1
|
Wipf A, Perez-Cutillas P, Ortega N, Huertas-López A, Martínez-Carrasco C, Candela MG. Geographical Distribution of Carnivore Hosts and Genotypes of Canine Distemper Virus (CDV) Worldwide: A Scoping Review and Spatial Meta-Analysis. Transbound Emerg Dis 2025; 2025:6632068. [PMID: 40302754 PMCID: PMC12016734 DOI: 10.1155/tbed/6632068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/12/2025] [Indexed: 05/02/2025]
Abstract
Background: Emerging viral diseases are spreading to new geographic locations, influenced by human activities and climate change. Morbillivirus canis (also known as canine distemper virus, CDV), the etiological agent of CD, is distributed worldwide and shared between wild and domestic animals. Methods: A systematic review using MeSH terms was carried out from 1985 to 2024, focusing the search on studies (PubMed and WOS) that would detect CDV and sequence it in a known genotype in Carnivora hosts. Articles were reviewed by four researchers, and after quality assessment, we selected 160 published papers for data extraction, analysis, and spatial meta-analysis. Considering species studied, geographical location, and classified genotypes we identify 457 different individual studies (records) from which 332 records CDV was sequenced into a classifiable 17 main genotypes. Spatial meta-analysis was performed using QGIS, revealing distributions of animals in which a CDV lineage has been isolated; geographical lineages overlapping on different hosts have been measured as a density function. Results: CDV host species belonged to the suborder Caniformia (93.7%) into families such as Canidae (75.2%), Mustelidae (9.7%), and Procyonidae (7.6%). Suborder Feliformia (6.1%) showed wild Felidae (5.1%) as the most represented family. Samples used were brain (13.74%), lung (12.4%), blood (10.8%), and nasal-eye discharges (8.9%; 8.1%). Reverse transcription-PCR (RT-PCR) (60.34%) and real-time-quantitative PCR (RT-qPCR) (26.57%) detecting H gene (62%) were most used to detect viral ARN. On genotypes, Europe/South America-1 (27.4%), Europe-3/Artic (15.5%), Asia-1 (14.5%), America-1 (11.2%), Europe-2/European Wildlife and Africa (Africa-1 and Africa-2) (7.6%) were the most represented worldwide, being America-1 and Europe/South America-1 the most widely distributed around the world. Conclusions: The analysis showed the wide multihost capacity and diversity of CDV, with dog (Canis lupus familiaris) as the most frequent (40%) and red fox (Vulpes vulpes) (30.2%) as the main wild host. Most of the detected lineages can be detected in several wild host families, in addition to the dog, suggesting constant spillover phenomena in shared habitats at the domestic-wild interface. The most cosmopolitan lineages mirror the distribution routes of their hosts, showing that it is difficult to establish a CDV-fixed picture in an interconnected world.
Collapse
Affiliation(s)
- A. Wipf
- Animal Health Department, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - P. Perez-Cutillas
- Geography Department, Faculty of Humanities, University of Murcia, Murcia, Spain
| | - N. Ortega
- Animal Health Department, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - A. Huertas-López
- Animal Health Department, Faculty of Veterinary, University of Murcia, Murcia, Spain
- SALUVET, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - C. Martínez-Carrasco
- Animal Health Department, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - M. G. Candela
- Animal Health Department, Faculty of Veterinary, University of Murcia, Murcia, Spain
| |
Collapse
|
2
|
Khosravi M, Gharib FZ, Bakhshi A. Phylogenetic and molecular analysis of hemagglutinin gene and Fsp-coding region of canine distemper virus: Insight into novel vaccine development. Comp Immunol Microbiol Infect Dis 2025; 117:102292. [PMID: 39827673 DOI: 10.1016/j.cimid.2024.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/19/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Canine distemper virus (CDV) causes a highly contagious and lethal disease in a vast range of carnivorous and non-carnivorous species. The study aimed to genetically investigate the hemagglutinin (H) gene and Fsp-coding region of CDV isolates from vaccinated dogs. Phylogenetic analysis of the H gene and Fsp-coding region showed that our viruses belonged to the Arctic-like lineage which was distinct from two commonly used vaccine strains (America-1 lineage strains) in Iran. Our data presented a high similarity between the H gene sequences of studied viruses. The multiple sequence alignment of the H gene of our viruses against vaccine strains revealed 91.3-95.6 % and 89.9-94.4 % in the level of nucleotide and amino acid identity, respectively. Our finding identified a potential recombination breakpoint occurring between codons 520-607, along with three positive selection sites including residues 415,547, and 549 among the H gene using the Data Monkey platform. A significant variation of B cell epitopes was found in Hemagglutinating and noose epitope (HNE), with respect to America-1 vaccine strains. Moreover, the H genes of studied viruses had 8 N-glycosylation sites, which is more than the America-1 vaccine strains. Our results confirmed that the circulation of Arctic-like lineage may be a prevalent lineage. Despite widespread vaccination, it does not provide full protection against CDV infection. Due to antigenic differences between our viruses and commonly used vaccine strains, it seems a novel vaccine strain is needed to prevent and prepare full protection against Arctic-like CDV infection.
Collapse
Affiliation(s)
- Mojtaba Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran; Zoonotic diseases research group, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Fatemeh Zahra Gharib
- Department of Clinical Sciences, Babol Branch, Islamic Azad University, Babol, Iran.
| | - Alireza Bakhshi
- Graduated Student in doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran.
| |
Collapse
|
3
|
Oliver-Guimera A, Murphy BG, Keel MK. The Nucleoside Analog GS-441524 Effectively Attenuates the In Vitro Replication of Multiple Lineages of Circulating Canine Distemper Viruses Isolated from Wild North American Carnivores. Viruses 2025; 17:150. [PMID: 40006905 PMCID: PMC11861726 DOI: 10.3390/v17020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Canine distemper is a severe and lethal viral disease of dogs and wild carnivores with an urgent need for the identification of effective antiviral agents against canine distemper virus (CDV). We assessed multiple agents for their ability to block the replication of three different lineages of CDV isolated from wild carnivores in the United States. Six antiviral compounds were selected after preliminary experiments that excluded ribavirin, hesperidin and rutin: a protease inhibitor (nirmatrelvir), a polymerase inhibitor (favipiravir) and four nucleoside analogs (remdesivir, GS-441524, EIDD2801 and EIDD1931). Antiviral efficacy was determined by the attenuation of the cytopathic effect in a CDV-susceptible cell line and the inhibition of viral RNA replication. The nucleoside analog GS-441524 effectively blocked the replication of CDV at pharmacologically relevant concentrations. Four other antiviral agents inhibited CDV replication to a lesser degree (remdesivir, nirmatrelvir, EIDD2801 and EIDD1931). The replication of different viral lineages was differentially inhibited by the antivirals. Several of the nucleoside analogs have been safely used previously in carnivore species for the treatment of other viral diseases, suggesting that they may be promising candidates for the treatment of canine distemper in dogs. Our results emphasize the need to consider different viral lineages in the screening of antiviral compounds.
