1
|
Ding HW, Wang Q, Wang M, Chen Y, Yuan SM. Immunohistochemical and ultrastructural identification of telocytes in the infantile hemangioma. Ultrastruct Pathol 2024; 48:563-574. [PMID: 39397344 DOI: 10.1080/01913123.2024.2415608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Telocytes (TCs) are a distinctive cell entity of the stromal microenvironment of multiple tumors; to date, their existence in infantile hemangioma (IH) remains almost unexplored. This study was therefore undertaken to characterize the immunophenotype, location, morphology, and ultrastructure of telocytes in the IH by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. Telocytes were initially identified by CD34, PDGFR-α, Vimentin, and AQP-1 immunostaining. Analyzing the spatial relationship among telocytes, stem cells, endothelial cells, pericytes in the IH with AQP-1/CD31, AQP-1/Glut-1, AQP-1/α-SMA, AQP-1/CD146 and AQP-1/CD133 double immunofluorescence. TCs were immunonegative for CD31, Glut-1, CD146, α-SMA, CD133, and C-kit in the IH. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e. telopodes) forming labyrinthine networks around microvessels and releasing extracellular vesicles. Our study provides evidence that telocytes are present and PDGFR-α and AQP-1 are specific antigenic markers in the IH.
Collapse
Affiliation(s)
- Han-Wen Ding
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Min Wang
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Yong Chen
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Sanches BDA, Rocha LC, Neto JP, Beguelini MR, Ciena AP, Carvalho HF. Telocytes of the male reproductive system: dynamic tissue organizers. Front Cell Dev Biol 2024; 12:1444156. [PMID: 39469114 PMCID: PMC11513265 DOI: 10.3389/fcell.2024.1444156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Telocytes are CD34+ interstitial cells that have long cytoplasmic projections (called telopodes), and have been detected in several organs, including those of the male reproductive system. In this brief review we evaluate the role of telocytes in tissue organization of the different organs of the male reproductive system in which these cells were studied. In general terms, telocytes act in the tissue organization through networks of telopodes that separate the epithelia from the stroma, as well as dividing the stroma into different compartments. In addition to this contribution to the structural integrity, there is direct and indirect evidence that such "walls" formed by telocytes also compartmentalize paracrine factors that they or other cells produce, which have a direct impact on morphogenesis and the maintenance of organ cell differentiation, as well as on their normal physiology. Moreover, alterations in telocytes and telopode networks are correlated with pathological conditions in the male reproductive system, in response to profound changes in structural organization of the organs, in inflammation, hyperplasia and cancer. Further studies are necessary to evaluate the molecular pathways telocytes employ in different contexts of physiology and disease.
Collapse
Affiliation(s)
- Bruno D. A. Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lara C. Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - J. Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Adriano P. Ciena
- Center of Biological and Health Science, Federal University of Western Bahia (UFOB), Barreiras, Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Pimentel Neto J, Batista RD, Rocha-Braga LC, Chacur M, Camargo PO, Ciena AP. The telocytes relationship with satellite cells: Extracellular vesicles mediate the myotendinous junction remodeling. Microsc Res Tech 2024; 87:1733-1741. [PMID: 38501548 DOI: 10.1002/jemt.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Rodrigo Daniel Batista
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Marucia Chacur
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Oliveira Camargo
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
4
|
Sanches BDA, Teófilo FBS, Brunet MY, Villapun VM, Man K, Rocha LC, Neto JP, Matsumoto MR, Maldarine JS, Ciena AP, Cox SC, Carvalho HF. Telocytes: current methods of research, challenges and future perspectives. Cell Tissue Res 2024; 396:141-155. [PMID: 38539007 DOI: 10.1007/s00441-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Francisco B S Teófilo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Victor M Villapun
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Lara C Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Marta R Matsumoto
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Namjoo AR, Hassani A, Amini H, Nazaryabrbekoh F, Saghati S, Saadatlou MAE, Khoshfetrat AB, Khosrowshahi ND, Rahbarghazi R. Multiprotein collagen/keratin hydrogel promoted myogenesis and angiogenesis of injured skeletal muscles in a mouse model. BMC Biotechnol 2024; 24:23. [PMID: 38671404 PMCID: PMC11055224 DOI: 10.1186/s12896-024-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa. Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological properties of the injured area. Here, myogenic properties of type I collagen (0.5%) and keratin (0.5%) were investigated in a mouse model of biceps femoris injury. Using FTIR, gelation time, and rheological analysis, the physicochemical properties of the collagen (Col)/Keratin scaffold were analyzed. Mouse C2C12 myoblast-laden Col/Keratin hydrogels were injected into the injury site and histological examination plus western blotting were performed to measure myogenic potential after 15 days. FTIR indicated an appropriate interaction between keratin and collagen. The blend of Col/Keratin delayed gelation time when compared to the collagen alone group. Rheological analysis revealed decreased stiffening in blended Col/Keratin hydrogel which is favorable for the extrudability of the hydrogel. Transplantation of C2C12 myoblast-laden Col/Keratin hydrogel to injured muscle tissues led to the formation of newly generated myofibers compared to cell-free hydrogel and collagen groups (p < 0.05). In the C2C12 myoblast-laden Col/Keratin group, a low number of CD31+ cells with minimum inflammatory cells was evident. Western blotting indicated the promotion of MyoD in mice that received cell-laden Col/Keratin hydrogel compared to the other groups (p < 0.05). Despite the increase of the myosin cell-laden Col/Keratin hydrogel group, no significant differences were obtained related to other groups (p > 0.05). The blend of Col/Keratin loaded with myoblasts provides a suitable myogenic platform for the alleviation of injured muscle tissue.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Nazaryabrbekoh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Borges LF, Manetti M. Telocytes and Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:305-337. [DOI: 10.1016/b978-0-443-15289-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Wang Z, Xu Y, Huang L, Zhao J, Ye Y, Liu C, Wang B, Zhao H, Zhang H. Ultrastructural characteristics and morphological relationships of cardiomyocytes and telocytes in the myocardium of the bullfrog (Rana catesbeiana). Anat Histol Embryol 2024; 53:e13008. [PMID: 38230833 DOI: 10.1111/ahe.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Telocytes (TCs) are distinctive interstitial cells due to their characteristic structures and heterogeneity. They are suggested to participate in tissue repair/regeneration. TCs have been identified in many organs of various mammals. However, data on TCs in lower animals are still very limited. In this work, TCs were identified in the myocardium of the bullfrog (Rana catesbeiana) by light and transmission electron microscopy (TEM). The structural relationships between TCs and neighbouring cell types were measured using the ImageJ (FiJi) morphometric software. TCs with slender Tps (telepodes) were located around cardiomyocytes (CMC). TEM revealed TCs with long Tps in the stroma between CMC. The homocellular tight junctions were observed between the Tps. The Tps were also very close to the neighbouring CMC. The distance between Tps and CMC was 0.15 ± 0.08 μm. Notably, Tps were observed to adhere to the periphery of the satellite cells. The Tps and the satellite cells established heterocellular structural connections by tight junctions. Additionally, Tps were frequently observed in close proximity to mast cells (MCs). The distance between the Tps and the MCs was 0.19 ± 0.09 μm. These results confirmed that TCs are present in the myocardium of the bullfrog, and that TCs established structural relationships with neighbouring cell types, including satellite cells and MCs. These findings provide the anatomical evidence to support the note that TCs are involved in tissue regeneration.
