1
|
Kaewkedsri P, Intarawichian P, Jessadapattarakul S, Kunprom W, Koonmee S, Thanee M, Somintara O, Wongbuddha A, Chadbunchachai P, Nawapun S, Aphivatanasiri C. Programmed Cell Death Ligand 1 (PD-L1) and Major Histocompatibility Complex Class I (MHC Class I) Expression Patterns and Their Pathologic Associations in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:123-143. [PMID: 39936074 PMCID: PMC11812676 DOI: 10.2147/bctt.s506833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Purpose This study aims to investigate the clinicopathological characteristics of triple-negative breast cancer (TNBC) in relation to programmed cell death ligand 1 (PD-L1) and major histocompatibility complex class I (MHC class I) expression, with a focus on their prognostic significance. Patients and Methods A retrospective analysis was conducted on formalin-fixed paraffin-embedded (FFPE) tissue samples from 148 TNBC patients diagnosed between 2008 and 2021. Immunohistochemical analysis evaluated PD-L1 and MHC class I expression. PD-L1 was assessed using Combine Positive Scores (CPS), with the threshold set at CPS ≥ 1 and CPS ≥ 10. MHC class I expression was categorized into low and high levels. Associations between these markers, clinicopathological features, overall survival (OS), and disease-free survival (DFS) were analyzed. PD-L1 expression was also compared between older FFPE blocks (2008-2018) versus newer blocks (2019-2021). Results PD-L1 expression was observed in 29.1% of cases with a Combined Positive Score (CPS) ≥1 and 8.8% of CPS ≥10 cases. MHC class I expression was evenly split between low and high levels. Older FFPE blocks (2008-2018) showed lower PD-L1 expression than newer blocks (2019-2021). There was no significant association between PD-L1 expression and overall survival (OS) or disease-free survival (DFS). However, high MHC class I expression was strongly associated with improved OS (HR = 0.469, 95% CI: 0.282-0.780, p=0.004). Patients with negative PD-L1 and high MHC class I expression had the most favorable prognosis, with significant OS for CPS ≥1 (HR = 0.447, 95% CI: 0.236-0.846, p=0.013) and CPS ≥10 (HR = 0.516, 95% CI: 0.307-0.869, p=0.013). Conclusion These findings support the potential of PD-L1 and MHC class I expression as prognostic markers for TNBC, offering insights to guide treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Ponkrit Kaewkedsri
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Waritta Kunprom
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supinda Koonmee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Malinee Thanee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ongart Somintara
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anongporn Wongbuddha
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Payia Chadbunchachai
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supajit Nawapun
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
2
|
Boreel DF, Sandker GGW, Ansems M, van den Bijgaart RJE, Peters JPW, Span PN, Adema GJ, Heskamp S, Bussink J. MHC-I and PD-L1 Expression is Associated with Decreased Tumor Outgrowth and is Radiotherapy-inducible in the Murine Head and Neck Squamous Cell Carcinoma Model MOC1. Mol Imaging Biol 2024; 26:835-846. [PMID: 39009951 PMCID: PMC11436446 DOI: 10.1007/s11307-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Combined radiotherapy and immune checkpoint inhibition is a potential treatment option for head and neck squamous cell carcinoma (HNSCC). Immunocompetent mouse models can help to successfully develop radio- immunotherapy combinations and to increase our understanding of the effects of radiotherapy on the tumor microenvironment for future clinical translation. Therefore, the aim of this study was to develop a homogeneous, reproducible HNSCC model originating from the Mouse Oral Cancer 1 (MOC1) HNSCC cell line, and to explore the radiotherapy-induced changes in its tumor microenvironment, using flow cytometry and PD-L1 microSPECT/CT imaging. MATERIALS AND METHODS In vivo growing tumors originating from the parental MOC1 line were used to generate single cell derived clones. These clones were screened in vitro for their ability to induce programmed cell death ligand 1 (PD-L1) and major histocompatibility complex class I (MHC-I) following IFNγ exposure. Clones with different IFNγ sensitivity were inoculated in C57BL/6 mice and assessed for tumor outgrowth. The composition of the tumor microenvironment of a stably growing (non)irradiated MOC1-derived clone was assessed by immunohistochemistry, flow cytometry and PD-L1 microSPECT/CT. RESULTS Low in vitro inducibility of MHC-I and PD-L1 by IFNγ was associated with increased tumor outgrowth of MOC1 clones in vivo. Flow cytometry analysis of cells derived from a stable in vivo growing MOC1 clone MOC1.3D5low showed expression of MHC-I and PD-L1 on several cell populations within the tumor. Upon irradiation, MHC-I and PD-L1 increased on leukocytes (CD45.2+) and cancer associated fibroblasts (CD45.2-/EpCAM-/CD90.1+). Furthermore, PD-L1 microSPECT/CT showed increased tumor uptake of radiolabeled PD-L1 antibodies with a heterogeneous spatial distribution of the radio signal, which co-localized with PD-L1+ and CD45.2+ areas. DISCUSSION PD-L1 and MHC-I inducibility by IFNγ in vitro is associated with tumor outgrowth of MOC1 clones in vivo. In tumors originating from a stably growing MOC1-derived clone, expression of these immune-related markers was induced by irradiation shown by flow cytometry on several cell populations within the tumor microenvironment such as immune cells and cancer associated fibroblasts. PD-L1 microSPECT/CT showed increased tumor uptake following radiotherapy, and autoradiography showed correlation of uptake with areas that are heavily infiltrated by immune cells. Knowledge of radiotherapy-induced effects on the tumor microenvironment in this model can help optimize timing and dosage for radio- immunotherapy combination strategies in future research.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands.
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands.
| | - Gerwin G W Sandker
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Renske J E van den Bijgaart
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Johannes P W Peters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers. Cancers (Basel) 2023; 15:3849. [PMID: 37568665 PMCID: PMC10417375 DOI: 10.3390/cancers15153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Collapse
Affiliation(s)
| | | | - Mariam M. AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (D.M.); (C.Y.)