Collapse
Affiliation(s)
- Arturo Oliver-Guimera
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
- Veterinary Pathology Service, School of Veterinary Medicine, Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
| | - M. Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
| |
Collapse
|
4
|
Ariyama N, Agüero B, Bennett B, Urzúa C, Berrios F, Verdugo C, Neira V. Genetic Characterization of Canine morbillivirus (Canine Distemper Virus) Field Strains in Dogs, Chile, 2022-2023. Transbound Emerg Dis 2024; 2024:9993255. [PMID: 40303179 PMCID: PMC12017005 DOI: 10.1155/2024/9993255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 05/02/2025]
Abstract
Canine distemper virus (CDV) poses a significant threat to dogs and wildlife worldwide, and this study sought to provide an updated genetic characterization of CDV field strains in Chile during 2022-2023. We collected samples from 52 suspected CDV cases in domestic dogs and detected viral RNA through real-time RT-PCR in 28 dogs (54%). Factors like age and vaccination status were determinants of CDV positivity, with young adult and unvaccinated dogs facing a higher infection risk. We isolated CDV from positive samples in VeroDogSLAM cells. From these isolates and direct samples, we obtained sequences and estimated the phylogeny based on gene H. CDV isolates from nasal and conjunctival swabs exhibited cytopathic effects, and sequence analysis unveiled a substantial genetic diversity among the strains. Chilean CDV strains demonstrated a genetic distance to vaccine strains of approximately 10%, antigenic-change-related amino acid substitutions, and novel putative glycosylation sites. In the phylogeny, Chilean CDV field strains clustered into two lineages, Europe/South America-1 and North/South America-4, indicating the emergence of the North/South America-4 lineage in Chile and underscoring the genetic complexity of CDV in the country. Interestingly, certain Chilean viruses shared a close common ancestor with Brazilian and Peruvian viruses, suggesting viral spreading patterns. Further investigations are warranted to comprehend the potential antigenic implications of these genetically diverse CDV strains.
Collapse
Affiliation(s)
- Naomi Ariyama
- Departamento de Medicina Preventiva AnimalFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile, Santiago 8820808, Chile
| | - Belén Agüero
- Departamento de Medicina Preventiva AnimalFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile, Santiago 8820808, Chile
| | - Benjamín Bennett
- Departamento de Medicina Preventiva AnimalFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile, Santiago 8820808, Chile
| | - Constanza Urzúa
- Departamento de Medicina Preventiva AnimalFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile, Santiago 8820808, Chile
| | - Felipe Berrios
- Departamento de Medicina Preventiva AnimalFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile, Santiago 8820808, Chile
| | - Claudio Verdugo
- Instituto de Patología AnimalFacultad de Ciencias VeterinariasUniversidad Austral de Chile, Valdivia 5090010, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva AnimalFacultad de Ciencias Veterinarias y PecuariasUniversidad de Chile, Santiago 8820808, Chile
| |
Collapse
|
5
|
Rendon-Marin S, Ruíz-Saenz J. Universal peptide-based potential vaccine design against canine distemper virus (CDV) using a vaccinomic approach. Sci Rep 2024; 14:16605. [PMID: 39026076 PMCID: PMC11258135 DOI: 10.1038/s41598-024-67781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
Canine distemper virus (CDV) affects many domestic and wild animals. Variations among CDV genome linages could lead to vaccination failure. To date, there are several vaccine alternatives, such as a modified live virus and a recombinant vaccine; however, most of these alternatives are based on the ancestral strain Onderstepoort, which has not been circulating for years. Vaccine failures and the need to update vaccines have been widely discussed, and the development of new vaccine candidates is necessary to reduce circulation and mortality. Current vaccination alternatives cannot be used in wildlife animals due to the lack of safety data for most of the species, in addition to the insufficient immune response against circulating strains worldwide in domestic species. Computational tools, including peptide-based therapies, have become essential for developing new-generation vaccines for diverse models. In this work, a peptide-based vaccine candidate with a peptide library derived from CDV H and F protein consensus sequences was constructed employing computational tools. The molecular docking and dynamics of the selected peptides with canine MHC-I and MHC-II and with TLR-2 and TLR-4 were evaluated. In silico safety was assayed through determination of antigenicity, allergenicity, toxicity potential, and homologous canine peptides. Additionally, in vitro safety was also evaluated through cytotoxicity in cell lines and canine peripheral blood mononuclear cells (cPBMCs) and through a hemolysis potential assay using canine red blood cells. A multiepitope CDV polypeptide was constructed, synthetized, and evaluated in silico and in vitro by employing the most promising peptides for comparison with single CDV immunogenic peptides. Our findings suggest that predicting immunogenic CDV peptides derived from most antigenic CDV proteins could aid in the development of new vaccine candidates, such as multiple single CDV peptides and multiepitope CDV polypeptides, that are safe in vitro and optimized in silico. In vivo studies are being conducted to validate potential vaccines that may be effective in preventing CDV infection in domestic and wild animals.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julián Ruíz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia.