Collapse
Affiliation(s)
- Zifan Wang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yizhen Xu
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Ling Huang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiancheng Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Canying Liu
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
| | - Bingyun Wang
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Chellini F, Tani A, Parigi M, Palmieri F, Garella R, Zecchi-Orlandini S, Squecco R, Sassoli C. HIF-1α/MMP-9 Axis Is Required in the Early Phases of Skeletal Myoblast Differentiation under Normoxia Condition In Vitro. Cells 2023; 12:2851. [PMID: 38132171 PMCID: PMC10742321 DOI: 10.3390/cells12242851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| |
Collapse
|
9
|
Rosa I, Nardini P, Fioretto BS, Guasti D, Romano E, Sgambati E, Marini M, Manetti M. Immunohistochemical and ultrastructural identification of telocytes in the lamina propria of human vaginal mucosa. Acta Histochem 2023; 125:152094. [PMID: 37757515 DOI: 10.1016/j.acthis.2023.152094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Since their relatively recent discovery, telocytes (TCs) have been described as peculiar cells strategically positioned in the stromal tissue component of multiple organ systems of the mammalian body including female reproductive organs (i.e., ovary, uterine tube, and uterus). Nevertheless, current knowledge of TCs in the vagina is very limited. The present study was therefore undertaken to investigate the existence and characteristics of TCs in the stromal tissue of human vaginal mucosa by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. In the vaginal lamina propria, TCs were first identified by CD34 immunohistochemistry that revealed the presence of CD34+ stromal cells arranged in networks, especially around blood vessels. Double immunofluorescence confocal microscopy allowed to precisely distinguish the perivascular networks of CD34+ stromal cells lacking CD31 immunoreactivity from adjacent CD31+ microvessels. All the perivascular networks of TCs/CD34+ stromal cells situated in the vaginal lamina propria coexpressed platelet-derived growth factor receptor α, which strengthened their identification as TCs. Instead, vaginal mucosal TCs were immunophenotypically negative for c-kit/CD117. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e., telopodes) forming labyrinthine networks around blood vessels and releasing extracellular vesicles. Together, our morphological findings provide the first comprehensive demonstration that TCs reside in the human vaginal lamina propria, thus paving the way for further investigation of their putative functions in vaginal mucosal homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Patrizia Nardini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Guasti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
10
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco JL, Madrid JF, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in the Normal, Hyperplastic, and Adenomatous Human Parathyroid Glands. Int J Mol Sci 2023; 24:12118. [PMID: 37569493 PMCID: PMC10419317 DOI: 10.3390/ijms241512118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Telocytes/CD34+ stromal cells (TCs/CD34+ SCs) have been studied in numerous organs and tissues, but their presence and characteristics in the parathyroid glands have not been explored. Using immunological and ultrastructural procedures, we assess the location, arrangement, and behavior of TCs/CD34+ SCs in normal human parathyroids, during their development and in their most frequent pathologic conditions. In normal parathyroids, TCs/CD34+ SCs show a small somatic body and long thin processes with a moniliform aspect, form labyrinthine systems, connect other neighboring TCs/CD34+ SCs, vessels, adipocytes, and parenchymal cells directly or by extracellular vesicles, and associate with collagen I. TCs/CD34+ SCs and collagen I are absent around vessels and adipocytes within parenchymal clusters. In developing parathyroids, TCs/CD34+ SC surround small parenchymal nests and adipocytes. In hyperplastic parathyroids, TCs/CD34+ SCs are prominent in some thickened internodular septa and surround small extraglandular parenchymal cell nests. TCs/CD34+ SCs are present in delimiting regions with compressed parathyroids and their capsule in adenomas but absent in most adenomatous tissue. In conclusion, TCs/CD34+ SCs are an important cellular component in the human parathyroid stroma, except around vessels within parenchymal nests. They show typical characteristics, including those of connecting cells, are present in developing parathyroids, and participate in the most frequent parathyroid pathology, including hyperplastic and adenomatous parathyroids.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
- Canary Biomedical Technology Institute, University of La Laguna, 38071 La Laguna, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 La Laguna, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| |
Collapse
|
11
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Palmas M, Carrasco JL, Madrid JF, Díaz-Flores L. Delimiting CD34+ Stromal Cells/Telocytes Are Resident Mesenchymal Cells That Participate in Neovessel Formation in Skin Kaposi Sarcoma. Int J Mol Sci 2023; 24:ijms24043793. [PMID: 36835203 PMCID: PMC9962853 DOI: 10.3390/ijms24043793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Kaposi sarcoma (KS) is an angioproliferative lesion in which two main KS cell sources are currently sustained: endothelial cells (ECs) and mesenchymal/stromal cells. Our objective is to establish the tissue location, characteristics and transdifferentiation steps to the KS cells of the latter. For this purpose, we studied specimens of 49 cases of cutaneous KS using immunochemistry and confocal and electron microscopy. The results showed that delimiting CD34+ stromal cells/Telocytes (CD34+SCs/TCs) in the external layer of the pre-existing blood vessels and around skin appendages form small convergent lumens, express markers for ECs of blood and lymphatic vessels, share ultrastructural characteristics with ECs and participate in the origin of two main types of neovessels, the evolution of which gives rise to lymphangiomatous or spindle-cell patterns-the substrate of the main KS histopathological variants. Intraluminal folds and pillars (papillae) are formed in the neovessels, which suggests they increase by vessel splitting (intussusceptive angiogenesis and intussusceptive lymphangiogenesis). In conclusion, delimiting CD34+SCs/TCs are mesenchymal/stromal cells that can transdifferentiate into KS ECs, participating in the formation of two types of neovessels. The subsequent growth of the latter involves intussusceptive mechanisms, originating several KS variants. These findings are of histogenic, clinical and therapeutic interest.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | | | - Marta Palmas
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
12
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
13
|
Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol 2022; 10:941623. [PMID: 35898644 PMCID: PMC9313593 DOI: 10.3389/fbioe.2022.941623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle is a fundamental tissue of the human body with great plasticity and adaptation to diseases and injuries. Recreating this tissue in vitro helps not only to deepen its functionality, but also to simulate pathophysiological processes. In this review we discuss the generation of human skeletal muscle three-dimensional (3D) models obtained through tissue engineering approaches. First, we present an overview of the most severe myopathies and the two key players involved: the variety of cells composing skeletal muscle tissue and the different components of its extracellular matrix. Then, we discuss the peculiar characteristics among diverse in vitro models with a specific focus on cell sources, scaffold composition and formulations, and fabrication techniques. To conclude, we highlight the efficacy of 3D models in mimicking patient-specific myopathies, deepening muscle disease mechanisms or investigating possible therapeutic effects.