| |
Collapse
|
4
|
Griesinger L, Nyarko-Odoom A, Martinez SA, Shen NW, Ring KL, Gaughan EM, Mills AM. PD-L1 and MHC Class I Expression in High-grade Ovarian Cancers, Including Platinum-resistant Recurrences Treated With Checkpoint Inhibitor Therapy. Appl Immunohistochem Mol Morphol 2023; 31:197-203. [PMID: 36812389 DOI: 10.1097/pai.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Immune-modulating therapies targeting the programmed cell death-1/programmed cell death ligand-1 (PD-L1) immunosuppressive system have been used successfully in many solid tumor types. There is evidence that biomarkers such as PD-L1 and major histocompatibility complex (MHC) class I help identify candidates for anti-programmed cell death-1/PD-L1 checkpoint inhibition, though the evidence is limited in ovarian malignancies. PD-L1 and MHC Class I immunostaining was performed on pretreatment whole tissue sections in 30 cases of high-grade ovarian carcinoma. The PD-L1 combined positive score was calculated (a score of ≥1 is considered positive). MHC class I status was categorized as an intact or subclonal loss. In patients who received immunotherapy, drug response was assessed using RECIST criteria. PD-L1 was positive in 26 of 30 cases (87%; combined positive score: 1 to 100). Seven of 30 patients showed subclonal loss of MHC class I (23%), and this occurred in both PD-L1 negative (3/4; 75%) and PD-L1 positive (4/26; 15%) cases. Only 1 of 17 patients who received immunotherapy in the setting of a platinum-resistant recurrence responded to the addition of immunotherapy, and all 17 died of disease. In the setting of recurrent disease, patients did not respond to immunotherapy regardless of PD-L1/MHC class I status, suggesting that these immunostains may not be effective predictive biomarkers in this setting. Subclonal loss of expression of MHC class I occurs in ovarian carcinoma, including in PD-L1 positive cases, suggesting that the 2 pathways of immune evasion may not be mutually exclusive and that it may be important to interrogate MHC class I status in PD-L1 positive tumors to identify additional immune evasion mechanisms in these tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth M Gaughan
- Department of Hematology and Oncology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
5
|
Xiang Y, Gong M, Deng Y, Wang H, Ye D. T cell effects and mechanisms in immunotherapy of head and neck tumors. Cell Commun Signal 2023; 21:49. [PMID: 36872320 PMCID: PMC9985928 DOI: 10.1186/s12964-023-01070-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Head and neck tumors (HNCs) are a common tumor in otorhinolaryngology head and neck surgery, accounting for 5% of all malignant tumors in the body and are the sixth most common malignant tumor worldwide. In the body, immune cells can recognize, kill, and remove HNCs. T cell-mediated antitumor immune activity is the most important antitumor response in the body. T cells have different effects on tumor cells, among which cytotoxic T cells and helper T cells play a major killing and regulating role. T cells recognize tumor cells, activate themselves, differentiate into effector cells, and activate other mechanisms to induce antitumor effects. In this review, the immune effects and antitumor mechanisms mediated by T cells are systematically described from the perspective of immunology, and the application of new immunotherapy methods related to T cells are discussed, with the objective of providing a theoretical basis for exploring and forming new antitumor treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hongli Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated People Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
6
|
Loss of Major Histocompatibility Complex Class I, CD8 + Tumor-infiltrating Lymphocytes, and PD-L1 Expression in Ovarian Clear Cell Carcinoma. Am J Surg Pathol 2023; 47:124-130. [PMID: 36221308 DOI: 10.1097/pas.0000000000001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ovarian clear cell carcinoma (OCCC), a chemoresistant ovarian cancer, shows a modest response to anti-programmed death-1/programmed death ligand-1 (PD-1/PD-L1) therapies. The effects of anti-PD-1/PD-L1 therapies rely on cytotoxic T-cell response, which is triggered by antigen presentation mediated by major histocompatibility complex (MHC) class I. The loss of MHC class I with simultaneous PD-L1 expression has been noted in several cancer types; however, these findings and their prognostic value have rarely been evaluated in OCCC. We collected data from 76 patients with OCCC for clinicopathologic analysis. Loss of MHC class I expression was seen in 44.7% of the cases including 39.3% to 47.4% of the PD-L1 + cases and was associated with fewer CD8 + tumor-infiltrating lymphocytes (TILs). PD-L1 positivity was associated with a higher number of CD8 + TILs. Cox proportional hazard models showed that high (≥50/mm 2 ) CD8 + TILs was associated with shorter disease-specific survival (hazard ratio [HR]=3.447, 95% confidence interval [CI]: 1.222-9.720, P =0.019) and overall survival (HR=3.053, 95% CI: 1.105-8.43, P =0.031). PD-L1 positivity using Combined Positive Score was associated with shorter progression-free survival (HR=3.246, 95% CI: 1.435-7.339, P =0.005), disease-specific survival (HR=4.124, 95% CI: 1.403-12.116, P =0.010), and overall survival (HR=4.489, 95% CI: 1.553-12.972, P =0.006). Loss of MHC class I may contribute to immune evasion and resistance to anti-PD-1/PD-L1 therapies in OCCC, and CD8 + TILs and PD-L1 positivity using Combined Positive Score may have a negative prognostic value.
Collapse
|
7
|
Bootsma M, McKay RR, Emamekhoo H, Bade RM, Schehr JL, Mannino MC, Singh A, Wolfe SK, Schultz ZD, Sperger J, Xie W, Signoretti S, Kyriakopoulos CE, Kosoff D, Abel EJ, Helzer KT, Rydzewski N, Bakhtiar H, Shi Y, Blitzer G, Bassetti M, Floberg J, Yu M, Sethakorn N, Sharifi M, Harari PM, Choueiri TK, Lang JM, Zhao SG. Longitudinal Molecular Profiling of Circulating Tumor Cells in Metastatic Renal Cell Carcinoma. J Clin Oncol 2022; 40:3633-3641. [PMID: 35617646 PMCID: PMC9622626 DOI: 10.1200/jco.22.00219] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Liquid biopsies in metastatic renal cell carcinoma (mRCC) provide a unique approach to understand the molecular basis of treatment response and resistance. This is particularly important in the context of immunotherapies, which target key immune-tumor interactions. Unlike metastatic tissue biopsies, serial real-time profiling of mRCC is feasible with our noninvasive circulating tumor cell (CTC) approach. METHODS We collected 457 longitudinal liquid biopsies from 104 patients with mRCC enrolled in one of two studies, either a prospective cohort or a phase II multicenter adaptive immunotherapy trial. Using a novel CTC capture and automated microscopy platform, we profiled CTC enumeration and expression of HLA I and programmed cell death-ligand 1 (PD-L1). Given their diametric immunological roles, we focused on the HLA I to PD-L1 ratio (HP ratio). RESULTS Patients with radiographic responses showed significantly lower CTC abundances throughout treatment. Furthermore, patients whose CTC enumeration trajectory was in the highest quartile (> 0.12 CTCs/mL annually) had shorter overall survival (median 17.0 months v 21.1 months, P < .001). Throughout treatment, the HP ratio decreased in patients receiving immunotherapy but not in patients receiving tyrosine kinase inhibitors. Patients with an HP ratio trajectory in the highest quartile (≥ 0.0012 annually) displayed significantly shorter overall survival (median 18.4 months v 21.2 months, P = .003). CONCLUSION In the first large longitudinal CTC study in mRCC to date to our knowledge, we identified the prognostic importance of CTC enumeration and the change over time of both CTC enumeration and the HP ratio. These insights into changes in both tumor burden and the molecular profile of tumor cells in response to different treatments provide potential biomarkers to predict and monitor response to immunotherapy in mRCC.