| |
Collapse
|
6
|
Rendon-Marin S, Higuita-Gutiérrez LF, Ruiz-Saenz J. Safety and Immunogenicity of Morbillivirus canis Vaccines for Domestic and Wild Animals: A Scoping Review. Viruses 2024; 16:1078. [PMID: 39066240 PMCID: PMC11281360 DOI: 10.3390/v16071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Morbillivirus canis (canine distemper virus (CDV)) is recognized as a multihost pathogen responsible for a transmissible disease affecting both domestic and wild animals. A considerable portion of wildlife populations remain unvaccinated due to a lack of safety and immunogenicity data on existing vaccines for the prevention of CDV infection in these species. This review aimed to assess the current state of CDV vaccination research for both domestic and wild animals and to explore novel vaccine candidates through in vivo studies. It also sought to synthesize the scattered information from the extensive scientific literature on CDV vaccine research, identify key researchers in the field, and highlight areas where research on CDV vaccination is lacking. A scoping review was conducted across four databases following the PRISMA-ScR protocol, with information analyzed using absolute and relative frequencies and 95% confidence intervals (CIs) for study number proportions. Among the 2321 articles retrieved, 68 met the inclusion criteria and focused on CDV vaccines in various animal species, such as dogs, ferrets, minks, and mice. Most of the scientific community involved in this research was in the USA, Canada, France, and Denmark. Various vaccine types, including MLV CDV, recombinant virus, DNA plasmids, inactivated CDV, and MLV measles virus (MeV), were identified, along with diverse immunization routes and schedules employed in experimental and commercial vaccines. Safety and efficacy data were summarized. Notably, 37 studies reported postimmunization CDV challenge, primarily in dogs, revealing the survival rates of vaccinated animals. In summary, CDV vaccines generally demonstrate an acceptable safety profile in dogs and show promise as a means of controlling CDV. However, significant gaps in vaccine research persist, particularly concerning wildlife reservoirs, indicating the need for further investigation.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
- Grupo de Investigación Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia
| | - Luis Felipe Higuita-Gutiérrez
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
- Escuela de Microbiología, Universidad de Antioquia, Medellín 050001, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
| |
Collapse
|
7
|
dos Santos CP, Telles JTG, de Freitas Guimarães G, Gil LHVG, Vieira AM, Junior JWP, Calzavara-Silva CE, de Cássia CarvalhoMaia R. Epitope mapping and a candidate vaccine design from canine distemper virus. Open Vet J 2024; 14:1019-1028. [PMID: 38808294 PMCID: PMC11128641 DOI: 10.5455/ovj.2024.v14.i4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
Background Canine distemper (CD) is a worldwide spread disease that has been described in 12 families of mammals, especially in the Carnivora order, being better studied in domestic canines where vaccination represents the best means of control. CD is controlled by vaccination, but many cases of the disease still occur in vaccinated animals. Aim The aim of this work was to study antigen-specific epitopes that can subsidize the development of a new vaccine approach. Methods Mapping of T cell reactive epitopes for CD virus (CDV) was carried out through enzyme-linked immunospot assays using 119 overlapped synthetic peptides from the viral hemagglutinin protein, grouped in 22 pools forming a matrix to test the immune response of 32 animals. Results Evaluations using the criteria established to identify reactive pools, demonstrated that 26 animals presented at least one reactive pool, that one pool was not reactive to any animal, and six pools were the most frequent among the reactive peptides. The crisscrossing of the most reactive pools in the matrix revealed nine peptides considered potential candidate epitopes for T cell stimulation against the CDV and those were used to design an in-silico protein, containing also predicted epitopes for B cell stimulation, and further analyzed using immune epitope databases to ensure protein quality and stability. Conclusion The final in silico optimized protein presents characteristics that qualify it to be used to develop a new prototype epitope-based anti-CDV vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Mota Vieira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
8
|
Menezes KMF, Dábilla N, Souza M, Damasceno AD, Torres BBJ. Identification of a new polymorphism on the wild-type canine distemper virus genome: could this contribute to vaccine failures? Braz J Microbiol 2023; 54:665-678. [PMID: 37140816 PMCID: PMC10235312 DOI: 10.1007/s42770-023-00971-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
The canine distemper virus (CDV) is responsible for a multisystem infectious disease with high prevalence in dogs and wild carnivores and has vaccination as the main control measure. However, recent studies show an increase in cases including vaccinated dogs in different parts of the world. There are several reasons for vaccine failures, including differences between vaccine strains and wild-type strains. In this study, a phylogenetic analysis of CDV strains from samples of naturally infected, vaccinated, and symptomatic dogs in Goiânia, Goiás, Brazil was performed with partial sequencing of the hemagglutinin (H) gene of CDV. Different sites of amino acid substitutions were found, and one strain had the Y549H mutation, typically present in samples from wild animals. Substitutions in epitopes (residues 367, 376, 379, 381, 386, and 388) that may interfere with the vaccine's ability to provide adequate protection against infection for CDV were observed. The identified strains were grouped in the South America 1/Europe lineage, with a significant difference from other lineages and vaccine strains. Twelve subgenotypes were characterized, considering a nucleotide identity of at least 98% among the strains. These findings highlight the relevance of canine distemper infection and support the need better monitoring of the circulating strains that contribute to elucidate if there is a need for vaccine update.
Collapse
Affiliation(s)
| | - Nathânia Dábilla
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Menira Souza
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Adilson Donizeti Damasceno
- Escola de Veterinária E Zootecnia, Universidade Federal de Goiás - UFG, Campus II CEP 74690900, Goiânia, GO, Brazil
| | - Bruno Benetti Junta Torres
- Escola de Veterinária E Zootecnia, Universidade Federal de Goiás - UFG, Campus II CEP 74690900, Goiânia, GO, Brazil
| |
Collapse
|
9
|
Saltık HS, Atlı K. Approaches to identify canine distemper virus with neurological symptoms on the basis of molecular characterization of hemagglutinin and fusion genes. Virus Genes 2023:10.1007/s11262-023-02007-w. [PMID: 37261699 DOI: 10.1007/s11262-023-02007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
Canine distemper virus (CDV), which causes severe infections in all domestic and wild carnivores, is transmitted by all secretions and excretions of infected animals. Despite the regular vaccination against it, CDV still manages to circulate in nature and is a worldwide problem in dogs. For many years in the world, the virus managed to circulate in nature. The current investigation aims to identify and characterize CDV in dogs with neurological symptoms and to determine whether CNS symptoms and phylogenetic data might be used to differentiate between CDV strains. The medical records of 35 dogs with central nervous system (CNS) symptoms were examined. An ELISA kit was used to identify CDV-specific IgG antibodies in all of the dogs' serum samples. RT-PCR confirmed the presence of CDV nucleic acid in 30 of these dogs. Of the RT-PCR-positive samples, 6 were randomly chosen for further sequencing, sequence comparisons, and phylogenetic reconstructions. Genes encoding the Hemagglutinin (H) and Fusion (F) proteins were partly sequenced and compared to other CDVs from throughout the world, including vaccine strains. The maximum likelihood method was used to build a phylogenetic tree using CDV H and F gene nucleotide sequences. According to phylogenetic analysis of partial H and F gene nucleotide sequences, the field CDVs in this investigation were unique and different from the vaccine strain. The phylogenetic analysis indicated that all Turkish CDV strains that induced CNS symptoms belonged to the European CDV clade. While the intricacy of the CNS and the complexities of glycosylation pathways may provide significant challenges to infections, future research will bring significant benefits by identifying evolutionarily conserved activities of N-glycosylation in CDV-infected dogs.