Collapse
Affiliation(s)
- Eugenia Carraro
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Rossi
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Edoardo Maghin
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marcella Canton
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martina Piccoli
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- *Correspondence: Martina Piccoli,
| |
Collapse
|
14
|
Sabatelli P, Merlini L, Di Martino A, Cenni V, Faldini C. Early Morphological Changes of the Rectus Femoris Muscle and Deep Fascia in Ullrich Congenital Muscular Dystrophy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031252. [PMID: 35162283 PMCID: PMC8834967 DOI: 10.3390/ijerph19031252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Ullrich congenital muscular dystrophy (UCMD) is a severe form of muscular dystrophy caused by the loss of function of collagen VI, a critical component of the muscle-tendon matrix. Magnetic resonance imaging of UCMD patients’ muscles shows a peculiar rim of abnormal signal at the periphery of each muscle, and a relative sparing of the internal part. The mechanism/s involved in the early fat substitution of muscle fiber at the periphery of muscles remain elusive. We studied a muscle biopsy of the rectus femoris/deep fascia (DF) of a 3-year-old UCMD patient, with a homozygous mutation in the COL6A2 gene. By immunohistochemical and ultrastructural analysis, we found a marked fatty infiltration at the interface of the muscle with the epimysium/DF and an atrophic phenotype, primarily in fast-twitch fibers, which has never been reported before. An unexpected finding was the widespread increase of interstitial cells with long cytoplasmic processes, consistent with the telocyte phenotype. Our study documents for the first time in a muscle biopsy the peculiar pattern of outside-in muscle degeneration followed by fat substitution as already shown by muscle imaging, and an increase of telocytes in the interstitium of the deep fascia, which highlights a potential involvement of this structure in the pathogenesis of UCMD.
Collapse
Affiliation(s)
- Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366755; Fax: +39-051-4689922
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Vittoria Cenni
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (L.M.); or (A.D.M.); (C.F.)
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Mirancea N, Mirancea GV, Moroşanu AM, Moroşanu AM. Telocytes inside of the peripheral nervous system - a 3D endoneurial network and putative role in cell communication. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:335-347. [PMID: 36374139 PMCID: PMC9804078 DOI: 10.47162/rjme.63.2.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we developed the hypothesis concerning the reasons to assimilate endoneurial fibroblast-like dendritic phenotype [shortly termed endoneurial dendritic cells (EDCs)] to the endoneurial telocytes (TCs). We reviewed the literature concerning EDCs status and report our observations on ultrastructure and some immune electron microscopic aspects of the cutaneous peripheral nerves. Our data demonstrate that EDCs long time considered as fibroblasts or fibroblast-like, with an ovoidal nucleus and one or more moniliform cell extensions [telopodes (Tps)], which perform homocellular junctions, also able to shed extracellular microvesicles can be assimilated to TC phenotype. Sometimes, small profiles of basement membrane accompany to some extent Tps. Altogether data resulted from scientific literature and our results strength the conclusion EDCs are really TCs inside of the peripheral nervous system. The inner three-dimensional (3D) network of endoneurial TCs by their homo- and heterocellular communications appears as a genuine cell-to-cell communication system inside of each peripheral nerve.
Collapse
Affiliation(s)
- Nicolae Mirancea
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania;
| | | | - Ana-Maria Moroşanu
- Department of Developmental Biology, Institute of
Biology Bucharest of Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
16
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
17
|
Sanches BDA, Maldarine JS, Vilamaior PSL, Felisbino SL, Carvalho HF, Taboga SR. Stromal cell interplay in prostate development, physiology, and pathological conditions. Prostate 2021; 81:926-937. [PMID: 34254335 DOI: 10.1002/pros.24196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Advances in prostatic stroma studies over the past few decades have demonstrated that the stroma not only supports and nourishes the gland's secretory epithelium but also participates in key aspects of morphogenesis, in the prostate's hormonal metabolism, and in the functionality of the secretory epithelium. Furthermore, the stroma is implicated in the onset and progression of prostate cancer through the formation of the so-called reactive stroma, which corresponds to a tumorigenesis-permissive microenvironment. Prostatic stromal cells are interconnected and exchange paracrine signals among themselves in a gland that is highly sensitive to endocrine hormones. There is a growing body of evidence that telocytes, recently detected interstitial cells that are also present in the prostate, are involved in stromal organization, so that their processes form a network of interconnections with both the epithelium and the other stromal cells. The present review provides an update on the different types of prostate stromal cells, their interrelationships and implications for prostate development, physiology and pathological conditions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, São Paulo State University-UNESP, São José do Rio Preto, Brazil
| | - Sergio L Felisbino
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, São Paulo State University-UNESP, São José do Rio Preto, Brazil
| |
Collapse
|
18
|
Martinez GZ, Grillo BAC, Rocha LC, Jacob CDS, Pimentel Neto J, Tomiate AN, Barbosa GK, Watanabe IS, Ciena AP. Morphological Changes in the Myotendinous Junction of mdx Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-5. [PMID: 34376263 DOI: 10.1017/s1431927621012496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The myotendinous junction (MTJ) is the interface between muscle and tendon, and it is the main area of force transmission of the locomotor apparatus. Dystrophic processes promote pathological injury which affects the skeletal muscle and can influence the morphology of the MTJ. This study aimed to investigate the adaptations in MTJ morphology of mdx mice in the tibialis anterior muscle. Male mice (n = 24) were divided into Control—C57bl/10 and mdx—C57bl/10mdx (Duchenne muscular dystrophy experimental model). In the mdx group, centralized nuclei with a large area and greater deposition of type III collagen (fibrosis) were observed. Also, shorter sarcomeres and sarcoplasmatic projections of MTJ were observed. We concluded that the adaptations in mdx mice demonstrated extensive impairment in the MTJ region with reduced ultrastructures.
