.4% exhibited positive plate assay test, with enzyme activities ranging from 255 to 428 U/mL. Immunoblotting using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed single protein band of approximately 37 kDa, consistent with L-asparaginase activity. Cytotoxicity assay of purified L-asparaginase showed significant antiproliferative effects against breast cancer cell lines MCF-7 and MDA-MB-231, with IC50 values of 36.26 and 45.7 µg/mL, respectively. CONCLUSION Certain eukaryotic Cladosporium strains are potential sources for the anticancer L-asparaginase production.
Collapse
Affiliation(s)
- Dina Johar
- Biochemistry and Nutrition Department, Ain Shams University, Faculty of Women for Arts, Sciences and Education, Heliopolis, Cairo, Egypt.
| | - Hamido M Hefny
- Department of Microbiology and Immunology, Al-Azhar University, Cairo, Egypt
| | - Moselhy S Mansy
- Department of Microbiology and Immunology, Al-Azhar University, Cairo, Egypt
| | - Amal A I Mekawey
- Regional Center for Mycology and Biotechnology RCMB, Al-Azhar University, Cairo, Egypt
| | | | - Samy Zaky
- Hepatogastroenterology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Saleh AA, El-Aref HM, Ezzeldin AM, Ewida RM, Al-Bedak OAM. L-asparaginase from the novel Fusarium falciforme AUMC 16563: extraction, purification, characterization, and cytotoxic effects on PC-3, HePG-2, HCT-116, and MCF-7 cell lines. BMC Microbiol 2025; 25:145. [PMID: 40091012 PMCID: PMC11912728 DOI: 10.1186/s12866-025-03833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND L-asparaginase has been a widely employed as antitumor enzyme for the treatment of acute lymphoblastic leukemia for almost three decades. The enzyme takes advantage of the inability of tumor cells to synthesize the L-asparagine and is killed by L-asparagine deprivation. Despite the availability of bacterial sources for L-asparaginase, there is a growing interest in identifying new microbial sources with improved therapeutic properties. Therefore, this study aims to investigate the production of L-asparaginase from a fungal source, to explore its potential as a novel alternative enzyme for cancer treatment. RESULTS Fusarium falciforme AUMC 16563 was used to produce L-asparaginase (123.42 U/mL) after 5 days, 0.2% glucose and 1.0% asparagine; were used at 25 ˚C and pH 8.0. Employing two columns of chromatography (DEAE-cellulose and Sephacryl S 200 HR), the enzyme was purified 14.26-fold, reaching a maximum activity of 5109.4 U/mg. SDS-PAGE revealed a 46.06 kDa asparaginase. The Km and Vmax values for pure asparaginase using asparagine was 5.77 × 10- 2 mM and 128.22 µmol/min. Additionally, Fusarium falciforme AUMC 16563' pure asparaginase demonstrated anticancer activity against PC-3 (a prostate cell line) with an IC50 of 78.6 µg/mL, HePG-2 (a human hepatocellular carcinoma cell line) with an IC50 of 69.6 µg/mL, HCT-116 (a colon cell line) with an IC50 of 51.5 µg/mL and MCF-7 (a breast cancer cell line) with an IC50 of 32.8 µg/mL. The expression levels of proapoptotic genes (BAX and p53) were significantly greater in the breast cancer cell lines treated with asparaginase than in the negative control breast cancer cell lines.The degree of DNA fragmentation in MCF-7 cells treated with Fusarium falciforme 16563' pure asparaginase was 27.2 ± 0.69%, and that in MCF-7 cells treated with the drug Doxorubicin 24.1 ± 0.86% was significantly greater than that in the corresponding negative control cells 9.1 ± 1.01%. Finally, the biochemical profiles revealed no impact on the liver or the kidneys. These results suggested that asparaginase had relatively little effect on liver function. All hematological parameters were within normal range during the experiment. CONCLUSIONS The results of the present study revealed a potent L-ASNase from endophytic F. falciforme isolated from Trifolium alexandrinum, which performs well under a variety of environmental circumstances and can be used in a number of commercial applications.
Collapse
Affiliation(s)
- Abdullah Abobakr Saleh
- Molecular Biology Researches & Studies Institute, Assiut University, Asyut, Egypt.
- South Egypt Cancer Institute, Department of Clinical Pathology and Hematological Malignancies, Assiut University, Asyut, 71511, Egypt.
| | - Hamdy M El-Aref
- Molecular Biology Researches & Studies Institute, Assiut University, Asyut, Egypt.
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71511, Egypt.
| | - Azza M Ezzeldin
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Asyut, 71511, Egypt
| | - Rania M Ewida
- Food Hygiene, Safety and Technology Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, 72511, Egypt
| | - Osama A M Al-Bedak
- Assiut University Mycological Centre, Assiut, 71511, Egypt
- ERU Science & Innovation Center of Excellence, Egyptian Russian University, Badr City, 11829, Egypt
| |
Collapse
|
3
|
Natanzi SSM, Asad S, Mahboudi H, Eslami S. Cloning, Expression, Characterization and in silico studies of l-asparaginase from Vibrio sp. (GBPx3). Biochimie 2025; 233:122-131. [PMID: 40074141 DOI: 10.1016/j.biochi.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
l-asparaginase is a critical therapeutic enzyme for treating acute lymphoblastic leukemia (ALL), a common childhood malignancy. In this study, the l-asparaginase coding sequence from halophilic Vibrio sp. (GBPx3) was cloned, expressed in Escherichia coli, and characterized. The enzyme exhibited a molecular weight of 39.2 kDa and demonstrated a Km of 4.517 mM, kcat of 2.88 1/s, and Vmax of 0.1055 μmol/min, reflecting high specificity for l-asparagine and minimal activity (0.4 %) toward l-glutamine. Optimal activity was observed at physiological conditions (37 °C, pH 7.5 and 125-150 mM NaCl), consistent with human serum osmolality. The half-life of the enzyme was 2.64 h in human serum at 37 °C that is longer than the half-life reported for E. colil-asparaginase. Additionally, the enzyme had no toxic impact on human umbilical vein endothelial cells (HUVEC) and human erythrocytes. The recombinant l-asparaginase was predicted to be 29.3 % helix, 35.6 % turns, and 35.1 % random by circular dichroism spectroscopy. AlphaFold predicted a 3D structure with promising validation scores. The molecular docking study showed that Thr14, Ser60, Thr91, and Asp92 are putative active site residues, with a negative binding energy of -4.5 kJ/mol for the substrate-enzyme interaction. The enzyme's low immunogenicity, high serum stability, and reduced glutaminase activity highlight its potential as a safer therapeutic alternative. Future experiments and protein engineering studies are needed to explore enzyme's in vivo efficacy and improve its clinical effectiveness.
Collapse
Affiliation(s)
- Sareh Sadat Mousavi Natanzi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Mahboudi
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Hosseini K, Zivari-Ghader T, Dilmaghani A, Akbarzadehlaleh P, Jafarzadeh-Chehraghi EA. Review on up and downstream processing of L-asparaginase. Prep Biochem Biotechnol 2025:1-9. [PMID: 39853162 DOI: 10.1080/10826068.2024.2449139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
L-asparaginase (asparagine amidohydrolase) contributes to 40% of the total enzyme demands worldwide and is one-third of the global requirement as an anti-cancerous drug in treating acute lymphocytic leukemia (ALL), a type of leukemia. This protein breaks down L-asparagine into aspartic acid and ammonia those involved in ALL, rely on for growth and survival. Both non-recombinant and recombinant L-asparaginase can be produced by bacteria when a suitable substrate and method (solid-state fermentation (SSF) or submerged fermentation (SmF) which are techniques to grow microorganisms under controlled conditions), is provided. Between both L-asparaginase's isozymes, asparaginase type II displays higher specific action against L-asparagine and precisely shows antitumor activity. The applied methods in purification of L-asparaginase in the frame of three phases of protein purification strategy known as CIPP (including capture, intermediate purification, and polishing phase) are discussed in this review. Depending on whether the production of the enzyme is intracellular or extracellular, various steps in each phase, like removal of insoluble material, extraction, concentration, and purification, must followed. In this review, authors summarize the upstream processes in L-asparaginase production and the various applied chromatographic and non-chromatographic methods in each step of CIPP, in downstream processes.
Collapse
Affiliation(s)
- Kamran Hosseini
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Hassan MG, El-Sayyad GS, Abdel-Monem MO, Malash MN, Kishk MA, El Awady ME, El-Khonezy MI. Unravelling the outcome of L-glutaminase produced by Streptomyces sp. strain 5 M as an anti-neoplasm activity. Microb Cell Fact 2025; 24:4. [PMID: 39754133 PMCID: PMC11699688 DOI: 10.1186/s12934-024-02606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial. RESULTS In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments. Using a qualitative fast plate assay, they were tested for L-glutaminase production, and nine of them produced a significant amount of pink L-glutamine. Streptomyces sp. strain 5 M was identified by examining the 16S rRNA gene in the promising strain G8. A pH of 7.5, an incubation temperature of 40 °C, and the use of glucose and peptone as the carbon and nitrogen sources, respectively, produced the highest quantities of L-glutaminase. The molecular weight of the isolated L-glutaminase was estimated to be 52 kDa using SDS-PAGE analysis. At pH 7.5 and Temp., 40 °C, the isolated enzyme exhibited its highest levels of stability and activity. The isolated enzyme's Km and Vmax values were 2.62 mM and 10.20 U/ml, respectively. Strong toxicity against HepG-2, HeLa, and MCF-7 was observed due to the anticancer properties of the isolated L-glutaminase. CONCLUSION Our findings include the discovery of Streptomyces sp. strain 5 M, which yields a free L-glutaminase and maybe a possible applicant for extra pharmacological investigation as an antineoplastic drug.