Collapse
Affiliation(s)
- Hasbi Sait Saltık
- Faculty of Veterinary Medicine, Department of Virology, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye.
| | - Kamil Atlı
- Faculty of Veterinary Medicine, Department of Virology, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| |
Collapse
|
10
|
Optimization of lateral flow assay for Canine morbillivirus detection and the application of the strip as sample substitute. J Immunol Methods 2023; 514:113438. [PMID: 36738767 DOI: 10.1016/j.jim.2023.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Canine distemper is an emerging disease, caused by the Canine morbillivirus (CDV) of the Paramyxoviridae family. The virus has evolved as a multi-host pathogen as it affects many wildlife animal species. The development of specific and sensitive diagnostic tests is the need for a control program. Several diagnostic tests are available for the detection of CDV antigen and antibody. Lateral flow assay (LFA) is the most promising point of care diagnostic test because of its specificity, easy use, and instant result. This study was designed to develop a lateral flow assay using the in-house developed monoclonal antibody (mAb) against the nucleocapsid protein (N) of the 'CDV/dog/bly/Ind/2018' isolate, which represents the circulating strains of India. The two mAbs included in the study showed high binding affinity in indirect ELISA and dot blot assay. Out of two, one mAb was selected due to its comparatively higher binding affinity in LFA format, and less non-specific binding to the biological matrix and buffer components. The limit of detection was found to be 106.5 TCID50/ml with the assay run time of 5 min. The fresh clinical samples collected on the spot were distinctly detected by the LFA, whereas the stored samples with a reduced titre of the virus showed inconsistent results. Moreover, the blood samples showed a clear distinction of positive and negative than the swab and tissue homogenates. The RNA extraction from the strip was successful with the some modifications in the Trizol RNA extraction method and the N and H gene fragments were amplified. Therefore, the study concludes that the LFA is suitable for CDV antigen detection in the field conditions and the strips can be used as the sample substitute for molecular study.
Collapse
|
11
|
Becker AS, Silva Júnior JVJ, Weiblen R, Flores EF. An appraisal of gene targets for phylogenetic classification of canine distemper virus: Is the hemagglutinin the best candidate? Virus Res 2023; 325:199043. [PMID: 36634899 DOI: 10.1016/j.virusres.2023.199043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Sequence analysis of the canine distemper virus (CDV) hemagglutinin (H) gene may provide important insights on virus-host interactions and has also been frequently used for CDV phylogenetic classification. Herein, we performed an in silico analysis of CDV complete genomes (CGs) available in GenBank in order to investigate the suitability of H for CDV classification into lineages/genotypes. In addition, we analyzed the other viral genes for their potential use in CDV classification. Initially, we collected 116 CDV CGs from GenBank and compared their phylogenetic classification with that of their respective H nucleotide (nt) and amino acid (aa) sequences. Subsequently, we calculated the geodesic distance between the CG and H phylogenetic trees. These analyses were later performed with other CDV genes. All CDV CGs were also evaluated for possible recombination events. Nucleotide and aa analyses of H misclassified some Vaccine/America 1/Asia 3 lineage sequences compared to CG analysis, finding supported by both Maximum Likelihood (ML) and Bayesian Markov Chain Monte Carlo (B-MCMC) methods. Moreover, aa-based H analysis showed additional disagreements with the classification obtained by CG. The geodesic distance between the H and CG trees was 0.0680. Strong recombination signals were identified in the H gene, including Vaccine/America 1/Asia 3 lineage sequences. In contrast, C and P were the only genes that fully reproduced the CG classification (by ML and/or B-MCMC) and that did not show strong recombination signals. Furthermore, the P phylogenetic tree showed the lowest geodesic distance from the CG tree (0.0369). These findings suggest C and P as potential targets for CDV phylogenetic classification, especially when full genome sequencing is not possible. Finally, since our results were obtained considering the CDV CGs available to date, future analyses performed as more CDV sequences become available will be useful to assess probable issues of H-based phylogeny and to consolidate the suitability of the C and P genes for CDV classification.
Collapse
Affiliation(s)
- Alice Silveira Becker
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - José Valter Joaquim Silva Júnior
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil; Setor de Virologia, Instituto Keizo Asami, Universidade Federal de Pernambuco, Pernambuco, Brazil; Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Eduardo Furtado Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Truong QL, Duc HM, Anh TN, Thi YN, Van TN, Thi PH, Thu HNT, Thi LN. Isolation and genetic characterization of canine distemper virus in domestic dogs from central and northern provinces in Vietnam. Res Vet Sci 2022; 153:105-114. [PMID: 36347064 DOI: 10.1016/j.rvsc.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Canine distemper virus (CDV) is a pathogen causing fatal disease in a wide range of carnivores. Sequence analysis of CDV strains has been classified into several geographically-related lineages, and the evolution and emergence of these strains are not fully yet investigated. In this study, the complete H gene sequences of 15 CDV strains isolated on Vero DST cell culture from clinical samples of vaccinated domestic dogs in Vietnam were investigated. Fifteen CDV isolates belonging to Asia-1 CDV variants were predominant antigenic type circulated in Central and Northern Vietnam with notable differences regarding the region and some genetic variation, and the most closely related Asia-1 variants lineage reported in Vietnam, China, Taiwan, and Japan. All identified CDV isolates clustered into 2 novel clades Asia-1-C1 and Asia-1-C2. The major amino acid mutation variants of Vietnamese Asia-1 CDV strains were found at sites 51, 157, 159, 160, 171, 178, 186, 235, 245, 277, 288, 313, 324, 330, 337, 345, 358, 359, 365, 383, 446, 475, 517, 530, 584, 598 which include N-glycosylation sites and neutralizing epitope regions in H gene. The results of the virus neutralization titer (VNT) assay showed that the dogs vaccinated with commercial vaccines had significantly low VNT (4.89 and 12.8) against field CDV isolate strains (VNUA NA04, HN18, and NB05) isolated in northern and central Vietnam, respectively. These data may suggest the need for further research in CDV monitoring and development of preventative measures against CDV in Vietnam.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam..
| | - Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Tuan Nguyen Anh
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Yen Nguyen Thi
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Thang Nguyen Van
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Phuong Hoang Thi
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Huong Nguyen Thi Thu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Lan Nguyen Thi
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Viet Nam.
| |
Collapse
|
13
|
Lanszki Z, Lanszki J, Tóth GE, Cserkész T, Csorba G, Görföl T, Csathó AI, Jakab F, Kemenesi G. Detection and sequence analysis of Canine morbillivirus in multiple species of the Mustelidae family. BMC Vet Res 2022; 18:450. [PMID: 36564834 PMCID: PMC9789673 DOI: 10.1186/s12917-022-03551-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Canine morbillivirus (canine distemper virus, CDV) is a member of the Paramyxoviridae family. Canine distemper is a serious viral disease that affects many mammalian species, including members of the Mustelidae family. These animals have an elusive nature, which makes related virological studies extremely challenging. There is a significant knowledge gap about the evolution of their viruses and about the possible effects of these viruses to the population dynamics of the host animals. Spleen and lung tissue samples of 170 road-killed mustelids belonging to six species were collected between 1997 and 2022 throughout Hungary and tested for CDV with real-time RT-PCR. RESULTS Three species were positive for viral RNA, 2 out of 64 Steppe polecats (Mustela eversmanii), 1 out of 36 European polecats (Mustela putorius) and 2 out of 36 stone martens (Martes foina); all 18 pine martens (Martes martes), 10 least weasels (Mustela nivalis) and 6 stoats (Mustela erminea) tested negative. The complete CDV genome was sequenced in five samples using pan-genotype CDV-specific, amplicon-based Nanopore sequencing. Based on the phylogenetic analysis, all five viral sequences were grouped to the Europe/South America 1 lineage and the distribution of one sequence among trees indicated recombination of the Hemagglutinin gene. We verified the recombination with SimPlot analysis. CONCLUSIONS This paper provides the first CDV genome sequences from Steppe polecats and additional complete genomes from European polecats and stone martens. The infected specimens of various species originated from distinct parts of the country over a long time, indicating a wide circulation of CDV among mustelids throughout Hungary. Considering the high virulence of CDV and the presence of the virus in these animals, we highlight the importance of conservation efforts for wild mustelids. In addition, we emphasize the importance of full genomic data acquisition and analysis to better understand the evolution of the virus. Since CDV is prone to recombination, specific genomic segment analyses may provide less representative evolutionary traits than using complete genome sequences.