Collapse
Affiliation(s)
- Giovana Zerbo Martinez
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Bruna Aléxia Cristofoletti Grillo
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - André Neri Tomiate
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences III, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
19
|
Ravalli S, Federico C, Lauretta G, Saccone S, Pricoco E, Roggio F, Di Rosa M, Maugeri G, Musumeci G. Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents. Biomedicines 2021; 9:biomedicines9070807. [PMID: 34356871 PMCID: PMC8301487 DOI: 10.3390/biomedicines9070807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protocol for either 4 weeks or 16 weeks compared to sedentary rats. Histomorphometric analysis of muscle fibers diameter revealed muscle atrophy in sedentary rats. Telocytes were identified by double-positive immunofluorescence staining for CD34/CD117 and CD34/vimentin. The results showed that Telocytes were significantly reduced in sedentary rats at 16 weeks, while rats subjected to regular exercise maintained a stable Telocytes population after 16 weeks. Understanding of the relationship between Telocytes and exercise offers new chances in the field of regenerative medicine, suggesting possible triggers for Telocytes in sarcopenia and other musculoskeletal disorders, promoting adapted physical activity and rehabilitation programmes in clinical practice.
Collapse
Affiliation(s)
- Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Elisabetta Pricoco
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
20
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Rodríguez-Rodriguez R, Hernández-León N, Díaz-Flores L, Carrasco JL. Cd34+ Stromal Cells/Telocytes in Normal and Pathological Skin. Int J Mol Sci 2021; 22:ijms22147342. [PMID: 34298962 PMCID: PMC8307573 DOI: 10.3390/ijms22147342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
We studied CD34+ stromal cells/telocytes (CD34+SCs/TCs) in pathologic skin, after briefly examining them in normal conditions. We confirm previous studies by other authors in the normal dermis regarding CD34+SC/TC characteristics and distribution around vessels, nerves and cutaneous annexes, highlighting their practical absence in the papillary dermis and presence in the bulge region of perifollicular groups of very small CD34+ stromal cells. In non-tumoral skin pathology, we studied examples of the principal histologic patterns in which CD34+SCs/TCs have (1) a fundamental pathophysiological role, including (a) fibrosing/sclerosing diseases, such as systemic sclerosis, with loss of CD34+SCs/TCs and presence of stromal cells co-expressing CD34 and αSMA, and (b) metabolic degenerative processes, including basophilic degeneration of collagen, with stromal cells/telocytes in close association with degenerative fibrils, and cutaneous myxoid cysts with spindle-shaped, stellate and bulky vacuolated CD34+ stromal cells, and (2) a secondary reactive role, encompassing dermatitis—e.g., interface (erythema multiforme), acantholytic (pemphigus, Hailey–Hailey disease), lichenoid (lichen planus), subepidermal vesicular (bullous pemphigoid), psoriasiform (psoriasis), granulomatous (granuloma annulare)—vasculitis (leukocytoclastic and lymphocytic vasculitis), folliculitis, perifolliculitis and inflammation of the sweat and sebaceous glands (perifolliculitis and rosacea) and infectious dermatitis (verruca vulgaris). In skin tumor and tumor-like conditions, we studied examples of those in which CD34+ stromal cells are (1) the neoplastic component (dermatofibrosarcoma protuberans, sclerotic fibroma and solitary fibrous tumor), (2) a neoplastic component with varying presentation (fibroepithelial polyp and superficial myxofibrosarcoma) and (3) a reactive component in other tumor/tumor-like cell lines, such as those deriving from vessel periendothelial cells (myopericytoma), epithelial cells (trichoepithelioma, nevus sebaceous of Jadassohn and seborrheic keratosis), Merkel cells (Merkel cell carcinoma), melanocytes (dermal melanocytic nevi) and Schwann cells (neurofibroma and granular cell tumor).