Collapse
Affiliation(s)
- Matthew Bootsma
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Rana R. McKay
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Hamid Emamekhoo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Rory M. Bade
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jennifer L. Schehr
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Matthew C. Mannino
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Anupama Singh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Serena K. Wolfe
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Zachery D. Schultz
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jamie Sperger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | | | - Sabina Signoretti
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Christos E. Kyriakopoulos
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - David Kosoff
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Edwin J. Abel
- Urology, University of Wisconsin-Madison, Madison, WI
| | - Kyle T. Helzer
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Nicholas Rydzewski
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Grace Blitzer
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - John Floberg
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Nan Sethakorn
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Marina Sharifi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
| | | | - Joshua M. Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Shuang G. Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
8
|
Jiang S, Li X, Huang L, Xu Z, Lin J. Prognostic value of PD-1, PD-L1 and PD-L2 deserves attention in head and neck cancer. Front Immunol 2022; 13:988416. [PMID: 36119046 PMCID: PMC9478105 DOI: 10.3389/fimmu.2022.988416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck cancer has high heterogeneity with poor prognosis, and emerging researches have been focusing on the prognostic markers of head and neck cancer. PD-L1 expression is an important basis for strategies of immunosuppressive treatment, but whether it has prognostic value is still controversial. Although meta-analysis on PD-L1 expression versus head and neck cancer prognosis has been performed, the conclusions are controversial. Since PD-L1 and PD-L2 are two receptors for PD-1, here we summarize and analyze the different prognostic values of PD-1, PD-L1, and PD-L2 in head and neck cancer in the context of different cell types, tissue localization and protein forms. We propose that for head and neck cancer, the risk warning value of PD-1/PD-L1 expression in precancerous lesions is worthy of attention, and the prognostic value of PD-L1 expression at different subcellular levels as well as the judgment convenience of prognostic value of PD-1, PD-L1, PD-L2 should be fully considered. The PD-L1 evaluation systems established based on immune checkpoint inhibitors (ICIs) are not fully suitable for the evaluation of PD-L1 prognosis in head and neck cancer. It is necessary to establish a new PD-L1 evaluation system based on the prognosis for further explorations. The prognostic value of PD-L1, PD-L2 expression in head and neck cancer may be different for early-stage and late-stage samples, and further stratification is required.
Collapse
Affiliation(s)
- Siqing Jiang
- Department of Comprehensive Chemotherapy/Head and Neck Cancer, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xin Li
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhensheng Xu
- Department of Oncologic Chemotheraphy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
- *Correspondence: Zhensheng Xu, ; Jinguan Lin,
| | - Jinguan Lin
- Department of Comprehensive Chemotherapy/Head and Neck Cancer, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Zhensheng Xu, ; Jinguan Lin,
| |
Collapse
|
9
|
The clinicopathological significance of PD-L1 expression assessed by the combined positive score (CPS) in head and neck squamous cell carcinoma. Pathol Res Pract 2022; 236:153934. [DOI: 10.1016/j.prp.2022.153934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
|
10
|
Final Results of Neoadjuvant Atezolizumab in Cisplatin-ineligible Patients with Muscle-invasive Urothelial Cancer of the Bladder. Eur Urol 2022; 82:212-222. [DOI: 10.1016/j.eururo.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/20/2022] [Accepted: 04/09/2022] [Indexed: 12/20/2022]
|
11
|
Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance. Biochem Soc Trans 2022; 50:825-837. [PMID: 35343573 PMCID: PMC9162455 DOI: 10.1042/bst20210961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Evading immune destruction is one of the hallmarks of cancer. A key mechanism of immune evasion deployed by tumour cells is to reduce neoantigen presentation through down-regulation of the antigen presentation machinery. MHC-I and MHC-II proteins are key components of the antigen presentation machinery responsible for neoantigen presentation to CD8+ and CD4+ T lymphocytes, respectively. Their expression in tumour cells is modulated by a complex interplay of genomic, transcriptomic and post translational factors involving multiple intracellular antigen processing pathways. Ongoing research investigates mechanisms invoked by cancer cells to abrogate MHC-I expression and attenuate anti-tumour CD8+ cytotoxic T cell response. The discovery of MHC-II on tumour cells has been less characterized. However, this finding has triggered further interest in utilising tumour-specific MHC-II to harness sustained anti-tumour immunity through the activation of CD4+ T helper cells. Tumour-specific expression of MHC-I and MHC-II has been associated with improved patient survival in most clinical studies. Thus, their reactivation represents an attractive way to unleash anti-tumour immunity. This review provides a comprehensive overview of physiologically conserved or novel mechanisms utilised by tumour cells to reduce MHC-I or MHC-II expression. It outlines current approaches employed at the preclinical and clinical trial interface towards reversing these processes in order to improve response to immunotherapy and survival outcomes for patients with cancer.
Collapse
|
12
|
Yaseen MM, Abuharfeil NM, Darmani H. CMTM6 as a master regulator of PD-L1. Cancer Immunol Immunother 2022; 71:2325-2340. [PMID: 35294592 DOI: 10.1007/s00262-022-03171-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Immune checkpoint proteins, such as programmed cell death receptor 1 (PD-1) and its ligand (PD-L1), play critical roles in the pathology of chronic inflammatory pathological conditions, particularly cancer. In addition, the activation of PD-1/PD-L1 pathway is involved in mediating resistance to certain anti-cancer chemo- and immuno-therapeutics. Unfortunately, targeting the PD-1/PD-L1 pathway by the available anti-PD-1/PD-L1 drugs can benefit only a small proportion of cancer patients. Thus, studying the factors that regulate the expression of these immune checkpoint proteins is of central importance in this context. Recent investigations have identified CMTM6 and, to a lesser extent, CMTM4, as master regulators of PD-L1 expression in various cancer cells. Understanding the mechanisms by which such proteins upregulate the expression of PD-L1 in tumor cells, and determining the potential regulators of CMTM6 expression in different types of cancers will accelerate the development of new therapeutic targets and/or lead to the enhancement of the currently available PD-1/PD-L1 blockade therapies.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
13
|
Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists. Mod Pathol 2022; 35:142-151. [PMID: 34493822 DOI: 10.1038/s41379-021-00882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Checkpoint inhibitor-based immunotherapy is increasingly used in the treatment of gynecologic cancers, and most often targets the PD-1/PD-L1 axis. Pathologists should be familiar with the biomarkers required to determine candidacy for these treatments based on existing FDA approvals, including mismatch repair protein immunohistochemistry, microsatellite instability testing, tumor mutation burden testing, and PD-L1 immunohistochemistry. This review summarizes the rationale behind these treatments and their associated biomarkers and delivers guidance on how to utilize and readout these tests. It also introduces additional biomarkers which may provide information regarding immunotherapeutic vulnerability in the future such as neoantigen load; POLE mutation status; and immunohistochemical expression of immunosuppressive checkpoints like LAG-3, TIM-3, TIGIT, and VISTA; immune-activating checkpoints such as CD27, CD40, CD134, and CD137; enzymes such as IDO-1 and adenosine-related compounds; and MHC class I.