Collapse
Affiliation(s)
- Mervat G Hassan
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed O Abdel-Monem
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Mohamed N Malash
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
| | - Mona A Kishk
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Mohamed E El Awady
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, El-Buhouth St. 33, Dokki, Cairo, Egypt
| | - Mohamed I El-Khonezy
- Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
6
|
Jana A, Biswas S, Ghosh R, Modak R. Recent advances in L-Asparaginase enzyme production and formulation development for acrylamide reduction during food processing. Food Chem X 2025; 25:102055. [PMID: 39758072 PMCID: PMC11696629 DOI: 10.1016/j.fochx.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
L-asparagine is an essential amino acid for cell growth and common constituent of all the proteins. During high temperature food processing it reacts with reducing sugars and leads to acrylamide production through a complex process known as Maillard reaction. L-asparaginase hydrolyses the amine-group of L-asparagine to produce aspartic acid and ammonia. L-asparaginase pre-treatment of potato led to more than 80 % reduction of acrylamide content in foods like french fries, potato chips and in flour-dough based products. New cost-effective strategies for large scale L-asparaginase production and diverse types of formulations will be needed to successfully integrate L-asparaginase in food processing. Here we comprehensively review the recent developments in enzyme production to enhance the yield, activity and specificity of L-asparaginase. Novel liquid and lyophilized formulations are developed to enhance stability and activity of the enzyme under different conditions. These developments present a promising approach to enzymatically mitigate acrylamide formation during food processing.
Collapse
Affiliation(s)
- Arindam Jana
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
- KIIT - Technology Business Incubator (KIIT-TBI), KIIT-DU, Bhubaneswar 751024, Odisha, India
| | - Soumyajit Biswas
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
- University of Tartu: Faculty of Science and Technology, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Rahul Modak
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| |
Collapse
|
7
|
Sapkota H, Singhania U, Jadhav S, Pathan EK, Roy B. Isolation, Identification, and Characterization of L-asparaginase-Producing Human Commensal Bacterial Strains: A Promising Next-Gen Probiotics. Appl Biochem Biotechnol 2025; 197:241-267. [PMID: 39110329 DOI: 10.1007/s12010-024-05002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
L-asparaginase is an FDA-approved drug for treating blood cancer, but its inherent antigenicity and L-glutaminase activity are associated with hypersensitivity and organ toxicity. Extracellularly produced glutaminase-free L-asparaginase from human commensal bacteria may be a good alternative to reduce the side effects of therapeutic L-asparaginase. Here, we report the isolation and characterization of fourteen L-asparaginase-producing bacterial strains belonging to the genera Acinetobacter, Escherichia, Klebsiella, and Pseudomonas from human stool and saliva samples. To the best of our knowledge, this is the first report of L-asparaginase-producing human commensal bacterial strains isolated from healthy individuals. L-asparaginase produced by fecal and salivary isolates exhibited significantly higher activity (3.64 to 16.96 U/ml) toward L-asparagine than L-glutamine. Interestingly, L-asparaginase from fecal isolates, Escherichia coli strains 3F1 and 3F2 and salivary isolate Klebsiella pneumoniae 3S3, exhibited no L-glutaminase activity. These isolates were also sensitive to all tested antibiotics. Additionally, these three isolates demonstrated tolerance to pH 3.0 (≥ 88% survival) and 0.3% bile (≥ 95% survival), indicating their potential as probiotics. Among these isolates, L-asparaginase from the highest-producing K. pneumoniae 3S3 strain was found to be a homodimer, with native and subunit molecular weights of 110 kDa and 55 kDa, respectively. The purified enzyme can be further explored for its antitumor and immunomodulatory properties. Overall, future research can be expanded to include the use of a pool of human commensal bacteria as genuine and alternative sources of L-asparaginase for effective cancer treatments and cutting-edge next-generation probiotics.
Collapse
Affiliation(s)
- Himal Sapkota
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Unnati Singhania
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Savita Jadhav
- Department of Microbiology, LNCT Medical College and Sewakunj Hospital, Kanadia Road, Indore, 452001, Madhya Pradesh, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
8
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
9
|
El-Naggar NEA, Hamouda RA, Elshafey N. Artificial intelligence-based optimization for extracellular L-glutaminase free L-asparaginase production by Streptomyces violaceoruber under solid state fermentation conditions. Sci Rep 2024; 14:29625. [PMID: 39609450 PMCID: PMC11604706 DOI: 10.1038/s41598-024-77867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
The bacterial L-asparaginase is a highly effective chemotherapeutic drug and a cornerstone of treatment protocols used for treatment the acute lymphoblastic leukemia in pediatric oncology. A potential actinomycete isolate, Streptomyces sp. strain NEAE-99, produces glutaminase-free L-asparaginase was isolated from a soil sample. This potential strain was identified as S. violaceoruber strain NEAE-99. The central composite design (CCD) approach was utilized for finding the optimal values for four variables including the mixture of soybean and wheat bran in a 1:1 ratio (w/w), the concentrations of dextrose, L-asparagine, and potassium nitrate under solid state fermentation conditions. Through the use of an artificial neural network (ANN), the production of L-asparaginase by S. violaceoruber has been investigated, validated, and predicted in comparison to CCD. It was found that the optimal predicted conditions for maximum L-asparaginase production (216.19 U/gds) were 8.46 g/250 mL Erlenmeyer flask of soybean and wheat bran mixture in a 1:1 ratio (w/w), 2.2 g/L of dextrose, 18.97 g/L of L-asparagine, and 1.34 g/L of KNO3. The experimental results (207.55 U/gds) closely approximated the theoretical values (216.19 U/gds), as evidenced by the validation. This suggests that the ANN exhibited a high degree of precision and predictive capability.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Ragaa A Hamouda
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Naglaa Elshafey
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish, 45511, Egypt
| |
Collapse
|
10
|
Hassan FS, El-Fakharany EM, El-Maradny YA, Saleh AK, El-Sayed MH, Mazi W, Omer N, Abdelaziz MA, Jame R, Alatawi IS, El-Gendi H. Comprehensive insight into exploring the potential of microbial enzymes in cancer therapy: Progress, challenges, and opportunities: A review. Int J Biol Macromol 2024; 277:134535. [PMID: 39111467 DOI: 10.1016/j.ijbiomac.2024.134535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024]
Abstract
Microbial enzymes are crucial catalysts in various industries due to their versatility and efficiency. The microbial enzymes market has recently expanded due to increased demand for many reasons. Among them are eco-friendly solutions, developing novel microbial strains with enhanced enzymes that perform under harsh conditions, providing sustainability, and raising awareness about the benefits of enzyme-based products. By 2030, the global enzyme market is expected to account for $525 billion, with a growth rate of 6.7 %. L-asparaginase and L-glutaminase are among the leading applied microbial enzymes in antitumor therapy, with a growing market share of 16.5 % and 9.5 %, respectively. The use of microbial enzymes has opened new opportunities to fight various tumors, including leukemia, lymphosarcoma, and breast cancer, which has increased their demand in the pharmaceutical and medicine sectors. Despite their promising applications, commercial use of microbial enzymes faces challenges such as short half-life, immunogenicity, toxicity, and other side effects. Therefore, this review explores the industrial production, purification, formulation, and commercial utilization of microbial enzymes, along with an overview of the global enzyme market. With ongoing discoveries of novel enzymes and their applications, enzyme technology offers promising avenues for cancer treatment and other therapeutic interventions.
Collapse
Affiliation(s)
- Fareed Shawky Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria, Egypt.
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess development department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
11
|
Xiao F, Zhang Y, Zhang L, Li S, Chen W, Shi G, Li Y. Advancing Bacillus licheniformis as a Superior Expression Platform through Promoter Engineering. Microorganisms 2024; 12:1693. [PMID: 39203534 PMCID: PMC11356801 DOI: 10.3390/microorganisms12081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus licheniformis is recognised as an exceptional expression platform in biomanufacturing due to its ability to produce high-value products. Consequently, metabolic engineering of B. licheniformis is increasingly pursued to enhance its utility as a biomanufacturing vehicle. Effective B. licheniformis cell factories require promoters that enable regulated expression of target genes. This review discusses recent advancements in the characterisation, synthesis, and engineering of B. licheniformis promoters. We highlight the application of constitutive promoters, quorum sensing promoters, and inducible promoters in protein and chemical synthesis. Additionally, we summarise efforts to expand the promoter toolbox through hybrid promoter engineering, transcription factor-based inducible promoter engineering, and ribosome binding site (RBS) engineering.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lihuan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Nag N, Ray T, Tapader R, Gope A, Das R, Mahapatra E, Saha S, Pal A, Prasad P, Pal A. Metallo-protease Peptidase M84 from Bacillusaltitudinis induces ROS-dependent apoptosis in ovarian cancer cells by targeting PAR-1. iScience 2024; 27:109828. [PMID: 38799586 PMCID: PMC11126781 DOI: 10.1016/j.isci.2024.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
We have purified Peptidase M84 from Bacillus altitudinis in an effort to isolate anticancer proteases from environmental microbial isolates. This metallo-protease had no discernible impact on normal cell survival, but it specifically induced apoptosis in ovarian cancer cells. PAR-1, a GPCR which is reported to be overexpressed in ovarian cancer cells, was identified as a target of Peptidase M84. We observed that Peptidase M84 induced PAR-1 overexpression along with activating its downstream signaling effectors NF-κB and MAPK to promote excessive reactive oxygen species (ROS) generation. This evoked apoptotic death of the ovarian cancer cells through the intrinsic route. In in vivo set-up, weekly intraperitoneal administration of Peptidase M84 in syngeneic mice significantly diminished ascites accumulation, increasing murine survival rates by 60%. Collectively, our findings suggested that Peptidase M84 triggered PAR-1-mediated oxidative stress to act as an apoptosis inducer. This established Peptidase M84 as a drug candidate for receptor mediated targeted-therapy of ovarian cancer.