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
- Correspondence: ; Tel.: +34-922-319-317; Fax: +34-922-319-279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Rosa Rodríguez-Rodriguez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Nieves Hernández-León
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - José Luís Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| |
Collapse
|
21
|
Rocha LC, Barbosa GK, Pimentel Neto J, Jacob CDS, Knudsen AB, Watanabe IS, Ciena AP. Aquatic Training after Joint Immobilization in Rats Promotes Adaptations in Myotendinous Junctions. Int J Mol Sci 2021; 22:ijms22136983. [PMID: 34209663 PMCID: PMC8267653 DOI: 10.3390/ijms22136983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
The myotendinous junction (MTJ) is the muscle-tendon interface and constitutes an integrated mechanical unit to force transmission. Joint immobilization promotes muscle atrophy via disuse, while physical exercise can be used as an adaptative stimulus. In this study, we aimed to investigate the components of the MTJ and their adaptations and the associated elements triggered with aquatic training after joint immobilization. Forty-four male Wistar rats were divided into sedentary (SD), aquatic training (AT), immobilization (IM), and immobilization/aquatic training (IMAT) groups. The samples were processed to measure fiber area, nuclear fractal dimension, MTJ nuclear density, identification of telocytes, sarcomeres, and MTJ perimeter length. In the AT group, the maintenance of ultrastructure and elements in the MTJ region were observed; the IM group presented muscle atrophy effects with reduced MTJ perimeter; the IMAT group demonstrated that aquatic training after joint immobilization promotes benefits in the muscle fiber area and fractal dimension, in the MTJ region shows longer sarcomeres and MTJ perimeter. We identified the presence of telocytes in the MTJ region in all experimental groups. We concluded that aquatic training is an effective rehabilitation method after joint immobilization due to reduced muscle atrophy and regeneration effects on MTJ in rats.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Carolina dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Andreas B. Knudsen
- Department of Sports Traumatology M51, Bispebjerg and Frederiksberg Hospital, IOC Copenhagen Research Center, 1050 Copenhagen, Denmark;
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Science III, University of São Paulo-USP, São Paulo 05508-000, SP, Brazil;
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
- Correspondence: ; Tel.: +55-193-526-4346
| |
Collapse
|
22
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Bolcato V, Carelli C, Visonà SD, Reguzzoni M, Rocco MD, Radogna A, Tronconi LP, Moretti M. New insights on fibrodysplasia ossificans progressiva: discussion of an autoptic case report and brief literature review. Intractable Rare Dis Res 2021; 10:136-141. [PMID: 33996361 PMCID: PMC8122314 DOI: 10.5582/irdr.2021.01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/05/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition with soft tissue progressive ossification, leading to severe disability. We describe a 27-years-old female affected by FOP who died after a fall. An autopsy was performed. Upper and lower extremities resulted in fixed flexion, with kyphoscoliosis of the spine and chest wall deformity. Moreover, a cranial fracture was pointed out. At histology, atypical abundance of corpora amylacea in gray matter was observed. In a sample of macroscopically non-affected muscular tissue, small areas with necrosis of myocytes and hyperplasia of fibroblasts were seen in light microscopy, with intracellular inorganic dystrophic inclusions in transmission electron microscopy. Thyroid gland histology showed diffuse lymphocytic infiltration. Postmortem examination of FOP patients provided precious information about involvement of other tissues, suggesting an initial and widespread inflammatory/dystrophic phase, to be further investigated, because it might reveal new insights about a FOP mutation cascade.
Collapse
Affiliation(s)
- Vittorio Bolcato
- Department of Public Health, Experimental and Forensic Medicine, Forensic Science Section "Antonio Fornari", University of Pavia, Pavia, Italy
| | - Claudia Carelli
- Department of Public Health, Experimental and Forensic Medicine, Forensic Science Section "Antonio Fornari", University of Pavia, Pavia, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, Forensic Science Section "Antonio Fornari", University of Pavia, Pavia, Italy
| | | | - Maja Di Rocco
- Rare Diseases Unit, Istituto Pediatrico Giannina Gaslini, Genoa, Italy
| | - Alessandra Radogna
- Department of Public Health, Experimental and Forensic Medicine, Forensic Science Section "Antonio Fornari", University of Pavia, Pavia, Italy
| | - Livio Pietro Tronconi
- Department of Public Health, Experimental and Forensic Medicine, Forensic Science Section "Antonio Fornari", University of Pavia, Pavia, Italy
- IRCCS Fondazione Casimiro Mondino, Pavia, Italy
| | - Matteo Moretti
- Department of Public Health, Experimental and Forensic Medicine, Forensic Science Section "Antonio Fornari", University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
CD34+ Stromal Cells/Telocytes as a Source of Cancer-Associated Fibroblasts (CAFs) in Invasive Lobular Carcinoma of the Breast. Int J Mol Sci 2021; 22:ijms22073686. [PMID: 33916213 PMCID: PMC8037555 DOI: 10.3390/ijms22073686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Several origins have been proposed for cancer-associated fibroblasts (CAFs), including resident CD34+ stromal cells/telocytes (CD34+SCs/TCs). The characteristics and arrangement of mammary CD34+SCs/TCs are well known and invasive lobular carcinoma of the breast (ILC) is one of the few malignant epithelial tumours with stromal cells that can express CD34 or αSMA, which could facilitate tracking these cells. Our objective is to assess whether tissue-resident CD34+SCs/TCs participate in the origin of CAFs in ILCs. For this purpose, using conventional and immunohistochemical procedures, we studied stromal cells in ILCs (n:42) and in normal breasts (n:6, also using electron microscopy). The results showed (a) the presence of anti-CD34+ or anti-αSMA+ stromal cells in varying proportion (from very rare in one of the markers to balanced) around nests/strands of neoplastic cells, (b) a similar arrangement and location of stromal cells in ILC to CD34+SCs/TCs in the normal breast, (c) both types of stromal cells coinciding around the same nest of neoplastic cells and (d) the coexpression of CD34 and αSMA in stromal cells in ILC. In conclusion, our findings support the hypothesis that resident CD34+SCs/TCs participate as an important source of CAFs in ILC. Further studies are required in this regard in other tumours.
Collapse
|
25
|
Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction. Int J Mol Sci 2021; 22:ijms22073645. [PMID: 33807453 PMCID: PMC8036477 DOI: 10.3390/ijms22073645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties’ modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a “nursing” role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine.
Collapse
|
26
|
Sukhacheva TV, Nizyaeva NV, Samsonova MV, Cherniaev AL, Burov AA, Iurova MV, Shchegolev AI, Serov RA, Sukhikh GT. Morpho-functional changes of cardiac telocytes in isolated atrial amyloidosis in patients with atrial fibrillation. Sci Rep 2021; 11:3563. [PMID: 33574429 PMCID: PMC7878494 DOI: 10.1038/s41598-021-82554-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Telocytes are interstitial cells with long, thin processes by which they contact each other and form a network in the interstitium. Myocardial remodeling of adult patients with different forms of atrial fibrillation (AF) occurs with an increase in fibrosis, age-related isolated atrial amyloidosis (IAA), cardiomyocyte hypertrophy and myolysis. This study aimed to determine the ultrastructural and immunohistochemical features of cardiac telocytes in patients with AF and AF + IAA. IAA associated with accumulation of atrial natriuretic factor was detected in 4.3-25% biopsies of left (LAA) and 21.7-41.7% of right (RAA) atrial appendage myocardium. Telocytes were identified at ultrastructural level more often in AF + IAA, than in AF group and correlated with AF duration and mitral valve regurgitation. Telocytes had ultrastructural signs of synthetic, proliferative, and phagocytic activity. Telocytes corresponded to CD117+, vimentin+, CD34+, CD44+, CD68+, CD16+, S100-, CD105- immunophenotype. No significant differences in telocytes morphology and immunophenotype were found in patients with various forms of AF. CD68-positive cells were detected more often in AF + IAA than AF group. We assume that in aged AF + IAA patients remodeling of atrial myocardium provoked transformation of telocytes into "transitional forms" combining the morphological and immunohistochemical features with signs of fibroblast-, histiocyte- and endotheliocyte-like cells.