Collapse
Affiliation(s)
- Zsófia Lanszki
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - József Lanszki
- grid.418201.e0000 0004 0484 1763Balaton Limnological Research Institute, 8237 Tihany, Hungary ,grid.129553.90000 0001 1015 7851Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Gábor Endre Tóth
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Cserkész
- grid.424755.50000 0001 1498 9209Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
| | - Gábor Csorba
- grid.424755.50000 0001 1498 9209Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
| | - Tamás Görföl
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary
| | | | - Ferenc Jakab
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Kemenesi
- grid.9679.10000 0001 0663 9479National Laboratory of Virology, University of Pécs, 7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Biology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
14
|
Seki F, Takeda M. Novel and classical morbilliviruses: Current knowledge of three divergent morbillivirus groups. Microbiol Immunol 2022; 66:552-563. [PMID: 36151905 DOI: 10.1111/1348-0421.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
Currently, seven species of morbillivirus have been classified. Six of these species (Measles morbillivirus, Rinderpest morbillivirus, Small ruminant morbillivirus, Canine morbillivirus, Phocine morbillivirus, and Cetacean morbillivirus) are highly infectious and cause serious systemic diseases in humans, livestock, domestic dogs, and wild animals. These species commonly use the host proteins signaling lymphocytic activation molecule (SLAM) and nectin-4 as receptors, and this usage contributes to their virulence. The seventh species (Feline morbillivirus: FeMV) is phylogenetically divergent from the six SLAM-using species. FeMV differs from the SLAM-using morbillivirus group in pathogenicity and infectivity, and is speculated to use non-SLAM receptors. Recently, novel species of morbilliviruses have been discovered in bats, rodents, and domestic pigs. Because the ability to use SLAM and nectin-4 is closely related to the infectivity and pathogenicity of morbilliviruses, investigation of the potential usage of these receptors is useful for estimating infectivity and pathogenicity. The SLAM-binding sites in the receptor-binding protein show high similarity among the SLAM-using morbilliviruses. This feature may help to estimate whether novel morbillivirus species can use SLAM as a receptor. A novel morbillivirus species isolated from wild mice diverged from the classified morbilliviruses in the phylogenetic tree, forming a third group separate from the SLAM-using morbillivirus group and FeMV. This suggests that the novel rodent morbillivirus may exhibit a different risk from the SLAM-using morbillivirus group, and analyses of its viral pathogenicity and infectivity toward humans are warranted.
Collapse
Affiliation(s)
- Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
15
|
Fuques E, Tomás G, Grecco S, Condon E, Techera C, Marandino A, Sarute N, Aldaz J, Enciso J, Benech A, Pérez R, Panzera Y. Origin and spreading of canine morbillivirus in South America. Virus Res 2022; 319:198858. [PMID: 35809695 DOI: 10.1016/j.virusres.2022.198858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Canine distemper virus (CDV) is a Morbillivirus (Canine morbillivirus) that greatly impacts domestic and wildlife carnivores worldwide. The CDV RNA genome has high genetic variability, evidenced by several lineages that follow a global geographic pattern. The evolutionary trajectories and population dynamics of CDV lineages are still unclear and debatable, particularly in South America, where relatively few sequences are available. We performed phylogenetic and Bayesian analyses using an updated dataset of the highly variable hemagglutinin (H) gene, including seven South American countries. The time to the most recent common ancestor (tMRCA) of the current CDV lineages was dated to the early 1900s in North America. Maximum likelihood and Bayesian maximum clade credibility phylogenies showed similar topologies with two main branches (L1 and L2) corresponding to the NA1 lineage (L1) and the remaining lineages worldwide (L2). The four circulating lineages in South America (EU1/SA1, SA2, SA3, NA4/SA4) arose from independent migration events from North America and Europe. North American strains colonized most northern South American countries via Ecuador and then Colombia and Peru, originating the SA3 and NA4/SA4 lineages during their spread. The entry and expansion in the southern part of South America (Argentina, Brazil, Chile, and Uruguay) occurred through three independent migration events and gave rise to the EU1/SA1 and SA2 lineages. South American lineages have specific combinations of amino acids under positive selection that constitute signatures of taxonomic and evolutionary relevance. Our findings provide a comprehensive scenario for the origin and migration routes of Canine morbillivirus in South America and highlight the importance of phylodynamics in understanding the geographic patterns of modern genetic variability.
Collapse
Affiliation(s)
- E Fuques
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - G Tomás
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - S Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - E Condon
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - C Techera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - A Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - N Sarute
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - J Aldaz
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Estatal de Bolıvar, Av. Ernesto Che Guevara s/n. Guaranda, Ecuador
| | - J Enciso
- Grupo Medicina Regenerativa. Universidad Científica del Sur. Lima, Peru
| | - A Benech
- Unidad de Clínica y Hospital Veterinario, Facultad de Veterinaria. Universidad de la República. Montevideo, Uruguay
| | - R Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Y Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
16
|
Echeverry-Bonilla DF, Buriticá-Gaviria EF, Orjuela-Acosta D, Chinchilla-Cardenas DJ, Ruiz-Saenz J. The First Report and Phylogenetic Analysis of Canine Distemper Virus in Cerdocyon thous from Colombia. Viruses 2022; 14:v14091947. [PMID: 36146754 PMCID: PMC9502595 DOI: 10.3390/v14091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Canine distemper virus (CDV) is the etiological agent of a highly prevalent viral infectious disease of domestic and wild carnivores. This virus poses a conservation threat to endangered species worldwide due to its ability to jump between multiple species and produce a disease, which is most often fatal. Although CDV infection has been regularly diagnosed in Colombian wildlife, to date the molecular identity of circulating CDV lineages is currently unknown. Our aim was to evaluate the presence and phylogenetic characterization of CDV detected in samples from naturally infected Cerdocyon thous from Colombia. We sequenced for the first time the CDV infecting wildlife in Colombia and demonstrated the presence of South America/North America-4 Lineage with a higher relationship to sequences previously reported from domestic and wild fauna belonging to the United States of America. Our results are crucial for the understanding of the interspecies transmission of CDV in the domestic/wild interface and for the prevention and control of such an important multi-host pathogen.