Collapse
Affiliation(s)
- Niraj Nag
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Tanusree Ray
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rima Tapader
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rajdeep Das
- Molecular Cell Biology of Autophagy Lab, The Francis Crick Institute, 1, Midland Road, London NW1 1AT, UK
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Saibal Saha
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Ananda Pal
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital and Medical Center, 3333 Burnet Avenue, Cincinnati 45229-3026, OH, USA
| | - Amit Pal
- Division of Molecular Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| |
Collapse
|
13
|
Abdelrazek NA, Saleh SE, Raafat MM, Ali AE, Aboulwafa MM. Production of highly cytotoxic and low immunogenic L-asparaginase from Stenotrophomonas maltophilia EMCC2297. AMB Express 2024; 14:51. [PMID: 38704453 PMCID: PMC11069494 DOI: 10.1186/s13568-024-01700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
L-asparaginase is an important therapeutic enzyme that is frequently utilized in the chemotherapy regimens of adults as well as pediatric patients with acute lymphoblastic leukemia. However, a high rate of hypersensitivity with prolonged use has limited its utilization. Stenotrophomonas maltophilia (S. maltophilia) EMCC2297 isolate was reported as a novel and promising source for L- asparaginase. The present study aimed at the production, purification, and characterization of L- asparaginase from S. maltophilia EMCC2297 isolate. The microbial production of L-asparaginase by the test isolate could be increased by pre-exposure to chloramphenicol at 200 µg/ml concentration. S. maltophilia EMCC2297 L-asparaginase could be purified to homogeneity by ammonium sulphate precipitation and the purified form obtained by gel exclusion chromatography showed total activity of 96.4375 IU/ml and specific activity of 36.251 IU/mg protein. SDS-PAGE analysis revealed that the purified form of the enzyme is separated at an apparent molecular weight of 17 KDa. Michaelis-Menten constant analysis showed a Km value of 4.16 × 10- 2 M with L-asparagine as substrate and Vmax of 10.67 IU/ml. The antitumor activity of the purified enzyme was evaluated on different cell lines and revealed low IC50 of 2.2 IU/ml and 2.83 IU/ml for Hepatocellular cancer cell line (HepG-2), human leukemia cancer cell line (K-562), respectively whereas no cytotoxic effect could be detected on normal human lung fibroblast cells (MRC-5). However, mice treated with native L-asparaginase showed lower IgG titre compared to commercial L-asparaginase. This study highlights the promising characteristics of this enzyme making it a valuable candidate for further research and development to be an adduct in cancer chemotherapy.
Collapse
Affiliation(s)
- Nada A Abdelrazek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Sarra E Saleh
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Marwa M Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Amal E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sudr, Egypt.
| |
Collapse
|
14
|
Tsegaye K, Tsehai BA, Getie B. Desirable L-asparaginases for treating cancer and current research trends. Front Microbiol 2024; 15:1269282. [PMID: 38591038 PMCID: PMC11001194 DOI: 10.3389/fmicb.2024.1269282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Amino acid depletion therapy is a promising approach for cancer treatment. It exploits the differences in the metabolic processes between healthy and cancerous cells. Certain microbial enzymes induce cancer cell apoptosis by removing essential amino acids. L-asparaginase is an enzyme approved by the FDA for the treatment of acute lymphoblastic leukemia. The enzymes currently employed in clinics come from two different sources: Escherichia coli and Erwinia chrysanthemi. Nevertheless, the search for improved enzymes and other sources continues because of several factors, including immunogenicity, in vivo instability, and protease degradation. Before determining whether L-asparaginase is clinically useful, research should consider the Michaelis constant, turnover number, and maximal velocity. The identification of L-asparaginase from microbial sources has been the subject of various studies. The primary goals of this review are to explore the most current approaches used in the search for therapeutically useful L-asparaginases and to establish whether these investigations identified the crucial characteristics of L-asparaginases before declaring their therapeutic potential.
Collapse
Affiliation(s)
- Kindu Tsegaye
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | | | - Birhan Getie
- Department of Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
15
|
Lailaja VP, Hari V, Sumithra TG, Anusree VN, Suresh G, Sanil NK, Sharma S R K, Gopalakrishnan A. In vitro and in silico analysis unravelled clinically desirable attributes of Bacillus altitudinis L-asparaginase. J Appl Microbiol 2024; 135:lxae062. [PMID: 38467390 DOI: 10.1093/jambio/lxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
AIMS To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.
Collapse
Affiliation(s)
- V P Lailaja
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Vishnu Hari
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - V N Anusree
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
- Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - N K Sanil
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Krupesha Sharma S R
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| |
Collapse
|
16
|
Chakraborty M, Shivakumar S. Application of sequential design for enhanced L-asparaginase synthesis from Ganoderma australe GPC191. World J Microbiol Biotechnol 2024; 40:85. [PMID: 38296867 DOI: 10.1007/s11274-023-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
With an increasing demand for L-asparaginase in pharmaceutical and food sectors for its cytostatic and acrylamide-reducing qualities, there's a need to discover novel, highly productive enzyme sources with improved pharmacokinetic profiles. Keeping this in mind, the present study aimed at maximizing the potential of Ganoderma australe GPC191 to produce L-asparaginase by fermentation medium optimization using statistical validation. Of the 11 physicochemical parameters evaluated under submerged fermentation conditions through one-factor-at-a-time approach and Plackett-Burman design, only four parameters (inoculum load, L-asparagine, soybean meal, and initial pH) influenced L-asparaginase production, significantly (p < 0.001). The optimal levels and interaction effects of these on the overall production were further evaluated by the central composite rotatable design of response surface methodology. Post-optimization, 27.34 U/mL was predicted as the maximum activity at pH 7 with 5n inoculum load and 15 g/L each of L-asparagine and soybean meal. Experimental validation yielded an activity of 28.52 U/mL, indicating an overall 18.17-fold increase from the unoptimized stage. To our knowledge, this is the first report signifying the L-asparaginase production aptitude of G. australe with sequential statistical validation using agricultural waste, which can serve as a model to enhance its yields, offering a sustainable and cost-effective solution for industrial application.
Collapse
Affiliation(s)
- Meghna Chakraborty
- Department of Microbiology and Botany, School of Sciences, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India
| | - Srividya Shivakumar
- School of Allied Healthcare and Sciences (SAHS), JAIN (Deemed-to-be University), Bangalore, Karnataka, 560066, India.
| |
Collapse
|
17
|
Kumar V, Kumar R, Sharma S, Shah A, Chaturvedi CP, Verma D. Cloning, expression, and characterization of a novel thermo-acidophilic l-asparaginase of Pseudomonas aeruginosa CSPS4. 3 Biotech 2024; 14:54. [PMID: 38282912 PMCID: PMC10808081 DOI: 10.1007/s13205-024-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
In the present investigation, a soil isolate Pseudomonas aeruginosa CSPS4 was used for retrieving the l-asparaginase encoding gene (Asn_PA) of size 1089 bp. The gene was successfully cloned into the pET28a (+) vector and expressed into E. coli BL21(DE3) for characterization of the protein. The recombinant rAsn_PA enzyme was purified by affinity chromatography using Ni-NTA2+ resins. Molecular weight analysis using SDS-PAGE unveiled rAsn_PA as a monomeric protein of molecular weight ~ 35 kDa. On characterization, the recombinant rAsn_PA showed optimum pH and temperature of 6.0 and 60 °C, respectively, along with significant stability at 50-70 °C, along with 50% residual activity at 80 °C after 3 h of incubation. Similarly, the rAsn_PA exhibited asparaginase activity over a broad pH range between 4 and 8. The enzyme was not significantly inhibited in the presence of detergents. The rAsn_PA was grouped into the asparaginase-glutaminase family II due to the glutaminase activity. The purified rAsn_PA showed antitumor activity by exhibiting a cytotoxic effect on three different cell lines, where IC50 of purified rAsn_PA was 2.3 IU, 3.7 IU, and 20.5 IU for HL-60, MOLM-13, and K-562 cell lines, respectively. Thus, recombinant rAsn_PA of P. aeruginosa CSPS4 may also be explored as an antitumor agent after reducing or minimizing the glutaminase activity. Thermo-acidophilic properties of rAsn_PA make it a novel enzyme that needs to be further investigated.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Ravi Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Arunim Shah
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| |
Collapse
|
18
|
Darnal S, Raj R, Chhimwal J, Thakur S, Padwad YS, Singh D. Apoptosis and cell cycle arrest of leukemic cells by a robust and stable L-asparaginase from Pseudomonas sp. PCH199. Int J Biol Macromol 2024; 258:128739. [PMID: 38096943 DOI: 10.1016/j.ijbiomac.2023.128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Biomolecules obtained from microorganisms living in extreme environments possess properties that have pharmacokinetic advantages. Enzyme assay revealed recombinant L-ASNase, an extremozyme from Pseudomonas sp. PCH199 is to be highly stable with 90 % activity (200 h) at 37 °C. The stability of the enzyme in human serum (50 % activity maintained in 63 h) reveals high therapeutic potential with less dosage. The enzyme exhibited cytotoxicity to K562 blood cancer cell lines with IC50 of 0.37 U/mL without affecting the IEC-6 normal epithelial cell line. Due to the depletion of L-asparagine, K562 cells experience nutritional stress that results in the abruption of metabolic processes and eventually leads to apoptosis. Comparative studies on MCF-7 cells also revealed the same fate. Due to nutritional stress induced by L-ASNase treatment, mitochondrial membrane potential was lost, and reactive oxygen species were increased to 48 % (K562) and 21 % (MCF-7) as indicated by flow cytometric analysis. DAPI staining with prominent nuclear morphological changes visualized under the fluorescent microscope confirmed apoptosis in both cancer cells. Treatment increases pro-apoptotic Bax protein, and eventually, the cell cycle is arrested at the G2/M phase in both cell lines. Therefore, the current study paves the way for PCH199 L-ASNase to be considered a potential chemotherapeutic agent for treating acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sanyukta Darnal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Ravi Raj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jyoti Chhimwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Shubham Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
19
|
Mihooliya KN, Nandal J, Kalidas N, Ashish, Chand S, Verma DK, Bhattacharyya MS, Sahoo DK. Assessment of structural behaviour of a new L-asparaginase and SAXS data-based evidence for catalytic activity in its monomeric form. Int J Biol Macromol 2023; 253:126803. [PMID: 37689286 DOI: 10.1016/j.ijbiomac.2023.126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study reports the structural and functional characterization of a new glutaminase-free recombinant L-asparaginase (PrASNase) from Pseudomonas resinovorans IGS-131. PrASNase showed substrate specificity to L-asparagine, and its kinetic parameters, Km, Vmax, and kcat were 9.49 × 10-3 M, 25.13 IUmL-1 min-1, and 3.01 × 103 s-1, respectively. The CD spectra showed that PrASNase consisted of 18.5 % helix, 21.5 % antiparallel sheets, 4.2 % parallel sheets, 14 % turns, and rest other structures. FTIR was used for the functional characterization, and molecular docking predicted that the substrate interacts with serine, alanine, and glutamine in the binding pocket of PrASNase. Differing from known asparaginases, structural characterization by small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) unambiguously revealed PrASNase to exist as a monomer in solution at low temperatures and oligomerized to a higher state with temperature rise. Through SAXS studies and enzyme assay, PrASNase was found to be mostly monomer and catalytically active at 37 °C. Furthermore, this glutaminase-free PrASNase showed killing effects against WIL2-S and TF-1.28 cells with IC50 of 7.4 μg.mL-1 and 5.6 μg.mL-1, respectively. This is probably the first report with significant findings of fully active L-asparaginase in monomeric form using SAXS and AUC and demonstrated the potential of PrASNase in inhibiting cancerous cells, making it a potential therapeutic candidate.