Collapse
Affiliation(s)
- Tatyana V Sukhacheva
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia.
| | - Natalia V Nizyaeva
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Maria V Samsonova
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Andrey L Cherniaev
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Artem A Burov
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Mariia V Iurova
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| | - Aleksandr I Shchegolev
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Roman A Serov
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| |
Collapse
|
27
|
Xu Y, Tian H, Qiao G, Zheng W. Telocytes in the atherosclerotic carotid artery: Immunofluorescence and TEM evidence. Acta Histochem 2021; 123:151681. [PMID: 33493960 DOI: 10.1016/j.acthis.2021.151681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Telocytes, which possess distinct body shapes and long telopodes, are allocated in the vascular wall. As a fundamental cell type, telocytes construct a three-dimensional network to form a support structure for the artery. This study aims to characterize the morphology and ultrastructure of telocytes in atherosclerotic arteries. ApoE gene-deficient mice were selected as the atherosclerosis animal model and fed a high-fat diet for at least 12 weeks, and immunofluorescence assays and transmission electron microscopy techniques were used to observe changes in telocytes in atherosclerotic arteries. By immunofluorescence staining, CD34, CD117 and PDGFR-α were positive compared with negative CD28/vimentin in telocytes in the atherosclerotic carotid artery, and they were distributed in the tunica intima and tunica adventitia. Under transmission electron microscopy, the bodies of telocytes became larger, while telopodes became shorter compared with their normal condition, and a mass of lipidosomes was present during the progression of atherosclerosis. These results demonstrate that immunofluorescence with TEM is the critical method for identifying TCs and that steatosis of TCs is a reason for atherosclerotic artery dysfunction.
Collapse
|
28
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Carrasco JL, Alvarez-Argüelles H, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in Pathologically Affected White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21249694. [PMID: 33353193 PMCID: PMC7767010 DOI: 10.3390/ijms21249694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
We studied telocytes/CD34+ stromal cells (TCs/CD34+SCs) in pathologically affected white adipose tissue after briefly examining them in normal fat. To this aim, we reviewed pathological processes, including original contributions, in which TCs/CD34+SCs are conserved, increased, and lost, or acquire a specific arrangement. The pathologic processes in which TCs/CD34+SCs are studied in adipose tissue include inflammation and repair through granulation tissue, iatrogenic insulin-amyloid type amyloidosis, non-adipose tissue components (nerve fascicles and fibres in neuromas and hyperplastic neurogenic processes) and tumours (signet ring carcinoma with Krukenberg tumour and colon carcinoma) growing in adipose tissue, adipose tissue tumours (spindle cell lipoma, dendritic fibromyxolipoma, pleomorphic lipoma, infiltrating angiolipoma of skeletal muscle and elastofibrolipoma), lipomatous hypertrophy of the interatrial septum, nevus lipomatosus cutaneous superficialis of Hoffman–Zurhelle and irradiated adipose tissue of the perirectal and thymic regions. Two highly interesting issues emerged: (1) whether the loss of CD34 expression in TCs/CD34+SCs is by changes in marker expression or the disappearance of these cells (the findings suggest the first possibility) and (2) whether in some invasive and metastatic malignant tumours, TCs/CD34+SCs that completely surround neoplastic cells act as nurse and/or isolating cells. Further studies are required on adipose tissue TCs/CD34+SCs, mainly in lipomatosis and obesity.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Ma Pino García
- Department of Pathology, Eurofins® Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Jose Luís Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Hugo Alvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| |
Collapse
|
29
|
Sanches BDA, Tamarindo GH, Dos Santos Maldarine J, da Silva ADT, Dos Santos VA, Lima MLD, Rahal P, Góes RM, Taboga SR, Felisbino SL, Carvalho HF. Telocytes contribute to aging-related modifications in the prostate. Sci Rep 2020; 10:21392. [PMID: 33288817 PMCID: PMC7721742 DOI: 10.1038/s41598-020-78532-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Telocytes are interstitial cells present in the stroma of several organs, including the prostate. There is evidence that these cells are present during prostate alveologenesis, in which these cells play a relevant role, but there is no information about the presence of and possible changes in telocytes during prostate aging. Throughout aging, the prostate undergoes several spontaneous changes in the stroma that are pro-pathogenic. Our study used histochemistry, 3D reconstructions, ultrastructure and immunofluorescence to compare the adult prostate with the senile prostate of the Mongolian gerbil, in order to investigate possible changes in telocytes with senescence and a possible role for these cells in the age-associated alterations. It was found that the layers of perialveolar smooth muscle become thinner as the prostatic alveoli become more dilated during aging, and that telocytes form a network that involves smooth muscle cells, which could possibly indicate a role for telocytes in maintaining the integrity of perialveolar smooth muscles. On the other hand, with senescence, VEGF+ telocytes are seen in stroma possibly contributing to angiogenesis, together with TNFR1+ telocytes, which are associated with a pro-inflammatory microenvironment in the prostate. Together, these data indicate that telocytes are important both in understanding the aging-related changes that are seen in the prostate and also in the search for new therapeutic targets for pathologies whose frequency increases with age.