Collapse
|
14
|
Mu L, Wang Y, Su H, Lin Y, Sui W, Yu X, Lv Z. HIF1A-AS2 Promotes the Proliferation and Metastasis of Gastric Cancer Cells Through miR-429/PD-L1 Axis. Dig Dis Sci 2021; 66:4314-4325. [PMID: 33555514 DOI: 10.1007/s10620-020-06819-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a common leading cause of cancer-related mortality of all malignancies. LncRNA hypoxia-inducible factor-1 alpha antisense RNA-2 (HIF1A-AS2) has been identified to involve in the development of GC. Therefore, we further explored the detailed molecular mechanism of HIF1A-AS2 in GC progression. METHODS The expression of HIF1A-AS2, microRNA-429 (miR-429), and programmed cell death ligand 1 (PD-L1) was measured using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell proliferation, migration, and invasion abilities were detected by Cell Counting Kit-8 (CCK-8) or transwell assay. The interaction between miR-429 and HIF1A-AS2 or PD-L1 was confirmed by luciferase reporter assay. Murine xenograft model was established to investigate the role of HIF1A-AS2 in vivo. RESULTS HIF1A-AS2 was elevated in GC tissues and cell lines. Functional experiments showed that HIF1A-AS2 knockdown inhibited GC cell proliferation, migration, and invasion in vitro, as well as hindered tumor growth in vivo. Moreover, HIF1A-AS2 directly bound to miR-429 based on bioinformatics prediction and luciferase assay, and inhibition of miR-429 abolished the effects of HIF1A-AS2 knockdown on GC cells. Furthermore, miR-429 directly targeted PD-L1, and overexpression of miR-429 suppressed GC tumorigenesis via PD-L1. Besides that, PD-L1 also performed an oncogenic role in GC cell proliferation and metastasis. Additionally, HIF1A-AS2 could indirectly regulate PD-L1 expression via sponging miR-429. CONCLUSION HIF1A-AS2 is a dependable predictor of malignancy and prognosis in GC and functions as an oncogene to promote GC cell proliferation and metastasis by regulating miR-429/PD-L1 axis, indicating a new insight into the search for novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Linsong Mu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shangdong, China
| | - Hailong Su
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Yang Lin
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Wu Sui
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Xiang Yu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Zhongchuan Lv
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China.
| |
Collapse
|
15
|
Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, Sampurno S, Sia J, Bernardi MP, Chittleborough TJ, Behrenbruch CC, Teh J, Xu H, Haynes NM, Yu J, Lupat R, Hawkes D, Di Costanzo N, Tothill RW, Mitchell C, Ngan SY, Heriot AG, Ramsay RG, Phillips WA. Molecular and genomic characterisation of a panel of human anal cancer cell lines. Cell Death Dis 2021; 12:959. [PMID: 34663790 PMCID: PMC8523722 DOI: 10.1038/s41419-021-04141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
Collapse
Affiliation(s)
- Glen R Guerra
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Joseph C Kong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rosemary M Millen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Read
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David S Liu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- UGI Surgery Unit, Austin Hospital, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Sara Roth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shienny Sampurno
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Joseph Sia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Maria-Pia Bernardi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy J Chittleborough
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Corina C Behrenbruch
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiasian Teh
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Huiling Xu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiaan Yu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard Lupat
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - David Hawkes
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- VCS Foundation, Carlton, VIC, 3053, Australia
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Natasha Di Costanzo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard W Tothill
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Samuel Y Ngan
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Alexander G Heriot
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert G Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|
17
|
Ichiki Y, Ueno M, Yanagi S, Kanasaki Y, Goto H, Fukuyama T, Mikami S, Nakanishi K, Ishida T. An analysis of the immunological tumor microenvironment of primary tumors and regional lymph nodes in squamous cell lung cancer. Transl Lung Cancer Res 2021; 10:3520-3537. [PMID: 34584854 PMCID: PMC8435388 DOI: 10.21037/tlcr-21-479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022]
Abstract
Background Various immune cells that play a central role in antitumor immunity accumulate in primary tumors and regional lymph nodes. Such cellular accumulation and the molecular expression were analyzed to elucidate the immunological tumor microenvironment. Methods Fifty squamous cell lung cancer patients with complete resection were included. Resected specimens from primary lung tumors and regional lymph nodes were immunostained for immune-related molecules, such as CD8, CD103, major histocompatibility complex (MHC) class I, and programmed cell death protein ligand-1 (PD-L1), and the relationship between the prognosis and clinicopathological factors was retrospectively analyzed. Results Tumor-infiltrating lymphocytes and CD8+ lymphocytes, intratumoral and intrastromal CD103+ lymphocytes, tumor diameter, pathological T and N factors, and pathological stage were significant prognostic factors for the disease-specific survival (DSS) in a univariate analysis. In a multivariate analysis, intratumoral and intrastromal CD103+ lymphocytes and pathological T and N factors were independent prognostic factors of the DSS. Significant concordance was found between the PD-L1 expression of primary tumors and metastatic lymph nodes as well as among tumor-infiltrating lymphocytes, CD8+ lymphocytes and CD103+ lymphocytes. Infiltration of CD103+ lymphocytes into the tumor was significantly correlated with an increased PD-L1 expression of cancer cells in both primary tumors and reginal lymph node metastases. Both the intratumoral infiltration of CD103+ lymphocytes and PD-L1 expression of cancer cells were significantly higher in lymph node metastases than in primary tumors. Conclusions CD103+ lymphocyte infiltration in the primary tumor was shown to be strongly involved in the prognosis.
Collapse
Affiliation(s)
- Yoshinobu Ichiki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan.,Second Department of Surgery, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Mari Ueno
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shinya Yanagi
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Yoshiro Kanasaki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Hidenori Goto
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Kozo Nakanishi
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Tsuyoshi Ishida
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| |
Collapse
|
18
|
Park JE, Kim SE, Keam B, Park HR, Kim S, Kim M, Kim TM, Doh J, Kim DW, Heo DS. Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines. J Immunother Cancer 2021; 8:jitc-2020-000873. [PMID: 32830112 PMCID: PMC7445348 DOI: 10.1136/jitc-2020-000873] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background Although programmed cell death-1/programmed death-ligand 1 (PD-L1) inhibitors show remarkable antitumor activity, a large portion of patients with cancer, even those with high PD-L1-expressing tumors, do not respond to their effects. Most PD-L1 inhibitors contain modified fragment crystallizable region (Fc) receptor binding sites to prevent antibody-dependent cellular cytotoxicity (ADCC) against PD-L1-expressing non-tumor cells. However, natural killer (NK) cells have specific antitumor activity in the presence of tumor-targeting antibody through ADCC, which could enhance NK cell-induced cytotoxicity. We evaluated the antitumor efficacy of ADCC via anti-PD-L1 monoclonal antibodies (mAbs) and NK cells against several PD-L1-positive cancer cell lines. Methods Various cancer cell lines were used as target cell lines. Surface PD-L1 expression was analyzed by flow cytometry. IMC-001 and anti-hPD-L1-hIgG1 were tested as anti-PD-L1 mAbs with ADCC and atezolizumab as an anti-PD-L1 mAb without ADCC. NK cell cytotoxicity was measured by 51Cr-release assay and CD107a degranulation assay. Also, live cell imaging was performed to evaluate cytotoxicity in a single-cell level. NK-92-CD16 (CD16-transduced NK-92 cell line) and peripheral blood mononuclear cells from healthy donors, respectively, were used as an effector cell. FcγRIIIa (CD16a)-V158F genotyping was performed for healthy donors. Results We demonstrated that the cytotoxicity of NK-92-CD16 cells toward PD-L1-positive cancer cell lines was significantly enhanced in the presence of anti-PD-L1 mAb with ADCC. We also noted a significant increase in primary human NK cell cytotoxicity against PD-L1-positive human cancer cells when cocultured with anti-PD-L1 mAb with ADCC. Moreover, NK cells expressing a FCGR3A high-affinity genotype displayed higher anti-PD-L1 mAb-mediated ADCC lysis of tumor cells than donors with a low-affinity genotype. Conclusion These results suggest that NK cells induce an ADCC response in combination with anti-PD-L1 mAbs, which helps promote ADCC antitumor activity against PD-L1-positive tumors. This study provides support for NK cell immunotherapy against high PD-L1-expressing tumors in combination with ADCC through anti-PD-L1 mAbs.