Collapse
Affiliation(s)
- Kanti N Mihooliya
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Jitender Nandal
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nidhi Kalidas
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Ashish
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Subhash Chand
- National Institute of Biologicals, Ministry of Health & Family Welfare, NOIDA, Uttar Pradesh, India
| | - Dipesh K Verma
- Structural Biology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mani S Bhattacharyya
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Debendra K Sahoo
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
20
|
Parashiva J, Nuthan BR, Rakshith D, Satish S. Endophytic Fungi as a Promising Source of Anticancer L-Asparaginase: A Review. Curr Microbiol 2023; 80:282. [PMID: 37450223 DOI: 10.1007/s00284-023-03392-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
L-asparaginase is a tetrameric enzyme from the amidohydrolases family, that catalyzes the breakdown of L-asparagine into L-aspartic acid and ammonia. Since its discovery as an anticancer drug, it is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. Apart from its use in the biopharmaceutical industry, it is also used to reduce the formation of a carcinogenic substance called acrylamide in fried, baked, and roasted foods. L-asparaginase is derived from many organisms including plants, bacteria, fungi, and actinomycetes. Currently, L-asparaginase preparations from Escherichia coli and Erwinia chrysanthemi are used in the clinical treatment of acute lymphoblastic leukemia. However, they are associated with low yield and immunogenicity problems. At this juncture, endophytic fungi from medicinal plants have gained much attention as they have several advantages over the available bacterial preparations. Many medicinal plants have been screened for L-asparaginase producing endophytic fungi and several studies have reported potent L-asparaginase producing strains. This review provides insights into fungal endophytes from medicinal plants and their significance as probable alternatives for bacterial L-asparaginase.
Collapse
Affiliation(s)
- Javaraiah Parashiva
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | | | - Devaraju Rakshith
- Department of Microbiology, Yuvaraja's College, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Sreedharamurthy Satish
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
21
|
Parashiva J, Nuthan BR, Bharatha M, Praveen R, Tejashwini P, Satish S. Response surface methodology based optimized production, purification, and characterization of L-asparaginase from Fusarium foetens. World J Microbiol Biotechnol 2023; 39:252. [PMID: 37442849 DOI: 10.1007/s11274-023-03684-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
L-asparaginase is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. L-asparaginase obtained from bacteria exhibits hypersensitive reactions including various side effects. The present work aimed to optimize growth parameters for maximum production of L-asparaginase by Fusarium foetens through response surface methodology, its purification, and characterization. The optimization of L-asparaginase production by Fusarium foetens was initially done through a one-factor-at-a-time method. L-asparaginase production was further optimized using a central composite design based response surface methodology. The maximum L-asparaginase activity of 12.83 IU/ml was obtained under the following growth conditions; temperature-27.5 °C, pH-8, inoculum concentration-1.5 × 106 spores/ml, and incubation period-7 days. In comparison with the unoptimized growth conditions (4.58 IU/ml), the optimization led to a 2.65-fold increase in the L-asparaginase activity. The L-asparaginase from Fusarium foetens was purified 15.60-fold, with a yield of 39.89% using DEAE-cellulose column chromatography. After purification, the L-asparaginase activity was determined to be 127.26 IU/ml and the specific activity was found to be 231.38 IU/mg. The molecular mass was estimated to be approximately 37 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme showed optimum activity at pH 5, and a temperature of 40 °C. The enzyme showed 100% specificity towards L-asparagine and no activity towards L-glutamine. Its activity was enhanced by Mn2+, Fe2+, and Mg2, while it was inhibited by β-mercaptoethanol and EDTA. The Km and Vmax of the purified L-asparaginase were found to be 23.82 mM and 210.3 IU/ml respectively. The results suggest that Fusarium foetens could be a potent candidate for the bioprocessing of L-asparaginase at a large scale.
Collapse
Affiliation(s)
- Javaraiah Parashiva
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | | | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Purushotham Tejashwini
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | - Sreedharamurthy Satish
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
22
|
Rath G, Nivedita S, Behera SS, Behera HT, Gouda SK, Raina V, Achary KG, Behera SK, Ray L. l-Asparaginase producing novel Streptomyces sp. HB2AG: optimization of process parameters and whole genome sequence analysis. 3 Biotech 2023; 13:201. [PMID: 37215374 PMCID: PMC10195970 DOI: 10.1007/s13205-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
l-asparaginase (ASNase) is a key enzyme widely used as an anti-cancer drug and is also used in the pharmaceutical and food processing industries. This enzyme's applications are determined by its source and nature. The production of the enzyme through the fermentation process is also crucial for economic feasibility. Searching for a new potent microbial strain is necessary for increased ASNase synthesis. In this work, a potent strain was isolated from the sediment of Chilika Lake and selected for its high ASNase production potential. It was recognized following Bergey's manual of determinative and phylogenetic analysis was carried out by 16S rDNA sequencing. The isolated organism was Streptomyces sp. HB2AG. Additionally, a genome-wide analysis of HB2AG was performed. The result showed that the HB2AG genome possesses a chromosome with 6,099,956 bp and GC content of 74.0%. The whole genome analysis of the strain HB2AG revealed the presence of ASNase (ansA, ansB) and Asparagine synthase (asnB) in the HB2AG genome. Optimization of media composition is crucial for microbial growth and obtaining the desired end product. The current effort focuses on the Taguchi orthogonal design to determine optimum factor combinations that would allow the strain to produce maximum ASNase enzyme. Results showed that compared to unoptimized media, approximately 1.76-fold higher ASNase production was observed in Sea Water Luria Bertani (SWLB) media, pH-5, 0.5% (w/v) of lactose, 0.5% (w/v) of casein, 2.5% (w/v) NaCl, 1 mM Ca2+ and 0.1% Tween 80. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03620-0.