Collapse
Affiliation(s)
- Bruno Domingos Azevedo Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Guilherme Henrique Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Juliana Dos Santos Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Alana Della Torre da Silva
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Vitória Alário Dos Santos
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Maria Letícia Duarte Lima
- Laboratory of Genome Studies, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Laboratory of Genome Studies, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Sérgio Luis Felisbino
- Laboratory of Extracellular Matrix, Institute of Biosciences, São Paulo State University - UNESP, Prof. Dr. Antônio Celso Wagner Zanin St., 250, Rubião Júnior District, Botucatu, São Paulo, 18618-689, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil.
| |
Collapse
|
30
|
I T, Ueda Y, Wörsdörfer P, Sumita Y, Asahina I, Ergün S. Resident CD34-positive cells contribute to peri-endothelial cells and vascular morphogenesis in salivary gland after irradiation. J Neural Transm (Vienna) 2020; 127:1467-1479. [PMID: 33025085 PMCID: PMC7578140 DOI: 10.1007/s00702-020-02256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44—a marker of acinar cells—diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing.
Collapse
Affiliation(s)
- Takashi I
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany. .,Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Yoshinori Sumita
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Álvarez-Argüelles H, Luis Carrasco J. Presence/Absence and Specific Location of Resident CD34+ Stromal Cells/Telocytes Condition Stromal Cell Development in Repair and Tumors. Front Cell Dev Biol 2020; 8:544845. [PMID: 33072740 PMCID: PMC7530324 DOI: 10.3389/fcell.2020.544845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD34+ stromal cells/telocytes (CD34+SCs/TCs) can have a role as mesenchymal precursor cells. Our objective is to assess whether the myofibroblastic stromal cell response in repair and in desmoplastic reactions in tumors depend on the presence or absence of resident CD34+SCs/TCs in specific regions/layers of an organ and on the location of their possible subpopulations. For this purpose, using conventional and immunohistochemical procedures, we studied specimens of (a) acute cholecystitis, with early repair phenomena (n: 6), (b) surgically resected segments of colon tattooed with India ink during previous endoscopic removal of malignant polyps, with macrophage infiltration and stromal cell reaction (n: 8) and (c) infiltrative adenocarcinomas of colon, with desmoplastic reaction (n: 8). The results demonstrated (a) stromal myofibroblastic reaction during repair and tumor desmoplasia in most regions in which resident CD34+SCs/TCs are present, (b) absence of stromal myofibroblastic reaction during repair in the mucosa of both organs in which resident CD34+SCs/TCs are absent and (c) permanence of CD34+SCs/TCs as such, without myofibroblastic response, in smooth muscle fascicles, nerves, and Meissner and Auerbach plexuses, in which the CD34+SCs/TCs mainly undergo reactive phenomena. Therefore, the development of activated αSMA+ myofibroblasts in these conditions requires the presence of resident CD34+SCs/TCs and depends on their location. In conclusion, the facts support the hypotheses that CD34+SCs/TCs participate in the origin of myofibroblasts during repair and tumor stroma formation, and that there is a heterogeneous population of resident CD34+SCs/TCs with different roles.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Ma Pino García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Hugo Álvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - José Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
32
|
Sanches BDA, Maldarine JDS, Tamarindo GH, Da Silva ADT, Lima MLD, Rahal P, Góes RM, Taboga SR, Carvalho HF. Explant culture: A relevant tool for the study of telocytes. Cell Biol Int 2020; 44:2395-2408. [PMID: 32813303 DOI: 10.1002/cbin.11446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Telocytes are cells present in the stroma of various tissues including the prostate. The detection of telocytes is still very much dependent on obtaining ultrastructural data that show the presence of telopodes, which are cytoplasmic projections that alternate between dilated regions, the podoms, and thin segments, the podomers. These structures are the distinctive characteristics of the telocytes. Thus, in vitro assays are important for the study of telocytes, which are more easily identified in culture, which also enables the experimental manipulation of these cells. The isolation of telocytes per se does not allow the analysis of the behavior of these cells in relation to other cell types in a given organ. In this sense, in the prostate, explants could be a useful tool for the study of telocytes. The present study obtained prostatic explants and evaluated the influence of recombinant proteins, scattering factor (SCF) and stromal-derived factor 1 (SDF-1), which could impact on the migration of CD34-positive cells. Telocytes migrate out of explants and SDF-1 stimulates the proliferation and formation of telocyte networks in vitro. Telocytes are not smooth muscle cell progenitors in the prostate; on the contrary, they are CD90- and CD44-negative cells and, hence, have limited progenitor capacity. The present study demonstrated that explants are useful tools to elucidate the nature of telocytes and their functions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana D S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alana D T Da Silva
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria L D Lima
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
33
|
Romano E, Rosa I, Fioretto BS, Lucattelli E, Innocenti M, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. A Two-Step Immunomagnetic Microbead-Based Method for the Isolation of Human Primary Skin Telocytes/CD34+ Stromal Cells. Int J Mol Sci 2020; 21:ijms21165877. [PMID: 32824287 PMCID: PMC7461544 DOI: 10.3390/ijms21165877] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Telocytes (TCs), commonly referred to as TCs/CD34+ stromal cells, are a peculiar type of interstitial cells with distinctive morphologic traits that are supposed to exert several biological functions, including tissue homeostasis regulation, cell-to-cell signaling, immune surveillance, and reparative/regenerative effects. At present, the majority of studies investigating these cells are mainly descriptive and focus only on their morphology, with a consequent paucity of functional data. To gain relevant insight into the possible functions of TCs, in vitro analyses are clearly required, but currently, the protocols for TC isolation are only at the early stages and not fully standardized. In the present in vitro study, we describe a novel methodology for the purification of human primary skin TCs through a two-step immunomagnetic microbead-based cell separation (i.e., negative selection for CD31 followed by positive selection for CD34) capable of discriminating these cells from other connective tissue-resident cells on the basis of their different immunophenotypic features. Our experiments clearly demonstrated that the proposed method allows a selective purification of cells exhibiting the peculiar TC morphology. Isolated TCs displayed very long cytoplasmic extensions with a moniliform silhouette (telopodes) and presented an immunophenotypic profile (CD31−/CD34+/PDGFRα+/vimentin+) that unequivocally differentiates them from endothelial cells (CD31+/CD34+/PDGFRα−/vimentin+) and fibroblasts (CD31−/CD34−/PDGFRα+/vimentin+). This novel methodology for the isolation of TCs lays the groundwork for further research aimed at elucidating their functional properties and possible translational applications, especially in the field of regenerative medicine.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Elena Lucattelli
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50134 Florence, Italy; (E.L.); (M.I.)
| | - Marco Innocenti
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50134 Florence, Italy; (E.L.); (M.I.)