Collapse
Affiliation(s)
- Diego Fernando Echeverry-Bonilla
- Hospital Veterinario, Universidad del Tolima, Calle 20 Sur # 23A-160 Barrio Miramar, Ibagué 730010, Tolima, Colombia
- Grupo de Investigación en Medicina y Cirugía de Pequeños Animales, Facultad de Medicina Veterinaria y Zootecnia, Universidad del Tolima, Calle 20 Sur # 23A-160 Barrio Miramar, Ibagué 730010, Tolima, Colombia
| | - Edwin Fernando Buriticá-Gaviria
- Hospital Veterinario, Universidad del Tolima, Calle 20 Sur # 23A-160 Barrio Miramar, Ibagué 730010, Tolima, Colombia
- Grupo de Investigación en Medicina y Cirugía de Pequeños Animales, Facultad de Medicina Veterinaria y Zootecnia, Universidad del Tolima, Calle 20 Sur # 23A-160 Barrio Miramar, Ibagué 730010, Tolima, Colombia
| | - Delio Orjuela-Acosta
- Hospital Veterinario, Universidad del Tolima, Calle 20 Sur # 23A-160 Barrio Miramar, Ibagué 730010, Tolima, Colombia
| | - Danny Jaír Chinchilla-Cardenas
- Mascolab, Laboratorio de Biología Molecular, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
- Correspondence:
| |
Collapse
|
17
|
George AM, Wille M, Wang J, Anderson K, Cohen S, Moselen J, Yang Lee LY, Suen WW, Bingham J, Dalziel AE, Whitney P, Stannard H, Hurt AC, Williams DT, Deng YM, Barr IG. A novel and highly divergent Canine Distemper Virus lineage causing distemper in ferrets in Australia. Virology 2022; 576:117-126. [DOI: 10.1016/j.virol.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
|
18
|
Karki M, Rajak KK, Singh RP. Canine morbillivirus (CDV): a review on current status, emergence and the diagnostics. Virusdisease 2022; 33:309-321. [PMID: 36039286 PMCID: PMC9403230 DOI: 10.1007/s13337-022-00779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
The increasing host range of canine morbillivirus (CDV) affecting important wildlife species such as Lions, Leopard, and Red Pandas has raised the concern. Canine distemper is a pathogen of dogs affecting the respiratory, gastrointestinal, and nervous systems. Seventeen lineages of CDV are reported, and the eighteenth lineage was proposed in 2019 from India. Marked genomic differences in the genome of wild-type virus and vaccine strain are also reported.The variations at the epitope level can be differentiated using specific monoclonal antibodies in neutralization tests. Keeping in mind the current status of the emergence of CDV, genetic and molecular study of circulating strains of the specific geographical region are the essential components of the disease control strategy. New target-based diagnostics and vaccines are in need to counter the effects of the emerging virus population. Control of CDV is necessary to save the endangered, vulnerable, and many other wildlife species to maintain balance in the ecological system. This review provides an overview on emergence reported in CDV, diagnostics developed till today, and a perspective on the disease control strategy, keeping wildlife in consideration.
Collapse
|
19
|
Lanszki Z, Lanszki J, Tóth GE, Zeghbib S, Jakab F, Kemenesi G. Retrospective Detection and Complete Genomic Sequencing of Canine morbillivirus in Eurasian Otter ( Lutra lutra) Using Nanopore Technology. Viruses 2022; 14:1433. [PMID: 35891411 PMCID: PMC9323228 DOI: 10.3390/v14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
The Eurasian otter (Lutra lutra) is a piscivorous apex predator in aquatic habitats, and a flagship species of conservation biology throughout Europe. Despite the wide distribution and ecological relevance of the species, there is a considerable lack of knowledge regarding its virological and veterinary health context, especially in Central Europe. Canine morbillivirus (Canine distemper virus (CDV)) is a highly contagious viral agent of the family Paramyxoviridae with high epizootic potential and veterinary health impact. CDV is present worldwide among a wide range of animals; wild carnivores are at particular risk. As part of a retrospective study, lung-tissue samples (n = 339) from Eurasian otters were collected between 2000 and 2021 throughout Hungary. The samples were screened for CDV using a real-time RT-PCR method. Two specimens proved positive for CDV RNA. In one sample, the complete viral genome was sequenced using a novel, pan-genotype CDV-specific amplicon-based sequencing method with Oxford Nanopore sequencing technology. Both viral sequences were grouped to a European lineage based on the hemagglutinin-gene phylogenetic classification. In this article, we present the feasibility of road-killed animal samples for understanding the long-term dynamics of CDV among wildlife and provide novel virological sequence data to better understand CDV circulation and evolution.
Collapse
Affiliation(s)
- Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - József Lanszki
- Department of Nature Conservation, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary;
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (G.E.T.); (S.Z.); (F.J.)
- Faculty of Sciences, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
20
|
Geiselhardt F, Peters M, Jo WK, Schadenhofer A, Puff C, Baumgärtner W, Kydyrmanov A, Kuiken T, Piewbang C, Techangamsuwan S, Osterhaus ADME, Beineke A, Ludlow M. Development and Validation of a Pan-Genotypic Real-Time Quantitative Reverse Transcription-PCR Assay To Detect Canine Distemper Virus and Phocine Distemper Virus in Domestic Animals and Wildlife. J Clin Microbiol 2022; 60:e0250521. [PMID: 35491822 PMCID: PMC9116185 DOI: 10.1128/jcm.02505-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Canine distemper virus (CDV) is an animal morbillivirus belonging to the family Paramyxoviridae and has caused major epizootics with high mortality levels in susceptible wildlife species. In recent years, the documented genetic diversity of CDV has expanded, with new genotypes identified in India, the Caspian Sea, and North America. However, no quantitative real-time PCR (RT-qPCR) that has been validated for the detection of all genotypes of CDV is currently available. We have therefore established and characterized a pan-genotypic probe-based RT-qPCR assay based on the detection of a conserved region of the phosphoprotein (P) gene of CDV. This assay has been validated using virus strains representative of six genotypes of CDV in different sample types, including frozen tissue, formalin-fixed paraffin-embedded tissue sections, and virus isolates. The primers and probe target sequences were sufficiently conserved to also enable detection of the phocine distemper virus strains responsible for epizootics in harbor seals in the North Sea in 1988 and 2002. Comparison with two recently published RT-qPCR assays for CDV showed that under equivalent conditions the primers and probe set reported in this study were more sensitive in detecting nucleic acids from an Asia-4 genotype, which displays sequence variation in primer and probe binding sites. In summary, this validated new pan-genotypic RT-qPCR assay will facilitate screening of suspected distemper cases caused by novel genotypes for which full genome sequences are unavailable and have utility in detecting multiple CDV strains in geographical regions where multiple genotypes cocirculate in wildlife.