Collapse
Affiliation(s)
- Gupteswar Rath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | - Suchismita Nivedita
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | | | | | - Sudhansu Kumar Gouda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | - Vishakha Raina
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | | | | | - Lopamudra Ray
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
- School of Law, KIIT Deemed to be University, Bhubaneswar, Odisha India
- School of Biotechnology and School of Law, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha India
| |
Collapse
|
23
|
Chi H, Zhu X, Shen J, Lu Z, Lu F, Lyu Y, Zhu P. Thermostability enhancement and insight of L-asparaginase from Mycobacterium sp. via consensus-guided engineering. Appl Microbiol Biotechnol 2023; 107:2321-2333. [PMID: 36843197 DOI: 10.1007/s00253-023-12443-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Acrylamide alleviation in food has represented as a critical issue due to its neurotoxic effect on human health. L-Asparaginase (ASNase, EC 3.5.1.1) is considered a potential additive for acrylamide alleviation in food. However, low thermal stability hinders the application of ASNase in thermal food processing. To obtain highly thermal stable ASNase for its industrial application, a consensus-guided approach combined with site-directed saturation mutation (SSM) was firstly reported to engineer the thermostability of Mycobacterium gordonae L-asparaginase (GmASNase). The key residues Gly97, Asn159, and Glu249 were identified for improving thermostability. The combinatorial triple mutant G97T/N159Y/E249Q (TYQ) displayed significantly superior thermostability with half-life values of 61.65 ± 8.69 min at 50 °C and 5.12 ± 1.66 min at 55 °C, whereas the wild-type was completely inactive at these conditions. Moreover, its Tm value increased by 8.59 °C from parent wild-type. Interestingly, TYQ still maintained excellent catalytic efficiency and specific activity. Further molecular dynamics and structure analysis revealed that the additional hydrogen bonds, increased hydrophobic interactions, and favorable electrostatic potential were essential for TYQ being in a more rigid state for thermostability enhancement. These results suggested that our strategy was an efficient engineering approach for improving fundamental properties of GmASNase and offering GmASNase as a potential agent for efficient acrylamide mitigation in food industry. KEY POINTS: • The thermostability of GmASNase was firstly improved by consensus-guided engineering. • The half-life and Tm value of triple mutant TYQ were significantly increased. • Insight on improved thermostability of TYQ was revealed by MD and structure analysis.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
He H, Yu Q, Ding Z, Zhang L, Shi G, Li Y. Biotechnological and food synthetic biology potential of platform strain: Bacillus licheniformis. Synth Syst Biotechnol 2023; 8:281-291. [PMID: 37090063 PMCID: PMC10119484 DOI: 10.1016/j.synbio.2023.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Bacillus licheniformis is one of the most characteristic Gram-positive bacteria. Its unique genetic background and safety characteristics make it have important biologic applications in the food industry, including, the biosynthesis of high value-added bioproducts, probiotic functions, biological treatment of wastes derived from food production, etc. In this review, these recent advances are summarized and presented systematically for the first time. In addition, we highlight synthetic biology strategies as a potential driver of developing this strain for wider and more efficient application in the food industry. Finally, we present the current challenges faced and provide our unique perspective on relevant future research directions. In summary, this review will provide an illuminating and comprehensive perspective that will allow an in-depth understanding of B. licheniformis and promote its more effective development in the food industry.
Collapse
|
25
|
Patel P, Patel A, Agarwal-Rajput R, Rawal R, Dave B, Gosai H. Characterization, Anti-proliferative Activity, and Bench-Scale Production of Novel pH-Stable and Thermotolerant L-Asparaginase from Bacillus licheniformis PPD37. Appl Biochem Biotechnol 2022; 195:3122-3141. [PMID: 36564676 DOI: 10.1007/s12010-022-04281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Bacterial L-asparaginase (LA) is a chemotherapeutic drug that has remained mainstay of cancer treatment for several decades. LA has been extensively used worldwide for the treatment of acute lymphoblastic leukemia (ALL). A halotolerant bacterial strain Bacillus licheniformis sp. isolated from marine environment was used for LA production. The enzyme produced was subjected to purification and physico-chemical characterisation. Purified LA was thermotolerant and demonstrated more than 90% enzyme activity after 1 h of incubation at 80 °C. LA has also proved to be resistant against pH gradient and retained activity at pH ranging from 3.0 to 10. The enzyme also had high salinity tolerance with 90% LA activity at 10% NaCl concentration. Detergents like Triton X-100 and Tween-80 were observed to inhibit LA activity while more than 70% catalytic activity was maintained in the presence of metals. Electrophoretic analysis revealed that LA is a heterodimer (~ 63 and ~ 65 kDa) and has molecular mass of around 130 kDa in native form. The kinetic parameters of LA were tested with LA having low Km value of 1.518 µM and Vmax value of 6.94 µM/min/mL. Purified LA has also exhibited noteworthy antiproliferative activity against cancer cell lines-HeLa, SiHa, A549, and SH-SY-5Y. In addition, bench-scale LA production was conducted in a 5-L bioreactor using moringa leaves as cost-effective substrate.
Collapse
Affiliation(s)
- Payal Patel
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Ajay Patel
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Reena Agarwal-Rajput
- Immunology Lab, Indian Institute of Advanced Research (IIAR), Gandhinagar, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Bharti Dave
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Haren Gosai
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India.
| |
Collapse
|
26
|
Enhancing the Catalytic Activity of Type II L-Asparaginase from Bacillus licheniformis through Semi-Rational Design. Int J Mol Sci 2022; 23:ijms23179663. [PMID: 36077061 PMCID: PMC9456134 DOI: 10.3390/ijms23179663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
Low catalytic activity is a key factor limiting the widespread application of type II L-asparaginase (ASNase) in the food and pharmaceutical industries. In this study, smart libraries were constructed by semi-rational design to improve the catalytic activity of type II ASNase from Bacillus licheniformis. Mutants with greatly enhanced catalytic efficiency were screened by saturation mutations and combinatorial mutations. A quintuple mutant ILRAC was ultimately obtained with specific activity of 841.62 IU/mg and kcat/Km of 537.15 min−1·mM−1, which were 4.24-fold and 6.32-fold more than those of wild-type ASNase. The highest specific activity and kcat/Km were firstly reported in type II ASNase from Bacillus licheniformis. Additionally, enhanced pH stability and superior thermostability were both achieved in mutant ILRAC. Meanwhile, structural alignment and molecular dynamic simulation demonstrated that high structure stability and strong substrate binding were beneficial for the improved thermal stability and enzymatic activity of mutant ILRAC. This is the first time that enzymatic activity of type II ASNase from Bacillus licheniformis has been enhanced by the semi-rational approach, and results provide new insights into enzymatic modification of L-asparaginase for industrial applications.
Collapse
|
27
|
Aliivibrio fischeri L-Asparaginase production by engineered Bacillus subtilis: a potential new biopharmaceutical. Bioprocess Biosyst Eng 2022; 45:1635-1644. [PMID: 35974197 DOI: 10.1007/s00449-022-02769-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
L-Asparaginase (L-ASNase) is an enzyme applied in the treatment of lymphoid malignancies. However, an innovative L-ASNase with high yield and lower side effects than the commercially available preparations are still a market requirement. Here, a new-engineered Bacillus subtilis strain was evaluated for Aliivibrio fischeri L-ASNase II production, being the bioprocess development and the enzyme characterization studied. The pBS0E plasmid replicative in Bacillus sp and containing PxylA promoter inducible by xylose and its repressive molecule sequence (XylR) was used for the genetic modification. Initially, cultivations were carried out in orbital shaker, and then the process was scaled up to stirred tank bioreactor (STB). After the bioprocess, the cells were recovered and submitted to ultrasound sonication for cells disruption and intracellular enzyme recovery. The enzymatic extract was characterized to assess its biochemical, kinetic and thermal properties using L-Asparagine and L-Glutamine as substrates. The results indicated the potential enzyme production in STB achieving L-ASNase activity up to 1.539 U mL-1. The enzymatic extract showed an optimum pH of 7.5, high L-Asparagine affinity (Km = 1.2275 mmol L-1) and low L-Glutaminase activity (0.568-0.738 U mL-1). In addition, thermal inactivation was analyzed by two different Kinect models to elucidate inactivation mechanisms, low kinetic thermal inactivation constants for 25 ºC and 37 ºC (0.128 and 0.148 h-1, respectively) indicate an elevated stability. The findings herein show that the produced recombinant L-ASNase has potential to be applied for pharmaceutical purposes.
Collapse
|
28
|
Chand S, Mihooliya KN, Sahoo DK, Prasad JP, Sharma G. L-asparaginase from Bacillus flexus strain SS: Isolation, Screening, Production Process Optimization, Purification, and Anticancer Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Sharma B, Devi S, Kumar R, Kanwar SS. Screening, characterization and anti-cancer application of purified intracellular MGL. Int J Biol Macromol 2022; 217:96-110. [PMID: 35817235 DOI: 10.1016/j.ijbiomac.2022.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
L-methionine-γ-lyase (MGL) producing bacterial isolates were screened from soil samples that further characterized as 'Klebsiella oxytoca BLM-1' by biochemical and 16S rDNA sequencing. Intracellular MGL obtained from K. oxytoca BLM-1 by sonication was purified by Octyl-Sepharose and Sephadex G-200 column chromatography. MALDI-TOF-MS analysis of protein band (Mr ~ 63 kDa) confirmed the PLP-dependence and structural similarity with MGL enzyme. Purified MGL (1.1 μg) exhibited the maximum activity in potassium phosphate buffer (80 mM; with L-met 20 mM pH 7.0) at 37 °C. That further enhanced in the presence of NaCl (2 mM), Tween-80 (1.0 %; v/v) and EDTA (5 mM). Km and Vmax for purified MGL by using L-met as substrate was found to be 5.32 mM and 0.386 U/mL/min. The purified MGL showed PLP dependence and the half-life was 365.59 min. The MGL was effective against breast cancer (MCF7), gastric adenocarcinoma and human glioblastoma (U87MG) cancer cell lines with IC50 values of purified MGL 0.041 U/mL, 0.008 U/mL and 0.009 U/mL, respectively. The U87MG, greatly affected by MGL treatment, when cultured in DMEM medium (10 mL) with PLP, homocysteine and 10 % FCS as compared to control/untransformed mouse spleen cells.