Collapse
Affiliation(s)
- Ji-Eun Park
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
19
|
Chandrasekaran S, Funk CR, Kleber T, Paulos CM, Shanmugam M, Waller EK. Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ. Front Immunol 2021; 12:718621. [PMID: 34512641 PMCID: PMC8427697 DOI: 10.3389/fimmu.2021.718621] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
PI3K-δ and PI3K-γ are critical regulators of T-cell differentiation, senescence, and metabolism. PI3K-δ and PI3K-γ signaling can contribute to T-cell inhibition via intrinsic mechanisms and regulation of suppressor cell populations, including regulatory T-cells and myeloid derived suppressor cells in the tumor. We examine an exciting new role for using selective inhibitors of the PI3K δ- and γ-isoforms as modulators of T-cell phenotype and function in immunotherapy. Herein we review the current literature on the implications of PI3K-δ and -γ inhibition in T-cell biology, discuss existing challenges in adoptive T-cell therapies and checkpoint blockade inhibitors, and highlight ongoing efforts and future directions to incorporate PI3K-δ and PI3K-γ as synergistic T-cell modulators in immunotherapy.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Christopher Ronald Funk
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Troy Kleber
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Department of Surgery/Microbiology & Immunology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA, United States
| |
Collapse
|
20
|
Strait AA, Woolaver RA, Hall SC, Young CD, Karam SD, Jimeno A, Lan Y, Raben D, Wang JH, Wang XJ. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol 2021; 4:1005. [PMID: 34433873 PMCID: PMC8387430 DOI: 10.1038/s42003-021-02522-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Transforming growth factor beta (TGFβ) and programmed death-ligand 1 (PD-L1) are often overproduced in refractory squamous cell carcinoma (SCC). We examined spatial patterns of PD-L1+ cells in mouse and human SCCs and found that PD-L1 was primarily expressed on infiltrating leukocytes. Although combined TGFβ and PD-L1 blockade are undergoing cancer clinical trials, there are no predictive markers for therapeutic responders. To address this, we used both a small molecule TGFβ inhibitor in combination with anti-PD-L1 and a bifunctional fusion protein targeting both TGFβ and PD-L1 to treat mouse SCCs and found TGFβ inhibition enhanced PD-L1 blockade-induced tumor eradication in multiple tumor models. Furthermore, we identified distinct cell populations of responders and non-responders to bintrafusp alfa, with responders showing a shift toward a more immune-permissive microenvironment. The cellular and molecular signatures of responders versus non-responders to combined TGFβ and PD-L1 blockade provide important insights into future personalized immunotherapy in SCC. Strait et al describe distinct immune microenvironment profiles of responders versus non-responders to combined TGF-β/PD-L1 blockade in mouse models of squamous cell carcinoma (SCC). The results emphasize the potential of combined TGF-β/PD-L1 targeting and provide important clues to guide personalized SCC immunotherapy.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christian D Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Yan Lan
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA.,a business of Merck KGaA, Darmstadt, Germany
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. .,Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. .,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA.
| |
Collapse
|
21
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
22
|
Choong WK, Sung TY. Somatic mutation subtypes of lung adenocarcinoma in East Asian reveal divergent biological characteristics and therapeutic vulnerabilities. iScience 2021; 24:102522. [PMID: 34142036 PMCID: PMC8188494 DOI: 10.1016/j.isci.2021.102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) patients in East Asia predominantly harbor oncogenic EGFR mutations. However, there remains a limited understanding of the biological characteristics and therapeutic vulnerabilities of the concurrent mutations of EGFR and other genes in LUAD. Here, we performed comprehensive bioinformatics analyses on 88 treatment-naïve East Asian LUAD patients. Based on somatic mutation clustering, we identified three somatic mutation subtypes: EGFR + TP53 co-mutation, EGFR mutation, and multiple-gene mutation. A proteogenomic analysis among subtypes revealed varying degrees of dysregulation in cell-cycle-related and immune-related processes. An immune-characteristic analysis revealed higher PDL1 protein expression in the EGFR + TP53 co-mutation subtype than in the EGFR mutation subtype, which may affect the therapeutic efficacy of anti-PD-L1 therapy. Moreover, integrating known and potential therapeutic target analysis reveals therapeutic vulnerabilities of specific subtypes and nominates candidate biomarkers for therapeutic intervention. This study provides new biological insight and therapeutic opportunities with respect to EGFR-mutant LUAD subtypes. Comprehensive clustering analysis reveals three somatic mutation subtypes Prognosis of EGFRmut/TP53mut subtype is worse than EGFRmut subtype EGFRmut/TP53mut subtype shows IFN signaling and antigen processing pathway signatures Proteome analysis identifies druggable proteins and candidates for drug repositioning
Collapse
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
23
|
Dusenbery AC, Maniaci JL, Hillerson ND, Dill EA, Bullock TN, Mills AM. MHC Class I Loss in Triple-negative Breast Cancer: A Potential Barrier to PD-1/PD-L1 Checkpoint Inhibitors. Am J Surg Pathol 2021; 45:701-707. [PMID: 33739790 DOI: 10.1097/pas.0000000000001653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Suppression of the immune system is intimately linked to the development and progression of malignancy, and immune modulating treatment options have shown promise in a variety of tumor types, including some triple-negative breast cancers (TNBC). The most dramatic therapeutic success has been seen with immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand, PD-L1. Difficulty remains, however, in appropriate patient selection for treatment, as many PD-L1-positive cancers fail to show durable responses to PD-1/PD-L1 inhibition. Checkpoint inhibitor targeting of the adaptive immune response relies on the presence of major histocompatibility complex (MHC) class I molecules on the tumor cell surface for tumor antigen presentation. MHC class I loss has been previously described in breast cancer and represents a putative mechanism of immunotherapeutic resistance in this tumor type. One hundred seventeen invasive primary breast carcinomas with a range of histologic subtypes were evaluated on tissue microarrays containing formalin-fixed paraffin-embedded tissue. Loss of MHC class I expression was common among breast cancers, with greater than half of cases demonstrating either subclonal or diffuse loss. Fifty-nine percent of TNBC demonstrated loss of MHC class I, including 46% of those meeting the Food and Drug Administration-approved threshold of 1% for tumor-associated immune cell PD-L1 expression. MHC class I loss was particularly common in the apocrine subtype of TNBC (78%). MHC class I's employment as a predictive biomarker should be considered, as its loss may represent a barrier to successful enhancement of the antitumor adaptive immune response by PD-1/PD-L1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Erik A Dill