Collapse
Affiliation(s)
- Franziska Geiselhardt
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo-RIZ), Hannover, Germany
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Wendy K. Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo-RIZ), Hannover, Germany
| | - Alina Schadenhofer
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo-RIZ), Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | - Aidyn Kydyrmanov
- Laboratory of Viral Ecology, Research and Production Center for Microbiology and Virology, Almaty, Kazakhstan
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo-RIZ), Hannover, Germany
| | - Andreas Beineke
- Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo-RIZ), Hannover, Germany
| |
Collapse
|
21
|
Lanszki Z, Tóth GE, Schütz É, Zeghbib S, Rusvai M, Jakab F, Kemenesi G. Complete genomic sequencing of canine distemper virus with nanopore technology during an epizootic event. Sci Rep 2022; 12:4116. [PMID: 35260784 PMCID: PMC8904823 DOI: 10.1038/s41598-022-08183-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Canine distemper virus (CDV) endangers a wide range of wild animal populations, can cross species barriers and therefore representing a significant conservational and animal health risk around the globe. During spring to autumn 2021, according to our current estimates a minimum of 50 red foxes (Vulpes vulpes) died of CDV in Hungary, with CDV lesions. Oral, nasal and rectal swab samples were RT-PCR screened for Canine Distemper Virus from red fox carcasses. To investigate in more detail the origins of these CDV strains, 19 complete genomes were sequenced with a pan-genotype CDV-specific amplicon-based sequencing method developed by our laboratory and optimized for the Oxford Nanopore Technologies platform. Phylogenetic analysis of the complete genomic sequences and separately the hemagglutinin gene sequences revealed the role of the Europe lineage of CDV as a causative agent for the current epizootic. Here we highlight the growing importance of fast developing rapid sequencing technologies to aid rapid response activities during epidemics or epizootic events. We also emphasize the urgent need for improved surveillance of CDV, considering the epizootic capability of enzootic strains as reported in the current study. For such future efforts, we provide a novel NGS protocol to facilitate future genomic surveillance studies.
Collapse
Affiliation(s)
- Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, 7624, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, 7624, Hungary
| | - Éva Schütz
- Exo-Pet Állatgyógyászati Centrum, Budapest, 1078, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, 7624, Hungary
| | | | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, 7624, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary. .,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, 7624, Hungary.
| |
Collapse
|
22
|
Kimpston CN, Hatke AL, Castelli B, Otto N, Tiffin HS, Machtinger ET, Brown JD, Van Why KR, Marconi RT. High Prevalence of Antibodies against Canine Parvovirus and Canine Distemper Virus among Coyotes and Foxes from Pennsylvania: Implications for the Intersection of Companion Animals and Wildlife. Microbiol Spectr 2022; 10:e0253221. [PMID: 35080421 PMCID: PMC8791182 DOI: 10.1128/spectrum.02532-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Canine distemper virus (CDV) and Canine parvovirus (CPV) can cause deadly infections in wildlife and companion animals. In this report, we screened serum from free-ranging eastern coyotes (Canis latrans; N = 268), red foxes (Vulpes vulpes; N = 63), and gray foxes (Urocyon cinereoargenteus; N = 16) from Pennsylvania, USA, for antibodies (Abs) to CDV and CPV. This comprehensive screening was achieved using a commercially available enzyme-linked immunosorbent assay (ELISA)-based colorimetric assay. Abs to CDV and CPV were detected in 25.4% and 45.5% of coyotes, 36.5% and 52.4% of red foxes, and 12.5% and 68.8% of gray foxes, respectively. Abs to both viruses were detected in 9.7% of coyotes, 19.1% of red foxes, and 12.5% of gray foxes. This study demonstrates significant wildlife exposure in a northeastern state to CDV and CPV. As wildlife species continue to urbanize, the probability of spillover between domestic animals and wildlife will increase. Ongoing surveillance of wildlife for CDV and CPV exposure is warranted. IMPORTANCECanine distemper virus (CDV) and Canine parvovirus (CPV) are significant health threats to domestic dogs (Canis familiaris) and wildlife. CDV and CPV have been identified in diverse vertebrates, including endangered wildlife species. Susceptibility to these viral pathogens varies significantly among geographic regions and between host species. High morbidity and mortality have been reported with infection by either virus in susceptible species, including dogs. As humans and companion animals encroach on wildlife habitat, and as wildlife becomes increasingly urbanized, the potential for transmission between species increases. This study assessed CPV and CDV Ab prevalence in wild canids (eastern coyotes, red foxes, and gray foxes) harvested in Pennsylvania between 2015 and 2020. High Ab prevalence was demonstrated for both viruses in each species. Ongoing monitoring of CPV and CDV in wildlife and increased efforts to vaccinate dogs and prevent spillover events are essential.
Collapse
Affiliation(s)
- Caellaigh N. Kimpston
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Amanda L. Hatke
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Benjamin Castelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Nathan Otto
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Hannah S. Tiffin
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Erika T. Machtinger
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Justin D. Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Kyle R. Van Why
- USDA-APHIS Wildlife Services, Harrisburg, Pennsylvania, United States
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| |
Collapse
|
23
|
Wang R, Wang X, Zhai J, Zhang P, Irwin DM, Shen X, Chen W, Shen Y. A new canine distemper virus lineage identified from red pandas in China. Transbound Emerg Dis 2021; 69:e944-e952. [PMID: 34724331 DOI: 10.1111/tbed.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/29/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Canine distemper virus (CDV) is a highly contagious virus that causes multi-systemic, sub-clinical to fatal diseases in a wide range of carnivore species. Based on the sequences of the haemagglutinin (H) gene, CDV strains have been classified into 18 major genetic lineages. In this study, we characterized the genomes of CDV isolated from the lungs of two dead red pandas in China. Histopathological and immunohistochemical analyses revealed damage due to viral infection in these lungs. The two strains showed a deep genetic distance from the other 18 recognized lineages (>4.6% at nucleotide level and >5.0% at amino acid level). The maximum clade credibility tree of the H- gene sequences showed that they belonged to an independent clade and had diverged a relatively long time ago from the Asia-4 lineage (since 1884). These results suggest that the analyzed strains belong to a new CDV lineage, which we designate as Asia-6. Our finding indicates that CDV infections in wildlife in China are complex and are a threat to endangered carnivores.
Collapse
Affiliation(s)
- Ruichen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, P. R. China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaohu Wang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, P. R. China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, P. R. China
| | - Pian Zhang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, P. R. China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, P. R. China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Wu Chen
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, P. R. China.,Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, P. R. China
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, P. R. China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, P. R. China
| |
Collapse
|
24
|
Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells. Pathogens 2021; 10:pathogens10091199. [PMID: 34578231 PMCID: PMC8471232 DOI: 10.3390/pathogens10091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein-protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.