Collapse
Affiliation(s)
- Bhupender Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sunita Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India.
| |
Collapse
|
30
|
Patel PG, Panseriya HZ, Vala AK, Dave BP, Gosai HB. Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Biochemical and Biological Evaluation of an L-Asparaginase from Isolated Escherichia coli MF-107 as an Anti-Tumor Enzyme on MCF7 Cell Line. IRANIAN BIOMEDICAL JOURNAL 2022; 26:279-90. [PMID: 35690915 PMCID: PMC9432472 DOI: 10.52547/ibj.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
32
|
Izadpanah Qeshmi F, Homaei A, Khajeh K, Kamrani E, Fernandes P. Production of a Novel Marine Pseudomonas aeruginosa Recombinant L-Asparaginase: Insight on the Structure and Biochemical Characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:599-613. [PMID: 35507234 DOI: 10.1007/s10126-022-10129-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The present study focused on the cloning, expression, and characterization of L-asparaginase of marine Pseudomonas aeruginosa HR03 isolated from fish intestine. Thus, a gene fragment containing the L-asparaginase sequence of Pseudomonas aeruginosa HR03 isolated from the fish intestine was cloned in the pET21a vector and then expressed in Escherichia coli BL21 (DE3) cells. Thereafter, the recombinant L-asparaginase (HR03Asnase) was purified by nickel affinity chromatography, and the enzymatic properties of HR03Asnase, including the effects of pH and temperature on HR03Asnase activity and its kinetic parameters, were determined. The recombinant enzyme HR03Asnase showed the highest similarity to type I L-asparaginase from Pseudomonas aeruginosa. The three-dimensional (3D) modeling results indicate that HR03Asnase exists as a homotetramer. Its molecular weight was 35 kDa, and the maximum activity of the purified enzyme was observed at pH8 and at 40 °C. The km and Vmax of the enzyme obtained with L-asparagine as substrate were 10.904 mM and 3.44 × 10-2 mM/min, respectively. The maximum activity of HR03Asnase was reduced by 50% at 90 °C after 10-min incubation; however, the enzyme maintained more than 20% of its activity after 30-min incubation. This enzyme also maintained almost 50% of its activity at pH 12 after 40-min incubation. The evaluation of pH and temperature stability of HR03Asnase showed that the enzyme has a wide range of activity, which is a suitable characteristic for its application in different industries. Overall, the results of the present study indicate that marine sources are promising biological reservoirs for enzymes to be used for biotechnological purposes, and marine thermostable HR03Asnase is likely a potential candidate for its future usage in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Fatemeh Izadpanah Qeshmi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Pedro Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades E Tecnologias, Av. Campo Grande 376, 1749-024, Lisbon, Portugal
| |
Collapse
|
33
|
Raina D, Kumar V, Saran S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. CHEMOSPHERE 2022; 294:133712. [PMID: 35081402 DOI: 10.1016/j.chemosphere.2022.133712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Annually, a huge amount of waste is generated by the industries that use agricultural biomass. Researchers have looked into employing this cheap and renewable agro-biomass as a substrate for enzyme production via fermentation processes to meet the ever-increasing worldwide need. Although there are a number of sources for enzyme extraction, microbial sources have dominated industrial sectors due to their easy availability and rapid growth. Microbial enzymes are currently used in a variety of industries, including pharmaceuticals, food, biofuels, textiles, paper, detergents, and so on, and using these nutritious feedstocks not only reduces production costs but also helps to reduce environmental concerns. The present review focuses on the therapeutic microbial enzymes produced using different agro-industrial biomass as raw materials, with down-streaming techniques for obtaining a final pure product. Additionally, the article also discussed biomass pretreatment processes, including physical, chemical and biological. The type of pretreatment method to be used is mostly governed by the intended use of the major molecular components of biomass (cellulose, hemicelluloses and lignin). Finally, purification challenges are included. All of this information will be useful in the industrial synthesis of high-purity targeted enzymes if the crucial aspects that have been discussed are taken into account.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Aisha A, Zahra S, Tahir IM, Hussain A, Bano N, Roobi A, Afsheen N, Saleem Y. Anticancer L-Asparaginase and Phytoactive Compounds From Plant Solanum nigrum Against MDR (Methicillindrug resistant) Staphylococcus aureus and Fungal Isolates. Dose Response 2022; 20:15593258221092379. [PMID: 35558870 PMCID: PMC9087284 DOI: 10.1177/15593258221092379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginase is used in chemotherapy for acute lymphoblastic leukemia and other
cancers. L-asparaginase derived from bacterial source triggers immune responses.
The current study investigates Solanum nigrum as a novel and
latent source of L-asparaginase to minimize immunological reactions. The
antitumor activity of SN methanol extract was determined using the potato disc
assay. InterPro Chimera and InterPro were used to predict the amino acid
sequence of L-asparaginase and its anticancer activity. Purification of the
enzyme was carried out to homogeneity of 1.51-fold with a recovery of 61.99%. At
optimal conditions of 36.5°C, pH 8.6, and 8.5 g/mL substrate, fruit (crude
extract) revealed an L-asparaginase titer of 48.23 U/mL. The molecular weight of
the enzyme was calculated to be 32 ± 5 kDa using SDS PAGE. The fruit’s total
flavonoids and phenolic contents are 0.42 ± .030 g/mL and 94 ± 1.9 mg CAE,
respectively. Anti-tumorigenic efficacy was determined to be 66% against
Agrobacterium tumefaciens. Additionally, the extract
possesses potent antifungal and antibacterial properties. Molecular docking
provided the structural motifs and underlying interactions between
L-asparaginase, N-acetylglucosamine, murine, and chitin. SN contains high levels
of the enzyme L-asparaginase and phytochemicals, making it a potential source of
anticancer drugs.
Collapse
Affiliation(s)
- Ambreen Aisha
- Department of Biochemistry, Faisalabad Medical University, Faisalabad, Pakistan
| | - Saba Zahra
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Imtiaz M. Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Naheed Bano
- Department of Fisheries & Aquaculture, MNS-University of Agriculture, Multan, Pakistan
| | - Alishbah Roobi
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Yasir Saleem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Labs, Lahore, Pakistan
| |
Collapse
|
35
|
Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular Analysis of L-Asparaginases for Clarification of the Mechanism of Action and Optimization of Pharmacological Functions. Pharmaceutics 2022; 14:pharmaceutics14030599. [PMID: 35335974 PMCID: PMC8948990 DOI: 10.3390/pharmaceutics14030599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginases (EC 3.5.1.1) are a family of enzymes that catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. These proteins with different biochemical, physicochemical and pharmacological properties are found in many organisms, including bacteria, fungi, algae, plants and mammals. To date, asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi) are widely used in hematology for the treatment of lymphoblastic leukemias. However, their medical use is limited by side effects associated with the ability of these enzymes to hydrolyze L-glutamine, as well as the development of immune reactions. To solve these issues, gene-editing methods to introduce amino-acid substitutions of the enzyme are implemented. In this review, we focused on molecular analysis of the mechanism of enzyme action and to optimize the antitumor activity.
Collapse
Affiliation(s)
- Marina V. Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpiisky Prospect 1, 354340 Sochi, Russia
| | - Svetlana S. Aleksandrova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Nikolay N. Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Correspondence:
| |
Collapse
|
36
|
Characterization and Optimization of Fungal L-Asparaginase Isolated From Soil and Medicinal Plants. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L-asparaginase is a therapeutic enzyme that converts L-asparagine into ammonia and L-aspartate. L-asparaginase is used to treat acute lymphoblastic leukaemia. In food manufacturing industries, it is used to inhibit the acrylamide formation. The current investigation has been performed to isolate L-asparaginase producing fungi from different medicinal plants and soil samples, through serial dilution. A total number of 15 fungal isolates were obtained from soil samples and 6 endophytic fungi isolated from medicinal plants. By performing screening of L-asparaginase 67% of positive isolates were obtained from endophytes and soil samples. Optimization of L-asparaginase production was performed for parameters such as pH, temperature, carbon and nitrogen source, and it was found that pH 6, 30˚C, 2 g of glucose, and 1 g of L-arginine is suitable for maximum enzyme production. By performing Sodium dodecyl sulphate polyacrylamide gel electrophoresis the molecular weight of an enzyme was determined to be approximately 11.2 kDa.
Collapse
|
37
|
Lailaja VP, Sumithra TG, Reshma KJ, Anusree VN, Amala PV, Kishor TG, Sanil NK. Characterization of novel L-asparaginases having clinically safe profiles from bacteria inhabiting the hemolymph of the crab, Scylla serrata (Forskål, 1775). Folia Microbiol (Praha) 2022; 67:491-505. [PMID: 35138564 DOI: 10.1007/s12223-022-00952-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
L-asparaginase (ASNase) is the principal chemotherapeutic agent against different blood cancers. The risks associated with current clinical preparations demand screening for novel ASNases. Accordingly, the study was conducted to shortlist ASNases having clinically safer profiles from a novel niche, namely, microbes in the gut and hemolymph of apparently healthy Scylla serrata. A four-step strategic approach incorporating the essential requirements for clinically safer profiles was followed. The initial step through plate assay showed five (9.61%) potential ASNase producers. The relative prevalence of ASNase producers was higher in hemolymph (13.33%) than gut (4.5%). The positive isolates were identified as Priestia aryabhattai, Priestia megaterium, Bacillus altitudinis, Shewanella decolorationis, and Chryseomicrobium amylolyticum. Quantitative profiles revealed high ASNase production (114.29 to 287.36 U/mL) without any optimization, with an added advantage of the extracellular production. The second step for substrate specificity studies revealed the absence of L-glutaminase and urease activities in ASNases from C. amylolyticum and P. megaterium, the most desirable properties for safe clinical applications. This is the first report of glutaminase and urease-free ASNase from these two bacteria. The third step ensured type II nature of selected ASNases, the targeted form in clinical applications. The fourth step confirmed the activity and stability in human physiological conditions. Altogether, the results revealed two potential ASNases with clinically compatible profiles.