- University of Virginia Department of Pathology
| | | | | |
Collapse
|
24
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 552] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
25
|
MHC class I loss in endometrial carcinoma: a potential resistance mechanism to immune checkpoint inhibition. Mod Pathol 2021; 34:627-636. [PMID: 33011747 DOI: 10.1038/s41379-020-00682-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Major histocompatibility complex (MHC) class I is a membrane-bound protein complex expressed on nucleated human cells. MHC class I presents intracellular protein fragments to cytotoxic T cells and triggers an activation cascade upon neoantigen detection by these cells. MHC class I loss by tumor cells decreases tumor neoantigen presentation to the immune system and therefore represents a possible mechanism of immunotherapeutic resistance even among cancers that otherwise appear to be good candidates for checkpoint inhibition, such as mismatch repair (MMR)-deficient and PD-L1-positive malignancies. We herein assess MHC class I expression in a range of endometrial carcinomas, including MMR-deficient and PD-L1-positive cancers. Immunohistochemical staining for combined MHC class I A-, B-, and C-heavy chains was performed on 76 cases of endometrial carcinoma and was classified as present, subclonally lost, or diffusely lost. Tumoral PD-L1 expression, PD-L1 combined positive score, and CD3-positive T lymphocytes were also quantified. Forty-two percent of tumors showed loss of MHC class I expression, either in a subclonal (26%) or diffuse (16%) pattern. This included 46% of MMR-deficient and 25% of PD-L1-positive cancers. These findings suggest that tumoral MHC class I status may be an important factor to consider when selecting endometrial cancer patients for checkpoint inhibition.
Collapse
|
26
|
Mao C, Zeng X, Zhang C, Yang Y, Xiao X, Luan S, Zhang Y, Yuan Y. Mechanisms of Pharmaceutical Therapy and Drug Resistance in Esophageal Cancer. Front Cell Dev Biol 2021; 9:612451. [PMID: 33644048 PMCID: PMC7905099 DOI: 10.3389/fcell.2021.612451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Pharmaceutical therapies are essential for esophageal cancer (EC). For the advanced EC, the neoadjuvant therapy regimen, including chemotherapy plus radiotherapy and/or immunotherapy, is effective to achieve clinical benefit, even pathological complete response. For the unresectable, recurrent, and metastatic EC, the pharmaceutical therapy is the limited effective regimen to alleviate the disease and prolong the progression-free survival and overall survival. In this review, we focus on the pharmaceutical applications in EC treatment including cytotoxic agents, molecular targeted antibodies, and immune checkpoint inhibitors (ICIs). The chemotherapy regimen is based on cytotoxic agents such as platinum-based complexes, fluorinated pyrimidines and taxenes. Although the cytotoxic agents have been developed in past decades, the standard chemotherapy regimen is still the cisplatin and 5-FU or paclitaxel because the derived drugs have no significant advantages of overcoming the shortcomings of side effects and drug resistance. The targeted molecular therapy is an essential supplement for chemotherapy; however, there are only a few targeted therapies available in clinical practice. Trastuzumab and ramucirumab are the only two molecular therapy drugs which are approved by the US Food and Drug Administration to treat advanced and/or metastatic EC. Although the targeted therapy usually achieves effective benefits in the early stage therapy of EC, the patients will always develop drug resistance during treatment. ICIs have had a significant impact on routine clinical practice in cancer treatment. The anti-programmed cell death-1 monoclonal antibodies pembrolizumab and nivolumab, as the ICIs, are recommended for advanced EC by several clinical trials. However, the significant issues of pharmaceutical treatment are still the dose-limiting side effects and primary or secondary drug resistance. These defects of pharmaceutical therapy restrain the clinical application and diminish the effectiveness of treatment.
Collapse
Affiliation(s)
- Chengyi Mao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Loss of MHC Class I Expression in HPV-associated Cervical and Vulvar Neoplasia: A Potential Mechanism of Resistance to Checkpoint Inhibition. Am J Surg Pathol 2020; 44:1184-1191. [PMID: 32496434 DOI: 10.1097/pas.0000000000001506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor cell expression of major histocompatibility complex (MHC) class I is required for antigen presentation and adaptive immune recognition. Absent or diminished MHC class I expression is thought to contribute to immunotherapeutic resistance in some epithelial tumors but has not been previously studied in cervical and vulvar carcinoma. Given that anti-programmed cell death 1 (PD-1) checkpoint inhibition is deployed for programmed cell death ligand 1 (PD-L1)-positive recurrent and metastatic cervical squamous carcinomas, identifying tumors with loss of MHC class I is of clinical interest to optimize the selection of immunotherapeutic candidates. Immunohistochemistry for PD-L1 and MHC class I combined A, B, and C heavy chains (MHC class I) was assessed in 58 human papillomavirus-associated cervical and vulvar lesions, including 27 squamous intraepithelial lesions (SILs) and 31 invasive squamous cell carcinoma (SCC). Although 84% of SCC and 22% of SIL were PD-L1-positive, 35.5% (11/31) of SCC and 18.5% (5/27) of SIL also showed clonal or complete loss of MHC class I. Loss of MHC class I expression was more common in PD-L1-positive (10/26, 38%) versus PD-L1-negative SCC (1/5, 20%). In summary, over one third of human papillomavirus-associated cervical and vulvar SCC show clonal or complete loss of MHC class I expression, including many PD-L1-positive cases. This suggests that the efficacy of checkpoint inhibitors targeting the PD-1/PD-L1 axis may be limited in a subset of cervical and vulvar squamous neoplasms due to an impaired ability to engage with the adaptive immune system related to loss of MHC class I expression.