Collapse
|
25
|
da Costa VG, Saivish MV, de Oliveira PG, Silva-Júnior A, Moreli ML, Krüger RH. First complete genome sequence and molecular characterization of Canine morbillivirus isolated in Central Brazil. Sci Rep 2021; 11:13039. [PMID: 34158515 PMCID: PMC8219677 DOI: 10.1038/s41598-021-92183-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022] Open
Abstract
The Brazilian regions are still highly endemic areas for Canine morbillivirus [canine distemper virus (CDV)]. However, little is known regarding the genetic variability of the strain circulating in several Brazilian regions. Here, we report the first full-length genome and molecular characterization of CDV isolated from domestic dogs in the Brazilian Center-West region. Sequence alignment and phylogenetic analyses based on deduced amino acid and nucleotide sequences showed that the isolated strain is characterized as the South America-I/Europe genotype. However, it segregates into a CDV subgenotype branch. Interestingly, both H and F proteins have a gain of a potential N-glycosylation sites compared to the Onderstepoort vaccine strain. Therefore, this study provides a reference to further understand the epidemic and molecular characteristics of the CDV in Brazil.
Collapse
Affiliation(s)
- Vivaldo Gomes da Costa
- Enzymology Laboratory, Department of Cell Biology, Universidade de Brasília, Distrito Federal, Brazil.
| | - Marielena Vogel Saivish
- Department of Dermatological, Infectious and Parasitic Disease, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | | | - Abelardo Silva-Júnior
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Marcos Lázaro Moreli
- Virology Laboratory, Institute of Health Sciences, Universidade Federal de Jataí, Goiás, Brazil.
| | - Ricardo Henrique Krüger
- Enzymology Laboratory, Department of Cell Biology, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|
26
|
Lanszki Z, Zana B, Zeghbib S, Jakab F, Szabó N, Kemenesi G. Prolonged Infection of Canine Distemper Virus in a Mixed-Breed Dog. Vet Sci 2021; 8:61. [PMID: 33920469 PMCID: PMC8069365 DOI: 10.3390/vetsci8040061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Canine distemper virus (CDV) is a major viral pathogen in domestic dogs, belonging to the Paramyxoviridae family, in the Morbillivirus genus. It is present worldwide, and a wide range of domestic animals and wild carnivores are at risk. In the absence of vaccination, dogs have a low chance of survival; however, if and when a dog survives, it can take an average of a few weeks to a few months to fully wipe out the virus. In the present study, we traced the course of infection of a 1-year-old mixed-breed male dog. The animal had an unusually long course of persistent CDV infection with a vector-borne heartworm (Dirofilaria immitis) co-infection. The dog excreted the CDV for 17 months with PCR positivity in urine samples collected from February 2019 through June 2020. The sequencing and phylogenetic analysis of the hemagglutinin gene revealed the CDV to be the member of the endemic Arctic-like genetic lineage. To the best of our knowledge, this report represents the longest documented canine infection of CDV. Notably, we highlight the necessity regarding CDV infectivity studies to better comprehend the transmission attributes of the virus.
Collapse
Affiliation(s)
- Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (B.Z.); (S.Z.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (B.Z.); (S.Z.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (B.Z.); (S.Z.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (B.Z.); (S.Z.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | | | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (B.Z.); (S.Z.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
27
|
Giraldo-Ramirez S, Rendon-Marin S, Vargas-Bermudez DS, Jaime J, Ruiz-Saenz J. First detection and full genomic analysis of Canine Circovirus in CPV-2 infected dogs in Colombia, South America. Sci Rep 2020; 10:17579. [PMID: 33067527 PMCID: PMC7567816 DOI: 10.1038/s41598-020-74630-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Canine Circovirus (CanineCV) is an emerging virus which since its first report in USA in 2012, it has been described worldwide. It was the second mammalian circovirus species identified in dogs and its role in canine enteritis is still being uncertain as much as its association in disease with the Canine Parvovirus-2 (CPV-2). Here, we aim to confirm for the first time the presence of CanineCV in Colombia and to develop phylogenetic evolutive analyses of CanineCV in CPV-2 positive animals. DNA from samples were extracted and PCR, full genome sequencing and phylogenetic analysis was performed to detect and characterize CanineCV. From a total of 30 CPV-2 positive samples, 16.6% (n = 5) were positives for CanineCV. Sequencing analysis of Colombian CanineCV wild-type strains displayed high identity to each other (99.5–99.7% nt; 99.7% aa). The full genome phylogenetic analysis confirmed that worldwide reported CanineCV strains were separated into four distinct genotypes in addition to a European origin of the South American CanineCV strains. This study demonstrated the importance of continue surveillance of emerging viruses in canine populations and confirm for the first time the circulation and origin of CanineCV in Colombia.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ramirez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Calle 30A # 33-51, Bucaramanga, Colombia
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Calle 30A # 33-51, Bucaramanga, Colombia
| | - Diana S Vargas-Bermudez
- Departamento de Salud Animal, Centro de Investigación en Infectología E Inmunología Veterinaria (CI3V), Facultad de Medicina Veterinaria Y de Zootecnia, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, CP 1100, Bogotá, Colombia
| | - Jairo Jaime
- Departamento de Salud Animal, Centro de Investigación en Infectología E Inmunología Veterinaria (CI3V), Facultad de Medicina Veterinaria Y de Zootecnia, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, CP 1100, Bogotá, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Calle 30A # 33-51, Bucaramanga, Colombia.
| |
Collapse
|
28
|
Rendon-Marin S, Martinez-Gutierrez M, Suarez JA, Ruiz-Saenz J. Canine Distemper Virus (CDV) Transit Through the Americas: Need to Assess the Impact of CDV Infection on Species Conservation. Front Microbiol 2020; 11:810. [PMID: 32508760 PMCID: PMC7253583 DOI: 10.3389/fmicb.2020.00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - José Antonio Suarez
- Investigador SNI Senacyt Panamá, Clinical Research Deparment, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Asociación Colombiana de Virología, Bogotá, Colombia
| |
Collapse
|
29
|
Phylogenomic Analysis of Two Co-Circulating Canine Distemper Virus Lineages in Colombia. Pathogens 2019; 9:pathogens9010026. [PMID: 31892101 PMCID: PMC7168600 DOI: 10.3390/pathogens9010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Canine distemper virus (CDV) is considered a reemerging disease-causing agent in domestic dogs because it presents high divergence among circulating strains worldwide. In Colombia, the South America-3 and South America/North America-4 lineages co-circulate in domestic dogs, both in the Medellin metropolitan area. In this paper, two full CDV genomes from each viral lineage circulating in Medellin were sequenced; we explored the phylogenetic relationship with the available genome sequences; we described the presence of CDV mutations in the South America-3 and South America/North America-4 lineages associated with adaptation to human cells and a crossing of the species barrier and pathogenicity; and we established the evolutionary rates and time of the closest common ancestor for each gene and characterized the presentation of multiple genomic sites by positive selection.
Collapse
|