Collapse
Affiliation(s)
- V P Lailaja
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - T G Sumithra
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India.
| | - K J Reshma
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - V N Anusree
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - P V Amala
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - T G Kishor
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - N K Sanil
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| |
Collapse
|
38
|
Masri M, Nur F, Widodo J, Jusuf E, Sahar W, Wahida N, Risnawati R, Nurbaya S, Asri TA, Fadly N. A novel L‐asparaginase from the symbiotic
Enterobacter aerogenes
isolated from
Eucheuma
sp. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mashuri Masri
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Fatmawati Nur
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Joko Widodo
- Laboratory of Technology Department STIKES Mega Rezky Makassar Indonesia
| | - Ekafadly Jusuf
- School of Management and Business (STIE) Amkop Makassar Indonesia
| | - Windy Sahar
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Nurul Wahida
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Risnawati Risnawati
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Siti Nurbaya
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Tuti Asriani Asri
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Nurul Fadly
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| |
Collapse
|
39
|
Patel P, Gosai H, Panseriya H, Dave B. Development of Process and Data Centric Inference System for Enhanced Production of L-Asparaginase from Halotolerant Bacillus licheniformis PPD37. Appl Biochem Biotechnol 2021; 194:1659-1681. [PMID: 34845588 DOI: 10.1007/s12010-021-03707-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
The present study aims at bioengineering of medium components using data and process centric approaches for enhanced production of L-asparaginase, an important biological molecule, by halotolerant Bacillus licheniformis PPD37 strain. To achieve this, first significant medium components were screened followed by optimisation of a combination of media components and culture conditions such as L-asparagine, MgSO4, NaCl, pH, and temperature. Optimisation study was carried out using statistical models such as response surface methodology (RSM) - process centric and artificial neural network (ANN) - data centric approaches. The production improved from 2.86 U/mL to 17.089 U/mL, an increase of approximately 6-times of the unoptimised L-asparaginase production. On comparing RSM and ANN models for optimised L-asparaginase production based on R2 value, mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute deviation (MAD) values, the ANN model emerged as the superior one. As this is the first report to the authors best knowledge on development of inference system using RSM and ANN models for enhanced L-asparaginase production using a halotolerant bacteria, this study could lead to more in-depth and large-scale L-asparaginase production.
Collapse
Affiliation(s)
- Payal Patel
- Department of Bioscience, School of Science, Indrashil University, Dist. Mehsana, Rajpur-Kadi, Gujarat, India, 382740
| | - Haren Gosai
- Department of Bioscience, School of Science, Indrashil University, Dist. Mehsana, Rajpur-Kadi, Gujarat, India, 382740.
| | - Haresh Panseriya
- Gujarat Ecology Society, Synergy house, Subhanpura, Vadodara, Gujarat, India, 390003
| | - Bharti Dave
- Department of Bioscience, School of Science, Indrashil University, Dist. Mehsana, Rajpur-Kadi, Gujarat, India, 382740
| |
Collapse
|
40
|
Chi H, Chen M, Jiao L, Lu Z, Bie X, Zhao H, Lu F. Characterization of a Novel L-Asparaginase from Mycobacterium gordonae with Acrylamide Mitigation Potential. Foods 2021; 10:foods10112819. [PMID: 34829099 PMCID: PMC8617759 DOI: 10.3390/foods10112819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) is a well-known agent that prevents the formation of acrylamide both in the food industry and against childhood acute lymphoblastic leukemia in clinical settings. The disadvantages of L-asparaginase, which restrict its industrial application, include its narrow range of pH stability and low thermostability. In this study, a novel L-asparaginase from Mycobacterium gordonae (GmASNase) was cloned and expressed in Escherichia coli BL21 (DE3). GmASNase was found to be a tetramer with a monomeric size of 32 kDa, sharing only 32% structural identity with Helicobacter pylori L-asparaginases in the Protein Data Bank database. The purified GmASNase had the highest specific activity of 486.65 IU mg−1 at pH 9.0 and 50 °C. In addition, GmASNase possessed superior properties in terms of stability at a wide pH range of 5.0–11.0 and activity at temperatures below 40 °C. Moreover, GmASNase displayed high substrate specificity towards L-asparagine with Km, kcat, and kcat/Km values of 6.025 mM, 11,864.71 min−1 and 1969.25 mM−1min−1, respectively. To evaluate its ability to mitigate acrylamide, GmASNase was used to treat potato chips prior to frying, where the acrylamide content decreased by 65.09% compared with the untreated control. These results suggest that GmASNase is a potential candidate for applications in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +0086-25-84395963
| |
Collapse
|
41
|
Falade AO, Adewole KE, Ekundayo TC. Aptitude of endophytic microbes for production of novel biocontrol agents and industrial enzymes towards agro-industrial sustainability. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00146-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Endophytes have continued to receive increased attention worldwide, probably, due to the enormous biotechnological potentials spanning through various industrial sectors. This paper outlines the biotechnological potentials of endophytes in biocontrol and industrial enzyme production, and the possible contribution towards achieving agro-industrial sustainability using published articles on endophytes in both Web of Science and Scopus (1990–2020).
Main body of the abstract
This review discusses the potential of endophytes to produce novel secondary metabolites with effective biocontrol activity against insect pests and plant pathogens. More so, the aptitude of endophytes for production of a wide range of enzymes with potential applications in agriculture, energy and health is discussed in this review. Furthermore, this review highlights the emerging potentials of endophytes in the production of exopolysaccharide and fatty acids. This paper also advocates the need for bioprospecting endophytes for novel biocontrol agents against termites, which are known for causing significant damage to forest and stored products.
Short conclusion
Exploration of endophytes for biocontrol and production of biomolecules of industrial significance could contribute significantly towards agricultural and industrial sustainability.
Collapse
|
42
|
Bio-prospecting the future in perspective of amidohydrolase L-glutaminase from marine habitats. Appl Microbiol Biotechnol 2021; 105:5325-5340. [PMID: 34236482 DOI: 10.1007/s00253-021-11416-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/14/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
In the current scenario, considerable attention is being given to the enzyme L-glutaminase (EC 3.5.1.2). It belongs to the amidohydrolase class adherent to the family of serine-reliant β-lactamases and the penicillin-binding proteins due to its higher affinity to polymerize and modify peptidoglycan synthesis. However, based on the catalytic proficiency, L-glutaminase is characterized as a proteolytic endopeptidase that cleaves peptide linkage and emancipates various byproducts, viz. ammonia along with glutamate. L-glutamine is considered the key amino acid reportedly involved in multiple metabolic pathways such as nitrogen metabolism. The present review is focused on the recent development and aspects concomitant to the biotechnological applicability of L-glutaminase predominantly from the marine habitat. Additionally, a majority of L-glutaminases finds application in cancer therapy as therapeutic agents, especially for acute lymphocytic leukaemia. The in vitro studies have been effective against various human cancer cell lines. L-glutaminase enhances the growth of probiotic bacteria. Apart from all these applications, it is suitably applicable in fermented foods as a flavour enhancer especially the umami flavour and content. Marine habitats have largely been exploited for their bio-catalytic potential but very scarcely for therapeutic enzymes. Some of the reports of such marine bacterial isolates from Bacillus sp., Pseudomonas sp. and Vibrio sp. are in the domain, but none highlights the therapeutic applications predominantly as anticancer and anti-proliferative agents. KEY POINTS: The exploration of marine habitats along the Gujarat coasts mainly for bacteria secreting L-glutaminase is scarcely reported, and even more scarce are the amidohydrolases from these marine niches as compared to their terrestrial counterparts. Microbial sourced amidohydrolase has wide bio-applicability that includes food, cosmetics and therapeutics especially as anticancer/anti-proliferative agent making it of immense biotechnological significance.
Collapse
|
43
|
Mohammed Hadi WA, Edwin BT, Jayakumaran Nair A. Isolation and identification of marine Bacillus altitudinis KB1 from coastal Kerala: asparaginase producer. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF INDIA. MARINE BIOLOGICAL ASSOCIATION OF INDIA 2021; 63:43-48. [PMID: 35903758 PMCID: PMC9326817 DOI: 10.6024/jmbai.2021.63.2.2195-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
L-asparaginase is a target for many researchers as its properties against cancer, especially leukaemia, and protective agents reduce acrylamide in fried food. In this study, the water samples from Thumba Arattuvazhi Beach in Kerala were screened for l-asparaginase producing microorganisms. This was followed by colourimetric screening using modified M9 media with 0.009% Phenol red dye and using l-asparagine as a sole nitrogen source. Then, the Nessler assay was performed to quantify the enzyme. Molecular identification was made by 16SrRNA sequencing and aligned the sequence with GeneBank for phylogenetic tree construction using BLAST. Seawater was serially diluted for 10-1 to 10-6 using nutrient agar plates. A total of 19 bacterial colonies were isolated. The colonies were evaluated to produce l-asparaginase according to the pink zone around the colonies on the modified M9 medium using a red phenol indicator. The KB1 sample was selected for further studies according to plate colour assay. Nessler assay of L-asparaginase quantified as 2.537 IU/ml. Molecular characterisation showed the sequence association with Bacillus altitudinis the sequence submitted in Genebank as B. altitudinis KB1 strain. The l-asparaginase II gene (AnsB) was amplified based on the entire length of the hypothetical protein of annotated genome with accession number CP022319.2. The l-asparaginase activity in this study was 57% higher than the reference organism B. altitudinis BITHSP010. The l-asparaginase producing bacterium B. altitudinis KB1 from a marine source in Kerala can produce asparaginase, which can be utilised for biotechnology applications.