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
- Correspondence: ; Tel.: +39-055-2758077
| |
Collapse
|
34
|
Telocytes in the Normal and Pathological Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21124320. [PMID: 32560571 PMCID: PMC7352954 DOI: 10.3390/ijms21124320] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
We studied telocytes/CD34+ stromal cells in the normal and pathological peripheral nervous system (PNS), for which we reviewed the literature and contributed our observations under light and electron microscopy in this field. We consider the following aspects: (A) general characteristics of telocytes and the terminology used for these cells (e.g., endoneurial stromal cells) in PNS; (B) the presence, characteristics and arrangement of telocytes in the normal PNS, including (i) nerve epi-perineurium and endoneurium (e.g., telopodes extending into the endoneurial space); (ii) sensory nerve endings (e.g., Meissner and Pacinian corpuscles, and neuromuscular spindles); (iii) ganglia; and (iv) the intestinal autonomic nervous system; (C) the telocytes in the pathologic PNS, encompassing (i) hyperplastic neurogenic processes (neurogenic hyperplasia of the appendix and gallbladder), highly demonstrative of telocyte characteristics and relations, (ii) PNS tumours, such as neurofibroma, schwannoma, granular cell tumour and nerve sheath myxoma, and interstitial cell of Cajal-related gastrointestinal stromal tumour (GIST), (iii) tumour-invaded nerves and (iv) traumatic, metabolic, degenerative or genetic neuropathies, in which there are fewer studies on telocytes, e.g., neuroinflammation and nerves in undescended testicles (cryptorchidism), Klinefelter syndrome, crush injury, mucopolysaccharidosis II (Hunter’s syndrome) and Charcot–Marie–Tooth disease.
Collapse
|
35
|
Squecco R, Chellini F, Idrizaj E, Tani A, Garella R, Pancani S, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1-Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells 2020; 9:cells9051199. [PMID: 32408529 PMCID: PMC7290305 DOI: 10.3390/cells9051199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle repair/regeneration may benefit by Platelet-Rich Plasma (PRP) treatment owing to PRP pro-myogenic and anti-fibrotic effects. However, PRP anti-fibrotic action remains controversial. Here, we extended our previous researches on the inhibitory effects of PRP on in vitro transforming growth factor (TGF)-β1-induced differentiation of fibroblasts into myofibroblasts, the effector cells of fibrosis, focusing on gap junction (GJ) intercellular communication. The myofibroblastic phenotype was evaluated by cell shape analysis, confocal fluorescence microscopy and Western blotting analyses of α-smooth muscle actin and type-1 collagen expression, and electrophysiological recordings of resting membrane potential, resistance, and capacitance. PRP negatively regulated myofibroblast differentiation by modifying all the assessed parameters. Notably, myofibroblast pairs showed an increase of voltage-dependent GJ functionality paralleled by connexin (Cx) 43 expression increase. TGF-β1-treated cells, when exposed to a GJ blocker, or silenced for Cx43 expression, failed to differentiate towards myofibroblasts. Although a minority, myofibroblast pairs also showed not-voltage-dependent GJ currents and coherently Cx26 expression. PRP abolished the TGF-β1-induced voltage-dependent GJ current appearance while preventing Cx43 increase and promoting Cx26 expression. This study adds insights into molecular and functional mechanisms regulating fibroblast-myofibroblast transition and supports the anti-fibrotic potential of PRP, demonstrating the ability of this product to hamper myofibroblast generation targeting GJs.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Sofia Pancani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children’s Hospital, 50134 Florence, Italy; (P.P.); (F.B.)
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children’s Hospital, 50134 Florence, Italy; (P.P.); (F.B.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
- Correspondence: ; Tel.: +39-0552-7580-63
| |
Collapse
|
36
|
Rosa I, Marini M, Sgambati E, Ibba-Manneschi L, Manetti M. Telocytes and lymphatic endothelial cells: Two immunophenotypically distinct and spatially close cell entities. Acta Histochem 2020; 122:151530. [PMID: 32115248 DOI: 10.1016/j.acthis.2020.151530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Telocytes (TCs) have recently emerged as a peculiar type of stromal cells located in both perivascular and interstitial compartments of multiple anatomical sites in humans, other mammals and vertebrates. Pioneer electron microscopy studies have ultrastructurally defined TCs as "stromal cells with telopodes" (i.e. very long and thin cell processes with a moniliform morphology conferred by the irregular alternation of slender segments and small, bead-like, dilated portions), whereupon it has become apparent that TCs largely correspond to the CD34+ stromal/interstitial cells detectable by immunohistochemical assays. Besides CD34, TCs are also characterized by the expression of platelet-derived growth factor receptor (PDGFR)α. Interestingly, recent works recommended that lymphatic endothelial cell (LEC) markers should be routinely assessed to discriminate with certainty TCs from LECs, because these two cell types may exhibit similar morphological traits, especially when initial lymphatics are sectioned longitudinally and appear as vascular profiles with no obvious lumen. Furthermore, it has been argued that lymphatic microvessels immunostained for the small mucin-type transmembrane glycoprotein podoplanin (PDPN), which is widely used as lymphatic endothelial marker, can be easily misidentified as TCs. Nevertheless, surprisingly these assumptions were not based on double tissue immunostaining for TC and LEC markers. Therefore, the present morphological study was undertaken to precisely investigate the mutual spatial organization and putative relationships of TCs and lymphatic vessels in tissues from different human organs. For this purpose, we carried out a series of double immunofluorescence analyses simultaneously detecting the CD34 or PDGFRα antigen and a marker of LECs, either PDPN or lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). In the connective tissue compartment of different organs, TCs were CD34+/PDGFRα+/PDPN-/LYVE-1- while LECs were CD34-/PDGFRα-/PDPN+/LYVE-1+, thus representing two definitely distinct, though spatially close, cell entities. The arrangement of telopodes to intimately surround the abluminal side of LECs suggests a possible role of TCs in the regulation of lymphatic capillary functionality, which is worth investigating further.
Collapse
|
37
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|