Collapse
|
28
|
Haibe Y, El Husseini Z, El Sayed R, Shamseddine A. Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Int J Mol Sci 2020; 21:E6176. [PMID: 32867025 PMCID: PMC7504220 DOI: 10.3390/ijms21176176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape in oncology has witnessed a major revolution with the introduction of checkpoint inhibitors: anti-PD1, anti-PDL1 and anti-CTLA-4. These agents enhance the immune response towards cancer cells instead of targeting the tumor itself, contrary to standard chemotherapy. Although long-lasting durable responses have been observed with immune checkpoints inhibitors, the response rate remains relatively low in many cases. Some patients respond in the beginning but then eventually develop acquired resistance to treatment and progress. Other patients having primary resistance never respond. Multiple studies have been conducted to further elucidate these variations in response in different tumor types and different individuals. This paper provides an overview of the mechanisms of resistance to immune checkpoint inhibitors and highlights the possible therapeutic approaches under investigation aiming to overcome such resistance in order to improve the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (Z.E.H.); (R.E.S.)
| |
Collapse
|
29
|
Wuerdemann N, Gültekin SE, Pütz K, Wittekindt C, Huebbers CU, Sharma SJ, Eckel H, Schubotz AB, Gattenlöhner S, Büttner R, Speel EJ, Klussmann JP, Wagner S, Quaas A. PD-L1 Expression and a High Tumor Infiltrate of CD8+ Lymphocytes Predict Outcome in Patients with Oropharyngeal Squamous Cells Carcinoma. Int J Mol Sci 2020; 21:ijms21155228. [PMID: 32718057 PMCID: PMC7432501 DOI: 10.3390/ijms21155228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Carcinogenesis of human papillomavirus (HPV)-related (+) oropharyngeal squamous cell carcinoma (OPSCC) differs from HPV-negative (–) OPSCC. HPV-related immune-escape-mechanism could be responsible for the development and progression of HPV+ tumors and an immunophenotype different from HPV– OPSCC is expected. The purpose of this study was to analyze the expression of programmed cell death protein 1 ligand 1 (PD-L1) and its prognostic relevance in relation to CD8+ tumor infiltrating lymphocytes (TILs) and the major histocompatibility complex (MHC) I expression in OPSCC. We quantified PD-L1 expression on tumor cells (TC) and macrophages and MHC I expression in association to CD8+ TILs by immunohistochemistry on tissue microarray derived from 171 HPV+/-OPSCC. HPV-status was determined by p16INK4a immunohistochemistry/HPV-DNA detection. Presence of CD8+ TILs, PD-L1 expression on TC, and a more frequent loss of MHC I in HPV+ compared to HPV- OPSCC was detected. A high amount of CD8+ TILs in the whole cohort and in HPV+ OPSCC and PD-L1 expression on TC in HPV- OPSCC was associated with favorable overall survival. There was a trend for an improved outcome according to PD-L1 expression (macrophages) in HPV+ OPSCC without reaching statistical significance. CD8+ TILs and PD-L1-expression have prognostic impact in OPSCC and might present useful biomarkers for predicting clinical outcome and personalized therapy concepts.
Collapse
Affiliation(s)
- Nora Wuerdemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikstrasse 33, University of Giessen, 35392 Giessen, Germany; (C.W.); (S.J.S.); (A.B.S.); (S.W.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (C.U.H.); (H.E.); (J.P.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence:
| | - Sibel E. Gültekin
- Department of Oral Pathology, Faculty of Dentistry, Biskek Caddesi, Emek, University of Gazi, Ankara 06510, Turkey;
| | - Katharina Pütz
- Institute of Pathology, Kerpener Strasse 62, University of Cologne, 50937 Cologne, Germany; (K.P.); (R.B.); (A.Q.)
| | - Claus Wittekindt
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikstrasse 33, University of Giessen, 35392 Giessen, Germany; (C.W.); (S.J.S.); (A.B.S.); (S.W.)
| | - Christian U. Huebbers
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (C.U.H.); (H.E.); (J.P.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Geibelstrasse 29-31, 50931 Cologne, Germany
| | - Shachi J. Sharma
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikstrasse 33, University of Giessen, 35392 Giessen, Germany; (C.W.); (S.J.S.); (A.B.S.); (S.W.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (C.U.H.); (H.E.); (J.P.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Hans Eckel
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (C.U.H.); (H.E.); (J.P.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Anna B. Schubotz
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikstrasse 33, University of Giessen, 35392 Giessen, Germany; (C.W.); (S.J.S.); (A.B.S.); (S.W.)
| | - Stefan Gattenlöhner
- Institute of Pathology, Langhansstrasse 10, University of Giessen, 35392 Giessen, Germany;
| | - Reinhard Büttner
- Institute of Pathology, Kerpener Strasse 62, University of Cologne, 50937 Cologne, Germany; (K.P.); (R.B.); (A.Q.)
| | - Ernst-Jan Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastrichtthe, The Netherlands;
| | - Jens P. Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; (C.U.H.); (H.E.); (J.P.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikstrasse 33, University of Giessen, 35392 Giessen, Germany; (C.W.); (S.J.S.); (A.B.S.); (S.W.)
| | - Alexander Quaas
- Institute of Pathology, Kerpener Strasse 62, University of Cologne, 50937 Cologne, Germany; (K.P.); (R.B.); (A.Q.)
| |
Collapse
|
30
|
Immune Checkpoint Inhibitors in Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Cancers (Basel) 2020; 12:cancers12071937. [PMID: 32708945 PMCID: PMC7409293 DOI: 10.3390/cancers12071937] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cancers of the oral cavity cause significant cancer-related death worldwide. While survival rates have improved in recent years, new methods of treatment are being investigated to limit disease progression and to improve outcomes, particularly in oral cavity squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD). The emerging treatment modality of immunotherapy targets immune checkpoint molecules including PD-1 and its ligand PD-L1, CTLA-4, LAG-3, and TIM-3 to enhance the host immune response against tumours, and to limit the growth and progression of cancer cells. In this systematic review, we searched five databases for keywords pertaining to oral cancers and OPMDs, along with immune checkpoint inhibitors, in order to summarize the current status of their use and efficacy in these diseases. A total of 644 different articles were identified between 2004 and 2019, with 76 deemed suitable for inclusion in the study, providing a total of 8826 samples. Combined results show expression of PD-1 and PD-L1 in the majority of OPMD and OSCC samples, with expression correlating with increased progression and decreased survival rates. Immunotherapy agents pembrolizumab and nivolumab target PD-1 and have been shown to prolong survival rates and improve disease outcomes, especially in combination with chemotherapy or radiotherapy. Despite the equivocal nature of current evidence, there is support for the prognostic and predictive value of immune checkpoint molecules, especially PD-L1, and many studies provide support for the effective use of immune checkpoint inhibitors in the management of OSCC. Limited data is available for OPMD, therefore this should be the focus of future research.