Collapse
Affiliation(s)
- Wael Ali Mohammed Hadi
- Inter University Center for Genomic and Gene Technology (IUCGGT), University of Kerala, Thiruvananthapuram-695 581, Kerala, India
| | - Boby T. Edwin
- CEPCI Laboratory and Research Institute, Kollam-691 001, Kerala, India
| | - Ananthakrishnan Jayakumaran Nair
- Inter University Center for Genomic and Gene Technology (IUCGGT), University of Kerala, Thiruvananthapuram-695 581, Kerala, India
| |
Collapse
|
44
|
Shabana AMI, Shetaia YM, Abdelwahed NAM, Esawy MA, Alfarouk OR. Optimization, Purification and Antitumor Activity of Kodamaea ohmeri ANOMY L-Asparaginase Isolated from Banana Peel. Curr Pharm Biotechnol 2021; 22:654-671. [PMID: 32707027 DOI: 10.2174/1389201021666200723122300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE L-Asparaginase is an important enzyme that converts L-asparagine to L-aspartate and ammonia. Microbial L-asparaginase has important applications as anticancer and food processing agents. METHODS This study reported the isolation, screening of a local yeast isolate from banana peel for L-asparaginase production using submerged fermentation, optimization of the production, purification, and anticancer assay of L-asparaginase. The yeast isolate was identified as Kodamaea ohmeri ANOMY based on the analysis of nuclear large subunit (26S) rDNA partial sequences. It was a promising L-asparaginase producer with a specific activity of 3059±193 U/mg in a non-optimized medium. The classical one-variable-at-a-time method was used to optimize the production medium components, and it was found that the elimination of K2HPO4 from the medium increased L-asparaginase specific activity (3100.90±180 U/mg). RESULTS Statistical optimization of L-asparaginase production was done using Plackett-Burman and Box-Behnken designs. The production medium for the maximum L-asparaginase specific activity (8500±578U/mg) was as follows (g/L): L-asparagine (7.50), NaNO3 (0.50), MgSO4.7H2O (0.80), KCl (0.80) associated with an incubation period of 5 days, inoculum size of 5.60 %, and pH (7.0). The optimization process increased L-asparaginase production by 2.78-fold compared to the non-optimized medium. L-Asparaginase was purified using ammonium sulphate precipitation followed by gel filtration on a Sephadex G-100 column. Its molecular weight was 66 KDa by SDS-PAGE analysis. CONCLUSION The cell morphology technique was used to evaluate the anticancer activity of L-asparaginase against three different cell lines. L-Asparaginase inhibited the growth of HepG-2, MCF-7, and HCT-116 cells at a concentration of 20, 50, and 60 μL, respectively.
Collapse
Affiliation(s)
- Ahmed M I Shabana
- Microbiology Department-Faculty of Science Ain Shams University, Cairo, Egypt
| | - Yousseria M Shetaia
- Microbiology Department-Faculty of Science Ain Shams University, Cairo, Egypt
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Buhouth St. (Former El Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Buhouth St. (Former El Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Omar R Alfarouk
- Microbiology Department-Faculty of Science Ain Shams University, Cairo, Egypt
| |
Collapse
|
45
|
Castro D, Marques ASC, Almeida MR, de Paiva GB, Bento HBS, Pedrolli DB, Freire MG, Tavares APM, Santos-Ebinuma VC. L-asparaginase production review: bioprocess design and biochemical characteristics. Appl Microbiol Biotechnol 2021; 105:4515-4534. [PMID: 34059941 DOI: 10.1007/s00253-021-11359-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022]
Abstract
In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.
Collapse
Affiliation(s)
- Daniel Castro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Sofia C Marques
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mafalda R Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriela B de Paiva
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil
| | - Heitor B S Bento
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil
| | - Danielle B Pedrolli
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana P M Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Valéria C Santos-Ebinuma
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, Brazil.
| |
Collapse
|
46
|
Circumventing the side effects of L-asparaginase. Biomed Pharmacother 2021; 139:111616. [PMID: 33932739 DOI: 10.1016/j.biopha.2021.111616] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
L-asparaginase is an enzyme that catalyzes the degradation of asparagine and successfully used in the treatment of acute lymphoblastic leukemia. L-asparaginase toxicity is either related to hypersensitivity to the foreign protein or to a secondary L-glutaminase activity that causes inhibition of protein synthesis. PEGylated versions have been incorporated into the treatment protocols to reduce immunogenicity and an alternative L-asparaginase derived from Dickeya chrysanthemi is used in patients with anaphylactic reactions to the E. coli L-asparaginase. Alternative approaches commonly explore new sources of the enzyme as well as the use of protein engineering techniques to create less immunogenic, more stable variants with lower L-glutaminase activity. This article reviews the main strategies used to overcome L-asparaginase shortcomings and introduces recent tools that can be used to create therapeutic enzymes with improved features.
Collapse
|
47
|
Ekpenyong M, Asitok A, Antigha R, Ogarekpe N, Ekong U, Asuquo M, Essien J, Antai S. Bioprocess Optimization of Nutritional Parameters for Enhanced Anti-leukemic L-Asparaginase Production by Aspergillus candidus UCCM 00117: A Sequential Statistical Approach. Int J Pept Res Ther 2021; 27:1501-1527. [PMID: 33716598 PMCID: PMC7942987 DOI: 10.1007/s10989-021-10188-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Sequential optimization of bioprocess nutritional conditions for production of glutaminase-near-free L-asparaginase by Aspergillus candidus UCCM 00117 was conducted under shake flask laboratory conditions. Catalytic and anti-cancer activities of the poly-peptide were evaluated using standard in vitro biochemical methods. Medium nutrients were selected by one-factor-at-a-time (OFAT) approach while Plackett-Burman design (PBD) screened potential factors for optimization. Path of steepest ascent (PSA) and response surface methodology (RSM) of a Min-Run-Res V fractional factorial of a central composite rotatable design (CCRD) were employed to optimize factor levels towards improved enzyme activity. A multi-objective approach using desirability function generated through predictor importance and weighted coefficient methodology was adopted for optimization. The approach set optimum bioprocess conditions as 49.55 g/L molasses, 64.98% corn steep liquor, 44.23 g/L asparagine, 1.73 g/L potassium, 0.055 g/L manganese and 0.043 g/L chromium (III) ions, at a composite desirability of 0.943 and an L-asparaginase activity of 5216.95U. The Sephadex-200 partially-purified polypeptide had a specific activity of 476.84 U/mg; 0.087U glutaminase activity, 36.46% yield and 20-fold protein purification. Anti-cancer activity potentials of the catalytic poly-peptide were dose-dependent with IC50 (µg/mL): 4.063 (HL-60), 13.75 (HCT-116), 15.83 (HeLa), 11.68 (MCF-7), 7.61 (HepG-2). The therapeutic enzyme exhibited 15-fold more cytotoxicity to myeloid leukemia cell line than to normal (HEK 238 T) cell. Optimum temperature and pH for activity were within physiological range. However, significant interactions between exposure time and levels of each of temperature and pH made interpretations of residual enzyme activities difficult. The manganese-dependent L-asparaginase from Aspergillu s candidus UCCM 00117 is recommended for further anticancer drug investigations.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Richard Antigha
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| | - Nkpa Ogarekpe
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| | - Ubong Ekong
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria
| | - Marcus Asuquo
- Department of Hematology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Joseph Essien
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria.,International Centre for Energy and Environmental Sustainability Research (ICEESR), University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
48
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Chakravarty N, Priyanka, Singh J, Singh RP. A potential type-II L-asparaginase from marine isolate Bacillus australimaris NJB19: Statistical optimization, in silico analysis and structural modeling. Int J Biol Macromol 2021; 174:527-539. [PMID: 33508362 DOI: 10.1016/j.ijbiomac.2021.01.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
L-asparaginase is a cardinal biotherapeutic drug for treating acute lymphoblastic leukemia, which is highly prevalent in children worldwide. In the current investigation, L-asparaginase producing marine bacterial isolate, Bacillus australimaris NJB19 (MG734654), was observed to be producing extracellular glutaminase free L-asparaginase (13.27 ± 0.4 IU mL-1). Production of L-asparaginase was enhanced by the Box-Behnken design approach that enumerated the significant variables affecting the enzyme production. The optimum levels of the derived variables resulted in 2.8-fold higher levels of the enzyme production (37.93 ± 1.06 IU mL-1). An 1146 bp L-asparaginase biosynthetic gene of Bacillus australimaris NJB19 was identified and cloned in E. coli DH5α, fused with a histidine tag. The in silico analysis of the protein sequence revealed the presence of a signal peptide and classified it as a type II L-asparaginase. Toxic peptide prediction disclosed no toxin domain in the protein sequence, hence suggesting it as a non-toxic protein. The secondary structure analysis of the enzyme displayed a comparable percentage of alpha-helical and random coil structure, while 14.39% and 6.57% of amino acid residues were composed of extended strands and beta-turns, respectively. The functional sites in the three-dimensional structural model of the protein were predicted and interestingly had a few less conserved residues. Bacillus australimaris NJB19 identified in this study produces type-II L-asparaginase, known for its high affinity for asparagine and effectiveness against leukemic cells. Hence, these observations indicate the L-asparaginase, thus obtained, as a potentially significant and novel therapeutic drug.
Collapse
Affiliation(s)
- Namrata Chakravarty
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Priyanka
- Department of Chemical Engineering, Shiv Nadar University, NH-91, Tehsil Dadri Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Jyoti Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
50
|
Thermococcus kodakarensis-derived L-asparaginase: a candidate for the treatment of glioblastoma. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-021-00678-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|