Collapse
|
31
|
Li H, Xiong HG, Xiao Y, Yang QC, Yang SC, Tang HC, Zhang WF, Sun ZJ. Long Non-coding RNA LINC02195 as a Regulator of MHC I Molecules and Favorable Prognostic Marker for Head and Neck Squamous Cell Carcinoma. Front Oncol 2020; 10:615. [PMID: 32435615 PMCID: PMC7218046 DOI: 10.3389/fonc.2020.00615] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
The loss of major histocompatibility complex class I (MHC I) molecules is an important mechanism by which cancer cells escape immunosurveillance in head and neck squamous cell carcinoma (HNSCC). Several long non-coding RNAs (lncRNAs) have been implicated in immune response and regulation including antigen processing and presentation. However, few studies on lncRNAs regulating MHC I expression in HNSCC have been conducted. In this study, MHC I related lncRNAs were identified from the The Cancer Genome Atlas (TCGA) HNSCC database. One of the lncRNAs, long intergenic non-protein coding RNA 2195 (LINC02195), was found to be associated with genes encoding MHC I molecules and patient prognosis in the TCGA database. KEGG and GO analyses suggested that LINC02195 was closely related to antigen processing and presentation. qRT-PCR revealed high expression of LINC02195 in human HNSCC tissues and HNSCC cell lines compared with normal mucosal tissues. in situ hybridization of the HNSCC tissue microarray revealed a correlation between high LINC02195 expression and a favorable prognosis in our patient cohort. Silencing of LINC02195 decreased MHC I protein expression, as evidenced by western blotting. Multiplex immunochemistry was performed to reveal the positive correlation between high LINC02195 expression and an increased number of CD8+ and CD4+ T cells in the tumor microenvironment. Based on our study, LINC02195 is a promising prognostic marker and a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong-Gang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shao-Chen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong-Chao Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Bisheshar SK, De Ruiter EJ, Devriese LA, Willems SM. The prognostic role of NK cells and their ligands in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 2020; 9:1747345. [PMID: 32363116 PMCID: PMC7185215 DOI: 10.1080/2162402x.2020.1747345] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background : Despite the improvement in therapeutic interventions, 5-year survival rates in Head and Neck Squamous Cell Carcinoma (HNSCC) are limited. HNSCC is an immunogenic cancer type for which molecular stratification markers are lacking. Tumor-infiltrating lymphocytes (TILs) have shown a favorable prognostic role in different cancer types. This study focused on the prognostic role of NK cells in HNSCC. Methods : A systematic search was conducted in Pubmed/Medline and Embase. Articles that correlated the presence of intratumoral NK cells, activating/inhibiting receptors, death receptors, or their ligands with clinicopathologic characteristics or survival were included. A meta-analysis was performed that assessed the association between CD56+ and CD57+ and overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). Results : A pooled analysis indicated a favorable prognostic role of CD56+ and CD57+ NK cells for OS (HR 0.19 CI 0.11-0.35). NK cell markers NKp46 and Granzyme B (GrB) also have a favorable prognostic role. NK cell ligand Fas correlated with better survival and better characteristics. NK cell marker Fas-L, NK cell ligands CEACAM1, RCAS1, CD70 and TRAIL-R, and effector molecules of these ligands, FADD and FAP1, correlated to features of worse prognosis. Conclusion : A favorable prognostic role of NK cells in HNSCC was found in this review. Some studies implied the opposite, indicating the fine balance between pro- and anti-tumor functions of NK cells. Future studies using homogeneous patient cohorts regarding tumor subsite and treatment modality, are necessary to further provide insight into the prognostic role of NK cells.
Collapse
Affiliation(s)
- Sangeeta K. Bisheshar
- Department of Pathology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| | - Emma J. De Ruiter
- Department of Pathology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| | - Lot A. Devriese
- Department of Medical Oncology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| | - Stefan M. Willems
- Department of Pathology, University Medical Center Utrecht, CX Utrecht 3584, The Netherlands
| |
Collapse
|
33
|
Lee MY, Allen CT. Mechanisms of resistance to T cell-based immunotherapy in head and neck cancer. Head Neck 2020; 42:2722-2733. [PMID: 32275098 DOI: 10.1002/hed.26158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Most current approved or investigational immunotherapeutic approaches for head and neck squamous cell carcinoma are aimed at activating T cells. The majority of patients receiving such immunotherapy do not demonstrate durable tumor remission. METHODS Original articles covering tumor heterogeneity, immunoediting, immune escape, and local tumor immunosuppression were reviewed. RESULTS In the face of immune pressure, subclones susceptible to T cell killing are eliminated, leaving behind resistant tumor clones in a process known as immunoediting. Such subclones of tumor cells that are resistant to T cell killing may remain sensitive to natural killer (NK) cell detection and elimination, suggesting that patients harboring such tumors may benefit from combination of T and NK cell-based immunotherapy. Even in the setting of optimal immunotherapy, the immunosuppressive tumor microenvironment may arrogate effector immune responses through a number of distinct mechanisms. CONCLUSIONS Highly effective immunotherapy will likely require multimodality approaches targeting independent mechanisms of immune activation.
Collapse
Affiliation(s)
- Maxwell Y Lee
- Translational Tumor Immunology Program, National Institute on Deafness and Other Commination Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Commination Disorders, National Institutes of Health, Bethesda, Maryland, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Westrich JA, Vermeer DW, Colbert PL, Spanos WC, Pyeon D. The multifarious roles of the chemokine CXCL14 in cancer progression and immune responses. Mol Carcinog 2020; 59:794-806. [PMID: 32212206 DOI: 10.1002/mc.23188] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
The chemokine CXCL14 is a highly conserved, homeostatic chemokine that is constitutively expressed in skin epithelia. Responsible for immune cell recruitment and maturation, as well as impacting epithelial cell motility, CXCL14 contributes to the establishment of immune surveillance within normal epithelial layers. Furthermore, CXCL14 is critical to upregulating major histocompatibility complex class I expression on tumor cells. Given these important roles, CXCL14 is often dysregulated in several types of carcinomas including cervical, colorectal, endometrial, and head and neck cancers. Its disruption has been shown to limit critical antitumor immune regulation and is correlated to poor patient prognosis. However, other studies have found that in certain cancers, namely pancreatic and some breast cancers, overexpression of stromal CXCL14 correlates with poor patient survival due to increased invasiveness. Contributing to the ambiguity CXCL14 plays in cancer is that the native CXCL14 receptor remains uncharacterized, although several candidate receptors have been proposed. Despite the complexity of CXCL14 functions, it remains clear that this chemokine is a key regulatory factor in cancer and represents a potential target for future cancer immunotherapies.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| |
Collapse
|
35
|
Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog 2020; 59:766-774. [PMID: 32017286 DOI: 10.1002/mc.23162] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a heterogeneous group of tumors that are highly aggressive and collectively represent the sixth most common cancer worldwide. Ninety percent of head and neck cancers are squamous cell carcinomas (HNSCCs). The tumor microenvironment (TME) of HNSCCs consists of many different subsets of cells that infiltrate the tumors and interact with the tumor cells or with each other through various networks. Both innate and adaptive immune cells play a crucial role in mediating immune surveillance and controlling tumor growth. Here, we discuss the different subsets of immune cells and how they contribute to an immunosuppressive TME of HNSCCs. We also briefly summarize recent advances in immunotherapeutic approaches for HNSCC treatment. A better understanding of the multiple factors that play pivotal roles in HNSCC tumorigenesis and tumor progression may help define novel targets to develop more effective immunotherapies for patients with HNSCC.
Collapse
Affiliation(s)
- Samantha M Y Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra L Krinsky
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|